
Abstracting Gradual Typing

Ronald Garcia ∗ Alison M. Clark †

Software Practices Lab
Department of Computer Science

University of British Columbia, Canada
{rxg,amclark1}@cs.ubc.ca
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Abstract
Language researchers and designers have extended a wide vari-
ety of type systems to support gradual typing, which enables lan-
guages to seamlessly combine dynamic and static checking. These
efforts consistently demonstrate that designing a satisfactory grad-
ual counterpart to a static type system is challenging, and this chal-
lenge only increases with the sophistication of the type system.
Gradual type system designers need more formal tools to help them
conceptualize, structure, and evaluate their designs.

In this paper, we propose a new formal foundation for grad-
ual typing, drawing on principles from abstract interpretation to
give gradual types a semantics in terms of pre-existing static types.
Abstracting Gradual Typing (AGT for short) yields a formal ac-
count of consistency—one of the cornerstones of the gradual typing
approach—that subsumes existing notions of consistency, which
were developed through intuition and ad hoc reasoning.

Given a syntax-directed static typing judgment, the AGT ap-
proach induces a corresponding gradual typing judgment. Then
the type safety proof for the underlying static discipline induces
a dynamic semantics for gradual programs defined over source-
language typing derivations. The AGT approach does not resort to
an externally justified cast calculus: instead, run-time checks nat-
urally arise by deducing evidence for consistent judgments during
proof reduction.

To illustrate the approach, we develop a novel gradually-typed
counterpart for a language with record subtyping. Gradual lan-
guages designed with the AGT approach satisfy by construction the
refined criteria for gradual typing set forth by Siek and colleagues.

Categories and Subject Descriptors D.3.1 [Software]: Program-
ming Languages—Formal Definitions and Theory

Keywords gradual typing; abstract interpretation; subtyping
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1. Introduction
Software developers and researchers alike see great promise in pro-
gramming languages that seamlessly combine static and dynamic
checking of program properties. One particularly promising and
vibrant line of work in this vein is gradual typing (Siek and Taha
2006). Gradual typing integrates an unknown type ? and a notion
of type consistency into a pre-existing static type system. These
concepts lay the groundwork for designing languages that support
fully dynamic checking, fully static checking, and any point on the
continuum, while supporting incremental migration in either direc-
tion. Programmers using such languages enjoy a number of prop-
erties that are central to this language design discipline including
complete control over how much checking is done statically versus
dynamically.

Researchers have developed gradually typed variants for a sub-
stantial breadth of languages, including object-oriented (Siek and
Taha 2007; Takikawa et al. 2012), typestates (Garcia et al. 2014;
Wolff et al. 2011), ownership types (Sergey and Clarke 2012), se-
curity typing (Disney and Flanagan 2011; Fennell and Thiemann
2013), and effects (Bañados Schwerter et al. 2014). Despite these
successes, gradual typing faces important challenges. One key chal-
lenge is that its foundations are still somewhat murky. The above
wide-ranging efforts to adapt gradual typing to new typing disci-
plines consistently demonstrate that designing a satisfactory grad-
ually typed language becomes more difficult as the type system
increases in sophistication.

One consistent challenge that arises during efforts to gradual-
ize new type systems is how to adapt Siek and Taha’s notion of
consistency to new rich typing disciplines. The original work mo-
tivates consistency based on intuitions that ring true in the sim-
ple cases, but become more difficult to adapt as type systems get
more complex. Some of the aforementioned papers develop new
notions of consistency that can only be justified by appealing to
intuitions about the broader meaning of consistency (Sergey and
Clarke 2012; Siek and Taha 2007). Others avoid the issue alto-
gether by focusing on user-inserted casts (Disney and Flanagan
2011; Fennell and Thiemann 2013). Furthermore, developing dy-
namic semantics for gradually typed languages has typically in-
volved the design of an independent cast calculus that is peripher-
ally related to the source language, but its dynamics are also driven
mostly by intuition and inspiration from other checking disciplines,
e.g., (Findler and Felleisen 2002).

This paper addresses these challenges directly by developing
a new foundation for gradual typing. A particularly promising ap-
proach to such a foundation is hinted at by Bañados Schwerter et al.
(2014) who justify the design of a gradual effect framework by ap-
pealing to abstract interpretation (Cousot and Cousot 1977) to give
a direct interpretation to unknown effects, and from there derive
definitions for requisite notions of consistency. Inspired by that suc-



cess, we adapt this technique from gradual effects to gradual types,
and find that it replaces insight-driven developments with routine
calculations.

Our contributions are as follows:

• A new foundation for gradual typing that we call the Ab-
stracting Gradual Typing (AGT) approach (Sec. 4). Following
Bañados Schwerter et al. (2014), this approach derives con-
sistent predicates and gradual typing judgments by using ab-
stract interpretation to give meaning to gradual types in terms
of static types. The core idea is to interpret gradual types as sets
of static types. Predicates and functions on static types can then
be lifted to apply to gradual types. This work adapts their tech-
niques from effects to apply to arbitrary type information. The
AGT approach subsumes and generalizes traditional consis-
tency, showing that it is but one of many consistent predicates.
• Bañados Schwerter et al. (2014) develop dynamic semantics

in the usual fashion: by devising a cast calculus using ad hoc
techniques. AGT includes a systematic approach to developing
dynamic semantics as proof reductions over source language
typing derivations (Sec. 6).
• We use AGT to develop a novel gradually typed language that

features width and depth record subtyping (Sec. 5), conditional
expressions, and gradual rows, a new kind of gradual record
type reminiscent of row polymorphism (Rémy 1989).

A gradual language built with the AGT approach fulfills, by
construction, the design goals of gradual typing and satisfies the
refined criteria for gradual typing formulated by Siek et al. (2015b)
(Secs. 4.6, 6.7).

2. Background on Gradual Typing
Gradual typing is in essence about plausible reasoning in the pres-
ence of unknown type information. The key external feature of
a gradual type system is the addition of the unknown type, noted
?. The goals of gradual typing are summarized as follows: (a) A
gradually-typed language supports both fully static and fully dy-
namic checking of program properties, as well as the contin-
uum between these two extremes. (b) The programmer has fine
grained control over the static-to-dynamic spectrum, and can man-
ually evolve a program by introducing more or less precise types
(i.e., less or more unknown type information) as needed. (c) A grad-
ual type system statically rejects implausible programs. Programs
that are accepted based on plausibility (due to imprecise types) are
checked at runtime to safeguard static assumptions. In short, the
underlying type discipline is preserved, but relegated to dynamic
checks in some cases.

Consistency. Central to gradual typing is the notion of consis-
tency between gradual types, which are types that may involve the
unknown type ? (Anderson and Drossopoulou 2003; Siek and Taha
2006). The consistency relation weakens type equality to account
for unknown positions in a gradual type. It is defined as follows:

T ∼ T T ∼ ? ? ∼ T

T11 ∼ T21 T12 ∼ T22

T11 → T12 ∼ T21 → T22

Consistency conservatively extends static type equality. For in-
stance, Int→ Bool ∼ Int→ Bool and Int → Bool � Int → Int,
but in the presence of the unknown type it is more permissive, for
instance, Int→ ? ∼ ?→ Bool.

A simple typing judgment can be lifted to a gradual typing
judgment by replacing static types with gradual types and replacing
static type equality with type consistency. The resulting type system

accepts and rejects the same statically typed programs, but accepts
many more gradually typed programs.

Dynamic checking. Since a gradual type system accepts pro-
grams with unequal types, due to unknown type information, such
programs must be checked at runtime to ensure that those cases do
not compromise type safety.

To address this, the dynamic semantics of the gradual language
is defined by type-directed translation to a separate internal lan-
guage called a cast calculus. A cast calculus has static judgments
over gradual types and cast operations that evolve during program
execution. The translation process introduces runtime casts when-
ever type consistency holds but type equality is not assured. There-
fore cast calculi, of which many varieties exist (e.g., Siek and
Wadler (2010); Siek et al. (2009)), together with the cast insertion
translation, are normally seen as essential to gradual typing.

3. Gradual Growing Pains?
The unknown type, consistency, and a cast-based intermediate lan-
guage are elegant and effective notions for the development of grad-
ual typing over simple type systems. However, as this concept and
its techniques have been applied to more sophisticated type dis-
ciplines, the effort involved in adapting these notions, especially
consistency, has increased.

What exactly is consistency? The first challenge to adapting
gradual typing involves the process of developing a suitable gradual
type system. The resulting type system must conservatively extend
the corresponding static type system: any program that the static
type system accepts (or rejects) must also be accepted (or rejected)
by the gradual type system. This goal can be elusive.

Part of the challenge can be attributed to the current understand-
ing of consistency. Consistency was originally pitched with a post-
hoc justification: what relation over types could possibly allow the
specification of a type system that fulfills the requirements? In par-
ticular, that consistency must not be transitive is justified by the
observation that if it were, then any two types would be consistent
with each other, which would prevent the type system from reject-
ing programs statically (Siek and Taha 2006).

Our understanding of consistency has changed over time, with
no conception proving definitive. Consistency was originally con-
ceived as analogous to consistency among partial functions (Siek
and Taha 2006). Later, in support of languages with subtyping, it
was conceived in terms of a restriction operator T1|T2

that masks
off the parts of a type T1 that are unknown in a type T2. Under
this regime, two types are consistent if T1|T2

= T2|T1
(Siek and

Taha 2007). From this view, a notion of consistent subtyping is de-
vised by updating the masking operator in ad hoc ways and replac-
ing equality = with subtyping <:. In addition, the paper presents
several extensionally equivalent formulations of consistent subtyp-
ing, none of which intuitively seems primary. In the end, consistent
subtyping is viewed as merely an implementation device: the lan-
guage is designed by extending a gradual language with subsump-
tion and then seeking a viable implementation. Later, in support
of unification-based type inference, consistency is connected to a
partial order on gradual types, such that the partial order and con-
sistency itself can be defined in terms of one another (Siek and
Vachharajani 2008). This observation raises the question: which
conception is primary, consistency or ordering? The resulting grad-
ual language with inference is devised by adding unification to
the language, observing that the resulting language accepts too
many statically typed programs, and then imposing an ingenious
restriction mechanism on the gradual type judgment. Garcia and
Cimini (2015) propose an alternative but equivalent approach that
involves designing a new gradual language on top of a pre-existing
inference-based static language.



