
It’s All in the Name: Why Some URLs are More
Vulnerable to Typosquatting

Abstract—Typosquatting is a blackhat practice that relies
on human error and low-cost domain registrations to hijack
legitimate traffic from well-established websites. The technique is
typically used for phishing, driving traffic towards competitors or
disseminating indecent or malicious content and as such remains
a concern for businesses.

We take a fresh new look at this well-studied phenomenon to
explore why some URLs are more vulnerable to typing mistakes
than others. We explore the relationship between human hand
anatomy, keyboard layouts and typing mistakes using various
URL datasets. We create an extensive user-centric typographical
model and compute a Hardness-Quotient (likelihood of misty-
ping) for each URL using a quantitative measure for finger and
hand effort. Furthermore, our model predicts the most likely
typos for each URL which can then be defensively registered.
Cross-validation against actual URL and DNS datasets suggests
that this is a meaningful and effective defense mechanism.

I. INTRODUCTION

Authentication is perhaps the cornerstone of network secu-

rity; all preventive measures are nullified if an entity cannot

successfully confirm who they are communicating with. The

first step towards authentication on the web, even before DNS

lookups or HTTPS connections, is the action of a user typing

the domain name of a site they wish to visit. Typosquatting

attacks the authentication process at this moment: the exploit

happens before any of these other mechanisms from the

“security stack” come into play.

Typosquatting relies on human error and low-cost domain

registrations in order to hijack legitimate traffic away from

well established websites[1]. An attacker can register domain

names similar to well known websites in the hope that a naive

typographic mistake from a user will direct him to a typo dom-

ain rather than the intended website [2], [3]. Typosquatters use

a variety of techniques to profit directly or indirectly from such

hijacked traffic. One of the most common ways to make mo-

ney is through pay-per-click or affiliate advertising. Phishing

attempts and malware infections using drive-by downloads and

malicious ads have also been observed as a consequence of

such typographical mistakes [4]. It is important to note that the

user may not even realize that they are visiting a potentially

malicious website. Competitor-squatting is an interesting sub-

phenomenon where businesses can ride on the coattails of their

successful competitors by registering mistyped domain names

and redirecting traffic towards themselves[1]. Since domain

registrations are relatively inexpensive, typosquatted websites

can cause damage to business and brand equity with little or

no investment.

While protection mechanisms for typosquatting have mostly

focused on defensive registrations [5], [4], in this paper,

we make the case that a better understanding of why we

mistype URLs in the first place can enable more effective

defensive strategies. For instance, the difficulty of typing a

specific domain name, or likelihood of making a certain type

of mistake, is not a purely random process. In other words,

some typos are more likely to happen than others. Hence,

the very first defense one can enact is to choose a domain

name that is less likely to be mistyped. Furthermore, having

an understanding of which typos are more likely than others

can lead to smarter defensive registrations. In fact, Khan et al.

found that many of the losses surrounding typos are simply

due to the (likely inevitable) action of mistyping, rather than

the efforts of typosquatters [6]. Improving the likelihood of a

user typing a domain name correctly can thus improve both

the authenticity and availability of an Internet domain.

We take a user-centric approach to typosquatting in which

we study the relationship between human hand anatomy, key-

board layouts and morphological features of the URLs being

typed in order to calculate the probability of a typing error.

Due to certain anatomical factors, such as the structure and

muscular make-up of the index finger as opposed to the little

finger, and the way in which a standard QWERTY keyboard is

laid out, our study finds that certain combinations of letters and

characters are more susceptible to typing mistakes than others.

This leads to a systematic pattern in the mistyped URLs. We

argue that these error patterns can be used to predict the most

likely set of mistyped URLs for any base URL. We argue

that defensively registering this potential squat space can be

an effective strategy against typosquatting. To the best of our

knowledge, there has been no previous research that adopts a

user-centric approach along with an anatomical typographical

model to analyze the phenomenon of typosquatting.

To summarize, we make the following contributions in our

work:

Dataset Collection: We conduct an extensive fixed-text

keystroke study targeting the speed and accuracy of typing

text and domain names to develop a clear understanding of

the patterns and intricacies involved in URL-specific typing.

We also gathered longitudinal domain name data for roughly

10 million typed URLs (including mistyped ones) from an

academic institution over a period of 4 months. In addition,

we augment our collected data with 3 large corpora of URLs

typed by real-world users acquired from URLFixer (a popular

browser plugin) [7], BlueCoad Web Proxy [8] and a dataset

from Indiana University [9].

Typographical Model: Using the aforementioned datasets,

we explore the various anatomical and keyboard-layout featu-

res that make certain URLs more vulnerable to mistakes than

others. Having established that certain combinations of letters

and characters are more prone to errors, we present a quantita-

tive typographical machine learning model for measuring the

difficulty of typing different URLs (Hardness Quotient). The

Hardness Quotient is an absolute metric and can be used by

businesses to compare candidate domain names so as to choose

the one that is less prone to typing mistakes and consequently

less vulnerable to typosquatting.

Prediction Service: Based on the typographical model,

we develop a prediction service, that allows us to identify

the most likely domains that a brand needs to register to

minimize traffic hijacking via typosquatting. Since all such

domain names might not be feasible to purchase and manage,

the service outputs a ranked list of the most relevant ones that

cover a large chunk of the squat space. As an application of

the prediction service, we developed a browser plugin, which

detects a typo and predicts the most likely alternatives using

our system.

The rest of the paper is organized as follows: Section II

covers background and related work on typosquatting. Section

III describes our datasets and how we processed and cleaned

them. Section IV presents the typographical model. Using the

model we build a prediction service in Section V and show

our main results in Section VI. Before we conclude in Section

VIII, we present a few limitations and discuss some additional

aspects of our work in Section VII.

II. RELATED WORK

Typosquatting has its origins in “cyber-squatting” where

money could be made by registering domains that could

eventually be sold off to the rightful owners at a higher

premium [10], [11]. Typosquatting is a natural extension of

the idea that relies on human error and low-cost domain

registrations in order to hijack legitimate traffic from well

established websites [1], [4], [12]. Domain names similar

to well known websites are registered in the hope that a

naive typographic mistake from a user will direct him to

a typo domain rather than the intended website [2], [3].

