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Abstract

Advertisements simultaneously provide both economic sup-
port for most free web content and one of the largest an-
noyances to end users. Furthermore, the modern advertise-
ment ecosystem is rife with tracking methods which violate
user privacy. A natural reaction is for users to install ad
blockers which prevent advertisers from tracking users or
displaying ads. Traditional ad blocking software relies upon
hand-crafted filter expressions to generate large, unwieldy
regular expressions matched against resources being included
within web pages. This process requires a large amount of
human overhead and is susceptible to inferior filter gener-
ation. We propose an alternate approach which leverages
machine learning to bootstrap a superior classifier for ad
blocking with less human intervention. We show that our
classifier can simultaneously maintain an accuracy similar to
the hand-crafted filters while also blocking new ads which
would otherwise necessitate further human intervention in
the form of additional handmade filter rules.

Categories and Subject Descriptors

H.3.5 [Information Storage and Retrieval]: On-line
Information Services; J.m [Computer Applications|: Mis-
cellaneous; K.4.4 [Computers and Society]: Electronic
Commerce
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1. INTRODUCTION

For almost as long as the commercial world wide web has
existed, annoying advertisements have competed with desired
content for users’ attention. To combat these annoyances,
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users have created methods for filtering out the unwanted ads.
While the problem of identifying privacy-violating advertise-
ments has received a large amount of attention from the
research community (as outlined in Section , the current
state of the art for end user ad blocking remains a process
with several tedious manual steps: ad blocking engines pro-
vide a filter language and web page manipulation interface
for removing ads, and then periodically update a list of filter
expressions which are typically human generated. Both the
creation of rules to match unblocked ads and prevention of
false negatives must be done using human feedback which is
typically slow and noisy. Today’s world should leverage the
many learning and intelligent algorithms in existence so that
the labor put into manual ad blocking could be taken advan-
tage of elsewhere. The already learned human knowledge
of advertisement structures can be applied to the process of
recognizing these unwanted web resources.

While advertisements are necessary to support the busi-
ness model of most content providers, they have long been
considered extremely annoying and intrusive to most users.
Besides just serving ad content, ad networks use the adver-
tisements to retrieve information about the user and their
browsing habits. Additionally, many ads are being used
as “malvertisements” that serve malware to unsuspecting
victims |9]. Hence, advertisement blocking is definitely a
non-trivial defense against the security risks present on the
internet of today. There are various browser extensions
that block advertisement resources and hide related HTML
content. Currently, AdBlock Plus |26], AdBlock [14], Discon-
nect 3], Ghostery 28] and some proprietary software such as
AdMuncher [15] are the most well-known and popular with
effective results.

Modern ad blocker implementations have several technical
shortcomings. Currently deployed solutions all make use of
regular expressions written by contributing users to target
specific ads or ad placement schemes. These regular expres-
sions are then compiled into a list that is injected into the
browser. Individual resources are matched against the list to
test for inclusion in the page. In AdBlockPlus’s EasyList [6],
the number of filters is on the order of tens of thousands. The
filter list can be extremely specific and thus a page element
or URL that is clearly ad-related may not be classified by
the list because a certain substring is not found. In fact,
most blocking is done by keeping an additional blacklist of
third-party advertisers. There is substantial human overhead
as no automated process exists to generate these unwieldy
blacklists. In suboptimal cases, RAM use due to ad blocker
filters can balloon to hundreds of megabytes per page [23].



This paper presents an alternative technique for detecting
and blocking advertisement resources (which we refer to as
“ads” or “advertisements” throughout the paper, and not the
images or HTML markup of an ad). We find that using
the k-Nearest Neighbors approach to train a classifier that
detects advertisements based on historical regular expression
lists is the most successful, and show that this classifier is
able to both classify current ads with high accuracy as well
as detect new ads which might normally necessitate human
intervention in the form of additional hand written filters.

2. RELATED WORK

The traditional ad blocking model using regular expression
filters has been in use since 2002 with the introduction of Mc-
Donald’s Adblock for Mozilla and Firebird [22]. Ad blocking
is incredibly popular, with some sites experiencing as many
as 50% of their visitors using ad blocking software [13].

