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Welcome to the Book Reviews Column. We hope to bring you at least two reviews of books every
month. In this column six books are reviewed.

1. The following three books are all reviewed together by William Gasarch. Descriptive Com-
plexity Theory by Neal Immerman, Finite Model Theory by Heinz-Dieter Ebbinhaus
and Jorg Flum, and Descriptive Complexity and Finite Models (Proceedings from
a DIMACS workshop) edited by Neil Immerman and Phokion Kolaitis. These books deal
with how complicated it is to describe a set in terms of how many quantifiers you need and
what symbols are needed in the language. There are many connections to complexity theory
in that virtually all descriptive classes are equivalent to the more standard complexity classes.

2. Theory of Computing: A Gentle Introduction by Efim Kinber and Carl Smith, reviewed
by Judy Goldsmith. This book is a textbook aimed at undergraduates who would not be
happy with the mathematical rigour of the automata books of my youth, such as Hopcroft
and Ullman’s book.

3. Microsurveys in Discrete Probability (Proceedings from a DIMACS workshop)
edited by David Aldous and James Propp is reviewed by Hassan Masum. This is a collection
of articles (not all surveys) in the area of probability.

4. Term Rewriting and all that by Franz Baader and Tobias Nipkow, reviewed by Paliath
Narendran. This is intended as both a text and a reference book on term rewriting.

I am looking for reviewers for the following books
If you want a FREE copy of one of these books in exchange for a review, then email me at
gasarch@cs.umd.edu. If you want more information about any of these books, again, feel free to
email me. Reviewing a book can be a great way to learn a field. I have gotten research ideas that
resulted in papers from books I have reviewed.

1. Parameterized Complexiy by Downey and Fellows.

2. A=B by Petkovsek, Wilf, and Zeilberger. Since the title is not informative, I'll quote from
the ad for the book: “This book shows how several recently developed computer algorithms
can master the difficult job of simplifying complex summations and if there is no such simpli-
fication they will prove this to be the case. The authors present the underlying mathematical
theory of these methods, the principle theorms and proofs, and include a package of computer
programs that can do these tasks.”

3. Proof, Language, and Interaction (Essay in honor of Robin Millner) Edited by Gordon
Plotkin, Colin Stirling, and Mads Tofte.

4. Control Flow Semantics by Jaco de Bakker and Erik de Vink
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5. Complexity and Real Computation by Blum, Cucker, Shub, and Smale.
6. The Clausal Theory of Types by Wolfram.
7. Model Checking by Clarke, Grumberg, and Peled.

8. Data Refinement: Model-Orientd Proof Methods and their Comparisons by de Roever and
Engelhardt.

9. Communication and Mobile systems: the w-calculus by Milner.

10. Automatic Algorithm Recognition and Replacement: A new approach to program optimization
by Metzger and Wen.

The following are DIMACS workshop books which are collections of articles on the topic in the
title.

1. Randomization Methods in Algorithm Design.

2. Multichannel Optical Networks: Theory and Practice.

3. Networks in Distributed Computing.

4. Advances in Switching Networks.

5. External Memory Algorithms.

6. Mobile Networks and Computing.

7. Robust Communication Networks: Interconnection and Survivability.

Reviews 2 of THREE books on Descriptive Complexity Theory
Descriptive Complexity Theory
by Neil Immerman
Published by Springer 1998, 268 pages
Hardcover, $55.00
ISBN number 0-387-98600-6

AND

Finite Model Theory
by Heinz-Dieter Ebbinghaus and Jorg Flum
Published by Springer-Verlag
Perspectives in Mathematical Logic series
Hardcover, $119.00
ISBN number 3540149X

AND

Descriptive Complexity and Finite Models
Edited by Neil Immerman and Phokion Kolaitis
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Published by AMS 1997, 268 pages
DIMACS series in Discrete Mathematics and Theoretical Computer Science
Hardcover, $55.00
ISBN number 0-8218-0517-7

Reviews by

William Gasarch
University of Maryland At College Park
gasarch@cs.umd.edu

1 Overview

The Complexity of a Problem usually means how much time or space is needed to solve it; how-
ever, there are other measures of complexity. The three books under review deal with Descriptive
Complezity— how hard is it to describe the problem. For example, the set of graphs G = (V, E)
that are not connected can be described as NOT-CONN =

{G | BACV)FzeV)TyeV)xe ANy ¢ AN (Yu)(Vv)lu € AN E(u,v) — v € A]]}.

Note that this description uses one existential second order quantifier and several first order quan-
tifiers. Is there a simpler description? This question needs refinment. A description is first or-
der (henceforth FO) if all the quantifiers range over V. A description is second order monadic
(henceforth SO(monadic)) if the quantifiers range over V' or subsets of V. We showed above that
NOT-CONN € SO(monadic). The following questions arise.

1. Is NOT-CONN € FO? (No.)

2. What is the weakest descriptive class for NOT-CONN. (The above shows that NOT-CONN
can be described with one existential second order monadic quantifier, the rest first order
quantifiers, and no additional numeric relations. This is essentially best possible.)