Edelman’ et al. [1] were the first to systematically study the

phenomenon. Subsequent related work mostly falls into one

of two categories: work meant to quantify user harm and work

aimed at understanding and detecting Typosquatting activities.

Understanding how typosquatters choose which domain

name typos to target is the most important step in combating

this issue. Virtually all countermeasures, defensive registrati-

ons as well as post-registration lawsuits [13], heavily depend

on knowing which URLs are chosen for typosquatting. To this

end, Mohaisen et al. [4] provide a comprehensive overview of

previous studies which focus on various paths that typosquat-

ters take in choosing domain names to register. Studies which

try to predict the domain names that typosquatters target either

focus on specialized cases of typos, for example homophonic

typos and bit flipping typos, or on lexically similar typos

which are made by real typing errors [4]. Since we analyze

the relationship between two typed URLs from a lexical

perspective, we focus on the works which studied this area

of typosquatting, as opposed to those which concentrated on

specialized mistakes.

Typical approaches to generate the typosquatting domain

of the lexically similar counterparts of popular websites,

concentrate on generating all domain names which fall under a

certain lexical metric [4], [14]. One such measure of string si-

milarity is the the Damerau-Levenshtein distance metric which

measures the number of insertions, deletions, permutations and

substitutions needed to transform one string into another [15],

[16].

On a parallel stream, the value-chain and side-effects of

typosquatting have also been studied extensively. A typosquat-

ter can use a variety of techniques to profit directly or

indirectly from such domains. One of the most common ways

to make money is through pay-per-click or affiliate adverti-

sing. Phishing attempts and malware infections using drive-by

downloads and malicious ads have also been observed as a

consequences of such typographical mistakes [4]. Moore et

al. [1] studied the monetary incentives for typosquatting. One

of their key findings was that pay-per-click advertising and

affiliate marketing were the most important sources of revenue.

Khan et al. [6] try to estimate the lost time to end-users

experiencing typosquatting. [14] demonstrated that despite

increased awareness and defensive registrations, typosquatting

is not restricted to only popular websites and has a long-tail

effecting less popular websites as well. Typosquatted websites

have also been used as propagation vectors for malware and

phishing attempts. “Competitor typosquatting” is an interesting

sub-phenomenon where businesses can ride on the coat-tails

of their successful competitors by registering mistyped domain

names and redirecting traffic towards themselves [1]. This

redirection becomes even more dangerous given that a simple

user may not realize that they are visiting a counterfeit or

potentially malicious website and may give out sensitive

information.

To the best of our knowledge, ours is the first study that

takes a human-centered view of the typosquatting problem.

We study the relationship between human hand anatomy,

keyboard layouts and real-world typing mistakes in order

to explain why certain URLs are more vulnerable to typing

errors given that human beings tend to conserve energy and

minimize effort [17], [18]. In the process, we have come

up with a typing difficulty metric for each word based on

a standard QWERTY keyboard layout. The closest work to

our model is Carpalx [19] that measures typing effort to

produce an optimized keyboard layout which minimizes carpal

strain during typing, a goal orthogonal to ours. Others in the

keyboard layout community have also attempted to reduce

typing effort by proposing new layouts [20], [21]. Our scheme,

leverages some of their insights however, since our model is

built on findings from actual data some metrics and scores are

quite different from those of the keyboard layout community

and have been borrowed from medical science studies.

III. DATASETS ACQUISITION AND PROCESSING

In our study, we mainly relied on two large datasets that we

collected ourselves. However, we also used numerous other

datasets that we acquired from other sources to improve the

accuracy of the classifier. We explain each dataset we used

below:
Fixed-Text Keystroke Study (DS-1): To the best of our

knowledge, we conducted the first of a kind keystroke study

focused primarily on understanding typing errors. The entire

exercise was designed to highlight where and when users make

typing errors while typing URLs and allowed us to hypothesize

as to why human beings make particular typing errors. To this

end, we deployed a website which presented users with a range

of text passages which they had to type word-for-word in a

text box below. We logged every single key pressed by the user

and were able to extract the entire range of errors (even those

which the users themselves corrected using the backspace or

delete keys). The subjects of the study were asked to take 4

tests with each test falling into one of three main categories:

URL names, words which are typed entirely by either the left

or right hand, and fixed text typed using both hands. Each test

was designed to explore a wide range of typing observations

(such as differences between the typing proficiency in the left

and the right hand, biases towards straightening of the fingers

as opposed to curling them inwards etc.). These sample texts

presented a spectrum of difficult-to-type patterns to the user

so that we could see a diverse set of errors resulting from

a large range of features that we engineered into the tests.

For instance, repeated keystrokes with the pinky finger (e.g.,

zaqzaqzaq.com, which is an actual domain name) or the index

finger (e.g., junjun.com, again an actual domain name) or row

changes from top to bottom and back (e.q., mimub.com, again

a real domain) etc. These domain names were extracted from

the .com and .net zone files. The participants were all students

from the computer science department at a local university,

which meant they were proficient at typing with both hands. A

group of 59 people participated in our study. Together the tests

consisted of 600 unique words out of which 134 were mistyped

and 466 did not exhibit any typos, which backs up the claim

that certain strings are easier to type on certain keyboards. The

error breakdown is shown in Table I.

Error Type DS-1 DS-2 DS-3 DS-4 DS-5

Single Character Omission 21.43 15.08 21.4 46.32 39.37

Double Character Omission 3.57 2.66 2.89 4.08 2.68

Single Character Insertion 14.29 36.14 38.23 23.5 24.19

Double Character Insertion 3.57 18.18 5.1 0.0 0.06

Single Character Replacement 39.29 16.19 16.45 20.68 24.98

Double Character Replacement 3.57 0.22 0.76 0.0 0.0

Character Swap 7.14 2.44 4.19 2.29 4.82

Character Repeat 7.14 9.09 10.97 3.18 3.89

TABLE I
ERROR BREAKDOWN OF ALL DATASETS THAT WE USED. VALUES SHOWN

ARE ALL IN PERCENTAGES.

Hostel URL Dataset (DS-2): We installed a firewall in

a university to monitor the URLs accessed by the students

residing in the hostels. Before collecting any data from the

firewall, we received a formal approval from our local Institu-

tional Review Board (IRB) because our data included detailed

browsing activity of the users. We implemented several me-

chanisms to protect user privacy. For example, we removed

any personally identifiable information from the URLs and

only stored the domain names. Since we were only passively

collecting data, no normal user activity was impacted by

our experiments. Each time a URL was typed in a browser,

the firewall received the request first and allowed us to log

the domain name that was being requested by the user. We

collected this data over a period of 4 months for approximately

2000 students. The total number of URLs typed was around

8 million, 2.7% of which were typos (breakdown in Table I).

