
SAT Sampling and Counting:
From Theory to Practice

Kuldeep Meel

Rice University

M.S. Thesis: Sampling Techniques for Boolean Satisfiability (2014)
Advisors: Moshe Vardi (Rice) and Supratik Chakraborty (IIT Bombay)

1

How do we guarantee that systems work
correctly ?

Functional Verification

▪ Formal verification

▪ Challenges: formal requirements, scalability

▪ ~10-15% of verification effort

▪ Dynamic verification: dominant approach

2

Dynamic Verification

▪ Design is simulated with test vectors

▪ Test vectors represent different verification
scenarios

▪ Results from simulation compared to
intended results

▪ Challenge: Exceedingly large test space!

3

Motivating Example

a b

c

64 bit 64 bit

64 bit

c = f(a,b)

How do we test the circuit works ?

• Try for all values of a and b
• 2128 possibilities
• Sun will go nova before done!
• Not scalable

4

▪ Test vectors: solutions of constraints

▪ Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 5

Sources for Constraints
• Designers:

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience:
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constrained-Random Simulation

Constrained-Random Simulation

Problem: How can we uniformly sample the values of a and b
satisfying the above constraints? 6

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints
• Designers:

1. a +64 11 *32 b = 12
2. a <64 (b >> 4)

• Past Experience:
1. 40 <64 34 + a <64 5050
2. 120 <64 b <64 230

• Users:
1. 232 *32 a + b != 1100
2. 1020 <64 (b /64 2) +64 a <64 2200

Problem Formulation

Set of Constraints

Sample satisfying assignments
uniformly at random

SAT Formula

SAT Sampling
7

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions

8

Search-
based

Synthesis

Constrained
Random

Simulation

SAT Sampling

9

Automatic
Problem

Generation

Diverse Applications

Probabilistic
Inference

Planning
under

uncertainity

Prior Work

10Performance

G
u

ar
an

te
es

MCMC

SAT-Based

BGP BDD UniGen

11

Core Idea

12

Cells should be roughly equal in size and small
enough to enumerate completely

Partitioning into cells

13

Pick a random cell

Partitioning into cells

Pick a random solution from this cell

How to Partition?

How to partition into roughly equal
small cells of solutions without
knowing the distribution of
solutions?

r-Universal Hashing
[Carter-Wegman 1979]

14

Universal Hashing

15

▪ Hash functions: mapping {0,1}n to {0,1}m

▪ (2n elements to 2m cells)

▪ Random inputs => All cells are roughly equal (in expectation)

▪ Universal family of hash functions:
▪ Choose hash function randomly from family

▪ For arbitrary distribution on inputs => All cells are roughly equal
(in expectation)

Strong Universality

▪ H(n,m,r): Family of r-universal hash functions mapping
{0,1}n to {0,1}m (2n elements to 2m cells)
▪ r: degree of independence of hashed inputs

▪ Higher r => Stronger guarantee on range of size of cells

▪ r-wise universality => Polynomials of degree r-1

▪ Stronger universality => Higher complexity
16

Hashing-based Approaches

n-universal hashing

Uniform Generation

All cells required to be small

BGP Algorithm (Bellare et al, 2000) 17

Solution space

n-universal hashing 3-universal hashing

Uniform Generation

Random

Only a randomly chosen
cell needs to be “small”

BGP Algorithm

Almost-Uniform Generation

UniGen

18

Solution space

All cells required to be small

Scaling to ~0.8M Variables

From tens of variables to
~0.8M variables!