3. How can we prove results about non-expressability? (See below.)

4. Why do we care? (See below.)

1.1 Non-expressibility

Non-expressibility results are proven using Ehrenfeucht-Fraissé games (henceforth E-F games). The
E-F game with m moves on graphs G and H is played as follows.

1. SPOILER puts a pebble a; (b1) on a vertex of G (H).
2. DUPLICATOR put a pebble by (a1) on a vertex of H (G).
3. Repeat the above two steps m — 1 times.

4. If the subgraph of G induced by {ai,...,an} is isomorphic to the subgraph of H induced
by {b1,..., by} via an isomorphism that maps a; to b; then DUPLICATOR wins. Otherwise
SPOILER wins.



One can prove that if DUPLICATOR can win the m-move E-F game on G and H then no
m~quantifier first order formula can distinguish G from H. Hence if, for all m, there exists G and
H such that G is connected, H is not connected, and DUPLICATOR wins then neither CONN nor
NOT-CONN is in FO. This is indeed the case.

Variants of E-F games exist to prove properties about second order languages, languages with
limits on the number of variables, and languages with other operations.

1.2 Why do we care?

There are two main reasons to care about descriptive complexity. Firstly, and somewhat underated,
there is curiosity. It seemslike NOT-CONN ¢ FO but one is curious to find out. Secondly, the more
cited reason, is the connection between descriptive complexity and well known classes. Fagin [2]
showed that NP is equivalent to a descriptive class, and since then virtually every complexity class
has an exact characterization as a descriptive class. For example, (1) NP is equal to (3)SO which
is the set of languages that can be described with one second order existential quantifier, and (2)
P is FO[LF P] which means FO appended with a second order function that can be obtained as a
least fixed point of an operator.

A plausible attack on P vs. NP is to find some set in NP and show by E-F games that it is
not in FO[LFP], and hence not in P. This plan of attack is plausible for any classes that have
exact descriptive complexities, which is most classes. As of now no separations have been obtained
this way; however, there do not seem to be any mathematical obstacles such as relativization.
Ironically, there has been a collapse of classes proven by thinking about descriptive complexity:
NSPACE(S(n)) is closed under complementation. This was proven independently by Immerman [3]
and Szelepcsényi [8]. Immerman proved it while trying to determine if two descriptive classes were
the same. Szelepcsényi proved it while looking at inductive counting arguments. The proofs are
essentially the same and can be understood without knowing descriptive complexity theory.

2 Review of Immerman’s book Descriptive Complexity

Neil Immerman has been one of the leaders in descriptive complexity theory since 1979; hence, he
is ideally suited to write a text in the area. His book starts from the beginning and assumes the
reader to be mathematically mature but ignorant.

Chapters 1 and 2 are elementary. They cover the basics and clarify some of the implicit as-
sumptions about the languages used throughout the book.

Chapters 3,4,5,7, and 10 prove that many of the usual complexity classes are exactly descriptive
classes. The following classes, and others, are equivalent to descriptive classes: CRCW][O(1)]
(concurrent read, concurrent write, poly number of processors, constant time), P, NP, PSPACE.
The descriptive classes these are equivalent to are, for the most part, natural. These seem to be
the kind of theorems that are hard to come up with in the first place, but once you think they are
true the proofs are not hard. For example, the proof that a set is in NP iff it can be defined with
a second order existential quantifier is proven by a coding of Turing machines into formulas in the
obvious way.

Chapters 6,8, and 13 use E-F games to obtain lower bounds on expressibility. Here are some:

1. PATH;, is the set of graphs with distinguished vertices s and ¢ such that there is a path of
length < 2% from s to t. PATH}, can be expressed with k quantifiers and 3 variables. PATH,
cannot be expressed with k& — 1 quantifiers (any number of variables) or 2 variables (any
number of quantifiers). (Chapter 6.)



2. Hanf’s theorem is proven which states a very general condition under which DUPLICATOR
has a winning strategy. From this we easily obtain 2-COL and CONN are not in FO. (Chapter
6.)

3. CONN ¢ (3)SO(monadic) (without any numeric predicates or ordering). This requires defin-
ing a new kind of E-F game for second order existential. (Chapter 8.)

4. REACH is the problem of, given a graph with two distinguished vertices s and ¢, can you
reach s from the ¢. For undirected graphs REACH is in (3)(SO)(monadic). They show that
for directed graphs REACH is not in that class. This required a general theorem and then
the graphs used were shown to exist via the probabilististic method. (Chapter 8)

5. For strings, the PARITY predicate is not in FO. This is proven by Hastad’s Switching lemma.
A full proof is given.

6. A colored graph is one whose vertices are colored. There is no constraint on the coloring. Two
colored graphs are isomorphic if there is an isomorphism that preserves color. Let C'C} be
the set of colored graphs where at most k£ vertices share a color. Let L™ be the set of first
order sentences about colored graphs that have only m variables.

(a) If G, H € CC} and agree on all L! sentences then G ~ H.
(b) If G, H € CC3 and agree on all L3 sentences then G ~ H.

(c) There exists ¢ > 0 such that for all n there exists G, H € CCy such that G, H agree on
all L sentences but G # H.