URL Fixer Dataset (DS-3): The third dataset [22] consisted

of the URLs entered by real-world users of the URL Fixer

browser add-on[7]. URL Fixer detects a mistyped TLD domain

in the URL typed and alerts a user to the mistake in real-

time (For example, if you type google.con, it corrects it to

google.com). This dataset included roughly 12,000 URLs, both

correct and mistyped, over a 9 month period between February

and October 2011. Approximately 2% of these URLs were

typos and this dataset was primarily used for cross validating

our model.

Bluecoat Dataset (DS-4): This dataset contains standard

web proxy logs generated via the BlueCoat web prox [8]

for 2005. The proxy is deployed in a lab network. The

dataset contains roughly 1.8 million URLs out of which 38,000

(2.14%) are typos.

Indiana University Click Dataset (DS-5): This dataset

consists of HTTP requests made from Indiana University [9]

for 2009. The dataset was collected using the Berkeley Pac-

ket Filter and then regular expressions were used to extract

HTTP GET requests. Total number of URLs in this dataset

are roughly 30 million out of which 400,000 (1.4%) are

typographical errors.

We now explain how we processed and cleaned the datasets

and extracted human typed URLs from each corpus.

1) Extracting Hand-Typed URLs: We first outline our me-

chanisms for identifying typed URLs as opposed to auto-

generated/redirected ones in our datasets. The firewall logs,

proxy logs and HTTP requests included URLs that were

auto-generated, most probably through an application’s URL

requests and URL redirections. These URLs were likely to

skew our model and alter the results of our prediction service.

Hence, the datasets needed to be cleaned so as to contain

only the hand typed domain names. To solve this issue, we

clustered our dataset using seeded centroids. In the first phase,

we extracted all members of Alexa’s top 10k URLs (as these

are frequently targeted by typosquatters) from the datasets

and then used these base URLs as centroids around which

the remaining URLs were clustered (the exact technique is

explained in the next subsection). This resulted in an efficient

and simple method to rule out domain names, which were

not hand typed as only those strings that could realistically

be mistyped versions of the centroid were added to a cluster.

Furthermore, this strategy also allowed us to prune the dataset

by removing outliers and focus on the more popular URLs

that are commonly targeted by attackers. In parallel, we also

applied simple heuristics, such as URL size, to further filter out

the hand typed URLs as extremely large instances were highly

unlikely to be hand typed (for example p4-f5wxpcrz2dp5k-

r5kvtsjmgsz7e4du-875034-i1-v6exp3-ds.metric.gstatic.com).

2) Identifying Mistyped URLs: Another challenge was to

identify if a given URL is a mistyped version of another

URL or not. Our method of categorizing URLs was relatively

simple and a hybrid of three known distances. We combined

the Levenshtein distance [16] with the keyboard key distance

(which allowed us to rule out unrealistic candidate URLs, such

as zoogle instead of google because of the penalty imposed

due to the distance between ’z’ and ’g’). The basic steps to

categorize a candidate URL as a typo are as follows: first,

find the hybrid edit distance between the two URLs. Second,

compare the resulting hybrid distance with 20% of the length

of the shorter URL. If the hybrid distance is less than the

20% value the candidate URL is marked as a typo. The 20%

value was experimentally derived as it gave the best results

with the least false positives. To illustrate this better consider

the following; in a vanilla string edit distance calculation, the

difference between google and foogle would be the same as the

distance between google and woogle; a distance of 1. However,

in the hybrid distance algorithm, using the key distance as

the penalty, the distance between google and foogle would be

1, whereas the distance between google and woogle would

be 4. This is a more realistic representation of how likely a

person is to mistype foogle in place of google as opposed

to woogle. Once the algorithm finishes execution, we are left

with clusters around a base URL, each member of which is

a mistyped version of the base centroid of the cluster. At this

stage we apply a modified version of the Ratcliff-Obershelp

algorithm [23], which is commonly used for approximate

string matching, to further prune the results (only URLs with

more than 80% match with the centroid are kept and others

are discarded).

IV. TYPOGRAPHICAL MODEL

In order to determine if a URL is more prone to typographic

mistakes than others, we need a precise typographic model

that captures the relationship of underlying keyboard layouts,

hand anatomy/morphology and the lexical properties of the

URL itself. To this end, we gather domain knowledge by

collecting material relevant to the model e.g., work done by

the keyboard layout and medical communities. Additionally,

we also explored research pertaining to the lexical properties of

a string using n-gram based analysis. Then we extract insights
by indentifying metrics that contribute to typing errors using

gathered domain knowledge. We then move on to feature
engineering by extracting meaningful features from the set of

insights gathered in the previous phase. Finally we do weight
evaluation of our features through a classifier, thus ranking

them in order of importance.

To test the accuracy of our model we perform cross-

validation against a held-out sample from our datasets (DS-

3 and part of DS-5). We demonstrate in Section VI that on

average, words and URLs that have a higher hardness quotient

also have higher corresponding mistyped instances showing a

strong correlation. We also build a prediction service to aid in

defensive registration based on our model and test the service

on actual data we collected to further corroborate the accuracy

of our model.

A. Domain Knowledge

A lot of research has been conducted in the past on different

aspects of typing ranging from anatomy of hands and posture

to different typing habits. We have found some interesting

insights into the reasons for typing errors. In the interest of

space, we discuss each insight very briefly and omit some of

the other insights extracted from the gathered pool of domain

knowledge.

1) Typing & Hand Anatomy: The tendons of muscles which

flex the fingers pass through a common sheath in the carpal

canal. Researchers have used the movement of these tendons as

an indicator of biomechanical stress [24]. This is because con-

tinuous sliding of tendons over one another during extremely

repetitive task such as typing leads to friction [25], which can

cause problems in the tendons and adjacent nerves [24], such

as carpal tunnel syndrome and tendinitis [26].Tendon travel, a

measure of musculoskeletal discomfort [27], is most when the

wrist is continuously extended outwards and fingers joints bent

at large angles [27], as would be the case in typing. Insight 1:
Switching fingers vigorously while typing URLs increases
tendon travel causing discomfort and fatigue which can
result in typing errors.