Kushmerick first suggested using machine learning to block
online advertisements, utilizing the C4.5 classification scheme
to build an advertisement image blocker called AdEater [20].
The ecosystem of dynamically loaded third party resources
has changed greatly since then, with advertisements having
a completely different anatomy and feature set than the ones
referred to in that work. AdEater only blocked advertisement
images of static pages while many ads on the current Web are
loaded dynamically via javascript or as flash objects. Thus it
is unlikely that this strategy would be particularly successful
at successfully blocking ads on today’s web.

Nock and Esfandiari continued along the same lines to
create an ad blocking extension with the purpose of identi-
fying which requested resource URLs to block [24], which
parallels our objective. In their work, they make use of the
Weighted Majority Algorithm to make prediction accuracies
converge to high levels after increased user feedback. How-
ever, their approach does not utilize on-page features and is
trained entirely on human feedback, thus making it unsus-
ceptible to more automatic feature-based training algorithms
as it doesn’t provide information about the mark-up of ad
elements and URLs themselves.

In 2008, Krammer developed a rule-based classifier for
classifying advertisement images and containers in a web
page using features of the page, the ad image and features of
the extraneous requests being made [18]. This study is very
similar in motivation and approach to ours and captures the
essence of online advertising, the business model and the cat-
egories into which advertisements fall into. Krammer’s study
attempts to create a more effective all-around ad blocking
model through a large set of rules and features including
those of the page, images, request traffic and ad-type by
training on manually identified data. While we utilize a few
of the features outlined in this paper for our classification,
our goal differs in that we propose a lightweight classifier with
few features to reduce the amount of human intervention in
classification over long periods of time.

Orr et al. proposed a new technique for detecting adver-
tisements being loaded via javascript code through static
program analysis [25]. The EFF’s “Privacy Badger” project
aims to block non-consensual trackers on the web [10]. As
many ads are provided alongside non-consensual trackers,
Privacy Badger has the side effect of blocking many ads as
well.

In this work, we aim to learn a one bit value from indi-
vidual URLs and their context: specifically, whether they

are advertisement-related or not. Ma et al. also leverage
supervised machine learning to infer properties of URLs [21].
In their specific domain, they were attempting to determine
whether URLs were malicious without access to page content;
they use Logisitic Regression and SVMs to learn whether
their URLs are malicious or not, which differs from our
strategy of using k-Nearest Neighbors. Ma et al.’s approach
has also been taken to identify phishing URLs by Garera
et al. [12], wherein they determined Logistic Regression to
be the most effective algorithm for their dataset using hand-
picked features.

3. APPROACH

Our approach to classifying ad URLs relies heavily on
the AdBlockPlus [26] classification system. AdBlockPlus is
widely regarded as the premier ad blocking extension [2| with
EasyList [6] being its most common advertisement filter list.
EasyList has well over 12 million subscribers today [1] and
is often updated on a weekly basis [5|. EasyList can filter
unwanted content via URL filters, DOM element filters, and
third-party advertisement domain filters. When we refer to
EasyList henceforth, we refer to only the general blocking
rules for the URLs as our goal is to come up with alternative
methods to domain name blacklists and hence do not make
use of those particular filters. The list owners use constant
user feedback as well as advertisement tracking to manually
updates these lists [4].

Our goal is to overcome the problem of having to man-
ually update the EasyList filter list. To achieve this goal,
we must both achieve accuracy competitive with current
manual filtering while simultaneously detecting ads which
would be missed by contemporary manual filters. We use
a supervised learning approach to bootstrap the process of
learning whether a URL is ad-related by considering EasyList
filters as oracles. By testing against EasyList filter lists from
different points in time, we can evaluate how robust our
classifier is to changes in how ads are served compared to
an unmodified EasyList filter (i.e. one which has not been
manually updated).

Our classification problem is a binary classification problem
on URLs where positive examples are ad-related and negative
examples are non-ad-related. Positive examples are resources
requested to serve ads - typically requested from within an
ad element - and negative examples are any other resource
requested on a page that is not related to serving ads.