Each of the above systems achieves the goals of gradual typing,
but at the expense of much cleverness, engineering, and renegotia-
tion of the nature of consistency, which seems more elusive as type
systems get more sophisticated. If gradual typing is to grow, then
its foundations need to become stable and broadly applicable.

Dynamic semantics. The static semantics of gradual typing ex-
hibits challenges, but even so, “It turns out that the dynamic seman-
tics of gradually-typed languages is more complex than the static
semantics...” (Siek and Garcia 2012).

One of the key challenges lies in the fact that the cast calculi
used to define the dynamic semantics of gradual languages are de-
signed wholly separate from the source gradual language. A cast
calculus has its own type system, its own operational semantics,
and its own type safety argument. The tie that binds these two lan-
guages together is the type-directed translation from the source lan-
guage to the cast calculus and a proof that well-typed source pro-
grams translate to well-typed cast calculus programs. Bear in mind,
though, that the cast calculus typically admits far more programs
than those that lie in the image of the translation procedure. Thus
the correctness of the cast calculus with respect to the intentions
of the source language is typically argued based on intuition and
comparison to other pre-existing cast calculus designs.

For this reason, many cast calculi have arisen in the literature,
and in some cases a number of them can serve as the target of type-
directed translation for the same source language (Siek et al. 2009).
How are we to judge that any given dynamic semantics is in some
way correct with respect to the source language?

Criteria for gradual typing. In an effort to address some ques-
tions about the nature of gradual typing, Siek et al. (2015b) pro-
pose a set of refined criteria for what makes a language gradually
typed. These criteria constrain both the static and dynamic proper-
ties of gradual languages. They are conveyed both informally, with
human justification, as well as in the form of formal proof obli-
gations. Indeed a number of languages are analyzed with respect to
these criteria and some are found wanting. Such criteria are a useful
and pragmatic means of identifying core concepts, but foundational
grounding would endow them with more prescriptive force.

Abstracting gradual typing. This paper addresses fundamental
challenges to the gradual typing programme by identifying un-
derlying principles for gradual typing, applicable independently of
what is being gradualized. Once a formal meaning is given to un-
known type information, all the definitions and properties naturally
follow by construction, without appeal to intuition.

Inspired by the use of abstract interpretation to design static
semantics for gradual effects (Bañados Schwerter et al. 2014),
we devise a general approach based on abstract interpretation that
subsumes and generalizes much previous work on gradual typing.
We call this approach Abstracting Gradual Typing (AGT). Given
a statically typed programming language, and an interpretation for
gradual types couched in terms of that static discipline, the AGT
approach enables us to systematically derive static and dynamic
semantics for a language that satisfy, by construction, all the criteria
for gradual typing proposed by Siek et al. (2015b).

4. Abstracting Static Semantics
This section introduces the AGT approach to developing static se-
mantics for a gradually typed language. Along the way it introduces
the necessary concepts from abstract interpretation.

4.1 A Language and its Static Typing Discipline
We start with a simply-typed functional language, called STFL,
whose syntax and static type system are given in Fig. 1. The pre-
sentation follows the style of Garcia and Cimini (2015), where the

T ∈ TYPE, x ∈ VAR, b ∈ BOOL,

n ∈ Z, t ∈ TERM, Γ ∈ VAR
fin
⇀ TYPE

T ::= Int | Bool | T → T (types)
t ::= n | b | x | λx : T.t | t t | t+ t

| if t then t else t | t :: T (terms)

(Tx) x : T ∈ Γ

Γ ` x : T
(Tn)

Γ ` n : Int
(Tb)

Γ ` b : Bool

(Tapp)
Γ ` t1 : T1 Γ ` t2 : T2 T2 = dom(T1)

Γ ` t1 t2 : cod(T1)

(T+)
Γ ` t1 : T1 Γ ` t2 : T2 T1 = Int T2 = Int

Γ ` t1 + t2 : Int

(Tif)
Γ ` t1 : T1 Γ ` t2 : T2 Γ ` t3 : T3 T1 = Bool

Γ ` if t1 then t2 else t3 : equate(T2, T3)

(Tλ)
Γ, x : T1 ` t : T2

Γ ` (λx : T1.t) : T1 → T2
(T::)

Γ ` t : T T = T1

Γ ` (t :: T1) : T1

dom : TYPE ⇀ TYPE
dom(T1 → T2) = T1
dom(T ) undefined otherwise

cod : TYPE ⇀ TYPE
cod(T1 → T2) = T2
cod(T ) undefined otherwise

equate : TYPE × TYPE ⇀ TYPE
equate(T, T ) = T
equate(T1, T2) undefined otherwise

Figure 1. STFL: Syntax and Type System

types of subterms are kept opaque, relationships among types are
expressed as relations, and some result types are expressed using
partial functions. Note that there is nothing surprising about the
static type system: it is equivalent to a typical presentation (Pierce
2002). The dom and cod functions abstract the acquisition of func-
tion type information; the equate function “equates” the types of
the two conditional branches, ensuring that the typing rule is only
defined when T2 and T3 are in fact the same type.

Of particular interest is the presence of an ascription expression
t :: T , which lets a program assert a static type for a particular
expression. In STFL, the ascription acts as no more than machine-
checked documentation, since the ascribed type must be exactly the
synthesized type of the underlying term.

As we see below, opaque types, partial type functions, and type
ascription serve as key hooks for abstracting a static type system to
form its gradual counterpart. Furthermore, ascription is critical to
defining the dynamic semantics of the gradual language (Sec. 6.6).

4.2 Defining the Unknown
As is standard, we define the syntax of gradual types by extending
static types with a notion of unknown type ?.

T̃ ∈ GTYPE

T̃ ::= ? | Int | Bool | T̃ → T̃ (gradual types)

We naturally lift terms from the static language to gradual terms
t̃ ∈ GTERM, i.e., terms with gradual types:

t̃ ::= . . . | λx : T̃ .t̃ | t̃ :: T̃ | . . .
Note that a type T is both a TYPE and GTYPE by inclusion.
Similarly, a term t is both a TERM and GTERM.

Consider the fully unknown gradual type ?. It is completely
unknown: we do not know what type it represents; in other words,
it represents any type. Alternatively, the type Int → ? represents



a function from Int to some unknown type. In other words, this
could be any type of function as long as it maps from integers to
some other type. Finally, the gradual type Int by itself represents
only the static type Int.

These observations have been used before to intuitively justify
the definition of consistency; here we use it to give a direct interpre-
tation to gradual types in terms of static types. Formally, we define
a concretization γ from gradual types T̃ to sets of static types ÛT :a

Definition 1 (Concretization). Let γ : GTYPE → P(TYPE) be
defined as follows:

γ(Int) = { Int } γ(Bool) = {Bool }

γ(T̃1 → T̃2) = γ(T̃1) Ù→ γ(T̃2) γ(?) = TYPE

The definition uses an operator that lifts the function type con-
structor to apply to sets of static types.

· Ù→ · : P(TYPE)× P(TYPE)→ P(TYPE)ÛT1 Ù→ ÛT2 = {T1 → T2 | T1 ∈ ÛT1, T2 ∈ ÛT2 }
This flavour of interpretation of gradual types is the primary driver
of the AGT approach.

Returning to the examples, we find that γ(?) = TYPE,
γ(Int → ?) = { Int→ T | T ∈ TYPE }, and γ(Int) = { Int },
each of which directly embodies our intuitions.

Design space of unknown type information. The definition of
concretization captures an important design choice in gradual type
systems, namely the scope of unknown type information. Follow-
ing the typical exposition of gradual typing, we defined ? to repre-
sent any type by defining γ(?) = TYPE. We could instead restrict
? to represent selected types, for instance restricting it to base types
by defining γ(?) = { Int,Bool } instead. This would yield a gradu-
ally typed language that statically guarantees that only expressions
with function type can be applied, which in turn guarantees that at
runtime the resulting operator will indeed be a function. In a lan-
guage with subtyping, we could introduce bounded unknown types
?T , by defining γ(?T ) = {T ′ ∈ TYPE | T ′ <: T }, which is sim-
ilar to the work of Ina and Igarashi (2011) on gradual generics.

AGT can also be used to introduce unknown information se-
lectively on parts of types. For instance, Bañados Schwerter et al.
(2014) use an unknown effect ¿ to inject imprecision on effect an-
notations in types. The novel gradual rows presented in Sec. 5.4 are
another example of selective unknown type information.

Precision. Consider again the interpretation of gradual types set
forth by Defn. 1. One straightforward but important property of
the interpretation is that γ(T ) = {T } for any static type T , so
any gradual type that is also a static type represents only itself.
At the other end of the scale, the unknown type ? represents all
static types. In this sense, the fully static type denotes more precise
information about the identity of a type than its fully unknown
counterpart, since it rules out certain types. This intuition motivates
a formal notion of precision between gradual types.

Definition 2 (Type Precision). T̃1 is less imprecise (i.e., more
precise) than T̃2, notation T̃1 v T̃2, if and only if γ(T̃1) ⊆ γ(T̃2).

This definition of type precision exactly coincides with the naı̈ve
subtyping relation <:n of Wadler and Findler (2009), which indi-
cates that one type is less unknown than another:b

a Throughout the paper, we use wide parens Ûx (resp. wide tildes x̃) on
collecting (resp. consistent) metavariables, predicates and functions.
b Wadler and Findler called this relation “naı̈ve subtyping” because the
formal rules coincide with an old incorrect specification of substitutability
for higher-order types. We use the name “precision” because it accurately

T̃ <:n ? T̃ <:n T̃

T̃11 <:n T̃21 T̃12 <:n T̃22

T̃11 → T̃12 <:n T̃21 → T̃22

Proposition 1. T̃1 v T̃2 if and only if T̃1 <:n T̃2.

Precision arises naturally from the meaning of gradual types.