Carpal Tunnel Pressure (CTP), another measure of discom-

fort in hands[28], shows a massive increase with constant wrist

extension and flexion or radial (inwards) and ulnar (outwards)

deviation [29]. This increase is more pronounced when the

wrists are initially positioned in a tilt (forearm and wrist are

not aligned) [30], as is typically the case in typing [31].

Studies suggest that CTP can be lowered by avoiding full

finger flexions [32], which are normal in typing, especially

the lower row. One study also finds that with extended wrists,

extended or straight fingers elevate CTP [32], which implies

that the upper row can be a cause of discomfort as well.Insight
2: Upper and bottom row typing is more strenuous for
humans and hence more prone to errors.

Ulnar deviations or outward bending of the wrist e.g. to

reach far-off keys via the little fingers causes substantial

discomfort [33]. Insight 3: typing with the little finger to
reach keys on the edges of the keyboard may lead to errors.

2) Cognitive Control of Typing: Fingers on the same hand

are “partnered” meaning that if one finger is extended or

flexed the adjacent fingers exhibit similar tendencies, to some

degree [34]. The user might not actively press with the

incorrect finger along with the correct one, the aforementioned

interrelation might generate some movement in the non-typing

fingers, such as leaving them out of position [35]. This is

known as the enslavement effect [36]. Insight 4: Consecutive
letters on adjacent fingers might be more prone to error
since adjacent fingers are moved out of position.

It was discovered that correlated motor units of the hands

were simultaneously excited due to neural input [37]. This

“co-activation” results in adjacent fingers also exerting force

along with the actual finger. Researchers have found that co-

activation was most prominent in the ring finger and progres-

sively decreased when little finger, middle finger, index finger

and thumb exerted the force [38].Insight 5: Since fingers vary
in independence of movement, some fingers might be more
prone to errors than others. Specifically, the ring finger is
more error prone, followed by the little and middle fingers.

Typing is a parallelized task whereby the brain is already

planning to type several character in advance of the character

being typed [35]. This parallel processing leads to “over-

lapped” movements where the brain plans in advance and

overlaps movements of different fingers and hands [35] i.e.,

while a character is being typed, the other fingers and hand

might be moving to get in position to type other characters.

Overlapped movements can occur both within and across

hand movements [35]. Researchers have argued that parallel

processing and overlapping of movements result in incorrect

finger assignment e.g., pressing with index finger of right hand

instead of index finger of left hand [39].Insight 6: If pre-
planing and overlapping results in complex patterns and
extensive movements of the hands and fingers, the brain
might get confused resulting in incorrect finger or hand
assignments.

On the contrary, studies have also found that successive

letters on alternate hands are at times faster to type [40].

Insight 7: Typing successive characters through alternate
hands has a noticeable effect on typing: it might make a
URL more error prone or more error proof hence, this
characteristic of a URL should definitely be explored.

3) Text Properties: Researchers found that words belonging

to the English language, more importantly words in routine

use, were typed faster than random strings [35]because the

brain already knows the combination of movements required

to type a known word and it reduces the chances of error.

Insight 8: URLs comprising English words might be less
error prone as compared to URLs made up of non-English
words.

As discussed earlier, typing is a parallel process but typing

double letters or successive letters using the same finger is

sequential and thus slower. Hence, it is possible that wit-

hout waiting for the letter to be typed twice, another finger

accidentally types another letter in between those double

letters [35].Another common error is doubling of the wrong

alphabet e.g., bokk instead of book [41]Insight 9: Presence
of a pair of alphabets in a URL might make it more error
prone especially if the preceding or subsequent alphabets
are pressed with a different finger or hand.

Another error studied by researchers is the alternation

reversal error where an incorrect letter is alternated on both

sides of another letter in the middle e.g., ‘were’ may become

‘wrer’ or ‘here’ might become ‘hrer’ [42]. Insight 10: URLs
which contain same character on either side of a different
character might be more error prone and exhibit a
particular type of error.

4) Keyboard Properties: It must be noted that QWERTY

keyboard was originally designed to reduce the jamming of

typebars [43] and is not an ergonomic design.It is estimated

that 57% of keystrokes are allocated to the weaker left hand

and thus it makes the design more prone to errors [44]. Other

studies show that the left hand types slightly better [45].

Insight 11: Hand proportion or division needs to be
incorporated into the model and its effects on error
frequencies should be studied further.

Among other issues with the QWERTY layout, it pointed

out that certain fingers are overworked while others are not

assigned enough work (poor finger distribution). Home row

has too little typing allocation and fingers have to jump from

one row to another excessively causing fatigue [44]. Given

how much the Dvorak design is discussed in literature, it is

reasonable to treat these findings as insights and test them

in our study. Insight 12: URLs concentrated around a few
fingers overwork the fingers. Insight 13: URLs which have
too little typing on the home row may result in more errors.
Insight 14: URLs which force the user to jump excessively
between rows cause fatigue.

B. Feature Engineering and Model Construction

1) Features: Features generated from the above discussed

insights are described in Table II. We use these features to

model the Hardness Quotient of URLs and then predict most

likely typos of a given URL. Last two columns in Table II

rank each feature in order of importance for calculating the

Hardness Quotient and Prediction, along with the weights our

model assigned to them.

2) N-grams: An n-gram is defined as a sliding sequence of

n consecutive characters. For instance, for facebook and n=4,

n-grams will be face, aceb, cebo, eboo and book.

3) Dictionary Generation: For any given URL and corre-

sponding typos in our datasets, we generate an n-gram based

dictionary. As an example, lets say we have facebook and

its typo facebok. First, we align them using the Needleman-

Wunsch algorithm [47] giving us facebook and facebo-k. Let’s

suppose the total occurrences of facebook were 1000, whereas

occurrences of the typo facebok were 10. On n-gram level,

the typo only resides in eboo and book, because all other n-

grams are correct in the typo version as well. Hence, we will

only populate our dictionary with the n-grams that have typos

associated with them. These are stored as key-value pairs, keys

being the n-grams and values being their rate of occurrence.

