Reducing Inefficiencies in Taxi Systems

Chenguang Zhu
Computer Science Department
Stanford University
Stanford, CA, 94305, USA
cgzhu@stanford.edu

ABSTRACT

Taxi systems are perfect examples of supply-demand sys-
tems in which taxi vehicles and drivers constitute the sup-
ply side, while passengers hailing taxis are the demand side.
However, various inefficiencies can be embedded within such
a large-scale system, e.g. an excessive number of taxi vehi-
cles, a shortage of taxi supplies after an event and long idle
times with no passengers in taxis. These systemic ineffi-
ciencies are often overlooked in previous literature, which
focuses on taxi dispatching mechanisms to satisfy short-
term demand. In this paper, we address these inefficiencies
and propose a novel model for the trip assignment problem
based on network flow. Compared with existing methods,
our model is much more scalable. This model is capable of
assigning hundreds of thousands of trips to taxis over a long
time interval, e.g. a shift of 12 hours. Furthermore, the trip
assignment given by this model can effectively minimize the
total number of required taxis while reducing incurred idle
time. Experiments show that in our model, the number of
required taxis to finish all observed trips in New York City
is only 72% of the size of the current taxi fleet, while the
average idle time incurred per taxi drops by 32%.
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1. INTRODUCTION

Taxi systems are important components of the urban trans-
portation system because they complement public transport
for their flexibility in routes, destinations and supply. A
typical taxi system comprises thousands of taxi vehicles and
hundreds of thousands of passengers each day. This presents
a perfect example of a supply-demand system with available
taxi cabs as the supply side and waiting passengers as the
demand side.
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In this system, each taxi driver can be viewed as an au-
tonomous agent: the driver makes decisions to search for
passengers according to his knowledge about the temporal
and spatial distribution of demand. However, if we exam-
ine the actions of taxi drivers from the driver’s perspective,
these actions are usually local and myopic. Without much
knowledge about the current supply-demand situation out-
side his neighborhood, it is very easy for a driver to make a
suboptimal decision in the long run. For example, suppose
a New York City taxi driver decides to go to Grand Cen-
tral Station for his next potential passenger as the demand
there is usually high. The passenger he picks up is heading
to the Brooklyn District. The driver, unaware that a large
wave of visitors will be taking taxis from Times Square to
nearby hotels within the next 20 minutes, will take the trip
and go to Brooklyn, possibly spending a lot of time looking
for the next passenger there due to Brooklyn’s low density
of taxi rides. In fact, it would be better for another nearby
taxi which would soon change shift in Brooklyn to take this
trip. We therefore argue that the decisions made by indi-
vidual drivers may be locally optimal, but from a systemic
perspective, there is still plenty of room for improvement.

Collectively, suboptimal individual decisions lead to global
inefficiencies within the taxi systems, including an excess
or shortage of taxi service supplies and long idle time with
taxis having no passengers inside. For example, although
up to 60% of the daily traffic flow in certain areas in Hong
Kong are generated by taxis, many of them are empty trips
[19]. Empty trips result in low system utilization and ex-
acerbate road congestion. Thus, reducing inefficiencies in
taxi systems is a pressing and essential task facing urban
transportation regulators and governments.

To solve these issues, previous studies have been focusing
on mechanisms to assign trips to taxis [25, 22, 23, 11, 12].
Existing works modeled the taxi system as an Autonomous
Mobility on Demand (AMoD) system [14, 7, 6]. In an AMoD
system, the goal is to design smarter trip assignment plans
in a real-time fashion based on recently emerging trip re-
quests and current locations of available taxis. A typical
feature of an AMoD system is its temporal and spatial lo-
cality. For example, [14] built local queues at each potential
drop-off and pickup location to model taxi availability and
passenger arrivals. [7] framed the taxi system as a multi-
agent system, proposing a real-time model to re-schedule
taxi service before order acceptance confirmation to accom-
plish the most recent trip requests. Although an AMoD
system can usually be immediately deployed and evaluated
in real scenarios, these locally optimal assignments do not



necessarily lead to globally optimal efficiency. By investigat-
ing this issue over the complete time frame, we should be
able to excavate recurring patterns in supply and demand
as well as a systematic way to balance them.