Chapters 9, 11, and 12 are about tradeoffs of parameters. Chapter 9 has the famous result that
NSPACE(S(n)) is closed under complementation. Chapter 14 contains applications to databases,
dynamic complexity, and model checking. Chapter 15 points to future directions. Due to space
limitations the book can’t spend too much time on any of these topics, but a flavor for them is
given.

Neil Immerman has done the community a great favor by compiling all the information into
one book that can actually be read. He claims that it can be used as text for advanced undergrads
and grad students. This seems reasonable if the students have enough mathematical maturity.

My only objection to the book is in the material it does not cover:

1. Arora and Fagin [1] have a clearer (though longer) proof that REACH is in not in (3)(SO)(monadic)
for directed graphs.

2. Turan [9] has shown that AUT (the set of graphs that have a nontrivial automorphism)
is not in (SO)(monadic). Since this is one of the few results about non-expressibility on
(SO)(monadic), and it’s simple, it should have been included.

3. Kolatis and Vaananen [4] have used sophisticated combinatorics (e.g., Van der Waerden’s
Theorem) to obtain results about counting classes and infinitary languages.

4. Papadimitriou and Yannakakis have [5] made connections between descriptive complexity and
approximation of optimization problems.

Since it is not possible to include everything, Immerman’s choice of topics makes sense.



3 Review of Ebbinghaus-Flum book on Finite Model Theory

Finite model theory (henceforth FMT) is a superset of Descriptive Complexity Theory (henceforth
DCT) Logicians were working on FMT before the connections to complexity theory were estab-
lished. The following kind of theorem is part of FMT but not DCT: “Every sentence of a certain
type that has a model has a finite one.”

The book under review is on FMT and is for mathematicians. As such its choice of topics differs
from Immerman’s book. There is some overlap in content but no overlap in mentality. I'll first
describe the contents then compare the two books.

Chapter 1 is on E-F games for first order. They proof CONN ¢ FO and Hanf’s theorem.
Chapter 2 extends E-F games to second order logic, infinitary logics, and counting quantifiers.
A sample application: PARITY cannot be expressed with an infinite formula using only a finite
number of variables.

Chapter 3 is on 0-1 laws. The number of structures (e.g., graphs) on n elements is finite. If P is
some property then some of the structures have property P and some do not. Hence the question
of “how many” or “what fraction” have property P can be asked. For many properties P

Number of graphs on n vertices that have property P

lim

- € {0,1}.
n—o00 Number of graphs on n vertices {01}

This phenomenon is called a 0-1 law. In this chapter they prove that all FO properties satisfy
the 0-1 law, there are monadic second order sentences that do not, and other theorems about this
phenomena.

Chapter 4 is on finite model properties. Here is a sample theorem and why it is important. If ¢
is a first order sentence with at most 2 variables in a relational vocabulary (no function symbols)
then the following, called the finite model property, is true: If there exists M such that M |= ¢
then there is a finite such M. Normally the validity question “Given ¢ is it true in all model M
(including infinite ones)?” is undecidable. However, if ¢ is in some restricted class of sentences
that satisfies the finite model property then the question is decidable. Let VALID be the set of
valid sentences. By the completeness theorem VALID is the set of provable ones, hence VALID
is a c.e. set. > However, VALID is c.e. since ¢ € VALID iff (3M)[M finite A M |= —¢]. Since
VALID and VALID are both c.e., both are computable.

Chapter 5 is on finite automata and logic. The following are proven: (1) a language L is regular
iff L € MSOIS, <] (Monadic second order with symbols for successor and <), (2) a language L is
star-free iff L € FO[S, <]. Much more is known about this topic, but not proven here (see the next
review, the chapter by Straubing).

Chapter 6 links Descriptive classes to Complexity classes. As such it rephrases questions in
complexity theory as questions in logic. Chapter 7 discusses fixed point operators and proves
FO(posTC) = FO(TC), more commonly known as “WOW!, NSPACE(S(n)) is closed under com-
plementation!”

Chapter 8 is on logic programming. A sample theorem: a class is expressible with a stratified
Datalog program iff it is is in FO(BFP) (BFP is Bounded Fixed Point). Chapter 9 is a short
chapter on connections between DCT and approximating optimization problems. Chapter 10 is on
different types of quantifiers such as “(3) exactly n”

Comparisons to Immerman’s book:

3Logicians have recently switched from r.e. (recursively enumerable) to c.e. (computably enumerable). See [6] for
the essay that inspired the change.



1. Both books cover E-F games and the equivalence of complexity classes to descriptive classes.
Immerman does more equivalences.

2. Topics in Ebbinghaus-Flum that are not in Immerman: infinitary logic, finite model prop-
erties, finite automata, and optimization problems. The last two topics get a very brief
treatment in Ebbinghaus-Flum

3. Topics in Immerman that are not in Ebbinghaus-Flum: number of variables as a measure
of descriptive complexity, lower bounds on expressibility of reachability, tradeoff’s between
variables and quantifier depth, circuits, lip service to applications like database.

