Small Ramsey Numbers

Exposition by William Gasarch

June 13, 2024

KID KAP KID KID KID DA GA

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

KORKA SERVER ORA

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We define graphs and complete graphs and state this theorem in those terms.

KORKA SERVER ORA

Def A Graph $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn.

KO KA KO KE KA E KA SA KA KA KA KA KA A

Def A Graph $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

KID KAP KID KID KID DA GA

Def A Graph $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

Def A Graph $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

Def A Graph $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

Def A Graph $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

Def A Graph $G = (V, E)$ is a set V and a set of unordered pairs from V, called edges. These can easily be drawn. Example

Def The Complete Graph on n Vertices, denoted K_n , is $V = \{1, \ldots, n\}$ and E is all possible edges.

KID KAP KID KID KID DA GA

Def The Complete Graph on n Vertices, denoted K_n , is $V = \{1, \ldots, n\}$ and E is all possible edges. Example

KID KAP KID KID KID DA GA

Def The Complete Graph on n Vertices, denoted K_n , is $V = \{1, \ldots, n\}$ and E is all possible edges. Example

KORK ERRY ABY CHANNING

This graph is K_4 .

Def The **Complete Graph on** n **Vertices**, denoted K_n , is $V = \{1, \ldots, n\}$ and E is all possible edges. Example

KORK EXTERNE DRAM

This graph is K_4 . **Note** Every vertex of K_n has degree $n-1$.

Below is standard notation which you may or may not have seen.

KID KAR KE KE KE YA GA

Below is standard notation which you may or may not have seen. Thats a tautology!

K ロ X x 4D X X B X X B X X D X O Q O

Below is standard notation which you may or may not have seen. Thats a tautology!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Notation

Below is standard notation which you may or may not have seen. Thats a tautology!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Notation

 \blacktriangleright \exists means there exists

Below is standard notation which you may or may not have seen. Thats a tautology!

KID KAP KID KID KID DA GA

Notation

- \blacktriangleright \exists means there exists
- $\blacktriangleright \forall$ means for all

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

KID KIN KE KAEK LE I DAG

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

1. U is a **Clique** if all of the verts in U have an edge between them.

KORK ERKER ADAM ADA

2. If $|U| = k$ then we may call U a k-clique.

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

- 1. U is a **Clique** if all of the verts in U have an edge between them.
- 2. If $|U| = k$ then we may call U a k-clique.
- 3. If the edges of G are 2-colored with RED and BLUE, and all of the edges between verts of U are **RED** then we call U a Red Clique. Similar for Blue.

KORKA SERVER ORA

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

- 1. U is a **Clique** if all of the verts in U have an edge between them.
- 2. If $|U| = k$ then we may call U a k-clique.
- 3. If the edges of G are 2-colored with RED and BLUE, and all of the edges between verts of U are **RED** then we call U a Red Clique. Similar for Blue.

KORKA SERVER ORA

4. If I formed a rock band it would be called

Def Let $G = (V, E)$ be a graph. Let $U \subseteq V$.

- 1. U is a **Clique** if all of the verts in U have an edge between them.
- 2. If $|U| = k$ then we may call U a k-clique.
- 3. If the edges of G are 2-colored with RED and BLUE, and all of the edges between verts of U are **RED** then we call U a Red Clique. Similar for Blue.

KORKA SERVER ORA

4. If I formed a rock band it would be called Bill Gasarch and the Red Cliques!

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

イロト 4 御 ト 4 差 ト 4 差 ト - 差 - 約 9 Q Q

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

We could state that as

 \forall 2-coloring of the edges of K₆ ∃ a monochromatic K₃ (triangle).

KORK ERKER ADAM ADA

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

We could state that as

 \forall 2-coloring of the edges of $K_6 \exists$ a monochromatic K_3 (triangle).

KORKA SERVER ORA

We could state that as \forall 2-coloring of the edges of K₆ \exists a monochromatic 3-clique (triangle).

For every 2-coloring of the edges of K_6 there is a monochromatic K_3 (triangle).

We could state that as

 \forall 2-coloring of the edges of $K_6 \exists$ a monochromatic K_3 (triangle).