4.3 Lifting Predicates to Gradual Types
Having conceptually reconstructed gradual type precision, we now
turn to the notion of consistency, which has been central to the grad-
ual typing approach. Recall that consistency in particular means
that two gradual types could plausibly be identical, or equal, types.
Just as we did with precision, we recast consistency in terms of our
compositional interpretation of gradual types. Instead of focusing
on consistent equality in particular, though, we recast consistency
as a general notion that applies to any relationship among types.

Type equality = is a particular binary relation between types.
Consider instead some arbitrary predicate P (T1, T2, . . . , Tn) on
types. We are interested in using this predicate to induce a new con-
sistent predicate P̃ (T̃1, T̃2, . . . , T̃n) on gradual types, in a manner
that formalizes the intuitions underlying gradual typing. The con-
sistent predicate P̃ should hold when the gradual types in question
could plausibly be types for which P holds. To formalize this op-
timistic notion of consistency, we define the consistent lifting of a
type predicate in terms of the meanings of gradual types.

Definition 3 (Predicate Lifting). Let P ⊆ TYPE2 be some binary
predicate on types.

1. We define its (consistent) collecting lifting ÛP ⊆ P(TYPE)2 as
follows:ÛP (ÛT1, ÛT2) iff P (T1, T2) for some 〈T1, T2〉 ∈ ÛT1 × ÛT2.

2. We then define its (consistent) gradual lifting P̃ ⊆ GTYPE2 as
follows: P̃ (T̃1, T̃2) iff ÛP (γ(T̃1), γ(T̃2)).

We generalize these to finite arity predicates P (T1, T2, . . . , Tn).

The key insight of this definition is that gradual types are consistent
with the predicate if some static types in their interpretation satisfy
the static predicate. We take this existential lifting as the definition
of generalized consistency. As type systems become more sophis-
ticated and use properties beyond type equality, this general notion
becomes crucial for developing their gradual counterparts.

Consistency revealed. Consider the simple predicate of type
equality T = T . We lift this predicate to form consistent equality
on gradual types T̃ =̃ T̃ . This predicate is not new whatsoever.

Proposition 2. T̃1 =̃ T̃2 if and only if T̃1 ∼ T̃2.

Thus the consistency relation of Siek and Taha arises naturally
as the consistent lifting of type equality. From now on we use the
symbol ∼ but refer to it as consistent equality since it is but one
consistent relation on gradual types.

4.4 Lifting Functions on Gradual Types
Just as we have lifted predicates on types to consistent predicates on
gradual types, we must also lift our partial functions on static types
to corresponding partial functions on gradual types. We begin by
defining a collecting semantics for functions.

Definition 4 (Collecting Function). Let F : TYPE2 ⇀ TYPE be
some partial function on static types. Then we define its collecting

reflects the conceptual meaning of the judgment, which is not concerned
with sound substitutability, and so not about subtyping.



(T̃x) x : T̃ ∈ Γ

Γ ` x : T̃
(T̃n)

Γ ` n : Int
(T̃b)

Γ ` b : Bool

(T̃ app)
Γ ` t̃1 : T̃1 Γ ` t̃2 : T̃2 T̃2 ∼ d̃om(T̃1)

Γ ` t̃1 t̃2 : ›cod(T̃1)

(T̃+)
Γ ` t̃1 : T̃1 Γ ` t̃2 : T̃2 T̃1 ∼ Int T̃2 ∼ Int

Γ ` t̃1 + t̃2 : Int

(T̃ if)
Γ ` t̃1 : T̃1 Γ ` t̃2 : T̃2 Γ ` t̃3 : T̃3 T̃1 ∼ Bool

Γ ` if t̃1 then t̃2 else t̃3 : T̃2 u T̃3

(T̃ λ)
Γ, x : T̃1 ` t̃ : T̃2

Γ ` (λx : T̃1 .̃t) : T̃1 → T̃2
(T̃::)

Γ ` t̃ : T̃ T̃ ∼ T̃1

Γ ` (̃t :: T̃1) : T̃1

d̃om : GTYPE ⇀ GTYPE

d̃om(T̃1 → T̃2) = T̃1

d̃om(?) = ?

d̃om(T̃ ) undefined otherwise

›cod : GTYPE ⇀ GTYPE›cod(T̃1 → T̃2) = T̃2›cod(?) = ?›cod(T̃ ) undefined otherwise

Figure 2. GTFL: Type System

lifting ÛF : P(TYPE)2 → P(TYPE) as follows:ÛF (ÛT1, ÛT2) = {F (T1, T2) | 〈T1, T2〉 ∈ ÛT1 × ÛT2 } .

We generalize to finite arity functions F : TYPEn ⇀ TYPE.

We apply the original partial function pointwise to the collection
of corresponding static types, ignoring cases where the function is
not defined, to produce the set of possible results. If the function is
undefined for the entire collection, then the result is the empty set.

As a first example, the collecting lifting of the codomain func-
tion cod is defined as ĉod(ÛT ) = {T2 | T1 → T2 ∈ ÛT }. This
means that, for instance, ĉod(TYPE) = TYPE since every type ap-
pears in the codomain of some type.

From here we wish to produce the corresponding function for
gradual types. We should compose the concretization function with
the collecting semantics, i.e., ÛF ◦ γ, but the result of this is some
arbitrary collection of static types. How do we get from here back
to gradual types? For this, we define an abstraction function, which
represents the collection of static types as precisely as it can in
terms of a gradual type.

Definition 5 (Abstraction). Let the abstraction (partial) function
α : P(TYPE) ⇀ GTYPE be defined as follows:

α({ Int }) = Int

α({Bool }) = Bool

α({Ti1 → Ti2 }) = α({Ti1 })→ α({Ti2 })
α(∅) is undefined

α(ÛT ) = ? otherwise

Not just any function from sets of static types to gradual types
will do; the abstraction function satisfies two correctness criteria.

Proposition 3 (α is Sound). If ÛT is not empty, then ÛT ⊆ γ(α(ÛT )).

Soundness ensures that α retains all of the types that are repre-
sented by the collection ÛT . A constant function that maps every col-
lection ÛT to ? meets this criterion, but it is not satisfying because it
unnecessarily loses precision: it forgets everything we knew about

ÛT . At the least we want α(γ(T̃ )) = T̃ for every gradual type T̃ .
The function α achieves this and more.

Proposition 4 (α is Optimal). If ÛT is not empty and ÛT ⊆ γ(T̃ )

then α(ÛT ) v T̃ .

Optimality ensures that α always retains as much precision as
possible, given the gradual types that we have available and their
meaning via γ.c In fact, the optimal α is uniquely determined by γ.

Using the abstraction function, we specify the gradual lifting of
partial functions on types.d

Definition 6 (Gradual Function). Let F : TYPE2 ⇀ TYPE be
some partial function on static types. Then we define its gradual
lifting F̃ : GTYPE2 ⇀ GTYPE as follows:

F̃ (T̃1, T̃2) = α(ÛF (γ(T̃1), γ(T̃2)).

We generalize to finite arity partial functions.

Lifting domains and codomains. As a first example, we use the
collecting codomain function to show that›cod(?) = α(ĉod(γ(?))) = α(ĉod(TYPE)) = α(TYPE) = ?

Also, just like its static counterpart, ›cod is partial:›cod(Int) = α(ĉod(γ(Int))) = α(ĉod({ Int })) = α(∅), undefined

More generally, cod and ›cod coincide on static types.

Proposition 5.

1. fidom(T ) = T̃ iff T = T1 → T2 and T̃ = T1 for some T1, T2.
2. ›cod(T ) = T̃ iff T = T1 → T2 and T̃ = T2 for some T1, T2.

Furthermore, fidom(T̃ ) and ›cod(T̃ ) are defined if and only if
T̃ ∼ (fidom(T̃ )→›cod(T̃ )), which is what we expect from a grad-
ual type that can be used as a function.

Lifting equate . The equate partial function forces static types
to be equal, but how shall we “equate” imprecise gradual types?
Garcia and Cimini (2015) informally argue that ‡equate should be
the meet operator u on gradual types:

T̃1 u T̃2 = α(γ(T̃1) ∩ γ(T̃2))

Using the AGT approach, we replace this intuition with a proof:

Proposition 6. ‡equate(T̃1, T̃2) = T̃1 u T̃2.

Note that T̃1 u T̃2 is defined if and only if T̃1 ∼ T̃2. Thus, our use
of u captures the expected relationship between the types of the
branches: they must be consistently equal. The above α-γ-based
definition of meet would be hard to implement since it involves
generating infinite sets of types. However, we can calculate a de-
cidable characterization of meet by cases on pairs of gradual types.
The result is a subset of the meet of Siek and Wadler (2010): their
meet exploits an inconsistent ⊥ gradual type to lazily propagate
failures, while our meet fails eagerly because α is undefined for the
empty set.

Proposition 7.

1. Int u Int = Int;
2. Bool u Bool = Bool;

c In abstract interpretation terminology, soundness and optimality together
are called a Galois connection.
d The gradual partial function could be made total by introducing a bottom
gradual type ⊥ which abstracts ∅; we leave this type undefined to preserve
the partiality intuitions from the static typing world.



3. T̃ u ? = ?u T̃ = T̃ ;
4. (T̃11 → T̃12) u (T̃21 → T̃22) = (T̃11 u T̃21)→ (T̃12 u T̃22);
5. T̃1 u T̃2 is undefined otherwise.

The AGT approach often uses calculational reasoning to pro-
duce inductive definitions for “semantically” defined concepts.

4.5 Gradual Type System
Fig. 2 presents the type system of GTFL, the gradual counterpart to
STFL. It builds directly on the STFL type system. The rules have
the same structure as Fig. 1, except that static types have been lifted
to gradual types, and predicates and partial functions have been
lifted to consistent predicates and gradual partial functions.

Compositional lifting. The (T̃ app) rule presents a subtlety: the
gradual lifting ›cod is as expected, but rather than lifting the pred-
icate P (T1, T2) ≡ T1 = dom(T2), the rule uses the independent
lifting of the dom partial function and the = predicate. While lift-
ing a complex predicate by lifting its parts seems natural, it does
not in general produce the correct lifted predicate. For example,
consider the following (contrived) partial function:

F (Int) = Bool F (Bool) = Int

and define a predicate P (T1, T2) ≡ T1 = F (T2). Using our frame-
work, we find that Int→ Int ∼ F̃ (?) holds, but P̃ (Int→ Int, ?)
does not. Piecewise lifting loses precision and in doing so misses
some inconsistencies. We can prove, however, that piecewise lifting
works here.