4. Ebbinghaus-Flum requires a higher level of mathematical maturity. There is little introduc-
tory material and it is in theorem-proof style. There are not that many examples. (Through
there are some, unlike most math books at this level.)

5. Ebbinghaus-Flum is written for mathematicians while Immerman is written for computer
science theorists. A startling example: I looked in the table of contents of both books for
the results NSPACE(S(n)) is closed under complementation. In Immerman there was a
section named “NSPACE(S(n)) = coNSPACE(S(n))”. The proof is in terms of FO(posTC) =
FO(TC) (as it should be for this book) but the connection to space is both in the introduction
to that chapter and at the end of the chapter and spelled out explicitly. In Ebbinghaus-Flum
there is a section called “FO(posTC) and normal forms.” In this section is a proof that
FO(posTC) = FO(TC). There is no mention of space classes.

4 Review of DIMACS Workshop Proceedings

From January 14-17 in 1996 there was a DIMACS Workshop at Princeton University on Descriptive
Complexity and Finite Models. The book under review is one of the results of that workshop. It
consists of seven articles by different authors.

4.1 Ronald Fagin’s article Fasier Ways to Win Logical Games

There are three very general theorems that can be used to show that DUP has a winning strategy
in an E-F game. The three theorems are stated, compared, and used. They are not proven, and
the applications are sketched (not proven). This article inspired me to read [1].

4.2 Bruno Courcelle’s article On the Fxpression of Graph Properties

This article contains a chart of several graph properties and which fragment of Monadic Second-
Order Logic (henceforth MS) can be used to express it. For example 3-colorability is expressible by
a formula of the form (3X1,..., X,)[¢(X1, ..., X,)] where X; ranges over sets of vertices and ¢ is
first order. MS is important since if a property A is in MS then, when restricted to “tree-structured
graphs”, there exists a tree automata for A. Hence, the set of tree-structured graphs with property
Aisin DTIME(n). This article contains proofs and many pointers to the literature.

4.3 Howard Straubing’s article Finite Models, Automata, and Circuit Complexity

This article is about using descriptive complexity on sets of strings. A sample theorem: a language
L is regular iff L € MSO[S, <] (Monadic second order with symbols for successor and <). What



about first order? A language L is star-free iff L € FO[S, <]. What about subsets of FO[S, <]? If
L € FO[S, <] then L is certainly regular. Let A = (Q, X%, d, F') be the minimal DFA for L. § can
be extended to act on strings. For all w € ¥* let f, : @ — Q via f,(q) = 6(q,w). M(L) is the
monoid {f, : w € ¥*} under composition. The algebraic properties of this monoid can be used to
classify descriptions. Sample theorem: L € FO[<] iff M (L) is aperiodic and finite. Other algebraic
theorems are also shown. These theorems make it possible to prove non-expressibility without
E-F games. Circuits are connected to this material via the following theorem: AC? = FO[ALL),
which is first order with all numerical predicates. Reading this chapter made me want to reread
Straubing’s book on this material [7].

4.4 Victor Vianu’s article Databases and Finite-Model Theory

This article surveys the connections between database theory and finite model theory. It claims
(correctly) that database theory can be a source of new questions for finite model theorists. The
main difference between the two, and hence the richest source of new questions, is that database
theory deals with dynamic aspects such as update languages whereas finite model theorists have
mostly studied complexity classes which are static. (See Immerman’s book, Chapter 14.2, for some
work on dynamic classes.)

4.5 Moshe Vardi’s article Why is Modal Logic so Robustly Decidable?

Modal logic was invented to model necessity and possibility, but can also be used to model time.
This paper looks at propositional modal logic. The well-formed-formulas are (1) propositional
variables, (2) if ¢1 and ¢o are wif then —¢1, @1 A ¢2, and O¢y are wif. The symbol O¢ means that
¢ is necessarily true. An interpretation M for a formula ¢ is a (possibly infinite) directed graph G
together with, for every vertex s of G, an assignment to all the variables of ¢. We can define what
it means for ¢ to be true at vertex s of interpretation M, denoted (M, s) = ¢ as follows:

1. If ¢ is a propositional variable then (M, s) = ¢ iff M assigns ¢ TRUE at s.
(M, s) = ¢y Aoy ift (M, s) = ¢y and (M, s) = ¢o.

3. (M, s) = ¢ iff (M,s) 6.

4. (

2

This is the interesting one.) (M,s) = O¢ iff for all ¢ such that (s,t) is an edge in G,
(M. 1) = ¢.

A formula ¢ is satisfiable if there is some interpretation M and some vertex s such that (M, s) =
¢. Since M could be infinite the question of decidability is of interest. However, the following is
known:

Theorem: If ¢ is satisfiable then there exists an interpretation M and a vertex s such that (M, s) = ¢
and M is of size < 2/%l. Hence satisfiability is decidable. (This is called the Finite Model Property.)

The paper under review probes the underlying reasons why this problem (and harder ones)
are decidable. Modal logic is closer to first order logic (where SAT is not decidable) then to
propositional since the O operator is an implicit V. So why should SAT be decidable?