KORKA SERVER ORA

We could state that as \forall 2-coloring of the edges of K₆ \exists a monochromatic 3-clique (triangle).

We prove this in the next few slides.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

イロト イ御 トイミト イミト ニミー りんぺ

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Given a 2-coloring of the edges of K_6 we look at vertex 1. 2) (3) (4) (5) (6 1

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

There are 5 edges coming out of vertex 1.

Given a 2-coloring of the edges of K_6 we look at vertex 1. 2) (3) (4) (5) (6 1

KORK ERRY ABY CHANNING

There are 5 edges coming out of vertex 1. They are 2 colored.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

KORK EXTERNE DRAM

There are 5 edges coming out of vertex 1.

They are 2 colored.

∃ 3 edges from vertex 1 that are the same color.

Given a 2-coloring of the edges of K_6 we look at vertex 1.

There are 5 edges coming out of vertex 1.

They are 2 colored.

∃ 3 edges from vertex 1 that are the same color.

We can assume $(1, 2)$, $(1, 3)$, $(1, 4)$ are all **RED**.

(1,2), (1,3), (1,4) are RED

イロト イ母 トイミト イミト ニヨー つんぺ
We Look Just at Vertices 1,2,3,4

イロト イ母 トイミト イミト ニヨー つんぺ

We Look Just at Vertices 1,2,3,4

If $(2, 3)$ is **RED** then get **RED** Triangle. So assume $(2, 3)$ is **BLUE**.

KID KAP KID KID KID DA GA

(2,3) is BLUE

KOKK@KKEKKEK E 1990

If (3,4) is RED then get RED triangle. So assume (3,4) is BLUE.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

(2,3) and (3,4) are BLUE

KOKK@KKEKKEK E 1990

(2,3) and (3,4) are BLUE

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q ^

(2,3) and (3,4) are BLUE

If (2,4) is **RED** then get **RED** triangle. So assume (2,4) is **BLUE**.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

(2,4) is BLUE

KOKK@KKEKKEK E 1990

Kロトメ倒下 K ミトメミト ニミーのR C

Note that there is a **BLUE** triangle with verts 2, 3, 4. Done!

イロト イ御 トイミト イミト ニミー りんぺ

What if we color edges of K_5 ?

イロト イ御 トイミト イミト ニミー りんぺ

What if we color edges of K_5 ?

KORK STRAIN A STRAIN A COLOR

This graph is not arbitrary. $SQ_5 = \{x^2 \pmod{5} : 0 \le x \le 4\} = \{0, 1, 4\}.$ If $i - j \in SQ_5$ then **RED**. If $i - j \notin SQ_5$ then **BLUE**.

Asymmetric Ramsey Numbers

Definition $R(a, b)$ is least *n* such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

KORKARA KERKER DAGA

- 1. $R(a, b) = R(b, a)$.
- 2. $R(2, b) = b$
- 3. $R(a, 2) = a$

Asymmetric Ramsey Numbers

Definition $R(a, b)$ is least *n* such that for all 2-colorings of K_n there is **either** a red K_a or a blue K_b .

KORKARA KERKER DAGA

- 1. $R(a, b) = R(b, a)$.
- 2. $R(2, b) = b$
- 3. $R(a, 2) = a$

Proof left to the reader, but its easy.

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$

Theorem
$$
R(a, b) \le R(a - 1, b) + R(a, b - 1)
$$

Let $n = R(a - 1, b) + R(a, b - 1)$.

Kロトメ部トメミトメミト ミニのQC

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let $n = R(a-1, b) + R(a, b-1)$. Assume you have a coloring of the edges of K_n .

KORK STRAIN A STRAIN A COLOR

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let $n = R(a-1, b) + R(a, b-1)$. Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides.

KORK STRAIN A STRAIN A COLOR

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let $n = R(a-1, b) + R(a, b-1)$. Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

KORKARA KERKER DAGA

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let $n = R(a-1, b) + R(a, b-1)$. Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

KORKARA KERKER DAGA

1. There is a vertex with large Red Deg.

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let $n = R(a-1, b) + R(a, b-1)$. Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

- 1. There is a vertex with large **Red** Deg.
- 2. There is a vertex with large $Blue$ Deg.