The basis of our methodology is in using the classification
criteria of an older version of EasyList to train a classifier
to accurately identify ads according to a much newer filter
list. Hence, in this case, we treat the more recent version
of EasyList as ground truth. We use 12 features for each
URL, the majority of which are binary along with a few
which are real-valued. Our feature space consists of features
derived from the anatomy of the URL itself as well as some
of the originating page properties from which the URL was
requested. Using page properties can accommodate some
of the caveats in EasyList filters where URLs should only
be blocked if they are popups, images, or only on a certain
domain.

In the following sections, we will describe in detail how
we collected our datasets and features, the different machine
learning classification methods we adopted, the evaluation
metrics we used and the results of our evaluation.



3.1 Datasets

To generate training and ground truth labels for a col-
lection of URL data, we compared URLs against old and
new EasyList filters to get two different sets of positive and
negative examples. This resulted in two datasets each with
the same URLs and features but with a small percentage
of differing class labels for certain examples. For our non-
recent or “old” EasyList, our most recent evaluations used
the version from September 22nd, 2013 and the version from
February 23rd, 2014 as our current or “new” filter list. We
consider filters from February as “new”, relative to Septem-
ber, to analyze prediction accuracy over time with respect
to the present. We further check for false positives from
classification using a recent filter list from June 7th, 2014 as
we will see in Section

We crawled the Alexa top 500 US sites [7] from February
2014 up to depth 2 and checked each requested page resource
URL against the new EasyList filters. Crawling all the links
from a page up to depth 2 from the source page allows us to
capture normal advertisement activity on pages other than
the index pages and on several other sites beyond the Alexa
top 500. For each requested URL, while crawling, we stored
features that were computed within the context of the page
as well as various URL-based and lexical features to create
our feature vectors. We checked each URL against the old
EasyList and new EasyList to obtain two sets of feature
vectors for our “old” and “new” datasets respectively with
differing class labels. We collected about 60,000 total URLs;
roughly 30,000 of which were ad-related and 30,000 non-ad-
related URLs according to the “new” filters. The collection
of URLs and their features was done between February and
April 2014.

3.2 Features

For the classifier to be effective, we attempted to identify
features that may differentiate an ad-related URL from a non
ad-related URL. These include characteristics of the structure
of the URL, keywords present in the URL, the container it
was requested from on a page, and other page properties.
All features are either binary or real-valued between 0 and 1.
Conveniently, this approach allows all features to be given
equal weight at training time. Below is a summary of the
key feature categories we used to train our classifier:

A. Ad-related keywords. A URL is more likely to
be ad-related than not if it contains certain keywords. We
check for: ‘ad’, ‘advert’, ‘popup’, ‘banner’, ‘sponsor’, ‘iframe’,
‘googlead’, ‘adsys’, and ‘adser’. To consider the case that
these phrases might be part of a larger non-related keyword,
one of the features indicates whether any of these substrings
is present followed by a non-alphanumeric character such as
L) & =04, <Cor ‘. Additionally to accommodate
the exact opposite case where the phrase is present in an ad
context but is followed by more alphanumeric characters, the
second feature is whether any of these keywords is simply
present without looking for a following non-alphanumeric
character.

B. Lexical features. This feature set contains two fea-
tures that come from the character arrangements in the
URL itself. First, whether it contains semicolons to sepa-
rate parameters. It could either be in the place of actual
query parameters usually separated by ‘&’ or a string of
semicolon parameters as part of the query parameters or
even the path itself. For example, this segment of an ad-

Binary feature Ad Non-Ad

Semicolon parameters 4,001 677
Keyword w/following char. 21,849 1,854
Keyword raw 26,818 6,456

Base domain in params 6,152 1,325
Valid query params 29,602 29,923
Screen/browser dimensions 81 136
Contains ad size 8,919 2,067
In an iframe 27,099 21,452
On base domain 3,086 14,350

Table 1: True binary feature distribution for the ad
and non-ad URLs respectively, each out of 30,000.

related URL: sz=970x250;tile=1;dc_yt=1;kga=-1; kgg=-
1;kmyd=ad_creative_1;0rd=2392350090667607 contains sev-
eral parameters separated by semicolons right before the ‘7’
for query parameters.