Underlying Hash Functions

▪ A cell can be represented as the conjunction of:

▪ Input formula F

▪ m random XOR constraints

▪ 2m is the number of cells desired

▪ Use CryptoMiniSAT for CNF + XOR formulas

19

▪ Uniformity

▪ Almost- Uniformity

▪ UniGen succeeds with probability 0.52 (Previous
best known: 0.125)

Strong Theoretical Guarantees

20

2-3 Orders of Magnitude Faster

21

0.18

1.8

18

180

1800

18000

ca
se

4
7

ca
se

_3
_b

14
_3

ca
se

10
5

ca
se

8

ca
se

2
0

3

ca
se

14
5

ca
se

6
1

ca
se

9

ca
se

15

ca
se

14
0

ca
se

_2
_b

14
_1

ca
se

_3
_b

14
_1

sq
ua

ri
n

g1
4

sq
ua

ri
n

g7

ca
se

_2
_p

tb
_1

ca
se

_1
_p

tb
_1

ca
se

_2
_b

14
_2

ca
se

_3
_b

14
_2

Time(s)

Benchmarks

UniGen

XORSample'

Timeout: 18000 seconds

Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384

22

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re

q
u

e
n

cy

#Solutions

Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263
• Total Runs: 4x106; Total Solutions : 16384

23

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re

q
u

e
n

cy

#Solutions

US

UniGen

Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions

24

What is Model Counting?

▪ Given a SAT formula F

▪ RF: Set of all solutions of F

▪ Problem (#SAT): Estimate the number of solutions of
F (#F) i.e., what is the cardinality of RF?

▪ E.g., F = (a v b)

▪ RF = {(0,1), (1,0), (1,1)}

▪ The number of solutions (#F) = 3

#P: The class of counting problems for
decision problems in NP! 25

Practical Applications

26

Wide range of applications!

▪ Estimating coverage achieved

▪ Probabilistic reasoning/Bayesian inference

▪ Planning with uncertainty

▪ Multi-agent/ adversarial reasoning

[Roth 96, Sang 04, Bacchus 04, Domshlak 07]

Counting through Partitioning

27

Counting through Partitioning

28

Pick a random cell

Total # of solutions= #solutions in the cell
* total # of cells

Strong Theoretical Results

29

ApproxMC (CNF: F, tolerance: e, confidence:d)

Suppose ApproxMC(F,e,d) returns C. Then,

ApproxMC runs in time polynomial in log (1-d)-1,
|F|, e-1 relative to SAT oracle

The First Scalable
Approximate Model Counter

Mean Error: Only 4% (e: 0.75)

30

Mean error: 4% – much smaller than the
theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

C
o

u
n

t

Benchmarks

Cachet*1.75

Cachet/1.75

ApproxMC

Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions

31

Extensions

Sampling
Techniques

32

ApproxMC
UniWit

WeightMC WeightGen UniGen

UniGen2WeightCount

AAAI 2014 AAAI 2014

DAC 2014

TACAS 2o15

IJCAI 2o15

CAV 2013CP 2013

MIS

CP 2015 (in
submission)2015

2014

2013

M.S. Thesis

Applications and follow up

▪ Quantified Information flow (Fremont et al, 2014)

▪ Hashing-based integration (Ermon et al, 2014)

▪ Control Improvisation(Fremont et al, 2014)

▪ Probabilistic programming(Chistikov et al, 2015)

33

Roadmap

▪ SAT Sampling

▪ Model Counting

▪ Works inspired from core ideas

▪ Future Directions

34

Extension to More Expressive
Domains (SMT, CSP, ASP)

▪ Efficient 3-universal/2-universal hashing schemes

▪ Solvers to handle F + Hash efficiently

▪ CryptoMiniSAT has fueled progress for SAT
domain

▪ Similar solvers for other domains?

35

Deeper understanding of hashing

▪ Improved works on sampling require 3-universal
hash functions while 2-universal is sufficient for
counting

▪ Sampling and counting are inter-reducible via
Jerrum, Valiant & Vazirani (1986)

36

Key Takeaways

▪ Sampling and counting are fundamental problems with wide
variety of applications

▪ Prior methods failed to scale or offered very weak theoretical
guarantees

▪ UniGen: The first scalable generator with theoretical
gaurantees of almost-uniformity

▪ ApproxMC: The first scalable approximate model counter

▪ Extensions of underlying techniques in different contexts

▪ Visit: www.cs.rice.edu/~kgm2/ for papers/tools/source code!