KORKARA KERKER DAGA

Theorem $R(a, b) \le R(a - 1, b) + R(a, b - 1)$ Let $n = R(a-1, b) + R(a, b-1)$. Assume you have a coloring of the edges of K_n . The proof has three cases on the next three slides. They will be

- 1. There is a vertex with large **Red** Deg.
- 2. There is a vertex with large **Blue** Deg.
- 3. All verts have small Red degree and small **Blue** degree.

KORKARA KERKER DAGA

Case 1 (∃v)[deg_R(v) $\geq R(a-1, b)$].

Case 1
$$
(\exists v)[\deg_R(v) \geq R(a-1, b)].
$$

Let $m = R(a-1, b).$

イロトメタトメミトメミト ミニの女々

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Case 1.1 There is a Red K_{a-1} in $\{1, \ldots, m\}$. This set together with vertex v is a **Red** K_a .

KORK STRAIN A STRAIN A COLOR

Case 1.1 There is a Red K_{a-1} in $\{1,\ldots,m\}$. This set together with vertex v is a **Red** K_a .

KORK STRAIN A STRAIN A COLOR

Case 1.2 There is a **Blue** K_b in $\{1, \ldots, m\}$. DONE.

Case 1
$$
(\exists v)[\deg_R(v) \ge R(a-1, b)].
$$

Let $m = R(a-1, b).$

Case 1.1 There is a Red K_{a-1} in $\{1,\ldots,m\}$. This set together with vertex v is a **Red** K_a .

KORKARA KERKER DAGA

Case 1.2 There is a **Blue** K_b in $\{1, \ldots, m\}$. DONE. **Case 1.3** Neither. **Impossile** since $m = R(a-1, b)$.

Case 2 (∃v)[deg_B(v) ≥ R(a, b – 1)].

Kロトメ部トメミトメミト ミニのQC

Case 2
$$
(\exists v)[\deg_B(v) \ge R(a, b-1)].
$$

Let $m = R(a, b-1)$.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

KORK ERRY ABY CHANNING

Case 2.1 There is a **Red** K_a in $\{1, \ldots, m\}$. DONE **Case 2.2** There is a **Blue** K_{b-1} in $\{1, \ldots, m\}$. This set together with vertex v is a **Blue** K_b .

KORK STRAIN A STRAIN A COLOR

Case 2 (∃v)[deg^B (v) ≥ R(a, b − 1)]. Let m = R(a, b − 1). 1 2 3 4 m v . . . Case 2.1 There is a Red K^a in {1, . . . , m}. DONE Case 2.2 There is a Blue Kb−¹ in {1, . . . , m}. This set together with vertex v is a Blue Kb. Case 2.3 Neither. Impossible since m = R(a, b − 1).

イロト イ御 トイミト イミト ニミー りんぺ

All Verts: Small Red Deg and Small Blue Deg

Case 3 Negate Case 1 and Case 2:

KID KAP KID KID KID DA GA

Case 3 Negate Case 1 and Case 2: 1. $(\forall v)[\deg_R(v) \leq R(a-1,b)-1]$ and

KORKA SERVER ORA

Case 3 Negate Case 1 and Case 2: 1. $(\forall v)[\deg_R(v) \leq R(a-1,b)-1]$ and 2. $(\forall v)[\deg_B(v) \leq R(a, b-1) - 1]$

Case 3 Negate Case 1 and Case 2:
\n1.
$$
(\forall v)[\deg_R(v) \le R(a-1, b)-1]
$$
 and
\n2. $(\forall v)[\deg_B(v) \le R(a, b-1)-1]$
\nHence

$$
(\forall v)[\deg(v) \leq R(a-1,b) + R(a,b-1) - 2 = n-2]
$$

K ロ X x 4D X X B X X B X X D X O Q O

Case 3 Negate Case 1 and Case 2:
\n1.
$$
(\forall v)[\deg_R(v) \leq R(a-1, b)-1]
$$
 and
\n2. $(\forall v)[\deg_B(v) \leq R(a, b-1)-1]$
\nHence

$$
(\forall v)[\deg(v) \leq R(a-1,b) + R(a,b-1) - 2 = n-2]
$$

KO K K @ K K B K K B K Y B K Y A Q Q

Not possible since every vertex of K_n has degree $n-1$.