The second feature in this set is whether the URL contains
valid query parameters. Valid query parameters are format-
ted by being placed after the ‘7’ and then each parameter
is separated by a ‘&’. Many URLs that were identified as
ads violate this specification by placing all of the parameters
without a preceding ’?’; so the feature evaluates to false for
these examples.

C. Related to the original page. This feature set con-
tains two features that contain information about relation-
ships between the requested URL and its base page domain.
The first feature represents whether the base domain name
is present in the query parameters of the URL or in the part
of the URL between the path and the query parameters (as
sometimes semicolon parameters are present in this segment).
Often when an ad resource is requested, the original domain
name is included so that the ad server can decide what ad
to render.

The second feature captures whether the requested URL is
on the same domain or subdomain of the original page 18 [19)
as URLs are less likely to be ad-related if they are requested
on the same domain as the original page. This feature is not
error-proof however, as it can backfire in certain situations
like YouTube or Google ads where sometimes the ad is hosted
on the base domain itself.

D. Size and dimensions in URL. Ad URLs very often
contain information about the size of the ad it should display
or the dimensions of the screen or browser it is going to
be displayed on. One feature is if the URL contains an ad
size. The format of the ad size we checked for is 2-4 numeric
digits followed by the character x and then again followed by
2-4 numeric digits. Some ads contain the screen or browser
dimensions so this second feature checks for the presence
of one or more keywords from: screenheight, screenwidth,
browserheight, browserwidth, screendensity, screenres-
olution and browsertimeoffset.

E. In an iframe container. This feature is binary and
indicates whether the incriminating URL was requested from
within an iframe either in the context of the page or in the
context of nested iframes.

F. Proportion of external requested resources. The
features in this set are based on the intuition that in a given
page, given all the above features, a URL is more likely to
be ad related if the original page requests a higher number
of external iframes, scripts or external resources overall. The
3 features are the proportions of external iframe, script and
resource requests to all the iframe, script and resource re-



% External Scripts Iframes Resources
0-10 31,703 48,761 26,641
10-20 5,569 1,433 6,411
20-30 2,858 718 4,395
30-40 4,252 2,797 3,830
40-50 3,339 1,503 2,549
50-60 1,839 200 2,992
60-70 3,509 464 2,947
70-80 2,142 896 3,243
80-90 2,069 188 3,936
90-100 2,720 3,040 3,056

Table 2: Value distribution for the 3 real-valued fea-
tures. The right 3 columns represent the number
of URLs out of all 60,000 examples whose pages re-
quest that percentage of external scripts, frames and
domains.

quests from a page respectively. These are computed for each
category by the ratio between the number of URLs which
point to external domains and the total number of URLs.

All of the above features sum up to a total of 12 features for
each example. Table [[| shows the true binary feature distri-
bution among the ad and non-ad URLs separately. Table
shows the value distribution of the 3 real-valued features
between 0 and 1, which are mapped to 0% and 100% in the
table.

3.3 C(lassification Models

To determine what classification scheme fit our data the
best, we implemented several of the most common classifiers
used for supervised learning. To implement the classification,
we made use of the machine learning development kit in
Python called Scikit-Learn [27]. Each example was encoded
as a 12-dimensional feature vector and all of our datasets
were in the svmlight format [16].

The following are the classification models we employed
due to their suitability for binary classification problems.

Naive Bayes: Naive Bayes is a simple probabilistic
classifier which relies on Bayes Theorem with the assumption
of independence between individual features of an exam-
ple. Naive Bayes has been shown to be effective on low-
dimensional data in certain situations [§]. In our evaluation,
the likelihood of each feature P(z;|y) is a Gaussian distri-
bution because of the presence of continuous features. The
class is computed by the following equation:

y = argmax, P(y) [[i_; Plzily)

Support Vector Machines: Support Vector Machines
or SVMs are non-probabilistic classifiers that typically work
in high-dimensional feature spaces. SVMs for binary classifi-
cation are trained to construct hyperplanes with the widest
possible margins to the nearest training examples. In order
to not have the margins too sensitive to outliers, we used
a moderate value of the penalty parameter C at training
time to determine the appropriate hyperplanes. The decision
rule during testing is made by determining which side of the
hyperplane the point lies on and is given by the sign of the
result of the following formula:

E yiOéiK(l'i, 33)
=1

Here K (x;,x) is the kernel function that implicitly maps
the feature vectors into higher-dimensional space. z; refers

to each example in the training set, y; to each corresponding
class and a; to the weight of each training example.

