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Multi-armed bandit problem




Multi-armed bandit problem

Actions
{1,2,...,K}

el ELIY Reward(s)
o g j— ) R x(t) € [0,1]"

t=1,2,....T
Sequence of trials

« Trade-off between Exploration and Exploitation
 Regret = Player reward — Reward of best action
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Bayesian optimization

1. fort=1,2,... do

2: Find x¢ by combining attributes of the
posterior distribution in a utility function

)

w and maximizing:
Xt = argmaxx u 1),
- 3:  Sa jective function:

[y = f(x) + et
4. Augment thedata Dy = {D7:4-1, (X, 4¢) }
and update the GP. T
5. end for

X4
T~ /_/L
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Exploration-exploitation tradeoff

Recall the expressions for GP prediction:

P(Ye+1|Dits Xev1) = N (pe(%¢41). 07 (Xe41) + Opoice)

P (edidnn cest T 2 1
[ (Xt+1) =k [K + Jnoiseﬂ Yi:t
U?(Xt+1) :k(Xt+1?Xt+1) —kT[K—I—JQ I]_lk

noise

We should choose the next pointvhere the mean is high
(exploitatior) and the variance is higkxXploratior).

We could balance this tradeoff with anquisition functioras

follows: U(X) n HU(X)



Acquisition
functions A

aka infill,zfiqure of merit

acquisition function guides the
optimization by determining
which x:11 to observe next

uses predictive posterior to
combine exploration (high-
variance regions) and exploitation
(high-mean regions)

optimize to find sample point (can
be done cheaply/approximately)

posterior

=
o
T

=
tn

=
[=]

o




An acquisition function: Probability of Improvement
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People as Bayesian reasoners
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Bayes and decision theory

Utilitarian view: We need models to make the right decisionsnder
uncertainty. Inference and decision making are intertwined

Learned posterior Cost/Reward model u(x,a)
fP(x:heajthyldata) =09 / a = no t‘*’eatment a = treatment
< X = healthy — %
P(X: |data) =01 v X = cancer | —100) -20
N
T

We choose the action that maximizes thexpected utility, or
equivalently, which minimizes theexpected cost

EU(a) = Z u(x,a) P(x|data)
X
EU(a:tr_e_a_’[_l:ﬂepft) — M( "\eau‘« kca\v\»ew(S P(x ’Lca\l\,-y \0\ > | (Cancﬂ,‘u&l-*‘>f/rq‘J

@0)(0'.%1- (w0) (o) =

EU(a=no treatment) =



An expected utility criterion

At iterationn+ 1, choose the point that minimizes the distance

to the objective evaluated at the mam@n Ww

6P Wue £

oot = arg (e () ~ ] Foe) 1 1D

= 31“5111}211/ [ frns1(x) = f(X)|[p(frs1|Dn)dfnis

We don’t know the true objective at the maximum. To
overcome this,_ Mockus proposed the following aatjors
function:

X = arg 111}*3-}{ E(max{0, f,(x) — "} |D,)

=



Expected improvement

x = arg max E(max{0, f,(x) — "} |D,)
T M, 3

For this acquisition, we can obtain an analyticgiression:

Flx) — 4 (X)) —pt =88(2) +o(x)0(Z) ifo(x) >0
) =10 if o(x) = 0
A
LX) —pT = ¢
o(x)

where ¢(-) and ®(-) denote the PDF and CDF of the standard Normal



A third criterion: GP-UCB

Define theregret and cumulative regret as follows:

rx) = f(x7) = f(x)

e

T ¢ p———

Ry = r(x1)+---+r(xr)

e —

The GF-UCB criterion is as follow:

GP-UCB(x) = u(x) + v v3i0(x)

—

Beta Is set using a simple concentration bound:

/

With v = 1 and(ﬁ’t = 2log(t¥*272 /35 )Jit can be shown” with high probability that this method
is no regret, i.e. limy_., Ry /T = 0. This in turn implies a lower-bound on the convergence rate
for the optimization problem.

[Srinivas et al, 2010]



A fourth criterion: Thompson sampling
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[ﬁﬁ = ArETIAX. e . M(X@:)] ACCIUI§|t|0n
functions

e Probability of Improvement

o= (X))~ B = 5)
PH)_®< ;

o(x

Kushner 1964

¢ Expected Improvement

El(x) = (u(x) — p* = O(Z) + o(x)p(Z) _

e
= e

Mockus 1978

e Upper Confidence Bound
GP-UCB(x) = u(x) + /v1io(x)
Srinivas et al. 2010
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Portfolios of acquisition functions help

Branin (2D) Hartman 3 (3D) Hartman 6 (6D)
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Why Bayesian Optimization works

AN 4P & b

" |Discarded region

---GP mean p

—Objective function f

---Upper confidence bound i+ Bo

max(LCB)

---Lower confidence bound p — Bo

« Sampled points




Intelligent user interfaces




Example: Tuning NP hard problem solvers

gl = = Random
= BO
— ParamiLS
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Why random tuning works sometimes

Important

Unimportant X,



Example: Tuning random forests

- - '+ BO
I m—= REMBO (d =3)
' == Random
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Example: Tuning hybrid Monte Carlo

Table 4.1: Mean squared test error for the robot arm data set.

Method Mean Squared Error

Rios Insua and Muller’s (1998) MLP with 0.00620
reversible-jump MCMC — —

Mackay’s (1992) Gaussian approximation 0.00573 £
with highest evidence

Neal’s (1996) HMC 0.00554¢~
Neal’s (1996) HMC with ARD 0.00549 &
Reversible-jump MCMC with Bayesian 0.00502&—
model by Andrieu et al.

Adaptive HMC (Median Error) 0.00499

Adaptive HMC (Mean Error)

0.00498 + 0.00012

Table 4.2: Classification error on the validation set of the Dexter data set.

Method

Classification Error

New-Bayes-nn-sel

Adaptive HMC (Mean error)
Adaptive HMC (Median error)
Adaptive HMC + Majority Voting

a—

0.0800
0.0730 = 0.0096

0.0700 &—

0.0667
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The games industry, rich in sophisticated largdesca
simulators, Is a great environment for the desigm a
study of automatic decision making systems.




Hierarchical policy example

— High-levelmodel-based learni

for deciding when to navigate.
park, pickup and dropoff
passengers.

T PaSSDc/

P|C|<UP i | Dropoff
= Passloc < |

— Mid-levelactive path learning W
navigating a topological map. GigatelT)

_ _ WP ~ aq?jl_wcr}pofn ts /\

— Low-levelactive policy v Park
optimizer to learn control of (=0, 1=-1)
continuous non-linear vehicle 5"'@% AR
dynamics. (5.0) ~ Tpmne).

AV
Drive( s, t)




Active Path Finding in Middle Level

Mid-level Navigate policy generates sequence of waypoints on

a topological map to navigate from a location to a destination.
V() value function represents the path length from the current

(9)
node, to the target.
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Low-Level: Trajectory following

TORCS: 3D game
engine that
Implements complex
vehicle dynamics
complete with

manual and automatic
transmission, engine,
clutch, tire, and
suspension models.




Hierarchical systems apply to many
robot tasks — key to build large system

We used TORCS: A 3D game engine that implements complex vehicle
dynamics complete with manual and automatic transmission, engine,
clutch, tire, and suspension models.



Gaze planning

Digits Experiment:

( ((




Next lecture

In the next lecture, we embark on our quest tanledirabout
random forests. We will begin by learning aboutisiea
trees.