To achieve this goal, we need a bird’s-eye view of the
whole taxi system. Fortunately, thanks to the rising popu-
larity of sensing technology, many cities have equipped their
taxis with GPS devices to record geo-location and trip in-
formation, thereby enabling us to design a trip assignment
mechanism that boosts systemic efficiency. This mechanism
also allows the system to operate with fewer taxis and each
taxi achieves a higher utilization rate with less idle time
wasted on the road. Specifically, we want to reassign all
observed trips to taxis during a time period (e.g. a shift of
12 hours), following the exact start/end time and location
requirements. Our objectives are hereby two-fold:

1. Reassign trips to fewer taxis to accomplish all passen-
gers’ requests;

2. Reassign trips to taxis to minimize total idle time.

The first objective is important for taxi commissions and
government because they are eager to obtain an appropri-
ate estimate of the required taxi fleet size for effective entry
regulation and congestion control [21], while the second ob-
jective is directly correlated with the operational efficiency
of taxi systems and also the earnings for drivers.

To achieve the above objectives, we design a trip assign-
ment model based on network flow. This model captures
both temporal and spatial properties of taxi movement and
passenger trips. Compared with previous approaches, our
model is much more scalable, capable of assigning hundreds
of thousands of taxi trips daily in big metropolises. We eval-
uate our model on New York City taxi trip datasets. One of
the findings is that our model can accomplish all observed
taxi trips in New York City with only 72% of the current
yellow taxi fleet. Furthermore, the average idle time per taxi
drops by 32%. After investigating our model’s trip assign-
ment plan, we discover patterns which shed light on possible
directions for improvement to the current taxi system. For
instance, after sending a passenger to the airport, taxis in
our model are much more likely to stay at the airport wait-
ing for the next passenger, instead of leaving without taking
passengers, compared with trip records in real data.

The rest of this paper is organized as follows. Section
2 frames the trip assignment problem as a combinatorial
optimization problem and defines related notations. Section
3 examines the previous literature. We develop our model
in Section 4 and evaluate the model in Section 5. Section
6 investigates various patterns learned from the assignment
given by our model. Section 7 offers concluding remarks.

2. PRELIMINARIES

We denote the set of taxi trips to be assigned as T =
{a1,az,...,am}. Each trip a; is represented by a tuple: a; =
(tsi, tes,lsi,le;), where ts; and te; are the start/end time of
the trip, while ls; and le; are the start/end location of the
trip. Suppose N taxis will serve these trips. An assignment
of taxi trips is a mapping function F : 7 — [N]. Under such
a mapping function F, each taxi i is assigned a sequence of
taxi trips in time order: a;,,ai,,...,as, . A valid mapping
function F should satisfy the following two conditions:

1. teij <t$i_7+1,V1 < <N, 1<j<k;

2. dist(leij, 1si;, 1) < Vmaz - (t8i;,, — tei;)

where dist(A, B) is the routing distance from location A to
B and vz is the maximum driving speed. We set Va2 to
25 miles per hour (40.23 km per hour) in the experiment.
The first condition regulates that two adjacent trips made
by the same taxi cannot overlap temporally, while the second
condition makes sure that it is feasible to reach the start
location of the next trip after finishing the current trip.
Our goals are two-fold. First, we want to minimize the
number of required taxis N to validly assign all trips. Sec-
ond, we aim to minimize the total idle time incurred: T;qe =

N k-1
Zi:l Z]’:l (tsij+1 - teij)'

3. PREVIOUS LITERATURE

Previous literature focused on taxi dispatching strategy
for efficient trip assignment: [18] aimed to reduce waiting
time for passengers and boost trip success rate; [1] employed
multiagent self-organization technique to decrease waiting
time; [16] designed a route-recommendation mechanism to
maximize driver’s profits; [15] assigned trips to guarantee
fairness within a group of competing drivers; [26] designed
methods to optimize passengers’ waiting time for taxis.

The goal of these models is to devise a more efficient
real-time scheduling system. However, a more systematic
approach of the trip assignment task requires optimization
over the complete time frame. Such approaches can help de-
termine an appropriate taxi fleet size to serve all passengers
and reduce inefficiencies in the taxi system such as the total
time taxis spend in idling status.