To increase the dimensionality of our feature vectors to
be better suited to SVMs, we expanded the feature space
by taking the polynomial combinations of degree less than
or equal to 2, of all features. This increased the number of
features from 12 to 91. Taking polynomial combinations up
to higher dimensions or further polynomial combinations of
the original combination results resulted in a memory error
on our machines, hence we kept the dimensionality at 91.
To further map the features into high-dimensional space, we
tested with polynomial and radial basis function (rbf) kernels
in addition to linear kernel functions.

Logistic Regression: Logistic Regression is a type of
probabilistic classification model that is modeled by the re-
lationship between a dependent variable and one or more
independent variables. The decision for a point’s label is
determined by it’s distance from a hyperplane decision bound-
ary that is estimated at training time. Because the feature
vectors are low dimensional and not sparse, we used [2-
regularization with a moderate regularization parameter to
avoid overfitting. With varying thresholds on the output,
the accuracy decreased rapidly as the parameter increased
above 0.5, with precision and false positive rate increasing
and recall decreasing significantly at the cost of accuracy.

k-Nearest Neighbors: k-Nearest Neighbors is a popu-
lar non-parametric estimator for classification problems and
can be efficient on low-dimensional data. The decision func-
tion is computed implicitly by taking the majority vote of a
data point’s k nearest neighbors’ classes. In our model, the
kNN classifier uses the distance-weighted k-nearest neighbors
rule and assigns weights to the k nearest points proportional
to the inverse of the Euclidian distance between each neigh-
bor and the point in question. The weight w; of each point
x; in the vote is given by:

1

Wi X d(z,x;)
For this classification, we kept our modest dimensionality
of 91 features and compared training and testing times using
different neighbor search algorithms as seen in Table

4. EVALUATION METHODOLOGY

To evaluate the fundamental accuracy of our techniques,
we first use a straightforward methodology. We train the
classifier on the labels determined by the older EasyList
and then test against a different set of URLs with labels
determined by the current EasyList filters. This method is
meant to simulate a real-world use of machine learning to
improve upon the traditional ad blocking method by showing
how successful the classifier would be at detecting ads that
may or may not be caught by current manually generated
filters.

We make the simplifying assumption that the current or
“new” EasyList is “ground truth”: all URLs which match are
true positives, and all URLs which do not match are true
negatives in our results.

To evaluate the performance, we show two different types
of evaluation metrics we aim to optimize. The first is a
simple accuracy measure of how well the classifier trained
on old EasyList data can accurately identify ads matched
by a recent EasyList filter list. We use this metric, termed
“baseline accuracy,” to determine general effectiveness of a
classifier in our experiments.



Classification Method  Avg. Accuracy Precision FP Rate
Naive Bayes 89.50% 89.09% 14.3%
SVM (Linear) 92.10%  92.36% 7.4%
SVM (Poly Kernel) 90.51% 90.56% 7.34%
SVM (RBF Kernel) 92.18%  92.43% 7.7%
Logistic Regression 92.44% 92.43% 7.5%
k-Nearest Neighbors 97.55% 98.6% 1.3%

Table 3: A comparison of the average accuracy, pre-
cision and false positive rate over 6-fold CV of vari-
ous machine learning approaches to ad classification.
The logistic regression was performed with a thresh-
old of 0.5.

Beyond recreating the functionality of EasyList, we wish
to improve utility by being able to detect ads which evade
EasyList, either purposefully or incidentally. Thus, the sec-
ond evaluation measure is the average positive classification
accuracy of ads that were caught by the new EasyList but
not the old which we call “new-ad accuracy”. The baseline
accuracy is an indicator of whether or not the classifier can
learn the basic rules of ad identification.