For book, the rate would be 10/1000 = 0.01. Resultantly,

our key-value pair will have key=book and value=0.01. If

some other URL also contains this particular n-gram, e.g.,

mybook.com and it is mistyped as myboik.com, again the n-

gram book has the typo. Let’s say in this case mybook occured

500 times and myboik occured 10 times. Rate of error for book
in this case will be 0.02. We will update this in our dictionary

by adding the error rates, so in our dictionary, for the key of

book, the value will be 0.01 + 0.02 = 0.03. We will do this

for all n-grams which have typos associated with them in our

dataset.

4) Training Phase: We use the Random Forest Regressor

for our model. We train it by giving it a feature set and

Sr. Feature Name Description Insight
Used

(Rank)
HQ

Weight

(Rank)
Prediction

Weight

1 Finger Switches (FS) No. of finger switches 1 (11) 0.033 (11) 0.026

2 Same Finger Count (SFC) No. of successive characters on the same finger 1 (23) 0.015 (25) 0.010

3 Length Length of URL 1, others (24) 0.015 (2) 0.113

4 Distance Total inter-keystroke distance 1 (5) 0.068 (5) 0.077

5 Top Row Streak (TRS) Max no. of characters typed in the top row in one go 1, others (16) 0.029 (15) 0.016

6 Home Row Streak (HRS) Max no. of characters typed in the home row in one go 1, others (30) 0.001 (28) 0.004

7 Bottom Row Streak (BRS) Max no. of characters typed in the bottom row in one go 1, others (32) 0.000 (31) 0.001

8 Numeral Row Streak (NRS) Max no. of characters typed in the numeral row in one go 1, others (31) 0.000 (32) 0.001

9 Sequence Break (SB) SB occurs when a trigram fails to form a same row monotonic sequence others (15) 0.031 (7) 0.048

10 Cartesian Distance (CD) CD from the source (‘G ’ and ‘H ’) 2 (4) 0.070 (4) 0.077

11 Top Row Count (TRC) No. of characters in the upper row 2 (12) 0.032 (16) 0.014

12 Bottom Row Count (BRC) No. of characters in the lower row 2 (13) 0.032 (27) 0.006

13 Home Row Count (HRC) No. of characters on home row 2 (9) 0.038 (12) 0.023

14 Numeral Row Count (NRC) No. of numerals above the upper row 2 (27) 0.004 (22) 0.012

15 Weak Finger Count (FG) No. of characters on the edges of the keyboard typed by pinky finger 3 (7) 0.042 (10) 0.028

16 Adjacent Finger Count (AFC) No. of successive characters on adjacent fingers 4 (10) 0.037 (19) 0.013

17 Total Base Hardness (TBH) A penalty between 1-5 is assigned to each key representing its base difficulty. TBH
is the sum of all the penalties for a particular URL (mapping available here [46])

5, others (2) 0.079 (3) 0.097

18 Asymmetric Hand Shifting
(AHS):

AHS occurs when two consecutive alphabets are typed using different fingers of
different hands

6 (14) 0.032 (6) 0.055

19 Symmetric Hand Shifting (SHS) SHS occurs when two consecutive alphabets are typed using same fingers of
different hands

6 (17) 0.027 (18) 0.013

20 Hand Shifts (HS) No. of successive characters on alternate hands 7 (18) 0.026 (24) 0.010

21 English Words (EW) URLs consisting of English words (or substrings) 8 (26) 0.010 (21) 0.012

22 Same Finger Doubles (SFD) No. of instances of two successive characters to be typed by the same finger 9 (22) 0.016 (23) 0.010

23 Double Characters (DC) No. of double characters in a URL e.g. Google has 1 instance of double letters 9 (25) 0.011 (26) 0.007

24 Alternating Characters (AC) No. of instances of same character on the either side of a different character e.g.,
the sequence ere in ‘there’

10 (21) 0.017 (17) 0.014

25 Left Hand Count (LHC) No. of characters on left hand 11 (3) 0.073 (1) 0.120

26 Right Hand Streak (RHS) Maximum number of keystrokes pressed using the right hand 11 (19) 0.026 (20) 0.012

27 Left Hand Streak (LHS) Maximum number of keystrokes pressed using the left hand 11 (20) 0.022 (13) 0.020

28 Finger Count (FC) No. of fingers involved in typing a URL 12 (8) 0.040 (14) 0.017

29 Home Row Distance (HRD) Sum of the distance of all keys from the nearest home row key 13 (1) 0.085 (8) 0.039

30 Row Shifting (RS) RS happens when two successive alphabets lie on different keyboard rows. A double
shift is counted when the alphabets are spaced apart by two rows.

14 (6) 0.049 (9) 0.031

31 Upward/Downward Right Hand
Progression (RHP)

RHP occurs when a trigram of three consecutive alphabets, one from each row,
requires the right hand to type.

14 (28) 0.002 (30) 0.002

32 Upward/Downward Left Hand
Progression (LHP)

LHP occurs when a trigram of three consecutive alphabets, one from each row,
requires the left hand to type.

14 (29) 0.002 (29) 0.003

TABLE II
LIST OF ALL ENGINEERED METRICS USED IN THE MODEL ALONG WITH THEIR EXPLANATION, THE INSIGHT THAT HELPED ENGINEER THE METRIC AND

THEIR CORRESPONDING WEIGHTS AND RANKS FOR THE TWO CLASSIFIERS USED IN THIS STUDY.

corresponding labels for all URLs in our training dataset.

For each URL, we first calculate its features as discussed in

Table II. This gives us a feature vector of length 32. We also

create n-grams of the URL e.g., as discussed above. We will

see if these n-grams are present in our dictionary and extract

the corresponding error rate values. The rates are appended to

the end of the feature vector giving us a vector of length 45

(if less we append zeros at the end). As an example, a vector

might look like the following:

[Vector of 32 features, 0.04, 0.03, ..., 0.05, 0, 0, ..., 0]
The label for this vector will be the error rate of the URL e.g.,

for facebook, if it occured a 1000 times and was mistyped 240

times in total, our label will be 0.24. We will create feature

vectors and compute their labels and feed them to our model

for training.

5) Testing Phase: In order to test a URL, we will create its

feature vector as described in the training phase. For instance,

if we want to find the hardness quotient of google.com, we will

calculate the 32 features of google, as mentioned in Table II.