Proposition 8. Let P (T1, T2) ≡ T1 = dom(T2). Then
T̃1 ∼fidom(T̃2) if and only if P̃ (T̃1, T̃2).

4.6 Static Criteria for Gradual Typing
The AGT approach allows us to systematically derive a gradual
type system that enjoys the expected properties discussed in the lit-
erature, including type safety and the criteria of Siek et al. (2015b).

Equivalence for fully-annotated terms. Siek and Taha (2006)
prove that the gradual type system is a conservative extension of
the static language; in other words, it is equivalent to the STLC
on fully-annotated programs. Denoting by `S the STFL typing
relation (Fig. 1), the equivalence is stated as follows:

Proposition 9 (Equivalence for fully-annotated terms).
`S t : T if and only if ` t : T .

This proof is trivial in the AGT approach because each lifted
predicate and operator is equivalent to its static counterpart when
only static types are involved.

Embedding of dynamic language terms. The dynamic counter-
part of STFL—which includes terms ť that are not directly typeable
in the gradual language like (λx.x x)—can be embedded in the
gradual language by a simple translation d·e that ascribes the un-
known type to every subexpression and annotates every function
with ? (Garcia and Cimini 2015; Siek and Taha 2006).

Proposition 10 (Dynamic embedding). If ť is closed then ` dťe : ?.

Gradual guarantee. Siek et al. (2015b) present a set of refined
criteria for gradual typing, called the gradual guarantee. The grad-
ual guarantee has three parts. The first part addresses only the
type system of a gradually-typed language. It states that decreas-
ing the precision of the types in a program does not affect its well-
typedness. Precision among terms t v t is the natural lifting of
type precision to terms.

Proposition 11 (Gradual guarantee (static)).
If ` t̃1 : T̃1 and t̃1 v t̃2, then ` t̃2 : T̃2 and T̃1 v T̃2.

Int <: Int

T21 <: T11 T12 <: T22

T11 → T12 <: T21 → T22

Bool <: Bool

Ti1 <: Ti2

[li : Ti1, lj : Tj ] <: [li : Ti2]

(Trec)
Γ ` ti : Ti

Γ ` [li = ti] : [li : Ti]
(Tproj) Γ ` t : T

Γ ` t.l : proj(T, l)

(Tapp)
Γ ` t1 : T1 Γ ` t2 : T2 T2 <: dom(T1)

Γ ` t1 t2 : cod(T1)

(Tif)
Γ ` t1 : T1 Γ ` t2 : T2 Γ ` t3 : T3 T1 <: Bool

Γ ` if t1 then t2 else t3 : T2 <
:

T3

proj : TYPE × LABEL ⇀ TYPE

proj ([l : T, li : Ti], l) = T
proj (T, l) undefined otherwise

<
:

: TYPE × TYPE ⇀ TYPE

Int <
:

Int = Int
Bool <

:

Bool = Bool
(T11 → T12) <

:

(T21 → T22) = (T11

<
: T21)→ (T12 <

:

T22)

[li : Ti1, lj : Tj ] <
:

[li : Ti2, lk : Tk] = [li : Ti1 <
:

Ti2]

T <
:

T undefined otherwise

<
: : TYPE × TYPE ⇀ TYPE

Int

<
: Int = Int

Bool

<
: Bool = Bool

(T11 → T12)

<
: (T21 → T22) = (T11 <

:

T21)→ (T12

<
: T22)

[li : Ti1, lj : Tj ]

<
: [li : Ti2, lk : Tk] =

[li : Ti1

<
: Ti2, lj : Tj , lk : Tk]

T

<
: T undefined otherwise

Figure 3. STFL<:: Subtyping Extensions to STFL

Since consistent predicates and gradual functions are monotone
for precision, using the AGT approach naturally yields a type sys-
tem that satisfies this guarantee.

5. Case Study: Subtyping
This section extends STFL with records and subtyping to form
the STFL<: language, and then applies the AGT approach to pro-
duce GTFL., the corresponding gradual type system. The result-
ing language bears strong similarity to the Ob?

<: language of Siek
and Taha (2007). That language has objects as implicitly recursive
record types with width subtyping. Here we focus on pure record
types with both width and depth subtyping.

The STFL<: language (Fig. 3) extends STFL with records,
projections, and record types:

l ∈ LABEL

t ::= . . . | [l = t] | t.l
T ::= . . . | [l : T ]

We define the standard subtyping relation, and use subtyping
in the typing rules in place of type equality. The (Trec) rule is
standard. The (Tproj) rule uses a partial function to ascertain its
output type, but is otherwise standard. The (Tapp) rule loosens the
requirement on the argument type: it simply needs to be a subtype
of the function domain. The (Tif) rule uses subtyping to bound
the predicate type. Interestingly, the output type is the least upper
bound of the two branch types with respect to subtyping <

:. This is
standard practice for a language with subtyping (Pierce 2002). In



fact, we can view = and equate in Fig. 1 as degenerate instances
of <: and <

: respectively.

5.1 Extending Gradual Types
Now that we have extended the set of static types, we must also
extend the gradual types and their meanings. First we add record
types to the set of gradual types:

T̃ ::= . . . | [l : T̃ ]

and extend the concretization function to give them meaning:

γ([li : T̃i]) =
˝�
[li : γ(T̃ i)]

where [̇li : ÛT i] = { [li : Ti] | Ti ∈ ÛTi }
In turn the abstraction function is extended:

α({ [li : Tij ] }) = [li : α({Tij })]
These extended definitions are sound and optimal.

5.2 Consistent Subtyping
Next, we lift subtyping to gradual types. Siek and Taha (2007) call
this relation consistent subtyping.

Definition 7 (Consistent Subtyping).

T̃1‹<:T̃2 if and only if T1 <: T2 for some T1 ∈ γ(T̃1), T2 ∈ γ(T̃2).

Siek and Taha define consistent subtyping . in two steps. First
they define a static subtyping relation T̃ ≤ T̃ over gradual types.
Guided by the intuition that subtyping and gradual typing are or-
thogonal, they simply assert ? ≤ ?, i.e., the unknown type is only
its own subtype. Then they define an algorithm for consistent sub-
typing in terms of masking T1|T2 and characterize it several ways:

Proposition 12 (Siek and Taha (2007)).

1. T̃1 . T̃2 if and only if T̃1 ∼ T̃ ′1 and T̃ ′1 ≤ T̃2 for some T̃ ′1.
2. T̃1 . T̃2 if and only if T̃1 ≤ T̃ ′2 and T̃ ′2 ∼ T̃2 for some T̃ ′2.

These are two quite different foundations for consistent subtyp-
ing: ours is defined purely in terms of static subtyping; Siek and
Taha define static subtyping directly on gradual types, then blend it
with consistent equality. Nonetheless, the two notions coincide:

Proposition 13. T̃1 . T̃2 if and only if T̃1 ‹<: T̃2.

From now on we use the symbol . for consistent subtyping.

5.3 Lifting Meet and Join

We define join for gradual types ˜<: in the usual fashion:

Definition 8. T̃1
˜

<
:

T̃2 = α(γ(T̃1)Û<:γ(T̃2))

where ÛT1
Û

<
: ÛT2 = {T1 <
:

T2 | T1 ∈ ÛT1, T2 ∈ ÛT2 }.
Here the AGT machinery pays off in spades. We need not

appeal to intuition to develop a notion of consistent join. We simply
define it as the approach dictates. By construction, the resulting
operation soundly, optimally, and conservatively extends its static
counterpart.

5.4 Extension: Gradual Rows
The AGT approach not only simplifies gradual type system design,
but it can also inspire the design of new gradual typing features. We
now consider how AGT inspired an extension to our language.

The unknown type ? is quite useful and general for gradual
types, but in the presence of record types and subtyping, it loses

a lot of information. To see this, consider the results of abstraction
for several cases:

α({ [l1 : Int] }) = [l1 : Int]

α({ [l1 : Int], [l1 : Bool] }) = [l1 : ?]

α({ [l1 : Int], [l1 : Int, l2 : Bool] }) = ?

The first abstraction is perfect, while the second must abstract the
type of l1. The last abstraction, however, loses all type information,
including the fact that every type in the set is a record. Can we
be a bit more precise about graduality? Yes we can. To do so, we
introduce a new kind of gradual type, which we call a gradual row:

T̃ ::= . . . | [l : T̃ , ?]

A gradual row type represents unknown extra fields in the record
type. We define this notion more precisely via concretization:

γ([li : T̃i, ?]) =
ˇ�
[li : γ(T̃ i), ?]

where
¸�
[li : ÛT i, ?] = { [li : Ti, lj : Tj ] | Ti ∈ ÛTi, Tj ∈ TYPE }

Records with gradual rows represent any record type that has at
least the stated labels with some corresponding type.

In turn the abstraction function is extended:

α({ [li : Tij , . . .] }) = [li : α({Tij }), ?]

Note that the ellipsis above denotes labels that are not common to
all records in the set.

Given these extensions, our earlier examples produce strictly
more precise results. In particular, the third example produces a
record with a gradual row type:

α({ [l1 : Int], [l1 : Int, l2 : Bool] }) = [l1 : Int, ?]

From this extended definition of gradual types, we calculate the
following inductive characterization of consistent subtyping:

? . T̃ T̃ . ? Int . Int Bool . Bool

T̃21 . T̃11 T̃12 . T̃22

T̃11 → T̃12 . T̃21 → T̃22

T̃i1 . T̃i2

[li : T̃i1, lj : T̃j ] . [li : T̃i2, ∗]

T̃i1 . T̃i2

[li : T̃i1, lj : T̃j , ?] . [li : T̃i2, lk : T̃k, ∗]

We use the notation [li : T̃i, ∗] to stand for both [li : T̃i] and

[li : T̃i, ?] when the presence of a gradual row does not matter.
Comparing the two rules for records, we find that gradual rows ad-
mit consistent supertypes that have extraneous fields, so long as the
common fields of the two record types satisfy consistent subtyping.