37

http://www.cs.rice.edu/~kgm2/

Acknowledgements

▪ Advisors

▪ Moshe Vardi (Rice)

▪ Collaborators

▪ Daniel Fremont (UCB)

▪ Dror Fried (Rice)

▪ Alexander Ivrii (IBM, Haifa)

▪ Sharad Malik (Princeton)

▪ Sanjit Seshia (UCB)

▪ Supratik Chakraborty (IITB) 38

Backup Slides

39

Can Solve a Large Class of Problems

40

Large class of problems that lie beyond the exact
counters but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
 (

se
co

n
d

s)

Benchmarks

ApproxMC

Cachet

Exploring CNF+XOR

▪ Very little understanding as of now

▪ Eager/Lazy approach for XORs?

▪ How to reduce size of XORs further?

41

Weighted Counting

Ref: “Distribution-Aware Sampling and Weighted Model Counting for
SAT” (In Proc. of AAAI 2014)

42

Weighted Counting

Given
▪ CNF Formula F

▪ Weight Function W over assignments

Problem
▪ What is the sum of weights of satisfying assignments?

Example
▪ F = (a ∨ b)

▪ W([0,1]) = W([1,0]) = 1/3 W([1,1]) = W([0,0]) = 1/6

▪ W(F) = 1/3 + 1/3 + 1/6 = 5/6

43

44

Partition into (weighted) equal
“small” cells

45

Pick a random cell

Pick (by weight) a random solution from this cell

Partition into (weighted) equal
“small” cells

Can you always achieve
partitioning?

What if one solution dominates the entire solution
space

Tilt = wmax/wmin

Small tilt →All solutions contribute

46

.992

.001

.002

.001

.001

.002

.001 .001

.002

Tilt = 992

How to handle large tilt?

47

.992

.001

.002 .001

.001 .002

.001

.001

.002 .001 ≤ wt < .002

.50 ≤ wt < 1

Handling Large Tilt

Can be achieved with Pseudo-Boolean Solver
Still a SAT problem not Optimization

48

	Default Section
	Slide 1: SAT Sampling and Counting: From Theory to Practice
	Slide 2: How do we guarantee that systems work correctly ?
	Slide 3: Dynamic Verification
	Slide 4: Motivating Example
	Slide 5: Constrained-Random Simulation
	Slide 6: Constrained-Random Simulation
	Slide 7: Problem Formulation
	Slide 8: Roadmap
	Slide 9
	Slide 10: Prior Work
	Slide 11: Core Idea
	Slide 12: Partitioning into cells
	Slide 13: Partitioning into cells
	Slide 14: How to Partition?
	Slide 15: Universal Hashing
	Slide 16: Strong Universality
	Slide 17: Hashing-based Approaches
	Slide 18: Scaling to ~0.8M Variables
	Slide 19: Underlying Hash Functions
	Slide 20: Strong Theoretical Guarantees
	Slide 21: 2-3 Orders of Magnitude Faster
	Slide 22: Results: Uniformity
	Slide 23: Results: Uniformity
	Slide 24: Roadmap
	Slide 25: What is Model Counting?
	Slide 26: Practical Applications
	Slide 27: Counting through Partitioning
	Slide 28: Counting through Partitioning
	Slide 29: Strong Theoretical Results
	Slide 30: Mean Error: Only 4% (e: 0.75)
	Slide 31: Roadmap
	Slide 32: Extensions
	Slide 33: Applications and follow up
	Slide 34: Roadmap
	Slide 35: Extension to More Expressive Domains (SMT, CSP, ASP)
	Slide 36: Deeper understanding of hashing
	Slide 37: Key Takeaways
	Slide 38: Acknowledgements
	Slide 39: Backup Slides
	Slide 40: Can Solve a Large Class of Problems
	Slide 41: Exploring CNF+XOR
	Slide 42: Weighted Counting
	Slide 43: Weighted Counting
	Slide 44: Partition into (weighted) equal “small” cells
	Slide 45: Partition into (weighted) equal “small” cells
	Slide 46: Can you always achieve partitioning?
	Slide 47: How to handle large tilt?
	Slide 48: Handling Large Tilt