We computed these metrics over the entire dataset of
60,000 elements. There were 123 URLs that were caught by
the new EasyList but not by the old. Assuming two sets of
URLs: ad URLs caught by both old and new EasyList (A)
and ad URLs caught by the new EasyList but not the old
one (B), we give a succinct definition for baseline accuracy in
Expression [I] and one for new-ad accuracy in Expression 2]

Number of positively classified URLs in set A
Number of URLs in set A

(1)

Number of positively classified URLSs in set B @)
Number of URLs in set B

To evaluate the average classification accuracy of each
classifier, we used k-fold cross validation (CV) with k=6.
In each fold, the training set uses the labels from the “old”
dataset and the testing set uses labels from the “new” dataset.
By using k-fold CV, we ensure that the classifier is trained on
every example at one point as opposed to random splits where
some examples might be excluded all together. In comparing
the overall effectiveness of the classifiers, we looked at the
overall average accuracy on the testing data as well as the
precision (true positives/(true positives + false positives))
and false positive rate (false positives/(false positives + true
negatives)), as we would like to minimize false positives over
false negatives and maximize the overall positive classification
accuracy.

Figure[I] shows the baseline accuracy and new-ad accuracy
for the six different classification methods discussed in the
previous sections.

In the following section we will discuss the results of differ-
ent classifiers on the datasets to determine the most effective
algorithm. Then, we test the classifier on the different feature
sets and compare the accuracies and relevant scores.

5. RESULTS

Table [3] shows a comparison of accuracy measures among
different classifiers. The training was done on the URLs
matching old EasyList data and tested on new EasyList-
matched URLs for scoring. For the comparison on classifiers,

the original feature space was 12-dimensional, i.e. using all
the features.

Naive Bayes did not perform as well as expected with
a rather high false positive rate and low baseline accuracy.
Despite its low baseline accuracy, Naive Bayes showed sub-
stantial promise at classifying new positive ads as shown in
Figure [T}

Similarly low accuracies were achieved with SVMs using
different kernels and [2-logistic regression at different thresh-
olds with the error rate never going below 7% over multiple
iterations of the tests and by tuning the the various parame-
ters of the models.

k-Nearest Neighbors proved to have the lowest error rate
and false positive rate and highest precision overall. Perform-
ing the classification with different search algorithms, the
training and testing times can be seen in Table

100

percent accuracy

B baseline accuracy
Il new ad accuracy

o
Naive Bayes  SVM Linear 12-Reg. LR kNN

SVM Poly SVM RBF
strategy

Figure 1: Baseline accuracy and new-ad accuracy for
the six different machine learning approaches. New-
ad accuracy is out of a total of 123 examples.

Figure [2| shows the Receiver Operating Characteristic
(ROC) for the kNN classifier |11]. The thresholds were
taken to be the number of positive neighbors k to k-(k-1) of
a point, with the resulting class labels determined as only a
function of having at least the threshold number of positive
neighbors. The figure is zoomed in to focus on the parts of
the curve where the TP rate and FP rate are optimal and
above the diagonal which is shown as the straight line in the
lower half of the figure.

Baseline and New-Ad Accuracy: Figure[l]shows the
baseline accuracy and new-ad positive accuracy for the 6
different classification methods discussed in the previous
sections.

As expected, the kNN classifier had the highest baseline
accuracy. However Naive Bayes and [2-regularized Logistic
Regression performed the best on the new advertisements and
even have decent baseline accuracies. Despite this, Naive
Bayes still wouldn’t be considered optimal because of its
relatively low overall accuracy, low true positive rate and
positive prediction capabilities (86-89%), which are crucial
metrics in this domain. From Table [} we can see that the
new-ad accuracy increased up to almost 50% for different
feature sets. In each case, it is clear that there is a tradeoff
between this improved accuracy, the overall accuracy and
baseline accuracy.
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Figure 2: Receiver Operating Characteristic curve.
The region with FP rate 1% or less contains the
optimal points of the curve.