The abstract interpretation framework motivated us to introduce
gradual rows, but they can also be quite convenient for program-
ming. A record type can be gradual with respect to which fields
it has: known fields enjoy the assurances of static checking, while
unknown fields afford the flexibility of dynamic checking.

6. Abstracting Dynamic Semantics
The AGT approach to gradual typing induces not only static seman-
tics, but also dynamic semantics. To demonstrate this, we develop a



dynamic semantics for GTFL., our gradual counterpart to STFL<:.
Our approach subsumes and generalizes the threesome casts (with-
out blame) of Siek and Wadler (2010). In addition, the resulting
dynamic semantics honours, by construction, the dynamic criteria
of Siek et al. (2015b).

6.1 An Overview of the Approach
To set the groundwork for the technical details, we begin with a
high-level intuition for the approach. Our gradual dynamic seman-
tics is founded directly on the proof of syntactic type safety (i.e.,
progress and preservation) for the underlying static language. Con-
ceptually, a type safety proof induces reduction rules over static
typing derivations that mirror the reduction rules of the operational
semantics. However, we typically focus on the evolving program
rather than its evolving derivation. AGT shifts the focus to typing
derivations in accordance with the proofs-as-programs correspon-
dence, under which subject reduction of natural deduction proofs
corresponds to reduction of programs (Howard 1980).

Our gradual typing derivations match the structure of static typ-
ing derivations, where the only differences are that static types be-
come gradual types and type relations become consistent relations.
Reasoning about these consistent relations is the key to inducing a
gradual dynamic semantics.

We first refine each consistent typing judgment in a derivation
with evidence. A consistent typing judgment (e.g., consistent sub-
typing) by itself denotes the mere possibility that its correspond-
ing static judgment (e.g., subtyping) holds. Our notion of evidence
characterizes how likely it is that the judgment holds.

We then develop operations to evolve the evidence for con-
sistent judgments in accordance with type safety-induced reduc-
tions on derivations. Each new type relationship in a post-reduction
derivation must be justified by applying properties of the relevant
typing judgment (e.g., transitivity of type equality and subtyping)
to the type relations evident in the pre-reduction derivation. Us-
ing abstract interpretation, we lift logical deductions about static
type relations to deductions about the evidence for consistent typ-
ing judgments (e.g., consistent transitivity of consistent subtyping
(Sec. 6.4)). However, consistent judgments are merely plausible,
not guaranteed, so a consistent deduction may yield no evidence
for the desired consistent judgment. Failure to deduce evidence re-
futes the consistent deduction, indicates an evident breakdown in
the underlying type safety argument, and thereby justifies a run-
time error.

In short, AGT yields a dynamic semantics with a crisp connec-
tion to the syntactic type safety argument of the underlying static
language, which in turn is connected to its dynamic semantics.

6.2 Intrinsic Gradual Terms and Their Reduction
Defining reduction directly on 2-dimensional typing derivations is
rather unwieldy. Instead of doing this, we represent gradual typ-
ing derivations as intrinsically typed terms (Church 1940). Intrin-
sic terms correspond directly to typing derivations, but are far more
convenient to manipulate. In our approach, they fill the role typi-
cally played by an independently-designed cast calculus, but their
structure and semantics emerge directly from the static and dy-
namic semantics of the static language. We illustrate these notions
below.

Runtime Typing Rules Consider the GTFL. typing rules for
functions and function application:

(T̃ λ)

Γ, x : T̃1 ` t̃ : T̃2

Γ ` (λx : T̃1 .̃t) : T̃1 → T̃2

(T̃ app)

Γ ` t̃1 : T̃1 ε1 ` T̃1 . T̃11 → T̃12

Γ ` t̃2 : T̃2 ε2 ` T̃2 . T̃11

Γ ` t̃1 t̃2 : T̃12

The (T̃ λ) rule is the same as in GTFL (Fig. 2), but the (T̃ app) rule,
has three significant changes. First, as expected, consistent equal-
ity has been replaced with consistent subtyping. More interesting,
though, is that the fidom(T̃1) and ›cod(T̃1) partial functions have
been replaced with a consistent subtyping judgment on T̃1. This
change lets the type safety proof smoothly evolve typing deriva-
tions. The fidom(T̃1) and ›cod(T̃1) functions support the syntax-
directed typing of gradual source terms by pinning the source type
of the operator expression. In particular, if a source program’s op-
erator has type T̃0, then the fact that fidom(T̃0) and ›cod(T̃0) are de-
fined for the source type implies that T̃0 ∼fidom(T̃0)→›cod(T̃0),
which corresponds to equality in the static system. At runtime,
however, the operator expression may reduce to a new expression
whose type T̃1 is a consistent subtype of T̃0, just as the analo-
gous source type may evolve to a subtype in the static language.
Thus, since we preserve types exactly, we untether the source type
T̃11 → T̃12 = fidom(T̃0)→›cod(T̃0) from the evolving operator’s
type T̃1. Thus, the type of the application expression remains T̃12

throughout evaluation. This generalization arises naturally as part
of the type safety proof for the static language, especially if the
preservation theorem is formulated to strictly preserve types.

Finally, each consistent subtyping judgment is now supported
by evidence ε ∈ EV<:, which is runtime information that reflects
the plausibility of consistent subtyping. When typing source pro-
grams, our only concern is that consistent subtyping holds, but
during evaluation, we are concerned with why it (still) holds. Evi-
dence is our representation of why, and it evolves at runtime. We
introduce aspects of evidence as needed, and ultimately provide a
precise definition in Sec. 6.4.

Intrinsic Terms Having prepared the gradual typing rules to ac-
comodate runtime evolution, we now transform them into term
constructors for intrinsically-typed terms. In contrast to the more
common extrinsically-typed terms, intrinsically-typed terms define
a family of type-indexed sets, such that the only terms that are ever
defined are well-typed: ill-typed terms do not even exist. Note,
however, that the static type information is purely administrative
and can be erased in a practical implementation.

We start with intrinsically-typed variables. For each gradual
type T̃ , assume a distinct family of variables of that type:

xT̃ ∈ VAR
T̃

where T̃1 6= T̃2 =⇒ VAR
T̃1
∩ VAR

T̃2
= ∅.

Note that xT̃ is a metavariable, not a combination of variable and
type: variables are atomic elements. Also, since the variable sets
are disjoint, it follows that T̃1 6= T̃2 =⇒ xT̃1 6≡ xT̃2 . Intrinsically
typed variables obviate the need for type environments Γ, yielding
a self-contained term language.

To define intrinsic terms, we inspect each typing rule and intro-
duce a term constructor that captures all the information needed to
reconstruct the rule. For instance, consider the intrinsic term for-
mation rules for functions and application:

(IT̃ λ)
tT̃2 ∈ TERM

T̃2

λxT̃1 .tT̃2 ∈ TERM
T̃1→T̃2

(IT̃ app)

tT̃1 ∈ TERM
T̃1

ε1 ` T̃1 . T̃11 → T̃12

tT̃2 ∈ TERM
T̃2

ε2 ` T̃2 . T̃11

(ε1t
T̃1) @T̃11→T̃12 (ε2t

T̃2) ∈ TERM
T̃12



The (IT̃ λ) rule builds intrinsic functions that closely resemble their
extrinsic counterparts. This rule resembles the (T̃ λ) rule, but the
premise has no assumptions about variable types since all free
variables are intrinsically typed.

The (IT̃ app) rule, on the other hand, produces a much richer
term than its extrinsic counterpart. Instead of using traditional jux-
taposition, it uses an explicit @ constructor that is indexed on the
gradual type T̃11 → T̃12 at which the function application occurs.
Without this index, the corresponding extrinsic typing rule (and
therefore the corresponding typing derivation) could not be recre-
ated perfectly. Each typing derivation embodies one specific typing,
so each intrinsic term can have only one type in turn.

Each subterm of application is qualified with evidence for con-
sistent subtyping. This evidence is the critical information needed
at runtime to detect gradual type inconsistencies. In fact each sub-
term of each elimination rule is qualified with evidence.

Reduction Reducing an intrinsic term corresponds to rewriting
a type derivation tree as part of proving type preservation. Many
presentations of subtyping allow the type of the term to evolve to
a subtype, which by subsumption implies exact type preservation
anyway. In the gradual context, however, consistent subtyping ar-
guments depend on the evidence for why subtyping might hold, so
subsumption for consistent subtyping may fail at runtime. To retain
soundness, then, we must go further and require that reductions
preserve the exact gradual type of the original intrinsic term.

When an intrinsic term is reduced, evidence for the relevant
consistent judgments must evolve to support the resulting term. For
example, consider the following function application:

(ε1λx
T̃ ′
11 .tT̃

′
12) @T̃11→T̃12 (ε2v

T̃2)

Here, vT̃ ∈ VALUE
T̃

indicates some intrinsically typed value. The

term formation rules tell us that ε1 ` T̃ ′11 → T̃ ′12 . T̃11 → T̃12

and ε2 ` T̃2 . T̃11. How shall we reduce this expression? Con-

ceptually, we want to substitute vT̃2 into the body of the function,
but this value has type T̃2, while the variable xT̃

′
11 has type T̃ ′11.

We must bridge the gap.
The insight here is that we already have evidence ε2 ` T̃2 . T̃11

and by reasoning about inversion on consistent subtyping, we can
extract from ε1 evidence idom(ε1) ` T̃11 . T̃ ′11 and

icod(ε1) ` T̃ ′12 . T̃12. To substitute vT̃2 for xT̃
′
11 , we must de-

duce that T̃2 . T̃ ′11. Recall that consistent subtyping is not in
general transitive. Nonetheless, we can combine the evidence ε2
and idom(ε1) to (possibly) produce evidence (ε2 ◦<: idom(ε1)) `
T̃2 . T̃ ′11. The consistent transitivity operation ◦<: attempts to
combine two pieces of evidence to form evidence for the transitive
case. Note that this plausible argument exactly mirrors the definite
argument that arises when proving type safety for the underlying
static language. However, consistent transitivity is a partial func-
tion: it may fail, in which case we signal a runtime error.