Lets Compute Bounds on $R(a, b)$

$$
\blacktriangleright R(3,3) \leq R(2,3) + R(3,2) \leq 3 + 3 = 6
$$

- $R(3, 4) < R(2, 4) + R(3, 3) < 4 + 6 = 10$
- $R(3, 5) < R(2, 5) + R(3, 4) < 5 + 10 = 15$
- \blacktriangleright R(3, 6) $\lt R(2, 6) + R(3, 5) \lt 6 + 15 = 21$
- \blacktriangleright R(3, 7) $\lt R(2, 7) + R(3, 6) \lt 7 + 21 = 28$
- \blacktriangleright R(4, 4) $\lt R(3, 4) + R(4, 3) \lt 10 + 10 = 20$
- $R(4, 5) < R(3, 5) + R(4, 4) < 15 + 20 = 35$
- $R(5, 5) < R(4, 5) + R(5, 4) < 35 + 35 = 70.$

KORK ERKER ADAM ADA

K ロ → K @ ▶ K 할 ▶ K 할 ▶ - 할 → 9 Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Can we make some improvements to this?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Can we make some improvements to this? YES!

イロト イ御 トイミト イミト ニミー りんぺ

Can we make some improvements to this? YES! We need a theorem.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Can we make some improvements to this? YES! We need a theorem. We first do an example.

Thm There is NO graph on 9 verts, with every vertex of deg 3.

イロト イ御 トイミト イミト ニミー りんぺ

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

KID KAP KID KID KID DA GA

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

KORK ERKER ADAM ADA

Every vertex contributes 3 to the number of edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges. Every vertex contributes 3 to the number of edges. So there are $9 \times 3 = 27$ edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges. Every vertex contributes 3 to the number of edges. So there are $9 \times 3 = 27$ edges. Oh. We overcounted.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges. Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice. **Oh My!** That means there are $\frac{27}{2}$ edges.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice.

KORKA SERVER ORA

Oh My! That means there are $\frac{27}{2}$ edges. Contradiction.

Thm There is NO graph on 9 verts, with every vertex of deg 3. We count the number of edges.

Every vertex contributes 3 to the number of edges.

So there are $9 \times 3 = 27$ edges.

Oh. We overcounted. We counted every edge exactly twice. **Oh My!** That means there are $\frac{27}{2}$ edges. Contradiction. We generalize this on the next slide.

Lemma Let $G = (V, E)$ be a graph.

KID KAR KE KE KE YA GA

Lemma Let $G = (V, E)$ be a graph.

$$
V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}
$$

$$
V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}
$$

KID KAR KE KE KE YA GA

Lemma Let $G = (V, E)$ be a graph.

$$
V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}
$$

$$
V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}
$$

KID KAR KE KE KE YA GA

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

Lemma Let $G = (V, E)$ be a graph.

$$
V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}
$$

$$
V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}
$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
$$

KID KAR KE KE KE YA GA

Lemma Let $G = (V, E)$ be a graph.

$$
V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}
$$

$$
V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}
$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
$$

$$
\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.
$$

KID KAR KE KE KE YA GA

Lemma Let $G = (V, E)$ be a graph.

$$
V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}
$$

$$
V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}
$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
$$

$$
\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.
$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

KO KA KO KE KA E KA SA KA KA KA KA KA A

Lemma Let $G = (V, E)$ be a graph.

$$
V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}
$$

$$
V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}
$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
$$

$$
\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.
$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$. **Handshake Lemma** If all pairs of people in a room shake hands, even number of shakes. **KORKAR KERKER SAGA**

Lemma Let $G = (V, E)$ be a graph.

$$
V_{\text{even}} = \{v : \deg(v) \equiv 0 \pmod{2}\}
$$

$$
V_{\text{odd}} = \{v : \deg(v) \equiv 1 \pmod{2}\}
$$

Then $|V_{\text{odd}}| \equiv 0 \pmod{2}$.