To this end, a network-based model was introduced in [20]
to determine system performance measures at equilibrium
such as vacant taxi movements and taxi utilization. The
authors also computed the minimum taxi fleet size to ensure
the existence of a stationary equilibrium state. In [3], the
taxi system was framed as a multi-agent system and a model
was proposed to enhance the utilization rate of taxi systems.
[10] modeled routing behaviors of vacant taxicabs to explore
more efficient passenger-finding strategies.

To the best of the authors’ knowledge, the work most
similar to ours comes from [24], in which a path cover model
was proposed to reassign trips to taxis. We hereby present
a brief introduction. Based on the notions defined in the
previous section, there are m taxi trips and each trip a; is
represented by a tuple (tsi, te;, lsi, le;). These trips are
then described by a graph G = (V, E), where each node in
V represents a trip, and an edge ¢ — j exists if and only
if trip a; and trip a; can be finished sequentially by a taxi.
[24] proved that G is directed and acyclic. Furthermore, the
nodes corresponding to a taxi’s trips form a directed path
in G.

Subsequently, minimizing the number of required taxis to
finish all trips is equivalent to finding the minimum number
of non-intersecting paths to cover every node in G. This
problem can be solved by maximum matching by construct-
ing a bipartite graph of 2m nodes, with details in [24].

Nevertheless, this approach has a major drawback: the
scalability. In the constructed graph, the number of nodes
|V| is linear with the number of trips m; the number of
edges |E| is quadratic with m. However, the number of taxi
trips in a city can be quite large. For example, in New
York City, taxis make more than 400,000 trips on an aver-
age weekday, but a typical maximum matching algorithm on
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Figure 1: Region partition of New York City.

bipartite graphs, e.g. HopCroft-Karp [9], has a time com-
plexity of O(y/]V]|E|). Consequently, we cannot solve the
model within reasonable amount of time.

To tackle the model’s limited scalability, [24] worked around
the problem by assigning trips in short time intervals of 10
minutes. This approach greatly reduces the significance of
the work. The reason is that trip assignment in the previ-
ous time interval cannot be automatically merged with the
assignment in the next time interval, as many taxis are still
taking trips. Moreover, the model can never obtain a real
assignment of trips to each taxi over a day, nor can we cal-
culate the total amount of idle time under the assignment.

In the next section, we will introduce a new model to solve
the scalability issue which enables us to deliver assignment
plans for hundreds of thousands of taxi trips within a minute.

4. OUR MODEL

4.1 Discretization

The first step in our model is to discretize both trip time
and trip locations. Time over a day is sliced into 1-minute
bins. We then round down the start time and round up the
end time of each trip to the boundaries of time bins. For trip
locations, we partition a city into regions. For example, in
the experiments we partition New York City into 36 regions
according to district boundaries and main roads (Fig. 1).
In Section 5.1, we will discuss in detail the impact of these
discretization hyperparameters on the model.

After discretization, each trip is represented by (ts¢, ted,
ls¢, le?). As multiple trips may share the same discretized
tuple representation, the whole dataset is described as {(tsd,
te?, 1s?, le?, count)}, where count is the number of trips
sharing the same representation (ts?,te?,1s%, le?).

4.2 Network flow model

To depict the movement of taxis in spatial-temporal di-
mensions, we build a network flow model, based on the con-
cept of Time Expanded Network [4]. The basic idea is that
the movement of a taxi is characterized by a unit flow in the
network, capturing both available and occupied statuses.

The flow network is denoted by G = (V, E). The nodes
and edges are defined as follows.

Nodes. Nodes in G correspond to discretized time and

regions: node p;; € V stands for discretized time ¢t and
region . A flow passing through p;; indicates that a taxi is
in region [ at time ¢.

Edges. Each directed edge (z,y) € E carries an upper-
limit u,,, and lower-limit [/, , for flow value to represent the
allowable number of passing taxis. Additionally, a cost ¢z y
is associated with the edge (z,y) to represent the incurred
idle time! in minutes. In total, there are three types of
edges:

1. To depict the action of taxis taking trips, edge pysa ;50 —
Pied jed corresponds to the data entry (ts?, te?, 1s?,
le?, count), with 1, , = ug,, = count and ¢, = 0. In
other words, exactly count units of flow travel through
this edge, with no idle time incurred.

