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Probabilistic Inference

- Exact computation 1s intractable (#P-complete)

- Approximate techniques:
- Markov Chain Monte Carlo Methods
- Variational Approximation
- Interval Propagation
- Randomization in combinatorial reasoning tools

Drawback:

Either Performance or Theoretical Guarantees but Not Both



Reduction to Model Counting
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Model Counting

- Given a SAT formula F
- Rp: Set of all solutions of F

- Problem #SAT): Estimate the number of solutions of F
(#F) 1.e., what i1s the cardinality of Rg?

-Eg.,. F=(@vhb)

‘ RF — {(Oal)a (170)9 (171)}
- The number of solutions (#F) = 3




Long History of Work

- Proved #P complete (Valiant 1977)
- Approximate variant: introduced by Stockmeyer (1983)

- Uniform sampling 1s inter-reducible to approximate counting
(Jerrum, Valiant and Vazirani 1986)

- FPRAS for approximate #DNF (Karp, Luby 1985)

- No practical techniques for CNF
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How to Partition?

How to partition into roughly equal small cells of models
without knowing the distribution of models?

Universal Hashing
[Carter-Wegman 1979]
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XOR-Based Hashing

- Partition 2" space into 2™ cells
- Variables: X, X,, Xg,....., X,

- Pick every variable with prob. % ,XOR them and add 0/1 with
prob. %

e X+ X+ Xet.... X, ;+ 0

- To construct h: {0,1}" - {0,1}', choose m random XORs
-a €{0,1}™ - Set every XOR equation to O or 1 randomly
- The cell: FA XOR (CNF+XOR)
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Si1ze of cell

- Too large => Hard to enumerate

- Too small => Variance can be very high

pivot = 5(1 + 1/¢)?
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PAC Counter: ApproxMC(F,¢, §)

Choose m
Choose h € H(n,m, 3)

|II

* Forright choice of m, large number of cells are “smal
 “almost all” the cells are “roughly” equal

 Checkif a randomly picked cell is “small”

* |f yes, then estimate = # of solutions in cell * 2™
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ApproxMC(F,e¢, 6)

H#sols <

NO

W
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ApproxMC(F,e¢, 6)

H#sols <

NO






ApproxMC(F,e, §)

Key Lemmas
Let m* = log|Rr| — logpivot

Lemma 1: The algorithm terminates with m € [Im* — 1,m*] with
high probability

Lemma 2: The estimate from a randomly picked cell for m €
Im* — 1,m”"] 1s correct with high probability
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Approximate Model Counting

- Approximate Model Counting
|RE

1+ ¢

Pr < ApproxMC(F,,6) < (1 + ¢)|Rg|

- Hashing-based Approaches

- AAAI 2014
- CAV 2013

« TACAS 2015
- CP 2013

- [JCAI 2015
- UAI 2013

- ICML 2015
- NIPS 2013

- UAI 2015
- DAC 2014

- AAAI 2016
- ICML 2014

« AISTATS 2016

>1-96
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Bit-level reasoning

- XOR-based (mod 2) hash functions 1n all prior works
- Variables in Graphical Models are not binary

- Approach: Perform “bit-blasting”
-Dom(X) = {0,1, 2,3}
- X can be represented using two bits (y;, y,) such that X =

Y1)2
- XOR constraints over y; variables

- Require solvers to perform bit-level reasoning
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Word-level Revolution

- Development of SMT Solvers to reason directly at the

level of “words”, 1.e. variables
* No need for “bit-blasting”

- The biggest advance 1n formal methods in last 25 years

[John Rushby, 2011]
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Our Contributions

- Hoyp: Efficient word-level Hash Function

- SMTApproxMC: Efficient word-level counter

Theory: QF-BV
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Towards Efficient word-level Hashing

- Lifting hashing from (mod 2) to (mod 2%) constraints
- k: largest “bit-width”

- Linear inequality constraints
“hy =a1x1+ax, +--+a,x,+b
*aq,Qy, ... Ay, b, are randomly chosen from 0 to 2%-1
cay = “< 2k op « > 2k
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Theoretical Guarantees: 2-universal

chy = (a;x; +a,x, + -+ a,x, +b)
e = < 2k

’O-l — {Xl — Ul,xz — vz ....xn —_ TL}
» Prloy E (b= ay)]
* Transform g, to (0,0....0)
1

- Pr[(0,0,....0) & (hy= ay)] =Pr[b < 27| =~

- Prlo, E (=) |0y F (hy= )]
* Transform gy to (0,0....0)
* Transform o, to (1,0.....0)