$$
\sum_{v \in V_{\text{even}}} \deg(v) + \sum_{v \in V_{\text{odd}}} \deg(v) = \sum_{v \in V} \deg(v) = 2|E| \equiv 0 \pmod{2}.
$$

$$
\sum_{v \in V_{\text{odd}}} \deg(v) \equiv 0 \pmod{2}.
$$

Sum of odds $\equiv 0 \pmod{2}$. Must have even numb of them. So $|V_{\text{odd}}| \equiv 0 \pmod{2}$. **Handshake Lemma** If all pairs of people in a room shake hands, even number of shakes. (Pre-COVID when [peo](#page-97-0)[ple](#page-99-0)[s](#page-91-0)[h](#page-98-0)[o](#page-99-0)[ok](#page-0-0) [h](#page-148-0)[an](#page-0-0)[ds.](#page-148-0)[\)](#page-0-0)
PRESERVED AT A REAL EXAMPLE AND REAL EXAMP

Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.

KID KAP KID KID KID DA GA

Corollary of Handshake Lemma

Impossible to have a graph on an odd number of verts where every vertex is of odd degree.

KO KA KO KE KA E KA SA KA KA KA KA KA A

And NOW to our improvements on small Ramsey numbers.

Assume we have a 2-coloring of the edges of $K₉$.

Assume we have a 2-coloring of the edges of $K₉$. **Case 1** (∃v)[deg_R(v) \geq 4].

KORK STRATER STRACK

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

$R(3, 4) < 9$ Case 1

1) If any of $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$ are **RED**, have RED K_3 .

KORK ERRY ABY CHANNING

$R(3, 4) < 9$ Case 1

1) If any of $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$ are **RED**, have RED K_3 .

2) If all of $\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}$ are **BLUE**, have **BLUE** K_4 .

KORK EXTERNE DRAM

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

(1) There is a **RED** K_3 in $\{1, 2, 3, 4, 5, 6\}$. Have **RED** K_3 .

KORK ERRY ABY CHANNING

(2) There is a **BLUE** K_3 . With v get a **BLUE** K_4 .

Recall

KOKK@KKEKKEK E 1990

Recall **Case 1** (∃v)[deg_R(v) \geq 4].

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Recall **Case 1** (∃v)[deg_R(v) \geq 4]. **Case 2** (∃v)[deg_R(v) \leq 2].

KID KAP KID KID KID DA GA

Recall **Case 1** (∃v)[deg_R(v) \geq 4]. **Case 2** ($\exists v$)[deg_R(v) \leq 2]. Negation of Case 1 and Case 2 yields

KORK ERKER ADAM ADA

Recall **Case 1** (∃v)[deg_R(v) \geq 4]. **Case 2** ($\exists v$)[deg_R(v) \leq 2]. Negation of Case 1 and Case 2 yields **Case 3** ($\forall v$)[deg_R(v) = 3].

KORK ERKER ADAM ADA

Recall

Case 1 ($\exists v$)[deg_R(v) ≥ 4]. **Case 2** ($\exists v$)[deg_R(v) \leq 2]. Negation of Case 1 and Case 2 yields **Case 3** ($\forall v$)[deg_R(v) = 3].

SO the **RED** graph is a graph on 9 verts with all verts of degree 3.

KORK EXTERNE DRAM

Recall **Case 1** ($\exists v$)[deg_R(v) \geq 4]. **Case 2** ($\exists v$)[deg_R(v) \leq 2]. Negation of Case 1 and Case 2 yields **Case 3** ($\forall v$)[deg_R(v) = 3]. SO the **RED** graph is a graph on 9 verts with all verts of degree 3.

KORKA SERVER ORA

This is impossible!

What was it about $R(3, 4)$ that made that trick work?

K ロ K K B K K R K R H X B K Y Q Q Q Q

What was it about $R(3, 4)$ that made that trick work? We originally had

$$
R(3,4) \leq R(2,4) + R(3,3) \leq 4 + 6 \leq 10
$$

イロト イ団 トイミト イミト ニミー つんぴ

What was it about $R(3, 4)$ that made that trick work? We originally had

 $R(3, 4) \leq R(2, 4) + R(3, 3) \leq 4 + 6 \leq 10$

KO KA KO KE KA E KA SA KA KA KA KA KA A

Key: $R(2, 4)$ and $R(3, 3)$ were both **even!**

What was it about $R(3, 4)$ that made that trick work? We originally had

$$
R(3,4) \leq R(2,4) + R(3,3) \leq 4 + 6 \leq 10
$$

KID KAP KID KID KID DA GA

Key: $R(2, 4)$ and $R(3, 3)$ were both **even! Theorem** $R(a, b) \leq$

1.
$$
R(a, b-1) + R(a-1, b)
$$
 always.