2. Idle taxis can stay in the same region. We construct
edge pi,; — pi+1, for each discrete time ¢ and region
I, with ugz,y = 00, lz,y =0, cz,y = 1. It indicates that
a taxi staying in region [ from ¢ to ¢t 4+ 1 incurs an idle
time of 1 minute.

3. Idle taxis can move from region [ to another region I’ #
I. We construct edge pi,, — piis,_,, v for each (¢,1, ),
with ug,y = 00, le,y =0, cz,y = ti. It indicates that
each taxi moving from region [ to I’ incurs an idle time
of t;_,;» minutes?.

Finally, to complete the construction, we add a source
node S and a sink node T. We add edges S — p:,; and
peg — T for all ¢,I where a trip starts/ends in region [
at time ¢, with uzy = 00, lz,y = 0, cz,y = 0. It follows
that a unit flow from S to T represents the movement and
trip sequence of one taxi. It is worth noting that we can
associate idle time to edges pertinent to S/T and add edges
to corresponding nodes to incorporate initial locations and
times where taxis would start to work.

An example network flow model is shown in Fig. 2. One
trip starts at 15:01 in region 1 and ends at 15:05 in region
2. Two trips start at 15:00 in region 2 and end at 15:05 in
region 1.

With the flow network, we aim to find the minimum fea-
sible flow plans to minimize the number of taxis required to
finish all observed trips.

Feasible flow. A feasible flow plan f : E — RT assigns
fz,y > 0 to each edge (x,y) € E such that the following two
conditions are satisfied:

1. lpy < fo,y < ug,y (capacity constraint)

2. Z(x;:(x,y)EE Joy = Zw;(y,x)eE fye, Vo € Vix # ST
(conservation of flows)

The size of flow plan f is defined as: |f| = Z(s ner [,

which is also equal to Z<i,T)€E fi,7. In our network, a fea-

sible flow plan of size N corresponds to a valid assignment
of all trips to N taxis.

!The network flow model can work with any non-negative
bounded edge cost such as idle distance and vehicle emis-
sions.

2QOne trick in reducing the number of edges is that p;; —
Dt+t, 1 18 constructed only when some trip starts at time

t + t;,; in region I’. The reason is that a taxi can hold
movement to region [’ until the last minute: it starts the
next trip as soon as it moves to region [’.
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Figure 2: An example network flow model for a two-region-six-minute taxi system. On each edge, the two
numbers separated by comma are the lower-limit and upper-limit of flows. Costs are shown in yellow boxes.

Minimum feasible flow (FF). To determine the mini-
mum feasible flow size, we convert the problem into a deci-
sion problem. To judge whether a flow of size N exists for G,
we define Gn as G plus an edge T' — S with both cost and
lower-limit as 0. The upper-limit of this edge is N. Note
that G'x has no source or sink. It is obvious that a flow of
size N exists for G if and only if a flow of size IV exists for
Gn. A push-relabel algorithm [8] can solve the problem for
Gn in time O(|V?|E)).

Furthermore, if a feasible flow of size N exists for G, an-
other feasible flow of size N 4 1 exists as well. We thus
employ binary search to determine the minimum feasible
flow size, i.e. the minimum number of required taxis, N*.
As N* cannot exceed the number of trips, the overall time
complexity is O(log(number of trips) - |V || E|).

Minimum cost minimum feasible flow (MCFF). Af-
ter determining the minimum number of required taxis N*
to finish all trips, we proceed to compute the minimum cost.
Here, the goal is to find a feasible flow plan of size N* such
that the total cost C' is minimized:

Cfeu) = D coy- fou (1)
(z,y)eE

An existing algorithm [13] can solve the problem in poly-
nomial time O(|E|log|V|(|E| + |V |log|V|)). The resulting
cost is the minimum total idle time of these N* taxis under
optimal assignment.

A note on graph size. The time complexity of the
above flow algorithms is correlated with the network size.
The number of nodes |V] is the product of the number of
regions and the number of time bins, which is a constant.
The number of edges, |E|, is:

e Edges of type (i): min([number of trips], |V|?)
e Edges of type (ii): |V]

e Edges of type (iii): |V| X [number of regions]
e Edges from S or to T: 2|V|

Total number of edges:
O(min{[number of trips], |V|*}+|V| x [number of regions]})
@)
As |V] is a constant, |E| is upper-bounded by a constant.
In practice, |E| is much less than that in the model in [24].
For example, for a 12-hour shift worth of data, our model
contains 51K nodes and 624K edges, while the path cover

model in [24], if implemented, would have 430K nodes and
23 billion edges.