“Prlo, E (M=) oy E (hy= ;)] =Prla; + b < 271 |p < 2K 1] =

1

2
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Word-Level Counter

1. F'=F
2. fori1=1 tok:
3. If (|Rz/| > p1ivot):

4. F'=FA {(a1x1 + ayx, + - .a,x, + b =" or“ <“2k1 )}
5. EHlse:

6. If (| R [==0):

7. Return L

8. Return |Rp/| * A
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Diagnosis

- Look for hash functions that are polynomial to solve by
themselves
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Towards Efficient word-level Hashing

- Lifting hashing from (mod 2) to (mod p) constraints

- p: smallest prime greater than domain of variables (2%)

- Linear equality (mod p) constraints to partition into p
cells

* |Dom(x;)| < 2%
*hy == (a1x1 + ayxy + -+ a,x, + b) (mod p)
* aq, 0y, .... Ay, b, are randomly chosen from O to p-1
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Theoretical Guarantees: 2-universal

- hy = (axy + a,x, + -+ a,x,, + b) (mod p)

*01 = {Xl = V1, X9 = V9 ....xn — Un}
- Prloy F (hy= a,)]

* Transform gy to (0,0....0)

- Pr[(0,0,....0) E (hy= a;)] = Pr[b == 0] = %
- Prlo, E (hy=a;) |0y F (hy= ;)]

* Transform gy to (0,0....0)

* Transform o, to (1,0.....0)

“Prlo, F(h=a) |0y E (hy=a1)] = Prla; = 1] =

SR
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Word-Level Counter

. F'=F
for 1= 1 to k:
If (IRg/| > pivot):
F'=FA{(ayx; + a,x, +-.a,x,, + b = a) mod p}
Else:
If (IR [==0):
Return L

o T A A e R

Return |R./| * p!
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Diagnosis

- Number of cells (N) = p¢

- C: Number of Linear Constraints
« N 1s too small = Number of solutions is too large

- N 1s too large - Number of solutions is very small (Avg < 0)

- Need finer control over number of cells
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SMTApproxMC(F, ¢, §)

F'=F:i=0 p; = smallest prime greater than 2k+1-2
Forj =1 to k:
If (| Rgr| > pivot):
F'=FA{(a1x; + ayx, + -+ .a,x, + b = a) mod p;}
Else:
If (|Rpr |==0 & p;>2):
F' = Pop out last constraint; 1++
F'=FA{(a1x1 + ayxy + -+ .apx, + b = a) mod p;}
Return |Ryz/| * N

© ® NS s W=
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H e Efficient word-level Hash Function

. Use different primes to control the number of cells

» Choose appropriate N and express as product of preferred
primes, 1.e. N = p;“1p,“2p33...... D"

» Hour
* ¢; (mod p,) constraints
* ¢y (mod p,) constraints

- Ho\p satisfies guarantees of 2-universality
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SMTApproxMC
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Theoretical Guarantees

- F': Formula over bounded domain variables;

- Rp : Solution Space of F
« SMTApproxMC

|RF|
p
" 17

< SMTApproxMC(F,,6) < (1 4+ 2)|Rg||=1—-6

- Polynomial in F g log (%) relative to word-level oracle
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Experimental Evaluations

- Over 150 benchmarks from:
* Ising Models
- ISCAS89 Circuits

* Program Synthesis

- Comparison with state of the art tool: CDM

- Based on Chistikov, Dimitrova, and Majumdar 2015

- Similar to Ermon et al, Chakraborty et al, Belle et al, etc..
- Uses XOR-based hash functions (bit level!)

- Objectives:
- Quality of estimates
* Runtime performance comparison
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Quality Comparison

- Pr [% < SMTApproxMC(F,,8) < (1 + €)|Ry] ] >1—-96

- Experiments with ¢ = 0.8 6 =0.1

IRF| 1 SMTApproxMC(r,s,6)
roxMC(F,:6) IRF| _

- Observed ¢ = maX{SMTApp 1}
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Quality Comparison
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Runtime Performance Comparison
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Future Work



SMT + Mod p

- For SAT: CNF + XOR
« CryptoM1in1SAT has been solver of choice

- Gaussian elimination for added XOR constraints

- SMT Solver with Gaussian elimination for added Linear equality
constraints

- Preferred primes dependent on SMT solver’s architecture?
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SMT Sampling

- Sampling 1s inter-reducible to counting (JVV 1986)

- Algorithm 1s highly impractical (linear number of calls to approx counter)

- Hashing-based framework for sampling
* UniGen (Chakraborty,M.,Vardi, 2013)
- Requires 3-universal guarantees

» Hoyrp can provide only 2-universal guarantees
* Design efficient algorithms with only 2-universal requirement?

For tools/papers: www.kuldeepmeel.com



