
Distribution Testing and Probabilistic Programming:
A Match made in Heaven

Kuldeep S. Meel

School of Computing, National University of Singapore

Joint work with Sourav Chakraborty, Priyanka Golia, Yash Pote, and
Mate Soos

Relevant publication: AAAI-19, NeurIPS-20, NeurIPS-21, FMCAD-21,
CP-22

1 / 36

Probabilistic Programs and Distributions

program P
X [1] = B e r n o u l l i (p1) ;
X [2] = B e r n o u l l i (p2) ;
. . . .
X [n] = B e r n o u l l i (pn) ;
ob s e r v e (X [2] + X [3] + X [7] > 2) ;
re tu rn Y

• Semantics of discrete probabilistic programs: Distributions over
{0, 1}n

• Distance Measures
– Closeness

▶ d∞(P,Q) = maxx∈{0,1}n |P(x)− Q(x)|
– Farness

▶ dTV (P,Q) = 1
2

∑
x∈{0,1}n |P(x)− Q(x)|

2 / 36

The Road Ahead: Long and Winding

• Hardness of probabilistic program distance computation

• Grey-box Testing

• The Boon of Testers

3 / 36

Hardness of probabilistic program distance

computation

4 / 36

Product Distributions

• Represented by list of probabilities: {p1, p2, . . . pn}
• P(x) =

∏
xi=1

pi
∏
xi=0

(1− pi)

Question How hard it is to compute dTV (P,Q) when P and Q are
product distributions

program P
X [1] = B e r n o u l l i (p1) ;
X [2] = B e r n o u l l i (p2) ;
. . . .
X [n] = B e r n o u l l i (pn) ;
re tu rn X;

program Q
Y [1] = B e r n o u l l i (q1) ;
Y [2] = B e r n o u l l i (q2) ;
. . . .
Y [n] = B e r n o u l l i (qn) ;
re tu rn Y

5 / 36

Product Distributions

• Represented by list of probabilities: {p1, p2, . . . pn}
• P(x) =

∏
xi=1

pi
∏
xi=0

(1− pi)

Question How hard it is to compute dTV (P,Q) when P and Q are
product distributions

program P
X [1] = B e r n o u l l i (p1) ;
X [2] = B e r n o u l l i (p2) ;
. . . .
X [n] = B e r n o u l l i (pn) ;
re tu rn X;

program Q
Y [1] = B e r n o u l l i (q1) ;
Y [2] = B e r n o u l l i (q2) ;
. . . .
Y [n] = B e r n o u l l i (qn) ;
re tu rn Y

5 / 36

Product Distributions

• Represented by list of probabilities: {p1, p2, . . . pn}
• P(x) =

∏
xi=1

pi
∏
xi=0

(1− pi)

Question How hard it is to compute dTV (P,Q) when P and Q are
product distributions

program P
X [1] = B e r n o u l l i (p1) ;
X [2] = B e r n o u l l i (p2) ;
. . . .
X [n] = B e r n o u l l i (pn) ;
re tu rn X;

program Q
Y [1] = B e r n o u l l i (q1) ;
Y [2] = B e r n o u l l i (q2) ;
. . . .
Y [n] = B e r n o u l l i (qn) ;
re tu rn Y

5 / 36

Hardness

Theorem

Given two product distributions P and Q, computation of dTV (P,Q) is
#P-hard.

• We reduce from #Knapsack, i.e., we construct P and Q such that
#{x : P(x) = Q(x)} will solve #Knapsack

• Now given P and Q, we construct P ′ and Q ′ where p′i = pi and
q′i = qi for i ≤ n and p′n+1 =

1
2 + γ and q′n+1 =

1
2 − γ such that

whenever P(x) > Q(x) we have P(x)(12 − γ) > Q(x)(12 + γ)

dTV (P
′,Q ′) =

∑
x∈{0,1}n

(∣∣∣∣P(x)(12 + γ)− Q(x)(
1

2
− γ)

∣∣∣∣
+

∣∣∣∣P(x)(12 − γ)− Q(x)(
1

2
+ γ)

∣∣∣∣)
= dTV (P,Q) + 2γ

∑
x :P(x)=Q(x)

P(x)

6 / 36

Hardness

Theorem

Given two product distributions P and Q, computation of dTV (P,Q) is
#P-hard.