4.2.1 Obtaining trip assignment from flow

After obtaining a feasible flow of size N, the trips can be
assigned to taxis as follows.

The residual flow network G’ = (V', E’) is defined as: (i)
V' =V and (ii) (4,5) € E’ if and only if f;; > 0 in G. We
then execute path-finding algorithm such as breadth first
search (BFS) to find a path P in G’ from source to sink:

7) = (a1 = S, az, ...,qx—1,0r = T)
where (a;,a;+1) € E',1 < i < k. We assign trips to one taxi
following the path P as follows:

1. i =1 (a; = 5), the taxi starts working in region s at
time to;

2. If (@i, ait+1) is of type (i), Dyod jsd —> Dped jed, We pick
a trip without replacement from trips starting from
region Is? at time ts? and ending in region le? at time
te? and assign this trip to the taxi;

3. If (as,a:4+1) is of type (ii), pr,y — pe+1,1, the taxi stays
in region [ from time ¢ to ¢t + 1;

4. If (@i, aiv1) is of type (iii), pey — Prae,_, 1, the taxi
moves from region [ to region I’ from time ¢ to t+#;_,;;

5.9+ 1=k (aix1 = T), the taxi ends working in region
lp_1 at time tx_1.

After assigning trips to the taxi, we decrease the flow value
by 1 for all edges on the path P in G. We repeat the process
for the next taxi until all trips are assigned.

4.2.2 Caveat and solution

Following the above approach, we assign trips a:, , @i, ..., G4, .
to taxi i. However, since we discretized the map into regions, ‘
it may be infeasible for a taxi to go to the next trip in time.
For example, the drop-off location of trip a;; and the pickup
location of trip a;;,, could be in the same partitioned re-
gion, but the actual distance is so far that a taxi cannot move
between these two locations in required time—we have as-
sumed that all trips must be finished according to its time
schedule.

To solve this problem, we add feasibility checking into our
algorithm. We first set a speed limit of 25 mph for a taxi to
move between locations. If the next trip is infeasible to reach
from the current trip for a taxi, the next trip is removed from



Algorithm 1: Iterative algorithm for trip assignment

Set all trips as unassigned.
Round + 0
while any unassigned trip erists do
Round <+ Round + 1
For unassigned trips, construct network G = (V, E).
Run minimum feasible flow / minimum cost feasible
flow algorithm on G.
Use BFS to assign temporally ordered trips
Wiy Qig s -y Wi, to each taxi 7.
foreach i do
prev <1
Trip a;, is assigned to taxi <.
for j from 2 to k; do
if aip,.., and a;; can be finished sequentially

then
Trip a;; is assigned to taxi i.
prev < j
end
end
end
end

the assignment. Consequently, each taxi will only execute a
feasible trip sequence. We then set those removed trips as
new input into the network flow model and assign more taxis
to finish these trips. The process is repeated until all trips
are assigned to taxis. The details of this iterative algorithm
are described in Algo. 1. This algorithm is guaranteed to
end, since in each round, at least the first trip assigned to
each taxi is accepted. In experiments, we observed that the
iterative algorithm ended within 6 rounds for all models.

5. EXPERIMENT

We evaluated the network flow model on New York City
taxi trip dataset [5]. This dataset contains information about
all trips made by yellow taxis in New York City in 2013.
Each trip is described by an entry including hashed driver’s
license number, hashed medallion number, pickup / drop-off
location and time, fares, tips and distances.

We first took taxi trips from a normal day in 2013: May
15, which was a Wednesday. As taxis work in 12-hour shifts
in New York City, we focused on trips starting from 4AM
to 4PM. In data-cleaning phase, we filtered out trips with
duration shorter than 1 minute or longer than 1 hour. We
ended up with 214,805 trips made by 12,366 taxis.

We built the network as mentioned in the previous sec-
tion, with 51,842 nodes and 624,067 edges. We ran Algo.
1 to obtain feasible trip assignments. To estimate distance
between locations in feasibility check, we obtained the infor-
mation from data: the trip records contain distance driven
for each trip. Based on this information, we built a distance
table for location pairs in discretized grids of 0.003 x 0.003
in latitude and longitude. It turns out that 99.8% of all dis-
tance queries could be accomplished in this table. For the
rest few requests, we used Euclidean distance.