Leveraging consistent transitivity and inversion, we reduce the
term as follows:

(ε1λx
T̃ ′
11 .tT̃

′
12) @T̃11→T̃12 (ε2v

T̃2) −→

icod(ε1)
(

[(ε2 ◦<: idom(ε1))vT̃2 :: T̃ ′11/x
T̃ ′
11 ]tT̃

′
12

)
:: T̃12.

Since consistent transitivity is partial, this rule is only defined
if ε2 ◦<: idom(ε1) is defined; otherwise we reduce to an error
(Sec. 6.5).e

e Alternatively substitution could be defined to incorporate evidence at
variable occurrences.

In summary, to develop the runtime semantics for gradual types
we 1) qualify all consistent judgments with evidence; 2) define
evaluation in terms of type-preserving rewrites on type derivations;
and 3) reason explicitly about evidence for consistent subtyping
judgments. We develop evidence and consistent transitivity below.

6.3 Initial Evidence: Interiors
We now elaborate our notion of evidence for consistent judgments.
We start by extracting initial evidence from the bare knowledge that
a consistent judgment holds.

A consistent predicate judges whether some gradual types rep-
resent some static types that satisfy the corresponding static judg-
ment. As predicates, they convey only Boolean information: either
yes, the gradual types represent some satisfying collection, or no
they do not.

However, this coarse-grained information is not all that can be
deduced from a consistent judgment. For instance, consider the
judgment [x : Int → ?, y : ?] . [x : ? → Bool]. Indeed some
types T1 and T2 in the concretization of each respective gradual
type are subtypes. However, we can immediately deduce more
precise information about T1 and T2 than this.

Proposition 14.

1. If T1 ∈ γ([x : Int→ ?, y : ?]), T2 ∈ γ([x : ?→ Bool]) and
T1 <: T2 then T1 ∈ γ([x : Int→ Bool, y : ?]) and
T2 ∈ γ([x : Int→ Bool]).

2. [x : Int → Bool, y : ?] and [x : Int → Bool] are the most
precise gradual types that satisfy property 1.

Prop. 14 deduces precise gradual type bounds on each static
type involved in the consistent subtyping judgment, based solely
on the knowledge that the judgment holds. We generalize this no-
tion to arbitrary consistent predicates. First, since consistent judg-
ments involve multiple gradual types, we extend our gradual type
abstraction to tuples of gradual types.

Definition 9 (Coordinate Concretization).
Let γ2 : GTYPE × GTYPE → P(TYPE × TYPE) be defined by

γ2(T̃1, T̃2) = γ(T̃1)× γ(T̃2).

This definition induces the following precision ordering:
〈T̃11, T̃12〉 v2 〈T̃21, T̃22〉 if and only if T̃11 v T̃21 and T̃12 v T̃22.
We generalize these to finite products:

γn : GTYPEn → P(TYPEn),

vn ⊆ GTYPEn × GTYPEn.

We denote by πn the nth projection function from a tuple.

Definition 10 (Coordinate Abstraction).
Let α2 : P(TYPE × TYPE) ⇀ GTYPE × GTYPE be defined by

α2({ 〈Ti1, Ti2〉, . . . }) = 〈α({Ti1, . . . }), α({Ti2, . . . })〉 .
We generalize this to arbitrary finite products
αn : P(TYPEn)→ GTYPEn.

Note that γn, αn pairs satisfy soundness and optimality.

Definition 11 (Interior). Let P be a binary predicate on static
types. Then the interior of the judgment P̃ (T̃1, T̃2), notation
IP (T̃1, T̃2), is the smallest tuple 〈T̃ ′1, T̃ ′2〉 v2 〈T̃1, T̃2〉 such that
for 〈T1, T2〉 ∈ TYPE2, if 〈T1, T2〉 ∈ γ2(T̃1, T̃2) and P (T1, T2),
then 〈T1, T2〉 ∈ γ2(T̃ ′1, T̃

′
2). We generalize this to finite arity pred-

icates.

In essence, the interior produces the best coordinate-wise in-
formation that we can deduce from a consistent judgment. If
P̃ (T̃1, T̃2) does not hold, then IP (T̃1, T̃2) is undefined.



The definition of interior is direct, but not easy to use in practice.
We recast it in terms of coordinate abstraction.

Proposition 15.

IP (T̃1, . . . , T̃n) =
αn({ 〈T1, . . . , Tn〉 ∈ γn(T̃1, . . . , T̃n) | P (T1, . . . , Tn) }).

The interior of consistent subtyping. Now consider the interior
of the consistent subtyping judgment in particular.

I<: : GTYPE × GTYPE ⇀ EV<:

I<:(T̃1, T̃2) = α2({ 〈T1, T2〉 ∈ γ2(T̃1, T̃2) | T1 <: T2 })

=
〈α({T1 ∈ γ(T̃1) | ∃T2 ∈ γ(T̃2). T1 <: T2 }),

α({T2 ∈ γ(T̃2) | ∃T1 ∈ γ(T̃1). T1 <: T2 })〉.
As the signature of I<: indicates, these precise tuples are instances
of evidence for consistent subtyping. This characterization of I<: is
concise, but does not immediately suggest an algorithm. However,
we use case-based reasoning to calculate a set of syntax-directed,
invertible proof rules that imply a proof-search algorithm.f Fig. 4
presents the algorithmic rules for I<:. The rules exploit the fact
that π1(I<:(T̃ , ?)) = T̃ and π2(I<:(?, T̃ )) = T̃ .

For an example, consider the following instance:

I<:(?, [g : Bool]) = 〈[g : Bool, ?], [g : Bool]〉
Intuitively, this tells us that any subtype of [g : Bool] must be a
record that has at least one field g : Bool. Note that if we remove
gradual rows from the language, we have no way to represent this
precise information, and then the result remains 〈?, [g : Bool]〉.
Though less precise, this evidence is still a sufficient basis for the
dynamic semantics of a gradual language.

From consistency to threesomes. Applying the notion of interi-
ors to consistent equality independently validates the cast insertion
process for the Threesome Calculus (Siek and Wadler 2010). Since
consistent equality lifts static type equality, we calculate its interior.

Proposition 16.
If T̃1 ∼ T̃2, then I=(T̃1, T̃2) = 〈T̃1 u T̃2, T̃1 u T̃2〉.

In the Threesome Calculus, a cast-insertion procedure 〈〈T̃ ⇐ T̃ 〉〉
converts twosome casts into threesome casts. The process intro-
duces a middle type that is the meet of the two ends, e.g.:

〈〈Int→ ?⇐ ?→ Bool〉〉 = 〈Int→ ?
Int→Bool⇐= ?→ Bool〉

The deduced middle type matches the interior calculation,
I=(Int → ?, ? → Bool) = 〈Int→ Bool, Int→ Bool〉. In the
case of consistent equality, both type bounds are always identical,
so the middle type reflects all of the information from the interior.

6.4 Evolving Evidence: Consistent Transitivity
To generalize evidence beyond the notion of interior, we develop
consistent transitivity as a means to entail evidence for new con-
sistent judgments from evidence for prior judgments. This form
of reasoning generalizes the reduction strategy developed for
threesome-style casts.

Consider two consistent subtyping judgments:

ε12 ` T̃1 . T̃2 ε23 ` T̃2 . T̃3.

When might the transitive case T̃1 . T̃3 hold? We use the AGT
framework to formally combine the given evidence to form the
most precise justifiable evidence for judging transitivity. Reasoning
about transitivity pervades type-theoretic reasoning, so we formal-
ize consistent transitivity for any transitive binary predicate.

f Syntax-directed rules for static predicates simplify these calculations.

T̃ ∈ { Int,Bool, ? }

I<:(T̃ , T̃ ) = 〈T̃ , T̃ 〉

T̃ ∈ { Int,Bool, [∗] }

I<:(T̃ , ?) = 〈T̃ , T̃ 〉

T̃ ∈ { Int,Bool }

I<:(?, T̃ ) = 〈T̃ , T̃ 〉

I<:(T̃11 → T̃12, ?→ ?) = 〈T̃ ′1, T̃
′
2〉

I<:(T̃11 → T̃12, ?) = 〈T̃ ′1, T̃
′
2〉

I<:(?→ ?, T̃21 → T̃22) = 〈T̃ ′1, T̃
′
2〉

I<:(?, T̃21 → T̃22) = 〈T̃ ′1, T̃
′
2〉

I<:(T̃21, T̃11) = 〈T̃ ′21, T̃
′
11〉 I<:(T̃12, T̃22) = 〈T̃ ′12, T̃

′
22〉

I<:(T̃11 → T̃12, T̃21 → T̃22) = 〈T̃ ′11 → T̃ ′12, T̃
′
21 → T̃ ′22〉

I<:(?, [li : T̃i, ∗]) = I<:([?], [li : T̃i, ∗])

I<:([l : T̃ , li : T̃i, ∗], ?) = 〈[l : T̃ , li : T̃i, ∗], [?]〉

I<:(T̃i1, T̃i2) = 〈T̃ ′i1, T̃
′
i2〉

I<:([li : T̃i1], [li : T̃i2, ∗]) = 〈[li : T̃ ′i1], [li : T̃ ′i2]〉

I<:(T̃i1, T̃i2) = 〈T̃ ′i1, T̃
′
i2〉

I<:([li : T̃i1, ?], [li : T̃i2, ∗]) = 〈[li : T̃ ′i1, ?], [li : T̃ ′i2, ∗]〉

I<:(T̃i1, T̃i2) = 〈T̃ ′i1, T̃
′
i2〉

I<:([li : T̃i1, l : T̃ , lj : T̃j , ∗1], [li : T̃i2, ∗2]) =

〈[li : T̃ ′i1, l : T̃ , lj : T̃j , ∗1], [li : T̃ ′i2, ∗2]〉

I<:([li : T̃i1, lj : T̃j , l : ?, lk : ?, ?], [li : T̃i2, l : T̃ , lk : T̃k, ∗])
= 〈T̃ ′1, T̃

′
2〉

I<:([li : T̃i1, lj : T̃j , ?], [li : T̃i2, l : T̃ , lk : T̃k, ∗]) = 〈T̃ ′1, T̃
′
2〉

Figure 4. Interior for Consistent Subtyping

Definition 12 (Consistent transitivity). Let P ⊆ TYPE2 be a tran-
sitive binary predicate on static types, and suppose

ε12 ` P̃ (T̃1, T̃2) and ε23 ` P̃ (T̃2, T̃3).