• We reduce from #Knapsack, i.e., we construct P and Q such that
#{x : P(x) = Q(x)} will solve #Knapsack

• Now given P and Q, we construct P ′ and Q ′ where p′i = pi and
q′i = qi for i ≤ n and p′n+1 =

1
2 + γ and q′n+1 =

1
2 − γ such that

whenever P(x) > Q(x) we have P(x)(12 − γ) > Q(x)(12 + γ)

dTV (P
′,Q ′) =

∑
x∈{0,1}n

(∣∣∣∣P(x)(12 + γ)− Q(x)(
1

2
− γ)

∣∣∣∣
+

∣∣∣∣P(x)(12 − γ)− Q(x)(
1

2
+ γ)

∣∣∣∣)
= dTV (P,Q) + 2γ

∑
x :P(x)=Q(x)

P(x)

6 / 36

Hardness

Theorem

Given two product distributions P and Q, computation of dTV (P,Q) is
#P-hard.

• We reduce from #Knapsack, i.e., we construct P and Q such that
#{x : P(x) = Q(x)} will solve #Knapsack

• Now given P and Q, we construct P ′ and Q ′ where p′i = pi and
q′i = qi for i ≤ n and p′n+1 =

1
2 + γ and q′n+1 =

1
2 − γ such that

whenever P(x) > Q(x) we have P(x)(12 − γ) > Q(x)(12 + γ)

dTV (P
′,Q ′) =

∑
x∈{0,1}n

(∣∣∣∣P(x)(12 + γ)− Q(x)(
1

2
− γ)

∣∣∣∣
+

∣∣∣∣P(x)(12 − γ)− Q(x)(
1

2
+ γ)

∣∣∣∣)
= dTV (P,Q) + 2γ

∑
x :P(x)=Q(x)

P(x)

6 / 36

Grey-box Testing

7 / 36

Basic Access

• We can run the program: sample!

8 / 36

What does Complexity Theory Tell Us

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
ab
ili
ty

Figure: U : Reference Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
ab
ili
ty

Figure: A: 1/2-far from uniform

• If <
√
S/100 samples are drawn then with high probability you see

only distinct samples from either distribution.

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ϵ-close to uniform has query
complexity Θ(

√
|S |/ϵ2). [Paninski (Trans. Inf. Theory 2008)]

• If the output of a program is represented by 3 doubles, then
S > 2100

9 / 36

What does Complexity Theory Tell Us

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
ab
ili
ty

Figure: U : Reference Distribution

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
ab
ili
ty

Figure: A: 1/2-far from uniform

• If <
√
S/100 samples are drawn then with high probability you see

only distinct samples from either distribution.

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ϵ-close to uniform has query
complexity Θ(

√
|S |/ϵ2). [Paninski (Trans. Inf. Theory 2008)]

• If the output of a program is represented by 3 doubles, then
S > 2100

9 / 36

Beyond Basic Access

Definition (Conditional Sampling)

Given a distribution A on S one can

• Specify a set T ⊆ S,

• Draw samples according to the distribution A|T , that is,
A under the condition that the samples belong to T .

Conditional sampling is at least as powerful as drawing normal samples.
But how more powerful is it?

10 / 36

Beyond Basic Access

Definition (Conditional Sampling)

Given a distribution A on S one can

• Specify a set T ⊆ S,

• Draw samples according to the distribution A|T , that is,
A under the condition that the samples belong to T .

Conditional sampling is at least as powerful as drawing normal samples.
But how more powerful is it?