Feature Set (f) Accuracy Baseline Acc. New-ad Acc.
A 90.21% 81.82% 48.78%
B 97.42% 95.20% 48.78%
C 96.82% 95.16% 34.96%
D 95.94% 93.38% 27.64%
E 96.22% 94.21% 21.95%
F 76.88% 57.50% 9.76%

Table 4: Average accuracy, baseline accuracy, and
new-ad accuracy without each feature set (f).

5.1 Performance of kNN Classifier

Because we found k-Nearest Neighbors to be the most
overall effective algorithm for classification, here we discuss
different ways we tried to tune it even further by scoring over
different feature sets and varying values of k neighbors.

Varying the number of neighbors k, the performance sig-
nificantly decreased with more than five neighbors likely
due to overfitting, so five was the standard k-value we used
throughout our experiments.

Table [d] shows the accuracy of the classifier using all the
feature sets except for the one listed where the letter corre-
sponds to the matching feature set from Section [3.2]

Feature set A and F appear to have the most impact on
the classifier with the absence of F dropping the average
accuracy to a startlingly low 76%. Absences of all the other
feature sets decrease the accuracies by 1-3% each, so we do
not exclude any of these either. Hence, we conclude that all
12 features are effective for achieving high overall accuracy
on the dataset.

The runtime of the prediction algorithm is dependent on
the type of search algorithm used. There are many search
algorithms, of which brute force, KD-tree and ball-tree are
very common. Brute force is the most simplistic method
but has a very large runtime in n where n is the number
of training examples. In this case, n is extremely high, on
the order of tens of thousands. hence it doesn’t seem prac-
tical in a production environment. We experimented with
the KD-tree and Ball-tree search algorithms under different
granularities of cross validation, the training and times of
which are listed in Table [5| along with the number of folds the

# Folds Train Time KD-Tree Ball-Tree
3 2.81 4.23 12
4 3.41 3.59 10.68
6 4.51 2.36 7.71

Table 5: Average training and testing times in sec-
onds of kd-tree and ball-tree search algorithms for
different values of k in k-fold CV.

testing was done in. It is clear that the KD-tree outperforms
the ball-tree search algorithm with such an abundance of
data points.

6. ANALYSIS

In this section, we will analyze the results from the pre-
vious section as well as discuss possible causes for errors in
classification and their impact in real world ad blocking.

6.1 Minimizing False Positives

A false positive in ad-blocking can be seen in the form
of real content that is mistakenly blocked on a web page.
Minimizing false positives is of utmost importance as it
is extremely off-putting for a user to miss out on content
that is misclassified as advertisement-related when it could
actually be crucial to the functioning of the webpage. From
Table @, we can see that the false positive rate according to
our ground truth is around 1% on average using kNN. While
a very minute percentage, it is a non-trivial amount of falsely
categorized resources.

To understand the cause for this better, we first checked all
the false positives against a very recent EasyList version from
June Tth, 2014. There were an average of 27 matches out of
the 419 false positives against this list, over different tests. On
manual inspection of the remaining URLs and their feature
vectors, it is obvious that an extremely high percentage of
these are actually advertisement URLs that were simply not
caught by the “new” EasyList. That is, approximately every
7 out of 10 false positives were determined to be ad-related
based on human observation. Figure [3]shows a few examples
that were erroneously classified as false positives that are
clearly advertisement or tracking URLs. Using the EasyList
blacklist of third-party advertisers, some of these would likey
be caught, but our classification, with the goal of avoiding
blacklists, classified these as ad-related or tracking without
it.

In the manual world of ad-blocking, these could be accom-
modated in the form of updated filters over time, based on
user feedback or addition of new ad servers to the list. New
kinds of advertisements are not necessarily accommodated,
as it can be difficult to construct specific regular expressions
to match them in limited ad-related contexts. In this case,
“ground truth” simply refers to the current level of human
recognition of ad-related regexes and requires constant up-
dates. While crafting regular expressions to both filter new
ads and not induce new false positives is a taxing affair,
our results show that a feature based learning approach can
automatically classify many of these new ads without a high
false positive rate.