We will also compute the corresponding n-grams of google
and extract their error rates from our dictionary. We will

append these error rates to the feature vector giving us our

final test vector of size 45. We will then input this to our

trained Random Forest Regressor which will output a hardness

quotient or probability of error for the URL, which is a value

between 0 and 1.

V. PREDICTION SERVICE

The final piece of the puzzle is the service that uses our

typographical model to predict the most likely typos for each

URL that can be selectively registered. The prediction service

allows existing domain owners to protect themselves from

typosquatting by buying top k URLs from the squat space.

Squat space refers to the set of all possible URLs which

are similar to the base URLand can be generated by different

measures and criteria.We generate our squat space using a set

of 14 possible error types e.g.,character repeat, character swap,

character insertion, etc. as pointed out in previous work [5],

[1]. Depending on its features, the squat space of a URL can

be quite huge e.g., a longer URL will have a larger squat

space.

Smart Defensive Registrations: Defensive registrations

refer to a situation where a URL owner buys URLs similar

to the base URL in order to thwart attempts of typosquatting.

Theoretically speaking, all URLs in the squat space can be

typosquatted but it is impractical to buy and manage all

those URLs, given the huge size of the squat space.Thus, the

primary goal of the prediction service is to allow for smart

defensive registration of a minimal URL set that is highly

similar to the base URL and thus has higher probability of

being typosquatted.

Prediction Scheme: The prediction mechanism incorpora-

tes the following analysis:

1) N-gram Dictionary Generation: Similar to the HQ dicti-

onary, the concept of the n-gram dictionary here revolves

around the idea that any n-gram can be present in more than

one URL e.g., the trigram ‘oog’ occurs in google.com and

boogle.com and maybe a point of error in any or either of

them. Thus we consolidate all errors at the n-gram level from

different domains.

Given a URL, we first create its squat space. Second,

for each URL in the squat space we create n-grams e.g.,

consider the URL google.com and a URL from its squat space

gooogle.com. Using the Needleman-Wunsch algorithm [47],

we align both domains giving us goo-gle and gooogle. If

we take n=5 and create n-grams, we have [goo-g,oo-gl,o-
gle] and [gooog,ooogl,oogle] respectively for the two URLs.

From these, we select the n-grams that are different between

the two URLs giving us pruned n-grams. We then store all

such n-grams as key-value pairs. For keys, we append each

corresponding n-gram pair of the base URL with that of

the mutated URL from our pruned set. In our example, we

append the first pair and create [goo-g/gooog]. We do this

for all available pairs and each pair serves as a unique key.

For each key the value is initialized at zero. Then, for each

available key, we comb through our typo datasets to find its

occurrences. For every real-world typo of ‘google’, if the typo

contains our subject n-gram (from the key), we increment its

value, and if not, we decrement its value. As an example,

we may end up with 5 occurrences of the pair [goo-g/gooog]
and 7 occurrences of [o-gle/oogle]. Doing this for all n-grams

from all domains, we generate our dictionary. Whether the

error occurs in a google.com typo or boogle.com typo, for a

particular n-gram we update the corresponding n-gram pair.

2) Training Phase: We use Random Forest for our pre-

diction model. A similar vector as that of the HQ model is

created for each URL and all its typos from the squat space.

The 32 features are discussed in Table II. As an example, if we

have google and boogle, first we will calculate their features

and have two vectors of length 32. We then subtract the two

vectors to get a single Difference Vector (DV) of size 32. This

vector will signify the features which changed in order to make

the typo version possible.

Second, we compute all n-gram pairs between the base and

the mutated URL. Third, we search through our dictionary for

all pairs and append the values to the end of the DV. This

gives us our input vector of size of 45 (if less then 45 we

append zeros at the end). We make input vectors of all typos

for all domains. Finally, we search through our dataset to see

if the mutated URL actually occurs as a typo of the original

URL. If it does the overall label of the corresponding DV for

that URL is set to 1 otherwise 0. For instance, if our typo

was gooogle.com, we would create a DV by subtracting the

32 length feature vector of google and gooogle. We will then

append the values of the n-gram pairs from our dictionary.

Finally, we will see if gooogle actually occurs as a typo of

google and assign it the corresponding label, 1 or 0. All such

vectors along with their labels are fed to the Random Forest

classifier for training.

3) Testing Phase: For facebook.com, if we have a possible

typo facbook.com, and we want to see its probability of

occurrence in real world we’ll test it through our trained

Random Forrest classifier. Like in the training phase, we will

create its DV against facebook.com. We will also extract its

n-grams from our dictionary, and append their values at the

end of the DV which will give us the final test vectors. We

will pass this test vector to our Random Forest Classifier and

it will output its likelihood of occurrence in real world, which

is a number between 0-1. We can then sort the top k typos

from the entire squat space and defensively register those.

VI. FINDINGS AND RESULTS

We now present some interesting results pertaining to the

Hardness Quotient, the prediction service and typosquatting in

the wild.

Correlation Between Error Probability and HQ: We

claim that the Hardness Quotient for a particular URL deter-

mines the difficulty incurred in typing it out. To validate this

claim, we put our model to the test using real-world data.

Ideally, URLs that are being mistyped the most should have

larger values of the Hardness Quotient (HQ). To this end, we

measure the correlation between our Hardness Quotient and

actual error frequency by applying a held-out sample from the

data collected through our keystroke study and the typed URL

dataset to our model. We use Spearman’s Rank Correlation

Coefficient (due to its robustness to outliers) to determine the

extent of correlation of the total number of typos for each word

with its corresponding HQ value. Figure 1 shows a scatter plot

of the variables involved. It illustrates a gradual, increasing

trend of the error frequency as the value of HQ grows. The

Spearman’s coefficient value here is 0.87, which is quite decent

given an actual sample from Internet users.

Typosquatting Saturation: Beyond determining the diffi-

culty of typing domain names, we can also use our model

to compute a metric of saturation within the squat space:

that is, how many of the most lucrative typos have already

been registered for a given domain name, and by whom.

This investigation can let us know how well typo regis-

trants (both offensive typosquatters and defensive services like

MarkMonitor) are doing, both with respect to targeting the

Er
ro

r P
ro

ba
bi

lit
y

Hardness Quotient

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Scatter plot showing correlation between probability of errors and
the Hardness Quotient. The values are densely scattered along the diagonal
meaning that as the HQ increases the resulting probabilities of error also
increase proportionally.

