Word-Level Hashing

Approach to Approximate
Probabilistic Inference

Joint work with Supratik Chakraborty (IITB), Rakesh Mistry (II'TB), and Moshe Y.
Vardi (Rice)

Graphical Models

GM 0.65
Other 0.1

Afternoon 0.2
Evening 0.45

Time | Topic | Attend | Pr__

Afternoon GM Yes 0.7

Pr[Attend = Yes N Topic=GM N Time=Morning] =0.7*0.65*0.35

Probabilistic Inference

GM 0.65
Other 0.1

Afternoon 0.2
Evening 0.45

Pr [Attend = Yes | Topic=GM]

| |

Event Evidence

e Jtopic | atena|pr

Afternoon GM Yes 0.7

Probabilistic Inference

- Exact computation 1s intractable (#P-complete)

- Approximate techniques:
- Markov Chain Monte Carlo Methods
- Variational Approximation
- Interval Propagation
- Randomization in combinatorial reasoning tools

Drawback:

Either Performance or Theoretical Guarantees but Not Both

Reduction to Model Counting

Pr [Attend = Yes | Topic=GM]

Attend
Roth 1996

Model Counting

- Given a SAT formula F
- Rp: Set of all solutions of F

- Problem #SAT): Estimate the number of solutions of F
(#F) 1.e., what i1s the cardinality of Rg?

-Eg.,. F=(@vhb)

‘ RF — {(Oal)a (170)9 (171)}
- The number of solutions (#F) = 3

Long History of Work

- Proved #P complete (Valiant 1977)
- Approximate variant: introduced by Stockmeyer (1983)

- Uniform sampling 1s inter-reducible to approximate counting
(Jerrum, Valiant and Vazirani 1986)

- FPRAS for approximate #DNF (Karp, Luby 1985)

- No practical techniques for CNF

Partitioning into equal “small” cells

Partitioning into equal “small” cells

LT
AN
LA

MMMMMMMMMMM

Partitioning into equal “small” cells

MMMMMMMMMMM

How to Partition?

How to partition into roughly equal small cells of models
without knowing the distribution of models?

Universal Hashing
[Carter-Wegman 1979]

11

XOR-Based Hashing

- Partition 2" space into 2™ cells
- Variables: X, X,, Xg,....., X,

- Pick every variable with prob. % ,XOR them and add 0/1 with
prob. %

e X+ X+ Xet.... X, ;+ 0

- To construct h: {0,1}" - {0,1}', choose m random XORs
-a €{0,1}™ - Set every XOR equation to O or 1 randomly
- The cell: FA XOR (CNF+XOR)

12

Si1ze of cell

- Too large => Hard to enumerate

- Too small => Variance can be very high

pivot = 5(1 + 1/¢)?

13

PAC Counter: ApproxMC(F,¢, §)

Choose m
Choose h € H(n,m, 3)

|II

* Forright choice of m, large number of cells are “smal
 “almost all” the cells are “roughly” equal

 Checkif a randomly picked cell is “small”

* |f yes, then estimate = # of solutions in cell * 2™

14

ApproxMC(F,e¢, 6)

H#sols <

NO

W

15

ApproxMC(F,e¢, 6)

H#sols <

NO

ApproxMC(F,e, §)

Key Lemmas
Let m* = log|Rr| — logpivot

Lemma 1: The algorithm terminates with m € [Im* — 1,m*] with
high probability

Lemma 2: The estimate from a randomly picked cell for m €
Im* — 1,m”"] 1s correct with high probability

18

Approximate Model Counting

- Approximate Model Counting
|RE

1+ ¢

Pr < ApproxMC(F,,6) < (1 + ¢)|Rg|

- Hashing-based Approaches

- AAAI 2014
- CAV 2013

« TACAS 2015
- CP 2013

- [JCAI 2015
- UAI 2013

- ICML 2015
- NIPS 2013

- UAI 2015
- DAC 2014

- AAAI 2016
- ICML 2014

« AISTATS 2016

>1-96

19

Bit-level reasoning

- XOR-based (mod 2) hash functions 1n all prior works
- Variables in Graphical Models are not binary

- Approach: Perform “bit-blasting”
-Dom(X) = {0,1, 2,3}
- X can be represented using two bits (y;, y,) such that X =

Y1)2
- XOR constraints over y; variables

- Require solvers to perform bit-level reasoning

20

Word-level Revolution

- Development of SMT Solvers to reason directly at the

level of “words”, 1.e. variables
* No need for “bit-blasting”

- The biggest advance 1n formal methods in last 25 years

[John Rushby, 2011]

Articles with “SMT Solver” or “Satisfiability Modulo Theory”
1600
1200
800
400

0 [o S
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

—e— Articles

2013 2014 2015

21

Our Contributions

- Hoyp: Efficient word-level Hash Function

- SMTApproxMC: Efficient word-level counter

Theory: QF-BV

22

Towards Efficient word-level Hashing

- Lifting hashing from (mod 2) to (mod 2%) constraints
- k: largest “bit-width”

- Linear inequality constraints
“hy =a1x1+ax, +--+a,x,+b
*aq,Qy, ... Ay, b, are randomly chosen from 0 to 2%-1
cay = “< 2k op « > 2k

23

Theoretical Guarantees: 2-universal

chy = (a;x; +a,x, + -+ a,x, +b)
e = < 2k

’O-l — {Xl — Ul,xz — vzxn —_ TL}
» Prloy E (b= ay)]
* Transform g, to (0,0....0)
1