The experiments were run on a single machine with 2.3
GHz Intel Core i7 and a memory of 16 GB 1600 MHz DDRS3.
The algorithm FF, which minimizes the number of required
taxis, ran for 28.334s, while the algorithm MCFF, which also
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Figure 3: Number of assigned trips and taxis in
Algo. 1 in each round, for FF and MCFF.

Table 1: Statistics about taxi assignments from real
data, minimum feasible flow model (FF) and min-
imum cost feasible flow model (MCFF). The best
statistics in each category are in bold.

Statistics Real data | FF | MCFF
Number of taxis 12,366 8,887 | 8,972
Number of trips per taxi 17.4 24.2 23.9
Idle time per taxi (hours) 4.1 34 2.8
Earnings per taxi ($) 252.6 351.5 | 348.1
Profit per taxi ($) 1244 219.0 | 216.1

minimizes the total idle time, ran for 259.753s.

As shown in Fig. 3, FF ended within 5 iterative rounds
and MCFF ended within 6 rounds. About 90% of all trip
assignments were completed in the first round for both mod-
els. This shows that the iterative algorithm is very effective
and efficient in practice.

Average statistics. As shown in Table 1, the assign-
ments given by FF and MCFF only require 8,887 and 8,972
taxis respectively to finish all observed trips, about 28%
fewer than the number of taxis in reality. With fewer taxis,
the efficiency is also higher: the average idle time per taxi
for the 12-hour shift drops from 4.1 hours in real data to 3.4
hours for FF and further down to 2.8 hours for MCFF, with
a reduction of 17.1% and 31.7% respectively. Although the
total effective working time, i.e. the time taking passengers,
is the same for all three assignments, the results indicate
that under more efficient assignments, the system can waste
less time in idling status with fewer taxis.

This higher efficiency also brings more income for drivers:
the earnings per taxi in FF increases by 39.2%, from $252.6
up to $351.5; the earnings per taxi in MCFF increases by
37.8% to $348.1. By taking cost into consideration, we also
calculated the profit of each taxi. The cost of operating a
taxi comes from two main sources: gas consumption and
rent. The average gas price was $3.602 per gallon and the
taxi fuel economy was 29 miles per gallon in 2013 [2], while
the price of renting a taxi for a 12-hour shift was $120 in
2013 [17]. By considering these costs, both FF and MCFF
nearly increased the average profit per taxi by $100.

Histogram of performance statistics. Fig. 4 shows
the histograms of the number of trips, idle time, earnings
and profit in real data and our models. As is shown, in
reality many taxis were idle for around 3 to 4 hours and
most taxis earned less than $500 in a 12-hour shift, whereas
in the assignment of our models, many taxis were idle for
less than 3 hours and many more earned over $500 in a
shift. In particular, the histogram of idle time in real data



90+
[]
§80~
c
o
=70
N
] MCFF
) 4
60 P
504 Real data

0500 07:30 10000 12:30  15:00
Time

Figure 5: Utilization rate (in percentage) of taxis
over the day.

has a shape similar to a normal distribution; however, its
shape is quite skewed towards small values in our models.
This indicates that the number of taxis with long idle time
plummets after optimization.

Utilization rate. With shorter idle time, the utilization
rate of taxis increases. The utilization rate at a given time
T is defined as the number of taxis taking trips at T" divided
by the number of taxis working at 7. A taxi is considered
to be working between the start time of its first trip and the
end time of its last trip. Fig. 5 shows that the utilization
rate during morning peak hours (7:30AM~9:30AM) is about
82% for real data; however, in FF model, the utilization rate
jumps to 88%792%, and it further increases to 91%794%
for MCFF. On the other hand, even during the off-peak
hours from 10AM to 12PM, assignments in our models can
still achieve an utilization rate of 78%~88%, more than 10%
higher than that in real data. We conclude that our models
can effectively utilize taxis and reduce inefficiencies in the
system.

5.1 Hyperparameters

The discretization process in the network flow model is
performed on both time and location. In the previous sec-
tion, we employed 1 minute as the length of time bin and 36
regions for partition of New York City. We now evaluate the
impact of these hyperparameters on our models in terms of
both effectiveness and efficiency.