Modal logic can be embedded in a small fragment of first order logic, called FO?, where SAT is
decidable via a Finite Model Property. The authors could have stopped here, satisfied (the authors
that is, not the formulas) that they have drawn a distinction between FO and MODAL C FO?2.
However, they point out that a more complicated modal logic still has a decidable SAT problem,
while there does not seem to be an analogous subset of FO. In particular Computation Tree Logic



(henceforth CTL) where you can quantify over branches is decidable. CTL is decidable by showing
it has a Tree Model Property— if a formula is satisfiable then there exists an interpretation (a tree)
where it is true (the tree might be infinite but this is not a problem).

This article gives a good survey of Modal Logic with the theme of decidability and, to a lesser
extent, complexity. There are few proofs; however there are many references. This article, along
with several of the references, could be the content of a graduate course or two.

4.6 E. Allen Emerson’s article Model Checking and the Mu-calculus

(The reader of this review should read the review in the last subsection first.)

A reactive system is a system that has many unpredictable external inputs, such as air traffic
control. Temporal Logic (a variety of Modal Logic) seems to be a good way to reason about reactive
systems. The question of most interest is to proof correctness of such a system (e.g., there is never
a time when you want to land two airplanes on the same runway). This can be formalized as the
model-checking problem:

Given a finite state transition graph M, an initial state s, of M, and a temporal logic specifi-
cation formula f, does (M, sg) = f 7

The article under review defines CTL and the p-calculus rigorously, states theorems about
expressiveness and model-checking algorithms. There are a variety of model-checking algorithms
because there are two size parameters of interest: the size of the model and the size of the formula.
The authors own words best summarize his point “The p-calculus and associated temporal logics
such as CTL provide a good handle on precisely stating just what behavior is to occur when, at
a variety of levels of detail. The fully automated type of reasoning provided by model checking
provides a convenient tool for both verifying correctness and for automatic debugging. Moreover,
a number of interesting mathematical problems arise in connection with model checking in the
p-calculus.”

4.7 Toniann Pitassi’s article Algebraic Propositional Proof Systems

The following problem is fundamental: given Cy A---AC,, ¢ SAT, give a proof that Cy A---ACy, ¢
SAT. There are many approaches to this problem. For several of them it is known that there exists,
for all n, a formula on n variables that requires 22" long refutations.

This paper presents an algebraic proof system. Given a formula ¢(Z) (n variables, m clauses)
one can (easily) produce equations Q1(Z), .. ., Qnim(Z) such that ¢ € SAT iff (3@)[Q1(d) = --- =
Qn+m (@) = 0]. A refutation of ¢ is a prime p together with a set of polynomials Fi, ..., Fy 1y, €
Z,|@) such that 1™ Q;(Z)Fy(F) =1 (mod p). The existence of such polynomials proves that
¢ ¢ SAT. The question of interest is the size of F,..., Fy+p. The following are proven: (1)
If there are always poly-bounded polynomials then PH = 5. (2) If there are not always poly-
bounded polynomials then extended Frege systems do not have poly-bounded refutations (This is
a conjecture that has resisted attempts to prove it.)

Several upper and lower bounds are given for particular formulas such as the pigeon-hole prin-
ciple. The upper bounds are easy. The lower bounds are difficult and not proven; however, some
of the methods to prove them are discussed. Connections to Frege systems are made precise.

This article is a nice survey. It can be used to guide the readers to the literature.



5 Final Comments

Let CS be computer scientists who do not work on theory. Let A denote computer scientists who
work on algorithms. Let NA be computer scientists who work on theory but not on algorithms
(complexity theory, database theory, semantics, etc.)

Let IMM stand for Immerman’s book. Let EFLUM stand for the Ebbinghaus-Flum book.
Let DIM stand for the DIMACS book.

Let NN denote that there is No Need to have this book in your library. Let L denote that a
book should be in your school library. Let S denote that a book should be on your own shelf. Let
P denote that a book should be under your pillow at night. Then we have P — S and S — L.

The following table is my advice for people in {C, A, N A} with regard to whether they should
{L, S, P} the books in {IMM, EFLUM,DIM}.

cS A NA
IMM L S P
EFLUM NN L S
DIM L L S
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I have the pleasure of reviewing an important book here. Kinber and Smith’s new automata
theory and formal languages textbook is a much-needed addition to our shelves. It covers material
that is taught in classes that are mandatory or encouraged in many CS departments (automata
and formal languages, computability, and a brief intro to complexity focussed on P and NP), yet
there are few textbooks that are accessible to our less mathematically inclined undergraduates.
The only other comparable book I've used is John Martin’s Introduction to Languages and
the Theory of Computation. Smith and Kinber’s book is most similar in tone to Martin’s; the
next closest that I found was the second edition of Lewis and Papadimitriou’s book, Elements of
the Theory of Computing.

Unfortunately, many undergraduates are intimidated by formal mathematical presentations.
This book seeks to introduce the fundamentals of the theory of computing without too much
stress. It succeeds admirably.