10 / 36

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
ab
ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
ab
ili
ty

An algorithm for testing uniformity using conditional sampling:

1 Draw two elements x and y uniformly at random from the domain.
Let T = {x , y}.

2 In the case of the “far” distribution, with probability 1
2 , one of the

two elements will have probability 0, and the other probability
non-zero.

3 Note
√

|T | =
√
2 is a constant.

4 Now a constant number of conditional samples drawn from A|T is
enough to identify that it is not uniform.

11 / 36

Testing Uniformity Using Conditional Sampling

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

1
|S|

P
ro
b
ab
ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
ab
ili
ty

An algorithm for testing uniformity using conditional sampling:

1 Draw two elements x and y uniformly at random from the domain.
Let T = {x , y}.

2 In the case of the “far” distribution, with probability 1
2 , one of the

two elements will have probability 0, and the other probability
non-zero.

3 Note
√

|T | =
√
2 is a constant.

4 Now a constant number of conditional samples drawn from A|T is
enough to identify that it is not uniform.

11 / 36

What about other distributions?

P
ro
b
ab
ili
ty

P
ro
b
ab
ili
ty

Previous algorithm fails in this case:

1 Draw two elements σ1 and σ2 uniformly at random from the
domain. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with probability almost 1,
both the two elements will have probability same, namely ϵ.

3 Probability that we will be able to distinguish the far distribution
from the uniform distribution is very low.

12 / 36

What about other distributions?

P
ro
b
ab
ili
ty

P
ro
b
ab
ili
ty

Previous algorithm fails in this case:

1 Draw two elements σ1 and σ2 uniformly at random from the
domain. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with probability almost 1,
both the two elements will have probability same, namely ϵ.

3 Probability that we will be able to distinguish the far distribution
from the uniform distribution is very low.

12 / 36

Testing Uniformity Using Conditional Sampling
P
ro
b
ab
ili
ty

P
ro
b
ab
ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
ab
ili
ty

1 Draw σ1 uniformly at random from the domain and draw σ2
according to the distribution A. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of samples from A|T .

4 The constant depend on the farness parameter.

13 / 36

Testing Uniformity Using Conditional Sampling
P
ro
b
ab
ili
ty

P
ro
b
ab
ili
ty

2
|S|

0
|S|

0
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

0
|S|

0
|S|

0
|S|

2
|S|

0
|S|

2
|S|

2
|S|

2
|S|

2
|S|

0
|S|

0
|S|

2
|S|

P
ro
b
ab
ili
ty

1 Draw σ1 uniformly at random from the domain and draw σ2
according to the distribution A. Let T = {σ1, σ2}.

2 In the case of the “far” distribution, with constant probability, σ1
will have “low” probability and σ2 will have “high” probibility.

3 We will be able to distinguish the far distribution from the uniform
distribution using constant number of samples from A|T .

4 The constant depend on the farness parameter.

13 / 36

Barbarik

Input: A Distribution under test A, a reference uniform distribution U ,
a tolerance parameter ε > 0, an intolerance parmaeter η > ε, a
guarantee parameter δ
Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is ε-close (in d∞), i.e., d∞(A,U) ≤ ε then
Barbarik ACCEPTS with probability at least (1− δ).

• If the generator A is η-far in (dTV), i.e., dTV (A,U) > η, then
Barbarik REJECTS with probability at least 1− δ.

14 / 36

Sample complexity

Theorem

Given ε, η and δ, Barbarik need at most K = Õ(1
(η−ε)4

) samples for

any input formula φ, where the tilde hides a poly logarithmic factor of
1/δ and 1/(η − ε).

• ε = 0.6, η = 0.9, δ = 0.1

• Maximum number of required samples K = 1.72×106

• Independent of the number of variables

• To Accept, we need K samples but rejection can be achieved with
lesser number of samples.