- Pr[(0,0,....0) & (hy= ay)] =Pr[b < 27| =~

- Prlo, E (=) |0y F (hy=)]
* Transform gy to (0,0....0)
* Transform o, to (1,0.....0)

“Prlo, E (M=) oy E (hy= ;)] =Prla; + b < 271 |p < 2K 1] =

1

2

24

Word-Level Counter

1. F'=F
2. fori1=1 tok:
3. If (|Rz/| > p1ivot):

4. F'=FA {(a1x1 + ayx, + - .a,x, + b =" or“ <“2k1)}
5. EHlse:

6. If (| R [==0):

7. Return L

8. Return |Rp/| * A

25

Diagnosis

- Look for hash functions that are polynomial to solve by
themselves

26

Towards Efficient word-level Hashing

- Lifting hashing from (mod 2) to (mod p) constraints

- p: smallest prime greater than domain of variables (2%)

- Linear equality (mod p) constraints to partition into p
cells

* |Dom(x;)| < 2%
*hy == (a1x1 + ayxy + -+ a,x, + b) (mod p)
* aq, 0y, Ay, b, are randomly chosen from O to p-1

27

Theoretical Guarantees: 2-universal

- hy = (axy + a,x, + -+ a,x,, + b) (mod p)

*01 = {Xl = V1, X9 = V9xn — Un}
- Prloy F (hy= a,)]

* Transform gy to (0,0....0)

- Pr[(0,0,....0) E (hy= a;)] = Pr[b == 0] = %
- Prlo, E (hy=a;) |0y F (hy= ;)]

* Transform gy to (0,0....0)

* Transform o, to (1,0.....0)

“Prlo, F(h=a) |0y E (hy=a1)] = Prla; = 1] =

SR

28

Word-Level Counter

. F'=F
for 1= 1 to k:
If (IRg/| > pivot):
F'=FA{(ayx; + a,x, +-.a,x,, + b = a) mod p}
Else:
If (IR [==0):
Return L

o T A A e R

Return |R./| * p!

29

Diagnosis

- Number of cells (N) = p¢

- C: Number of Linear Constraints
« N 1s too small = Number of solutions is too large

- N 1s too large - Number of solutions is very small (Avg < 0)

- Need finer control over number of cells

30

SMTApproxMC(F, ¢, §)

F'=F:i=0 p; = smallest prime greater than 2k+1-2
Forj =1 to k:
If (| Rgr| > pivot):
F'=FA{(a1x; + ayx, + -+ .a,x, + b = a) mod p;}
Else:
If (|Rpr |==0 & p;>2):
F' = Pop out last constraint; 1++
F'=FA{(a1x1 + ayxy + -+ .apx, + b = a) mod p;}
Return |Ryz/| * N

© ® NS s W=

31

H e Efficient word-level Hash Function

. Use different primes to control the number of cells

» Choose appropriate N and express as product of preferred
primes, 1.e. N = p;“1p,“2p33...... D"

» Hour
* ¢; (mod p,) constraints
* ¢y (mod p,) constraints

- Ho\p satisfies guarantees of 2-universality

32

SMTApproxMC

ok random el A
AT

Estimate = #

Theoretical Guarantees

- F': Formula over bounded domain variables;

- Rp : Solution Space of F
« SMTApproxMC

|RF|
p
" 17

< SMTApproxMC(F,,6) < (1 4+ 2)|Rg||=1—-6

- Polynomial in F g log (%) relative to word-level oracle

34

Experimental Evaluations

- Over 150 benchmarks from:
* Ising Models
- ISCAS89 Circuits

* Program Synthesis

- Comparison with state of the art tool: CDM

- Based on Chistikov, Dimitrova, and Majumdar 2015

- Similar to Ermon et al, Chakraborty et al, Belle et al, etc..
- Uses XOR-based hash functions (bit level!)

- Objectives:
- Quality of estimates
* Runtime performance comparison

35

Quality Comparison

- Pr [% < SMTApproxMC(F,,8) < (1 + €)|Ry]] >1—-96

- Experiments with ¢ = 0.8 6 =0.1

IRF| 1 SMTApproxMC(r,s,6)
roxMC(F,:6) IRF| _

- Observed ¢ = maX{SMTApp 1}

36

Quality Comparison

Observed
Error

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

(e = 0.8)

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Benchmarks

37

Runtime Performance Comparison

10000 A

1000 -

Time (s)

10 A

100 -

8

Timeout

ST

P72 P15 P77 P30 P18 P05 P64 P20 PTS 527)

B SMTApproxMC B CDM

Highly heterogeneous
domains

38

Future Work

SMT + Mod p

- For SAT: CNF + XOR
« CryptoM1in1SAT has been solver of choice

- Gaussian elimination for added XOR constraints

- SMT Solver with Gaussian elimination for added Linear equality
constraints

- Preferred primes dependent on SMT solver’s architecture?

40

SMT Sampling

- Sampling 1s inter-reducible to counting (JVV 1986)

- Algorithm 1s highly impractical (linear number of calls to approx counter)

- Hashing-based framework for sampling
* UniGen (Chakraborty,M.,Vardi, 2013)
- Requires 3-universal guarantees

» Hoyrp can provide only 2-universal guarantees
* Design efficient algorithms with only 2-universal requirement?

For tools/papers: www.kuldeepmeel.com