2.
$$
R(a, b-1) + R(a-1, b) - 1
$$
 if
\n $R(a, b-1) \equiv R(a-1, b) \equiv 0 \pmod{2}$

What was it about $R(3, 4)$ that made that trick work? We originally had

$$
R(3,4) \leq R(2,4) + R(3,3) \leq 4 + 6 \leq 10
$$

K ロ ▶ K 리 ▶ K 코 ▶ K 코 ▶ │ 코 │ ◆ 9 Q ◇

Key: $R(2, 4)$ and $R(3, 3)$ were both **even! Theorem** $R(a, b) \leq$

1.
$$
R(a, b-1) + R(a-1, b)
$$
 always.

2.
$$
R(a, b-1) + R(a-1, b) - 1
$$
 if
\n $R(a, b-1) \equiv R(a-1, b) \equiv 0 \pmod{2}$

Proof left to the Reader.

Some Better Upper Bounds

$$
\blacktriangleright R(3,3) \leq R(2,3) + R(3,2) \leq 3 + 3 = 6.
$$

$$
\blacktriangleright R(3,4) \leq R(2,4) + R(3,3) \leq 4 + 6 - 1 = 9.
$$

 $R(3, 5) < R(2, 5) + R(3, 4) < 5 + 9 = 14.$

$$
\blacktriangleright R(3,6) \leq R(2,6) + R(3,5) \leq 6 + 14 - 1 = 19.
$$

- \blacktriangleright R(3, 7) $\lt R(2, 7) + R(3, 6) \lt 7 + 19 = 26$
- $R(4, 4) < R(3, 4) + R(4, 3) < 9 + 9 = 18.$
- $R(4, 5) < R(3, 5) + R(4, 4) < 14 + 18 1 = 31.$

KORKA SERVER ORA

 $R(5, 5) < R(4, 5) + R(5, 4) = 62.$

Are these tight?

$R(3, 3) \ge 6$: Need coloring of K_5 w/o mono K_3 .

KID KIN KE KAEK LE I DAG

 $R(3, 3) \ge 6$: Need coloring of K_5 w/o mono K_3 . Vertices are $\{0, 1, 2, 3, 4\}$.

KID KAR KE KE KE YA GA

$R(3, 3) \ge 6$

 $R(3, 3) \ge 6$: Need coloring of K_5 w/o mono K_3 .

Vertices are $\{0, 1, 2, 3, 4\}$.

 $COL(a, b) = RED$ if $a - b \equiv SQ$ (mod 5), **BLUE** OW.

KID KAR KE KE KE YA GA

$R(3, 3) > 6$

 $R(3, 3) \ge 6$: Need coloring of K_5 w/o mono K_3 .

Vertices are $\{0, 1, 2, 3, 4\}$.

 $COL(a, b) = RED$ if $a - b \equiv SQ$ (mod 5), **BLUE** OW.

Note $-1 = 2^2$ (mod 5). Hence $a - b \in SQ$ iff $b - a \in SQ$. So the coloring is well defined.

KORKA SERVER ORA

$R(3, 3) > 6$

 $COL(a, b) = RED$ if $a - b \equiv SQ$ (mod 5), **BLUE** OW.

- \triangleright Squares mod 5: 1,4.
- If there is a RED triangle then $a b$, $b c$, $c a$ all SQ's. SUM is 0. So

 $x^2+y^2+z^2\equiv 0\pmod{5}$ Can show impossible

KORKAR KERKER DRA

If there is a **BLUE** triangle then $a - b$, $b - c$, $c - a$ all non-SQ's. Product of nonsq's is a sq. So $2(a - b)$, $2(b - c)$, $2(c - a)$ all squares. SUM to zero- same proof.