Domain Echelon Portion Registered

rank 1 to 10 98.8%

rank 11 to 100 88.0%

rank 101 to 1,000 48.7%

rank 1,001 to 5,000 28.6%

TABLE III
PORTION OF 40 MOST LIKELY TYPOS REGISTERED FOR .COM SITES AS A

FUNCTION OF THEIR ALEXA RANK.

correct domains. To conduct this investigation, we enumerate

the 40 most likely typos for each website within the 5,000

most popular domains in the .com TLD on Alexa. We cross

reference this list with the .com domain name zone file

provided by Verisign, which enumerates every registered .com

domain name, along with the hostname and IP address of its

authoritative nameservers.

Table III outlines the basic findings. Here we see that for the

most popular websites, the typosquatting space is completely

saturated, with only a few exceptions. Likewise, most of the

40 most likely typos are registered for the top 100 .com

domains as well. The ratio drops and continues to do so for the

remainder of the top 5,000 domains. Even the lowest ranked

websites among this list have several hundred thousand regular

users according to Alexa’s data, indicating that there may yet

be some value to be captured here.

Accuracy of Prediction: To test the accuracy of our

prediction service, we measured how well we predict the more

likely mutations of a base URL. A sorted list of our model’s

output was compared against the frequency of occurrence of

each URL instance from the URL Fixer data to determine

how much coverage of the typosquatted traffic the prediction

service provides. The results of this experiment are shown

in Figure 2. URLs such as Facebook and Google, which

are characterized by enormous volumes of network traffic,

are more prone to typosquatting as typosquatters can benefit

more. As a result, the number of typosquatted versions of

these URLs is relatively higher, which in turn implies that

achieving near 100% coverage would require a large number

of defensive registrations. However, our prediction service still

provides decent coverage to these high-volume sites i.e., more

than 60% while keeping the number of defensive registrations

below a modest threshold of 10. On the other hand, URLs

such as Amazon which have comparatively less traffic show

Pe
rc

en
ta

ge
 o

f T
ra

ff
ic

 C
ov

er
ed

0%

20%

40%

60%

80%

facebook google youtube amazon

3 URLs 6 URLs 9 URLs

Fig. 2. Percentage of typosquatted traffic covered through predicted URLs

Method Accuracy Precision Recall F1 Score

Vanilla Features 86.46 82.41 74.37 78.19

Features + 4-grams 95.7 94.3 92.4 93.38

TABLE IV
TABLE DEMONSTRATING THE INCREASE IN ACCURACY RESULTING FROM

THE N-GRAM COMPONENT ON TEST DATA

close to 80% coverage through our prediction service. The

case of Youtube warrants added explanation here. As there are

numerous video streaming websites, which have the substring

‘tube’ as part of their legitimate domain names particularly

those in the adult domain, it is difficult to predict mistyped

versions of Youtube that typosquatters can abuse as the squat

space is already saturated. These legitimate websites and their

corresponding typos mean that the accuracy of our prediction

service has to suffer i.e. close to 40%. Barring a few special

cases like Youtube, the overall results here show that our

prediction service makes accurate predictions and provides a

high degree of coverage to URL owners, which substantially

reduces the likelihood of being abused by typosquatters. The

average percentage of coverage for the top 20 Alexa websites

for 3 defensively registered URLs is 35%, for 6 URLs is 46%

and for 9 URLs is 60%. The overall results are demonstrated

in Table IV.

VII. DISCUSSION AND LIMITATIONS

We now highlight some limitations of our work and discuss

a few additional aspects.

Spelling Mistakes vs Typos: One limitation of our work

pertains to the issue of spelling mistakes. For a user who

has a weak grasp of the English language, this may very

well be the case. However, in our experience, most of the

URLs are not direct words from the English language i.e.

Google, Instagram, Wikipedia etc. and so the argument is

slightly weakened, though still valid as often the substrings

are borrowed from the language. Additionally, from the data

we collected, it appears that the errors are not entirely random

and exhibit patterns and structural regularities, such as keys

being replaced by their neighbors only or being triple typed

instead of double typed etc., which means that the mistakes

are not spelling mistakes but have some relationship with the

underlying typing medium. Finally, spelling mistakes become

even less of an issue as over time, when the user has typed the

same URL a few different times, his spelling mistakes tend to

improve and the errors that he continues to exhibit are by and

large typographical ones.

Typing on Handheld Devices and Modern Keyboards:
Handheld devices are becoming increasingly pervasive and so

we now observe users typing on touch pads, touch screens

and fancier touch-based keyboards. This implies that users

will make typing errors resulting from completely different

anatomical limitations substantially altering the underlying

semantics of the typing model. Hence, there is need for further

extension of this study for different typing media, such as those

mentioned above and we plan on pursuing this as future work.

Issue of False Positives: One final limitation that we

discuss is that of false positives. Some URLs that we classify

as typos might actually be legitimate websites that are coinci-

dentally closely “related” to another base URL however, this

is a small fraction compared to the actual typo instances and

our analysis should hold for a majority of the cases.

VIII. CONCLUSION

In this paper, we took a first of its kind, human-centered

view of the typosquatting phenomenon. We conducted a fixed-

text keystroke study designed to explore the type, frequency

and patterns of URL-based typing errors. Using the data,

we developed a Hardness Quotient for each word using a

quantitative typographical model that attempts to capture the

relationship between human anatomy, keyboard layouts and ty-

ping mistakes. We cross-validated our model and the hardness

measure using actual data from mistyped URLs in the Internet.

The results verify that certain semantic features present in a

domain name make it more susceptible to errors and hence

typosquatting. Finally, using the model we build a prediction

service that outputs the top k URLs that business owners

should also purchase along with the base URL to minimize the

effects of typosquatting and incorporate the prediction service

into a Firefox browser plugin.

REFERENCES

[1] T. Moore and B. Edelman, “Measuring the perpetrators and funders of
typosquatting,” in FC, 2010.

[2] “There’s no ”i” in twtter: How to outsmart typosquatting,” https://tinyurl.
com/jjjtmpe.

[3] “Typosquatting sites ’wikapedia’ and ’twtter’ have been fined $300,000
by UK watchdog,” https://tinyurl.com/z8n9t84.