15 / 36

Extensions to general case

Setting Given P and Q, test whether P and Q are ε-close (in d∞) or
η-far (in dTV)

• For all σ1, σ2 ∈ 0, 1n, P(σ1)
P(σ2)

is known: A prior distribution

conditioned by constraints: dependence on max
σ1,σ2∈0,1n

P(σ1)
P(σ2)

(MPC20;

PM21)

• Arbitrary P and Q (DCM22 – under submission)

16 / 36

The Boon of Testers

17 / 36

Where are the Samplers?

• Implicit representation of a set S : Set of all solutions of φ.

• Given a CNF formula φ, a Sampler A, outputs a random solution
of φ.

Definition

A CNF-Sampler, A, is a randomized algorithm that, given a φ, outputs
a random element of the set S, such that, for any σ ∈ S

Pr[A(φ) = σ] =
1

|S |
,

• Uniform sampling has wide range of applications in automated bug
discovery, pattern mining, and so on.

• Several samplers available off the shelf: tradeoff between
guarantees and runtime

18 / 36

Where are the Samplers?

• Implicit representation of a set S : Set of all solutions of φ.

• Given a CNF formula φ, a Sampler A, outputs a random solution
of φ.

Definition

A CNF-Sampler, A, is a randomized algorithm that, given a φ, outputs
a random element of the set S, such that, for any σ ∈ S

Pr[A(φ) = σ] =
1

|S |
,

• Uniform sampling has wide range of applications in automated bug
discovery, pattern mining, and so on.

• Several samplers available off the shelf: tradeoff between
guarantees and runtime

18 / 36

Constrained Sampling

• Input formula: F over variables X

• Challenge: Conditional Sampling over T = {σ1, σ2}.
• Construct G = F ∧ (X = σ1 ∨ X = σ2)

• Most of the samplers enumerate all the points when the number of
points in the Domain are small

• Need way to construct formulas whose solution space is large but
every solution can be mapped to either σ1 or σ2.

19 / 36

Constrained Sampling

• Input formula: F over variables X

• Challenge: Conditional Sampling over T = {σ1, σ2}.
• Construct G = F ∧ (X = σ1 ∨ X = σ2)

• Most of the samplers enumerate all the points when the number of
points in the Domain are small

• Need way to construct formulas whose solution space is large but
every solution can be mapped to either σ1 or σ2.

19 / 36

Kernel

Input: A Boolean formula φ, two assignments σ1 and σ2, and desired
number of solutions τ
Output: Formula φ̂

1 τ = |Sol(φ̂)|
2 Supp(φ) ⊆ Supp(φ̂)

3 z ∈ Sol(φ̂) =⇒ z↓S ∈ {σ1, σ2}
4 |{z ∈ Sol(φ̂) | z↓Supp(φ) = σ1}| = |{z ∈ Sol(φ̂) | z↓Supp(φ) ∩ σ2}|
5 φ and φ̂ has similar structure

20 / 36

Non-adversarial Sampler

Let (φ̂) obtained from kernel(φ, σ1, σ2,N) such that there are only two
set of assignments to variables in φ that can be extended to a satisfying
assignment for φ̂

Definition

The non-adversarial sampler assumption states that the distribution
of the projection of samples obtained from A(φ̂) to variables of φ is
same as the conditional distribution of A(φ) restricted to either σ1 or
σ2

• If A is a uniform sampler for all the input formulas, it satisfies
non-adversarial sampler assumption

• If A is not a uniform sampler for all the input formulas, it may not
necessarily satisfy non-adversarial sampler assumption

21 / 36

Barbarik

Input: A sampler under test A, a reference uniform sampler U , a
tolerance parameter ε > 0, an intolerance parmaeter η > ε, a guarantee
parameter δ and a CNF formula φ
Output: ACCEPT or REJECT with the following guarantees:

• if the generator A is ε-close (in d∞), i.e., d∞(A,U) ≤ ε then
Barbarik ACCEPTS with probability at least (1− δ).

• If the generator A is η-far in (dTV), i.e., dTV (A,U) > η and if
non-adversarial sampler assumption holds then Barbarik REJECTS
with probability at least 1− δ.