Time parameter. We experimented with time bin length
from 1 minute to 5 minutes. As more than half of the New
York City taxi trip records have trip start / end time right at
the minute boundary—probably due to the precision of log-
ging devices—we did not experiment with time bins shorter
than 1 minute. Fig. 6 shows the number of taxis required to
finish all trips and the running time for both FF and MCFF
for different time bin lengths. Fig. 6(a) indicates that the
number of required taxis of our models is minimal when the
time bin has a length of 1 or 2 minutes. When the length
of time bin further increases, the model requires more taxis.
The reason is that with coarser time partition, trips close
in time may be deemed infeasible. For example, if the time
bin has a length of 5 minutes, then two trips 1 minute apart
might not be assigned in our model because the rounded-up
ending time of the first trip may be after the rounded-down
start time of the second trip.
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Figure 6: (a) The number of taxis and (b) running
time of FF and M CFF models with different time bin
length for discretization. The number of partitioned
regions is fixed to be 36. The dotted line are the
fitted curves: inverse for FF and inverse-square for

MCFF.
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Figure 7: (a) The number of taxis and (b) running
time of FF and M CFF models with different number
of partitioned regions. The length of time bin is
fixed to be 1 minute. The dotted line are the fitted
curves: linear for both FF and MCFF.

On the other hand, the time complexity of the models is
related with the length of time bins because the number of
nodes in the flow network grows linearly with the number of
time bins. Fig. 6(b) indicates that both models run much
faster with longer time bins. We fitted curves and found out
that FF’s running time inversely correlates with the length
of time bin, while MCFF’s running time inverse-squarely
correlates with the length of time bin. Therefore, it is im-
portant to seek a balance between computation time and
the quality of optimization.

Location parameter. We experimented with different
partitions of New York City: 36, 30, 25, 18 and 10 regions.
The result is presented in Fig. 7. Fig. 7(a) indicates that our
models can generate better trip assignment with finer geo-
graphic granularity, because a finer partition allows more ac-
curate estimation of movement time between regions. How-
ever, the models are not very sensitive with the number of
partitioned regions: with only 18 regions the number of taxis
is 9,493, a 6.9% increase from the case of 36 regions.

Similar to time parameters, the number of nodes in the
flow network grows linearly with the number of partitioned
regions, hence affecting the running time. Fig. 7(b) shows
that the running time is approximately linear with the num-
ber of partitioned regions in location discretization.

5.2 Comparison with path cover model

In Section 3, we introduced a method for taxi trip as-
signment based on minimum path cover [24]. Although this
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Figure 4: Histograms of (a) the number of trips, (b) idle time, (c) earnings, and (d) profit

model and MCFF model.

method can provide the optimal solution, its primary draw-
back is the scalability issue. We implemented the minimum
path cover model for comparison. Recall that in path cover
model, each node represents a taxi trip. An edge from trip
i to trip j exists if and only if it is feasible to start trip j
after finishing trip 7. However, we cannot generate all the
edges since a 12-hour shift contains more than 200, 000 taxi
trips. To reduce the number of edges, we only consider a
trip pair (7, 7) if the start time of trip j is within 5 minutes
of the end time of trip ¢. Even with this short lookahead
time, the size of the generated graph is still huge, as shown
in Table 2. We then employed HopCroft-Karp algorithm
[9] for maximum matching on bipartite graphs to find the
minimum path cover.

Table 2 summarizes the comparison between path cover
model and our network flow model FF. As shown, the graph
size in FF is much smaller than that in path cover model: FF
builds a graph with 12.1% of the number of nodes and 0.5%
of the number of edges compared with that in path cover
model. Smaller graph leads to faster running time: FF only
took 12.2% of the time required by the path cover model.
However, FF generates a valid assignment with 12.5% fewer
taxis than that in path cover model. The reason is that
we only consider trip pairs within 5 minutes for the path
cover model. To obtain the absolutely optimal solution, one
has to overcome the huge barrier of enormous computation
time and memory to consider all trip pairs (around 23 bil-
lion). We thus claim that our network flow model is a very
good compromise between optimization quality and compu-
tational complexity.