[4] J. Spaulding et al., “The landscape of domain name typosquatting:
Techniques and countermeasures,” CoRR, vol. abs/1603.02767, 2016.

[5] P. Agten et al., “Seven months’ worth of mistakes: A longitudinal study
of typosquatting abuse,” in NDSS, 2015.

[6] M. T. Khan et al., “Every second counts: Quantifying the negative
externalities of cybercrime via typosquatting,” in IEEE S & P, 2015.

[7] “URL Fixer,” http://urlfixer.org/.
[8] “Public Security Log Sharing Site,” http://log-sharing.dreamhosters.com.
[9] M. Meiss et al., “Ranking web sites with real user traffic,” in WSDM,

2008.
[10] M. E. Whitman et al., “Cybersquatting: A case of first come/first served

or piracy on the cyber-seas?” Information Systems Security, vol. 8, no. 1,
1999.

[11] S. Wright, “Cybersquatting at the intersection of internet domain names
and trademark law,” IEEE Communications Surveys and Tutorials,
vol. 14, no. 1, 2012.

[12] A. Banerjee et al., “SUT: quantifying and mitigating URL typosquat-
ting,” Computer Networks, vol. 55, no. 13, 2011.

[13] “Cybersquatting: typosquatting - facebook’s 2.8 million dollars in da-
mages and domain names,” https://tinyurl.com/hp8vvxn.

[14] J. Szurdi et al., “The long ”taile” of typosquatting domain names,” in
USENIX Security Symposium, 2014.

[15] F. Damerau, “A technique for computer detection and correction of
spelling errors,” Commun. ACM, vol. 7, no. 3, 1964.

[16] A. Levenstein, “Binary Codes Capable of Correcting Deletions, Inserti-
ons and Reversals,” in Soviet Physics-Doklandy, vol. 10, 1966.

[17] “Is Exercise Really Medicine? An Evolutionary Perspective ,” https:
//tinyurl.com/zovsfof.

[18] “Born to Rest - Harvard Magazine,” https://tinyurl.com/jdoya26.
[19] “CarpalX Keyboard Layout Optimizer,” http://mkweb.bcgsc.ca/carpalx.
[20] “Workman Layout: The Layout Designed with Hands in Mind,” https:

//tinyurl.com/px6pz9d.
[21] “Keyboard Layout Analyzer,” https://tinyurl.com/lxzosqt.
[22] “What do people type in the address bar?” https://tinyurl.com/3maaq3r.
[23] J. W. Ratcliff and D. E. Metzener, “Pattern matching: The gestalt

approach,” vol. 13, no. 7, 1988.
[24] A. Moore, R. Wells, and D. Ranney, “Quantifying exposure in occupa-

tional manual tasks with cumulative trauma disorder potential,” Ergo-
nomics, vol. 34, no. 12, 1991.

[25] N. M. Hadler, Clinical concepts in regional musculoskeletal illness,
1987.

[26] L. Hymovich and M. Lindholm, “Hand, wrist, and forearm injuries: The
result of repetitive motions.” JOEM, vol. 8, no. 11, 1966.

[27] J. E. Nelson et al., “Finger motion, wrist motion and tendon travel as
a function of keyboard angles,” Clinical Biomechanics, vol. 15, no. 7,
2000.

[28] R. M. Szabo and L. K. Chidgey, “Stress carpal tunnel pressures in
patients with carpal tunnel syndrome and normal patients,” The Journal
of hand surgery, vol. 14, no. 4, 1989.

[29] A. Hedge and J. R. POWERS, “Wrist postures while keyboarding:
effects of a negative slope keyboard system and full motion forearm
supports,” Ergonomics, vol. 38, no. 3, 1995.

[30] H. Seradge et al., “In vivo measurement of carpal tunnel pressure in the
functioning hand,” The Journal of hand surgery, vol. 20, no. 5, 1995.

[31] M. Fagarasanu and S. Kumar, “Carpal tunnel syndrome due to keybo-
arding and mouse tasks: a review,” International Journal of Industrial
Ergonomics, vol. 31, no. 2, 2003.

[32] P. J. Keir et al., “Effects of finger posture on carpal tunnel pressure
during wrist motion,” The Journal of hand surgery, vol. 23, no. 6, 1998.

[33] W. Hünting and T. L. E. GRANDJEAN, “Postural and visual loads at
vdt workplaces i. constrained postures,” Ergonomics, vol. 24, no. 12,
1981.

[34] J. Fish and J. Soechting, “Synergistic finger movements in a skilled
motor task,” Experimental Brain Research, vol. 91, no. 2, 1992.

[35] D. R. Gentner, “Expertise in typewriting,” The nature of expertise, 1988.
[36] Zatsiorsky et al., “Enslaving effects in multi-finger force production.”

Experimental brain research, vol. 131, no. 2, 2000.
[37] M. H. Schieber and M. Santello, “Hand function: peripheral and central

constraints on performance,” Journal of Applied Physiology, vol. 96,
no. 6, 2004.

[38] K. T. Reilly and G. R. Hammond, “Independence of force production by
digits of the human hand,” Neuroscience letters, vol. 290, no. 1, 2000.

[39] L. H. Shaffer, “Intention and performance.” Psychological Review,
vol. 83, no. 5, 1976.

[40] D. R. Gentner, “Evidence against a central control model of timing in
typing.” 1982.

[41] K. S. Lashley, “The problem of serial order in behavior,” 1951.
[42] D. E. Rumelhart and D. A. Norman, “Simulating a skilled typist: A study

of skilled cognitive-motor performance,” Cognitive science, vol. 6, no. 1,
1982.

[43] D. A. Norman and D. Fisher, “Why alphabetic keyboards are not easy
to use: Keyboard layout doesn’t much matter,” Human Factors, vol. 24,
no. 5, 1982.

[44] A. Dvorak, “There is a better typewriter keyboard,” National Business
Education Quarterly, vol. 12, no. 2, 1943.

[45] K. Provins and D. Glencross, “Handwriting, typewriting and handed-
ness,” The Quarterly journal of experimental psychology, vol. 20, no. 3,
1968.

[46] “Grading Scheme,” https://tinyurl.com/y9rpwj96.
[47] Saul B. Needleman and Christian D. Wunsch, “A general method

applicable to the search for similarities in the amino acid sequence of
two proteins,” J. Mol. Biol., vol. 48, no. 3, 1970.