UPSHOT $R(3, 3) = 6$ and the coloring used math of interest!

$R(4, 4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

$R(4, 4) = 18$

 $R(4, 4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

Use $COL(a, b) = RED$ if $a - b \equiv SQ$ (mod 17), **BLUE** OW.

KID KAR KE KE KE YA GA

$R(4, 4) = 18$

 $R(4, 4) \ge 18$: Need coloring of K_{17} w/o mono K_4 .

Vertices are $\{0, \ldots, 16\}$.

Use $COL(a, b) = RED$ if $a - b \equiv SQ$ (mod 17), **BLUE** OW.

Same idea as above for K_5 , but more cases. **UPSHOT** $R(4, 4) = 18$ and the coloring used math of interest!

KORKAR KERKER DRA

$R(3, 5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

KID KIN KE KAEK LE I DAG

 $R(3, 5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = RED$ if $a - b \equiv CUBE$ (mod 14), **BLUE** OW.

KID KAR KE KE KE YA GA

 $R(3, 5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = RED$ if $a - b \equiv CUBE$ (mod 14), **BLUE** OW.

KID KAR KE KE KE YA GA

Same idea as above for K_5 , but more cases.

 $R(3, 5) \ge 14$: Need coloring of K_{13} w/o **RED** K_3 or **BLUE** K_5 .

Vertices are $\{0, \ldots, 13\}$.

Use $COL(a, b) = RED$ if $a - b \equiv CUBE$ (mod 14), **BLUE** OW.

Same idea as above for K_5 , but more cases.

UPSHOT $R(3, 5) = 14$ and the coloring used math of interest!

KOD KAR KED KED E VOOR

This is a subgraph of the $R(3,5)$ graph

 $R(3, 4) = 9$

This is a subgraph of the $R(3,5)$ graph

UPSHOT $R(3, 4) = 9$ and the coloring used math of interest!

KID KAR KE KE KE YA GA

K □ ▶ K @ ▶ K 할 > K 할 > | 할 | X 9 Q Q

Good news $R(4, 5) = 25$.

Good news $R(4, 5) = 25$.

Bad news

KID KAR KE KE KE YA GA

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Good news
$$
R(4, 5) = 25
$$
.

Bad news THATS IT.

Good news
$$
R(4, 5) = 25
$$
.

Bad news THATS IT. No other $R(a, b)$ are known using NICE methods.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Summary of Bounds

K ロ K K B K K B K X B X X A X X B X X A X C

Summary of Bounds

 $R(5, 5)$: 43 $\leq R(5, 5) \leq 49$. So far not mathematically interesting.

KID KAP KID KID KID DA GA

Moral of the Story

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Moral of the Story

1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

KORKA SERVER ORA
Moral of the Story

- 1. At first there seemed to be **interesting mathematics** with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.
- 2. Seemed like a nice **Math** problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.

KORKAR KERKER SAGA

1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6, 6)$. In that case, he believes, we should attempt to destroy the aliens.

KORKAR KERKER SAGA

- 1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6, 6)$. In that case, he believes, we should attempt to destroy the aliens.
- 2. I asked Stanislaw Radziszowski, the worlds leading authority on Small Ramsey Numbers, what $R(5, 5)$ is and when we would know it. He said

KORKAR KERKER DRA

- 1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6, 6)$. In that case, he believes, we should attempt to destroy the aliens.
- 2. I asked Stanislaw Radziszowski, the worlds leading authority on Small Ramsey Numbers, what $R(5, 5)$ is and when we would know it. He said $R(5) = 43$, and

KORKAR KERKER DRA

- 1. (Quote from Joel Spencer): Erdos asks us to imagine an alien force, vastly more powerful than us, landing on Earth and demanding the value of $R(5,5)$ or they will destroy our planet. In that case, he claims, we should marshal all our computers and all our mathematicians and attempt to find the value. But suppose, instead, that they ask for $R(6, 6)$. In that case, he believes, we should attempt to destroy the aliens.
- 2. I asked Stanislaw Radziszowski, the worlds leading authority on Small Ramsey Numbers, what $R(5, 5)$ is and when we would know it. He said $R(5) = 43$, and we will **never** know it.

KORKAR KERKER DRA