Then we deduce evidence for consistent transitivity as
(ε12 ◦P ε23) ` P̃ (T̃1, T̃3) where
◦P : EVP × EVP ⇀ EVP is defined by:

〈T̃1, T̃21〉 ◦P 〈T̃22, T̃3〉 =

α2({〈T1, T3〉 ∈ γ2(T̃1, T̃3) |

∃T2 ∈ γ(T̃21) ∩ γ(T̃22). P (T1, T2) ∧ P (T2, T3)}).

The consistent transitivity operator for P collects and abstracts
all available evidence that transitivity might hold in a particular
instance. If this partial function yields no evidence for the transitive
consistent judgment, then the judgment has been refuted and the
operator is undefined for the given input.

To simplify this definition, we observe a useful property of
gradual types:

Proposition 17. γ(T̃1 u T̃2) = γ(T̃1) ∩ γ(T̃2).

This means that the meet operator losslessly abstracts the inter-
section of static type sets that arise from gradual types. As such, we



can safely use u without losing precision.g We use this property to
recast consistent transitivity:

Proposition 18. 〈T̃1, T̃21〉◦P 〈T̃22, T̃3〉 = 4P (T̃1, T̃21u T̃22, T̃3)
where

4P (T̃1, T̃2, T̃3) =

α2({〈T1, T3〉 ∈ γ2(T̃1, T̃3) |

∃T2 ∈ γ(T̃2).P (T1, T2) ∧ P (T2, T3)}).
This formulation of consistent transitivity is generally useful.

What is Evidence? As we have seen, the interior of a consistent
judgment yields initial evidence for the judgment, and consistent
transitivity evolves that evidence as program reduction requires
new judgments. Given these properties, we are now equipped to
completely define our notion of evidence for consistent judgments.

Definition 13 (Evidence for P̃ ). Let P ⊆ TYPE2 be a binary type
predicate. Then:

1. EVP = { 〈T̃1, T̃2〉 ∈ GTYPE2 | IP (T̃1, T̃2) = 〈T̃1, T̃2〉 };
2. The evidence judgment · ` P (·, ·) ⊆ EVP×GTYPE2 is defined

as follows:

ε ` P̃ (T̃1, T̃2) ⇐⇒ ε v2 IP (T̃1, T̃2).

These notions generalize to finite n-ary predicates.

Evidence for a consistent judgment is represented as a tuple of
gradual types that characterize the space of possible static type re-
lations.h The tuple is self-interior with respect to the relevant judg-
ment to reflect the most precise information available. Naturally,
evidence for a judgment must be at least as precise as the judgment
itself, otherwise the judgment itself would be better evidence.

Evidence represents a bound on the plausibility of a consistent
judgment. This knowledge gains precision monotonically since
consistent deductions are based on prior evidence.

Consistent Subtyping Revisited As defined, consistent transitiv-
ity directly embodies the notion that we need for consistent subtyp-
ing, but that definition suggests no obvious procedure for comput-
ing it. We refine this definition to an algorithmic specification for
consistent subtyping. We could use the inductive definition of<: to
calculate a recursive definition for4<: over the structure of T̃2, but
we can also recast ◦<: in particular in terms of interiors and meets.

Proposition 19. Let 〈T̃1, T̃21〉 , 〈T̃22, T̃3〉 ∈ EV<: be evidence for
consistent judgements, and let T̃2 = T̃21 u T̃22. Then:

4<:(T̃1, T̃2, T̃3) = 〈π1(I<:(T̃1, T̃2)), π2(I<:(T̃2, T̃3))〉 .

Corollary 20.
〈T̃1, T̃21〉 ◦<: 〈T̃22, T̃3〉 = 〈π1(I<:(T̃1, T̃2)), π2(I<:(T̃2, T̃3))〉 .
where T̃2 = T̃21 u T̃22.

Similar reasoning yields the same result for consistent equality:

Proposition 21.

4=(T̃1, T̃1 u T̃2, T̃2) = 〈T̃1 u T̃2, T̃1 u T̃2〉 .
This result independently confirms the use of the meet operator

to combine middle types in the Threesome Calculus.

g In the terminology of abstract interpretation, u is forward-complete
(Giacobazzi and Quintarelli 2001) or γ-complete (Schmidt 2008).
h Abstractions can lift to tuples other ways too (Cousot and Cousot 1994).

The interior is not always enough. In the general case, the 4P

operation is not just the projection of two interiors. A relevant coun-
terexample to this is consistent subtyping when gradual rows are
omitted from the language of gradual types. Consider the follow-
ing two evidence judgments:

〈[f : Int, g : ?], ?〉 ` [f : Int, g : ?] . ?

〈?, [g : Bool]〉 ` ? . [g : Bool].

Then I<:([f : Int, g : ?], ? u ?) = 〈[f : Int, g : ?], ?〉 and
I<:(? u ?, [g : Bool]) = 〈?, [g : Bool]〉 but

4<:([f : Int, g : ?], ? u ?, [g : Bool]) =

〈[f : Int, g : Bool], [g : Bool]〉 .
The issue is that the two ?’s in the middle lose all type information,
so taking their meet does not provide the gradual types at each ex-
treme with the missing information from one another. With gradual
rows, though, the evidence judgments are:

〈[f : Int, g : ?], [?]〉 ` [f : Int, g : ?] . ?

〈[g : Bool, ?], [g : Bool]〉 ` ? . [g : Bool]

and

I<:([f : Int, g : ?], [?] u [g : Bool, ?]) =

〈[f : Int, g : Bool], [g : Bool, ?]〉
I<:([?] u [g : Bool, ?], [g : Bool]) =

〈[g : Bool, ?], [g : Bool]〉
So gradual rows introduce enough precision to simplify the cal-
culation of consistent transitivity. In practice, this just means that
we cannot reduce 4<: to I<: if we do not want gradual rows. We
conjecture that many gradual type definitions will yield transitive
type predicates that admit the interior-meet based characterization
of consistent transitivity. Alternatively, this property can serve as a
design guideline for enriching gradual type abstractions.

6.5 Running Gradual Programs
Armed with a run-time representation for gradual type derivations
(intrinsic terms), initial evidence for consistent judgments (interi-
ors), and a means to evolve that evidence (consistent transitivity),
we can now present the full dynamic semantics of GTFL..

Fig. 5 presents the formation rules for gradual intrinsic terms.
Their structure mirrors the structure of the corresponding extrinsic
typing rules, which are straightforward to reconstruct rule-by-rule.
As mentioned earlier, the terms that correspond to elimination rules
qualify their subexpressions with evidence.

In essence, type-checking an extrinsic gradual term builds an in-
trinsic term (i.e. typing derivation) by introducing interior evidence
for each consistent judgment. This corresponds to the translation
from a gradual language to a cast calculus from prior approaches,
with evidence playing the role of casts, but here the “target lan-
guage” is derived directly from the source language type system.

To denote terms independently of their types, we define a set of
all intrinsic variables and a set of all intrinsic terms:

x∗ ∈ VAR∗ =
⋃

VAR
T̃

t∗ ∈ TERM∗ =
⋃

TERM
T̃

Just as term application requires a type index to ensure unicity of
typing, so do record-projection tT̃ .lT̃1 and ascription εtT̃1 :: T̃2.
These type annotations play no computational role in the language:
they support the type safety proof, and in practice can be erased.

6.6 Reduction
Fig. 6 presents a structural operational semantics for intrinsic grad-
ual terms. To support this, several syntactic families are introduced.



(IT̃n)
n ∈ TERMInt

(IT̃b)
b ∈ TERMBool

(IT̃x)
xT̃ ∈ TERM

T̃

(IT̃+)

tT̃1 ∈ TERM
T̃1

ε1 ` T̃1 . Int

tT̃2 ∈ TERM
T̃2

ε2 ` T̃2 . Int

ε1t
T̃1 + ε2t

T̃2 ∈ TERMInt

(IT̃ λ)
tT̃2 ∈ TERM

T̃2

λxT̃1 .tT̃2 ∈ TERM
T̃1→T̃2

(IT̃ rec)
tT̃i ∈ TERM

T̃i

[li = tT̃i ] ∈ TERM
[li:T̃i]

(IT̃ ::)
tT̃1 ∈ TERM

T̃1
ε ` T̃1 . T̃2

εtT̃1 :: T̃2 ∈ TERM
T̃2

(IT̃ app)

tT̃1 ∈ TERM
T̃1

ε1 ` T̃1 . T̃11 → T̃12

tT̃2 ∈ TERM
T̃2

ε2 ` T̃2 . T̃11

(ε1t
T̃1 ) @T̃11→T̃12 (ε2t

T̃2 ) ∈ TERM
T̃12

(IT̃proj)
tT̃ ∈ TERM

T̃
ε ` T̃ . [l : T̃1, ?]

εtT̃ .lT̃1 ∈ TERM
T̃1

(IT̃ if)

tT̃1 ∈ TERM
T̃1

ε1 ` T̃1 . Bool

tT̃2 ∈ TERM
T̃2

ε2 ` T̃2 . T̃2 ˜<: T̃3
tT̃3 ∈ TERM

T̃3
ε3 ` T̃3 . T̃2 ˜<: T̃3

if ε1tT̃1 then ε2tT̃2 else ε3tT̃3 ∈ TERM
T̃2
˜

<
:T̃3

Figure 5. Gradual Intrinsic Terms

The values v are either simple values u or simple values that have
been ascribed a new type εu :: T̃ . We introduce evidence terms et
and evidence values ev to succinctly denote evaluation steps that
compose evidence. An evidence term et = εtT̃ is a term of type T̃
that appears in some larger term that uses it at type T̃ ′, justified by
the evidence ε ` T̃ . T̃ ′.