I have not yet tested this book in the classroom. However, there were (last I checked) two reviews
available on amazon.com, presumably from University of Maryland students. Both reviewers gave
the book four stars (out of five); one of them said, “My theory of computer languages class was
taught with this book and I must say it is a very good introduction.” In the many years I have
taught automata and formal languages, it has been rare for students to actually like an automata
theory book.

1 Content Summary

Chapter 1 is the usual intro to sets, etc. It is serviceable and succinct. It contains almost
everything that the students might be expected to know about strings and sets. It does not
attempt to cover basic graph theory, which would be helpful, for instance when the authors refer
to breadth-first search. If a student has had graph theory, one might hope she has also been
introduced to sets. Given that the authors chose not to introduce graph theory, the succinctness
seems appropriate. The one topic which I often cover in this course that is not introduced is
countability and uncountable sets.

Chapter 2 introduces finite automata, nondeterminism, regular expressions, nonregular lan-
guages, and closure properties. The equivalence of NFAs and DFAs is sketched, rather than proved.
The details are left to the reader, or outlined in exercises. The theorem that regular expressions
describe the class of languages that are accepted by FAs is implicit in the discussion at the intro-
duction of regular expressions. Students are likely to miss that, and be puzzled by the algorithm
to create a regular expression from an automaton. (The theorem is stated after the algorithms.)

The pumping lemma is stated and used, somewhat informally, to show several languages are
not regular. The Myhill-Nerode Theorem is not mentioned.

Chapter 3 introduces context-free grammars first, and gives a few examples of a grammar for
a fragment of English; a few sentences are generated. The discussion of parsing mentions leftmost
and rightmost derivations, removal of ambiguity, and inherent ambiguity, but does not go into great

11



detail. Pushdown automata are introduced as an extension of FAs by an extra “data structure,”
namely, the stack, and shown to recognize exactly the context-free languages. Closure properties are
discussed, and the pumping lemma for context-free languages is stated and applied. The statement
and application are more formal than those of the pumping lemma for regular languages. Chomsky
Normal Forms are discussed, as are deterministic CFLs.

Chapter 4 introduces Turing machiness as accceptors and transducers, considers variants of
TMs such as multi-headed TMs and RAMs, and shows that they are all equivalent. There’s a clear
discussion of Church’s thesis and a brief introduction to decidability and semi-decidability (what
the old-fashioned types call recursive and recursively enumerable sets).

Chapter 5 covers undecidability, introducing the notion of universal TMs and showing that
the diagonal set and the halting set are both undecidable. It ends with Rice’s Theorem: any
property of sets corresponds to a set of programs (in any reasonable system) that is either trivial
or undecidable. [The wording is the reviewer’s.]

Chapter 6 introduces time complexity and the classes P and NP. It introduces polynomial-time
reductions and NP-completeness, and gives several examples, more than in most automata theory
or algorithms books. However, it does not mention any other complexity classes or measures (such
as space complexity).

Instructor’s Manual All of the missing or sketched proofs from Chapter 2 appear here, as
well as solutions to all of the exercises.

I understand that the instructor’s manual will not be available from bookstores, but only on
the request of an instructor. Thus, in theory, it will not fall into students’ hands.

2 Style

The overall style of the book is fairly informal. For instance:

We call finite automata a type of program. They hardly look like programs in any
conventional programming language. On the other hand, the reader probably has no
doubt that they can be simulated by software programs. As our vending machine
example shows, they can also be directly implemented on the hardware level.

However, the degree of formality varies through the book. In particular, the chapter on regular
languages is presented much less formally than that on CFLs, although formal proofs of all the
results for regular languages are given in the instructor’s manual. There is no discussion of this
choice. Was it to ease the students into the material, or because (for some reason) a student is
more likely to need the formal apparatus of CFGs?

Living in a culture of “More is better,” it is startling to find a textbook that covers the material
for a 15-week semester course, and no more. The exercises seem reasonable and sufficient; it is
likely that I would assign at least 50% of them per semester. There are several levels of difficulty,
all labeled by zero, one, or two diamonds (the two-diamond ones are the hardest).

This book is written for computer science students, not mathematicians. There is an em-
phasis on connecting the material to work in other areas of computer science and to real-world
programming. The hard-core, “who needs this theory stuff?” crowd will not be persuaded by this
presentation, but more of the middle-of-the-road computer science students may actually grasp
some of the material and its connections to the rest of the curriculum.

On the other hand, non-native speakers of English may be somewhat put off by the wordinees
and an occasional floridity of style. Italics are used both for emphasis and for definitions, making
it a bit more difficult to locate the latter on a page. This will not be a theorist’s reference book;
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what will make it useful to a student in the years following a course is that it is short, and the table
of contents is actually useful in locating results, theorems, and constructions. However, it would
have been useful to have some sort of chapter summary or other tool for reference.

3 Opinions

There were several things I disliked about this book. The style sometimes gets a bit florid, and
“obviously” and some of its synonymous phrases occur occasionally. (One of the authors assures me
that this will be fixed in later editions.) A few topics that I think are important are omitted: the
Myhill-Nerode theorem, the notion of space complexity, and at least a mention of other complexity
classes, perhaps as a teaser for a complexity theory course. And some of my favorite exercises
about semi-decidable sets (show a set is the range of a partially computable function if and only if
it is the domain of a partially computable function) appear in the text.