22 / 36

Experimental Setup

• Three state of the art (almost-)uniform samplers

– UniGen2: Theoretical Guarantees of almost-uniformity
– SearchTreeSampler: Very weak guarantees
– QuickSampler: No Guarantees

• The study (in 2018) that proposed Quicksampler perform unsound
statistical tests and claimed that all the three samplers are
indistinguishable

23 / 36

Results-I

Instances #Solutions UniGen2 SearchTreeSampler
Output #Samples Output #Samples

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250

24 / 36

Results-II

Instances #Solutions UniGen2 QuickSampler
Output #Samples Output #Samples

71 1.14× 259 A 1729750 R 250
blasted case49 1.00× 261 A 1729750 R 250
blasted case50 1.00× 262 A 1729750 R 250

scenarios aig insertion1 1.06× 265 A 1729750 R 250
scenarios aig insertion2 1.06× 265 A 1729750 R 250

36 1.00× 272 A 1729750 R 250
30 1.73× 272 A 1729750 R 250
110 1.09× 276 A 1729750 R 250

scenarios tree insert insert 1.32× 276 A 1729750 R 250
107 1.52× 276 A 1729750 R 250

blasted case211 1.00× 280 A 1729750 R 250
blasted case210 1.00× 280 A 1729750 R 250
blasted case212 1.00× 288 A 1729750 R 250
blasted case209 1.00× 288 A 1729750 R 250

54 1.15× 290 A 1729750 R 250

25 / 36

Beyond Simply Testing

How can we use the availability of Barbarik to design a good sampler?

• Is it even possible ?

Wishlist

• Sampler should pass the Barbarik test.

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should perform good on real world applications.

26 / 36

Beyond Simply Testing

How can we use the availability of Barbarik to design a good sampler?

• Is it even possible ?

Wishlist

• Sampler should pass the Barbarik test.

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should perform good on real world applications.

26 / 36

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.

– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.

– Processing techniques: bounded variable elimination, local search,
or symmetry breaking, and many more.

– Can change solution space of instances.

• Restart at static intervals.

– Helps to generate samples which are very hard to find.

27 / 36

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.

– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.

– Processing techniques: bounded variable elimination, local search,
or symmetry breaking, and many more.

– Can change solution space of instances.

• Restart at static intervals.

– Helps to generate samples which are very hard to find.

27 / 36

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.

– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.

– Processing techniques: bounded variable elimination, local search,
or symmetry breaking, and many more.

– Can change solution space of instances.

• Restart at static intervals.

– Helps to generate samples which are very hard to find.

27 / 36

CMSGen

• Exploits the flexibility CryptoMiniSat.

• Pick polarities and branch on variables at random.

– To explore the search space as evenly as possible.
– To have samples over all the solution space.

• Turn off all pre and inprocessing.

– Processing techniques: bounded variable elimination, local search,
or symmetry breaking, and many more.

– Can change solution space of instances.

• Restart at static intervals.

– Helps to generate samples which are very hard to find.

27 / 36

Power of Test-Driven Development

• Test-Driven Development of CMSGen.

• Parameters of CMSGen are decided with the help of Barbarik

– Iterative process.
– Based on feedback from Barbarik, change the parameters.

• Uniform-like-sampler.

• Lack of theoretical analysis.

28 / 36

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

– STS (Ermon, Gomes, Sabharwal, Selman,2012)

– QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

• Sampler with guarantees:

– UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

QuickSampler STS UniGen3

ACCEPTs 0 14 50
REJECTs 50 36 0

29 / 36

Testing of Samplers

• Samplers without guarantees (Uniform-like Samplers):

– STS (Ermon, Gomes, Sabharwal, Selman,2012)

– QuickSampler (Dutra, Laeufer, Bachrach, Sen, 2018)

– CMSGen

• Sampler with guarantees:

– UniGen3 (Chakraborty, Meel, and Vardi 2013, 2014,2015)

QuickSampler STS UniGen3 CMSGen

ACCEPTs 0 14 50 50
REJECTs 50 36 0 0

29 / 36

Wishlist

• Sampler should pass the Barbarik test. ✓

• Sampler should be at least as fast as STS and QuickSampler.