Finally, there are two kinds of evaluation frames: evidence
frames, whose holes must be filled with an evidence term, and tradi-
tional term frames, whose holes must be filled with merely a term.
Elimination forms in the language yield evidence frames because
their subexpressions have associated evidence. Record formation,
on the other hand, yields only term frames because the evaluated
subexpressions are simply collected as the values of fields.

The reduction rules directly mirror the rules for the statically
typed language, except that they must manage evidence at subex-
pression boundaries and combine evidence to form new evidence.
In the addition rule, the only well-formed evidence for the requisite
consistent subtypes is 〈Int, Int〉. Similarly, the predicate position of
an if redex has evidence 〈Bool,Bool〉.

Sec. 6.2 introduced the function application rule. Here we know
that the function evidence must be of function type. This rule ap-
peals to evidence inversion functions idom and icod , which man-
ifest the evidence for inversion principles on consistent subtyping
judgments. By inversion on consistent subtyping, we have the prin-

et ∈ EVTERM, ev ∈ EVVALUE, u ∈ SIMPLEVALUE, x∗ ∈ VAR∗
t∗ ∈ TERM∗, v ∈ VALUE, g ∈ EVFRAME, f ∈ TMFRAME
et ::= εt∗

ev ::= εu

u ::= x∗ | n | b | [li = vi] | λx∗.t∗

v ::= u | εu :: T̃

g ::= �+ et | ev + � | �@T̃ et | ev @T̃ � | � :: T̃ | �.lT̃
| if � then et else et

f ::= [l = v, l = �, l = t] | g[ε�]

Notions of Reduction

−→: TERM
T̃
× (TERM

T̃
∪ { error })

ε1n1 + ε2n2 −→ n3 where n3 = n1 + n2

ε1(λxT̃11 .t∗) @T̃1→T̃2 ε2u −→ß
icod(ε1)([((ε2 ◦<: idom(ε1))u :: T̃11)/xT̃11 ]t∗) :: T̃2

error if (ε2 ◦<: idom(ε1)) not defined

if ε1true then ε2tT̃2 else ε3tT̃3 −→ ε2t
T̃2 :: (T̃2 ˜<: T̃3)

if ε1false then ε2tT̃2 else ε3tT̃3 −→ ε3t
T̃3 :: (T̃2 ˜<: T̃3)

ε[li = vi].lj
T̃ −→ iproj (ε, lj)vj :: T̃

−→c: EVTERM × (EVTERM ∪ { error })

ε1(ε2v :: T̃ ) −→c

ß
(ε2 ◦<: ε1)v

error if (ε2 ◦<: ε1) not defined

7−→: TERM
T̃
× (TERM

T̃
∪ { error }) Reduction

(R−→)
tT̃ −→ r r ∈ (TERM

T̃
∪ { error })

tT̃ 7−→ r

(Rg)
et −→c et ′

g[et ] 7−→ g[et ′]
(Rgerr)

et −→c error
g[et ] 7−→ error

(Rf )
tT̃1 7−→ tT̃2

f [tT̃1 ] 7−→ f [tT̃2 ]

(Rferr)
tT̃1 7−→ error

f [tT̃1 ] 7−→ error

Figure 6. Intrinsic Reduction

ciple: If T̃11 → T̃12 . T̃21 → T̃22 then T̃21 . T̃11. idom takes
the evidence for the former ε1 and yields the available evidence for
the latter idom(ε1). Its definition follows:

idom(〈T̃ ′1 → T̃ ′2, T̃
′′
1 → T̃ ′′2 〉) = 〈T̃ ′′1 , T̃ ′1〉
idom(ε) undefined otherwise

The icod operator is defined analogously. This reduction step pro-
duces an error if consistent transitivity refutes the consistent sub-
typing argument. The conditional rules are straightforward. Record
projection appeals to the iproj evidence inversion function to re-
cover the evidence that the value at label lj is a consistent subtype
of the expected type.

Ascription expressions anchor the residual evidence produced
by function application and record projection. Without ascription
as a primitive, we could not easily represent each step of evaluation
as a legal source typing: we would have to encode ascriptions using
functions, which is unwieldy and does not generalize to languages
that ascribe properties about computations rather than values, such
as effects (Bañados Schwerter et al. 2014).



Finally, evidence reduction −→c combines the evidence asso-
ciated with an ascription with the evidence of a surrounding term.
Note that if v has type T̃2, and ε1 ` T̃ . T̃3 in the surrounding
context, then reducing to (ε2 ◦<: ε1) ` T̃2 . T̃3 updates the con-
sistent subtyping judgment in the surrounding context.

6.7 Dynamic Criteria for Gradual Typing
This dynamic semantics satisfies criteria set out for the dynamic
semantics of gradual languages by Siek et al. (2015b). In fact,
the AGT approach yields semantics that satisfy these criteria by
construction.

First, a gradual language must be safe: programs do not get
stuck, though they may terminate with cast errors.

Proposition 22 (Type Safety). If tT̃ ∈ TERM
T̃

then one of the
following is true:

1. tT̃ is a value v;

2. tT̃ 7−→ t′
T̃ for some term t′

T̃ ∈ TERM
T̃

;

3. tT̃ 7−→ error.

The type safety proof mirrors the corresponding proof for the
underlying static type discipline, replacing static type judgments
with consistent judgments, and definite type deductions with con-
sistent deductions.

Even more significant is that the language satisfies the dynamic
components of the gradual guarantee, which essentially state that
any program that runs without error would continue to do so if it
were given less precise types. The key insight behind this is that
evidence monotonically increases with the imprecision of the types
involved, and ◦<: is monotone with respect to precision. Thus, less
precise types produce fewer errors.

Proposition 23 (Dynamic guarantee). Suppose tT̃1
1 v t

T̃2
1 . Then if

t
T̃1
1 7−→ t

T̃1
2 then tT̃2

1 7−→ t
T̃2
2 where tT̃1

2 v t
T̃2
2 .

Proof. Straightforward strong simulation.

The simplicity of this proof is an important asset of the AGT
approach. The analogous proof for the λ?

→ language required a
number of tedious and non-trivial lemmas (Siek et al. 2015b).

Prop. 23 means not only that more dynamic programs continue
to run at least as well as their more static counterparts, but also that
more static programs continue to run at least as poorly: adding
more static types will not fix prior type errors.

7. Related Work
Cimini and Siek (2016) present an approach and system to me-
chanically transform a static type system into a gradual type system
and cast insertion procedure. The transformation introduces the un-
known type ? and consistent equality∼ to the gradual type system,
and defines a type-directed translation to a place-holder cast calcu-
lus, which has static semantics but no dynamic semantics. Their ap-
proach has been demonstrated to handle features like fix, sums, and
implicit typing. It would be interesting to combine their new auto-
mated approach with AGT, which admits richer notions of gradu-
ality like gradual rows and gradual effects.

A number of languages have developed typing disciplines that
combine static and dynamic typing alongside subtyping.

Takikawa et al. (2012) develop a gradual type system for first-
class classes in Racket, tackling mixins and other higher-order pat-
terns. The type system supports inheritance and deals with acciden-
tal overriding. To do so, they use row polymorphism instead of stan-
dard subtype polymorphism. To match these static typing features,

on the dynamic checking side they develop opaque and sealed con-
tracts. It would be interesting to apply the AGT approach to their
static typing discipline and compare the resulting dynamics.

Swamy et al. (2014) develop a novel hybrid type discipline for
a subset of JavaScript. They use multi-language semantics to sand-
box untrusted code in a web environment. In general the sandbox-
ing technique introduces checking overhead, so they introduce a
quasi-static type discipline (Thatte 1990) that uses type informa-
tion to remove overhead. Siek et al. (2015b) demonstrate by coun-
terexample that this language does not satisfy the gradual guaran-
tee. It would be interesting to revisit their type-based sandboxing
approach through the AGT lens.

Because information-flow labels form lattices that induce a nat-
ural notion of subtyping, work on developing gradual information-
flow security languages has had to contend with it. Disney and
Flanagan (2011) introduce a novel simply typed language that
blends static checking, dynamic checking, and blame tracking of
information-flow securities properties, while keeping all traditional
type reasoning static. Fennell and Thiemann (2013) extend this
work with support for mutable references. Both languages treat
the unknown label as the top of the security lattice, which leads
to the same difficulties that the quasi-static typing discipline, which
treats ? as the top supertype, lends to gradual typing (Siek and Taha
2006). To avoid those issues, both languages require explicit down-
casts in the security lattice. Using the AGT approach, one can de-
rive a gradual source language analogous to Disney and Flanagan
(2011) that avoids the challenges of quasi-static disciplines (Garcia
and Tanter 2015). It would be beneficial to explore using AGT to
gradualize information flow in the presence of mutable references.

8. Conclusion
Abstracting Gradual Typing yields compelling static and dynamic
semantics grounded in the type discipline of the underlying source
language and a designer-selected interpretation for gradual types,
without further resort to intuition or speculation. AGT straightfor-
wardly reconstructs notions from previous work on gradual typ-
ing, including consistent equality, consistent subtyping, and three-
somes. As such, we believe that AGT provides a broad and general
foundation for the development of gradually typed languages, old
and new. Finally, the resulting static and dynamic semantics satisfy,
by construction, all semantic criteria for gradually typed languages
that we have found in the literature.

This work opens a number of avenues for further exploration.
First, the dynamic semantics that arise from AGT invariably place
evidence throughout the program. This design greatly simplifies
metatheoretic reasoning about the language, but it is not practi-
cal. Much work on gradual typing focuses on its time and space
efficiency (Herman et al. 2007; Rastogi et al. 2012, 2015); devis-
ing efficient semantics with AGT is future work. We intend to ex-
plore these techniques in the context of more comprehensive lan-
guage features, like mutable references (Sergey and Clarke 2012;
Siek et al. 2015c), parametric polymorphism (Ahmed et al. 2011),
and polymorphic effects (Toro and Tanter 2015). Finally, we intend
to investigate whether our approach sheds light on blame track-
ing (Siek et al. 2009, 2015a; Wadler and Findler 2009).
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