6.2 Baseline and New-Ad Accuracy

While our kNN classifier was able to maintain an extremely
high baseline accuracy and extremely low baseline false pos-
itive rate, the low new-ad accuracy is low enough to be



http://ad.dedicatedmedia.com/seg?add=581028&t=2
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Figure 3: Examples of false positives that are advertisement-related.

undesirable. However, this corresponds to a low false nega-
tive rate on new-ads which can be considered a significantly
more tolerable tradeoff for low false positives with respect to
the user experience. Furthermore, false negatives for both
baseline and new ads in this case could be tuned by certain
feedback based improvements to our learning algorithms as
part of future work.

7. DISCUSSION

In this paper, we show as a proof of concept, how a classifier
trained on a few features can efficiently determine current ads
from old filters, new ads and ads that haven’t been discovered
yet. We do this through batch training and testing of relevant
current-day ads determined by the current-day ad blocking
filters. The low dimensionality of the data is beneficial to the
overall prediction run-time and the features outlined can be
extended for use in other kinds of research regarding ad-ware
and other unwanted internet resources. The reason that ad
blockers are getting updated frequently is due to the fact
that ad networks are coming up with new schemas of URLs
that get injected into a page either to combat blockers or to
spread different kinds of content. It is this ability to keep up
with new trends in advertisements that our classifier should
acquire.

Future work suggests a way to transform the concept into
a real-time learning system that trains on old ads, but con-
stantly updates its labels incrementally every time a new
type of ad example is discovered. An ideal classifier for this
purpose would grow as the domain of ad structures grows
and changes over time. To maintain the supervised nature
of the classifier, the best kind of approach would be semi-
supervised incremental learning. As k-Nearest Neighbors
was the most promising algorithm to determine accurate
labels on old examples, we propose future steps to utilize
the same approach in an online learning environment. Be-
cause k-Nearest Neighbors is a non-parametric estimator, the
probabilistic output would be determined as usual by the
majority vote of the neighbors’ respective classes. However,
as the number of examples increases, KNN can become slow
and inefficient and might be subject to overfitting because of
high density in certain regions over time. Possible implemen-
tation solutions could be in clustering of neighbor groups to
condense the number of data points in a given region similar
to in self-organizing maps [17], keeping an overall time and
accuracy efficiency on the data.

8. FUTURE WORK

While we were able to achieve high accuracy, precision and
low false positive rates on old and new advertisements, ad
URLs are constantly updating and changing their structure
to combat ad blockers and hence there needs to be a way

for a classifier to periodically train on new data. To improve
the new-ad accuracy, the classifier would need to be able
to keep up with the new types of ads and update its model
periodically to accommodate these new rules. A possible
implementation would be to have a feedback mechanism
browser extension, which allows a user to identify ad elements,
similar to feedback-based spam filters in email clients. All the
URLSs requested within this element could be added to the
trainer with their features computed. To maintain a balance
of examples between the two classes, for every ad URL label
incoming, one non-ad URL can be added to the training data.
This sort of feedback mechanism learning could be applied
to our proposed semi-supervised online learning approach
with initial training done on the most recent EasyList data.

9. CONCLUSION

While the traditional ad blocking model has been success-
ful and efficient since its creation in 2002, the manual efforts
behind the scenes might be better placed elsewhere. Undesir-
able resources that could be irritating, privacy-violating or
maliciously loaded as ads, need a more automatic way to be
detected in the future. The landscape of ads is continuously
changing either to embody more security threats or simply to
combat ad blockers. We have developed a machine learning
based classifier for ads which was able to automatically learn
currently known ads with a high accuracy and upto 50%
of new ads that would otherwise necessitate manual filter
creation. Our classifier was also able to detect a large number
of ad and tracking URLs that current filter lists aren’t able
to identify, either due to their lack of defining URL tokens
from which filters can be constructed or because the filters
matching these haven’t been manually identified yet. We
believe that this line of research has the potential to further
enable user choice regarding what ads, tracking beacons, and
other undesirable web assets are loaded on their machines,
improving several aspects of the experience and web security
for web users.
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