While this book does not do as thorough a job on non-regular languages as Martin’s book does,
it does a better job on CFLs. An earlier edition of Martin’s book had a mildly offensive example of
an English sentence in the discussion of parsing natural languages; Kinber and Smith give several
remarkably clunky sentences. Is there a reason that they chose to omit articles, leaving them with
such ringing examples as ” John bought big car”? I think it’s important to mention the connection
to historical computational linguistics. Perhaps the clunkiness serves the purpose of indicating that
CFLs are still not adequate for generating natural languages.

On the other hand, this book is at the right level for my undergraduate students. In particular,
it has an excellent introduction to nondeterminism at the automaton level. The exercises look like
they have a good range, from completely straightforward to challenging. Having all the solutions in
an instructor’s manual should make the course more accessible to non-theorist instructors as well.

I like that this is really a one-semester book. I like the gentleness of the text, and its technical
correctness. It is not so wordy that it obscures the content, as some recent books have been, but it
does take the time to put the material in the bigger picture of computer science. It is likely that (at
least some) students will actually read the entire book, and thus will get exposure to and practice
with the technical details of the area, and more of the bigger picture than they’d get by skimming
a longer textbook.

Review of Microsurveys in Discrete Probability
Edited by David Aldous and James Propp
Published by AMS 1998
DIMACS series in Discrete Mathematics and Theoretical Computer Science Volume 41
Hardcover, $39.00
ISBN number : 0-8218-0827-3

Review by

Hassan Masum
Carleton University, Ottawa, Canada
hmasum®@ccs.carleton.ca

1 Overview

Microsurveys in Discrete Probability is a collection of articles from a DIMACS Workshop on themes
in discrete probability. The main themes include distributional estimates, dynamical percolation,
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Markov chains, Poisson processes, random graphs, and random sampling.

For those who are not specialists in the above areas, ” Microsurveys” may be a misnomer, since
many articles are relatively specific journal-format articles instead of more accessible survey articles.
From my point of view as a nonspecialist, the articles of most interest are: Dynamic Percolation,
Mixing Times, Uniform Spanning Trees, Coupling from the Past, and Perfectly Random Sampling.
Each of these articles is discussed briefly below.

2 Summary of some of the articles

Dynamical percolation: Early results and open problems by Olle Haggstrom.

(Static) bond percolation theory imposes a probability measure on the edges of an infinite (but
locally finite) connected graph, such that each edge is independently closed or open, and then looks
at the properties of the resulting structure. Dynamical percolation extends this model to the time-
varying case by defining a Markov process on the edges, so that each edge can now independently
flip state at a given rate. The article looks at some dynamical percolation results for trees, cubic
lattices, and more general graphs. Percolation can also be studied in a continuous space without
being confined to a lattice or graph; in this vein, the author looks at a dynamical version of the
continuum Poisson Boolean model.

Mizing times by Laszlo Lovasz and Peter Winkler.

A very interesting research paper on various ways of defining ”mixing time”, which is the
number of steps a Markov chain is expected to take to reach its stationary distribution. (Aside
from theoretical interest, this is a very practical issue in many simulation situations where a Markov
process must be sampled.) Proofs are given for the equivalence up to constant factors of many of
the different mixing time definitions.

A bird’s-eye view of uniform spanning trees and forests by Russell Lyons.

A 7uniform” spanning tree simply denotes choosing one such tree from the set of all spanning
trees of a graph, with uniform probability distribution. An elegant algorithm for choosing such
trees on a (connected finite) graph is to take a random walk on the graph and add only those edges
which do not complete cycles. The idea can be extended in a natural way to infinite graphs, where
one speaks of uniform spanning forests. The author examines the properties of such forests on
several graph classes, particularly integer lattices, and discusses applications to electrical networks;
several interesting open questions are then posed.

Coupling from the past: A user’s guide by James Propp and David Wilson.

In the same vein as the previous article on mixing times, the authors describe a general method
called ” Coupling From the Past” which allows perfectly random samples from Markov chains; for the
method to be applicable, some convergence conditions must be met. More specifically, in applicable
cases the final output sample from the probability distribution is independent of the initial state of
the chain, with expected running time a fixed multiple of the mixing time. One interesting point
the authors make is that sampling schemes with random execution times are vulnerable to a subtle
bias, due to long execution runs being prematurely terminated by impatient experimenters.

Annotated bibliography of perfectly random sampling with Markov chains by David B Wilson.

A useful survey of many different methods for sampling perfectly (or arbitrarily close to perfectly,
depending on the algorithm) from Markov chains. Pointers to simulations are given, along with a
glossary of related concepts.
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3 Titles of the other articles
The following is a list of all the other articles in this volume.

1. Tree-valued Markov chains and Poisson-Galton-Watson distributions by David Aldous.
2. On the central role of scale invariant Poisson processes on (0, co) by Richard Arratia.
3. Beyond the method of bounded differences by Anant P Godbole and Pawel Hitczenko.