6. LEARN FROM EFFICIENT TRIP ASSIGN-

MENTS

As traffic situations from day to day are relatively stable,
we can learn useful insights from the patterns in the efficient
trip assignments given by our models. In many ways, by
comparing taxi movement in reality and in the models, we
are able to spot inefficiencies in current taxi systems. This
information is particularly useful for taxi operators to make
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Table 2: Comparison of the network flow model and
the path cover model

Statistics Network flow (FF) | Path cover [24]
Number of taxis 8,887 10,155
Number of nodes 51,842 429,610
Number of edges 624,067 135,506,976

Running time 28.334s 231.478s

decisions about system improvement. Individual drivers can
also benefit from these findings to arrange their routes more
smartly, waste less idle time, and achieve higher profits.

In this section, all the experiments were conducted on
New York City taxi data from 4AM to 4PM on May 15,
2013. We first show trajectories of randomly sampled taxis
in real data and our models in Fig. 8. Each map contains the
trajectory of one sampled taxi. Trip routes are marked in red
and idle trajectories are marked in green. As shown, in real
data, the taxi tends to search far for its next passenger after
each trip, resulting in lengthy idle time and a large working
area. For instance, after the taxi dropped off a passenger
at LaGuardia Airport, it came back to Manhattan without
taking any passengers. This long idle route is one possible
cause of its low utilization. In contrast, the taxi in FF model
was more efficient in finding its next passenger, and had
a concentrated working area around Midtown Manhattan.
The taxi in MCFF model made even shorter idle trajectories
than that in FF. Interestingly, the taxi in MCFF model also
dropped off a passenger at LaGuardia Airport. However, it
managed to find its next passenger around the airport before
leaving. Inspired by these observations, we investigate (i)
how a taxi looks for its next passenger and (ii) how taxi
drivers choose to pick up passengers in the airport.

Search for the next passenger. Since we have dis-
cretized New York City into regions, we define that a driver
crossed a region to search for his next passenger if his previ-
ous trip ended in a different region from where his next trip
started. Drivers crossing more regions are generally search-
ing farther for their next passenger.
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Fig. 9 compares the number of region crossings for real
data and network flow models. As shown, in network flow
models, drivers make only 60% to 70% of region crossings
compared with real data. This implies that in reality drivers
search farther places for their next trip more often than nec-
essary.

Airport trips. Airports are usually far from business and
residential areas in a city. For example, the JFK Airport is
18 miles from Manhattan, where more than 92% of yellow
taxi trips happen. On the other hand, airport trips by taxis
are popular: 2.2% of all yellow taxi trips start from or end at
JFK. Therefore, after a taxi driver drops off a passenger at
the JFK Airport, he faces a choice: should he wait and pick
up the next passenger directly from the airport, or should
he leave without taking any passengers?

We calculated the percentage of taxis carrying passengers
from JFK following a trip ending there. The results show
that in real data, only 49.2% of taxis sending passengers
to JFK come back with new passengers from the airport.
Nevertheless, the ratio jumps to 65.6% and 63.8% for taxis
assigned by network flow models FF and MCFF, respec-

tively. This result is interesting because we did not train
the models to have taxis wait for passengers at the airport.
By optimizing the systemic efficiency, the models automat-
ically captured this property in its assignments.

To summarize, from the patterns of trip assignments given
by our models, we learn useful insights in improving the
efficiency of a taxi system: (i) drivers should search more
locally for their next passenger, and (ii) when a taxi finishes
a trip in an airport, it would be better for the taxi to wait
for its next passenger in that area.

7. CONCLUSION

In this paper, we aim to reduce inefficiencies embedded
within taxi systems. We develop a novel model to assign
trips to taxis over a long time period, e.g. a shift of 12
hours. The model is based on network flows and it can min-
imize the number of taxis required to finish all observed trips
while reducing the incurred idle time. Compared with previ-
ous work, our model is much more scalable and can generate
detailed assignment plans for hundreds of thousands of trips.
Experiments on New York City taxi data validate the effec-
tiveness of our model: (i) only 72% of the current yellow
taxi fleet are required to finish all trips, (ii) the average idle
time per taxi drops by 32%. Furthermore, we learn use-
ful insights from patterns in the assignment plan given by
network flow models. For future work, we plan to combine
our model with taxi dispatching strategies to achieve more
effective dispatching mechanisms.
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