• Sampler should perform good on real world applications.

30 / 36

CMSGen vs. Other State-of-the-Art Samplers

• 70 Benchmarks arising from:

– probabilistic reasoning, (Chakraborty, Fremont, Meel et al.,2015)
– bounded model checking. (Clarke, Biere, Raimi, Zhu,2001)
– bug synthesis. (Roy, Pandey, Dolan-Gavitt,Hu, 2018)

• Runtime evaluation to generate 1000 samples.

• Timeout: 7200 seconds.

31 / 36

CMSGen vs. Other State-of-the-Art Samplers (II)

0 10 20 30 40 50 60 70
Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

R
un

tim
e

CMSGen
STS
QuickSampler

QuickSampler STS CMSGen
33 37 52

32 / 36

Wishlist

• Sampler should pass the Barbarik test. ✓

• Sampler should be at least as fast as STS and QuickSampler. ✓

• Sampler should perform good on real world applications.

33 / 36

Combinatorial Testing

• A powerful paradigm for testing configurable system.

• Challenge: To generate test suites that maximizes t-wise coverage.

t-wise coverage: =
of t-sized combinations in test suite

all possible valid t-sized combinations

• To generate the test suites use constraint samplers.

• Uniform sampling to have high t-wise coverage (Plazar, Acher,
Perrouin et al., 2019).

• Experimental Evaluations:

– Generate 1000 samples (test cases).
– 110 Benchmarks, Timeout: 3600 seconds
– 2-wise coverage t = 2.

34 / 36

Combinatorial Testing

• A powerful paradigm for testing configurable system.

• Challenge: To generate test suites that maximizes t-wise coverage.

t-wise coverage: =
of t-sized combinations in test suite

all possible valid t-sized combinations

• To generate the test suites use constraint samplers.

• Uniform sampling to have high t-wise coverage (Plazar, Acher,
Perrouin et al., 2019).

• Experimental Evaluations:

– Generate 1000 samples (test cases).
– 110 Benchmarks, Timeout: 3600 seconds
– 2-wise coverage t = 2.

34 / 36

Combinatorial Testing: The Power of CMSGen

Higher is better

1 20 40 60 80 100 120
Benchmarks

30

40

50

60

70

80

90

100
Co

ve
ra

ge
 %

CMSGen STS QuickSampler

QuickSampler STS CMSGen
Avg. Coverage 51.5% 80.15% ∼ 100%

35 / 36

A Long and Winding Road

• Hardness of probabilistic program distance computation

• Distribution Testing

• The Boon of Testers

Open Source Tools

Barbarik https://github.com/meelgroup/barbarik

CMSGen https://github.com/meelgroup/cmsgen

Where do we go from here?

• Exploring the tradeoffs: the cost of conditioning and query
complexity

• Modular proofs

• Benchmark suite generation

These slides are available at https://tinyurl.com/meel-talk

36 / 36

https://github.com/meelgroup/barbarik
https://github.com/meelgroup/cmsgen
https://tinyurl.com/meel-talk

A Long and Winding Road

• Hardness of probabilistic program distance computation

• Distribution Testing

• The Boon of Testers

Open Source Tools

Barbarik https://github.com/meelgroup/barbarik

CMSGen https://github.com/meelgroup/cmsgen

Where do we go from here?

• Exploring the tradeoffs: the cost of conditioning and query
complexity

• Modular proofs

• Benchmark suite generation

These slides are available at https://tinyurl.com/meel-talk

36 / 36

https://github.com/meelgroup/barbarik
https://github.com/meelgroup/cmsgen
https://tinyurl.com/meel-talk

	Hardness of probabilistic program distance computation
	Grey-box Testing
	The Boon of Testers