4. Distinguishing and reconstructing sceneries from observations along random walk paths by
Harry Kesten.

5. Enumerations of trees and forests related to branching processes and random walks by Jim
Pitman.

6. Couplings for normal approzimations with Stein’s method by Gesine Reinert.

4 Opinion

This book would benefit greatly from the addition of a Preface or Introduction chapter, with an
overview of the importance and techniques of the area, links to other related areas, and a short
explanation of the significance of each article. As it is, the book essentially reads like a collection
of independent papers as opposed to a unified exposition; although this is understandable since the
book consists of the proceedings from a DIMACS workshop, a ”semantic overview layer” would
add a lot of value. An Index would also be useful.

I would suggest the following three recent books as useful background or supplementary reading
for those who are not discrete probabilists: 1) Markov Chains: Gibbs Fields, Monte Carlo Sim-
ulation, and Queues. Pierre Bremaud; Springer-Verlag, 1999. 2) Percolation (2nd ed). Geoffrey
Grimmett; Springer-Verlag, 1999. 3) Random Graphs. Janson et al; Wiley-Interscience, 2000.

Microsurveys is a worthwhile random sampling from recent developments in discrete probability.
”Discrete Probability”is probably an indiscreetly broad phrase to use in the title, since the articles
are clustered in the areas of Markov and Poisson processes and random graphs. Nevertheless,
those who are interested in these areas and ready to provide their own orientation will find some
interesting material here.

Review of Term Rewriting and all that
by Franz Baader and Tobias Nipkow
Published by Cambridge Univ. Press, 313 pages
Softcover, $27.95
ISBN number 0-521-779200

Reviewer: Paliath Narendran
State University of New York at Albany (SUNY-Albany)
Dept. of Computer Science
A term rewriting system is a collection of one-directional rewrite rules between (well-formed)
terms over a signature. (A well-known example of a rewrite rule is the cancellation rule zoz !
for groups, over the signature {o, =, 1}. ) The area of term rewriting has seen considerable progress
in the last two decades. Though there are several surveys of the field (e.g., [DerJou88]), until now

— 1
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no book was available in English on this topic. (There is a small monograph-size book by Jiirgen
Avenhaus [Aven95|, published in 1995, but it is in German.) The book under review more than
fills that void.

As the authors say in the introduction, this book is meant both as a textbook and as a reference
for researchers in the field. The daunting task of writing such a book did not faze the authors who
have “pulled it off” admirably. (It helps a great deal that the authors are themselves very active,
researchers in the field.) The outcome is a cogent presentation of the important topics in a clear
and at the same time rigorous way.

The first chapter, “Motivating examples,” sets the stage by presenting situations (e.g. symbolic
differentiation) where term rewriting is applicable. The second one lays the foundations rigorously
by stating and proving properties of abstract reduction systems. Key concepts like confluence,
and termination are introduced. Huet’s elegant proof, using well-founded induction, that local
confluence and confluence are equivalent for terminating systems is presented.

The third and fourth chapters introduce equational reasoning. Birkhoff’s completeness proof,
that semantic (model-theoretic) and syntactic notions of validity coincide for equational logic, is
presented in detail in the third chapter. The fourth chapter deals with congruence closure (which
is important when the axioms are over ground, or variable-free, terms) and syntactic unification.

Chapter 5, “Termination,” is a crucial one (and a very good one too!) especially for me since I
feel that this is one area where term rewriting has made a significant contribution to Theoretical
Computer Science in general. Kruskal’s theorem on tree embedding is proved following Nash-
Williams. This important result is the underpinning for many an ordering that is used in automated
reasoning systems (e.g., see [KZ95]).

Chapter 6 deals with the property of confluence (which roughly means that any two diverging
sequences of rewrites can be made to converge). The idea of completion, where one adds enough
new rules to make a non-confluent system confluent, is treated in the next chapter. Correctness of
Huet’s completion procedure is proved.

Chapter 8 is a delightful bonus for the reader. Buchberger’s algorithm for computing Grébner
bases for polynomial ideals is presented. This is also a “completion procedure” in the above sense
and crucial to computational algebraic geometry.

The remaining chapters deal with advanced topics. Chapter 10, “Equational Unification,” is an
especially good one, which is not very surprising since one of the authors (Baader) is an authority
in this area. The chapter contains a detailed exposition of associative-commutative unification (or
“AC-unification” ), namely unification where some of the operators are associative and commutative.
This is an important computational problem since associative and commutative operators (e.g., the
logical A operator) turn up in many situations.

Two appendices — one covering background material on orders and the other on the language
ML — and a detailed bibliography round out the book. The index seems carefully done and is very
helpful. Congratulations to the authors on a job well done.

And now to nitpick: I feel the authors should have paid some attention to the (sub)field of
string rewriting. References [228] and [250] in the book ([Sen96] and [ZG95] respectively) pertain
to that area in any case. At the very least, a reference to the volume by Book and Otto [BoOt93]
should have been there. Also, despite what the authors suggest in the Preface about prerequisites
being minimal, I suspect that a course using this book can be handled only by students who have
had a fairly sophisticated course on combinatorics, logic and set theory.

i
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