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ABSTRACT

Online advertising is an essential part of the Internet and the
main source of revenue for many web-centric firms such as
search engines, social networks, and online publishers. A key
component of online advertising is the auction mechanism
which selects and prices the set of winning ads.

This work is inspired by one of the biggest practical draw-
backs of the widely popular Vickrey-Clarke-Groves (VCG)
mechanism, which is the unique incentive-compatible mech-
anism that maximizes social welfare. It is known that VCG
lacks a desired property of revenue monotonicity - a nat-
ural notion which states that the revenue of a mechanism
shouldn’t go down as the number of bidders increase or if
the bidders increase their bids. Most firms which depend on
online advertising revenue have a large sales team to attract
more bidders on their inventory as the general belief is that
more bidders will increase competition, and hence revenue.
However, the lack of revenue monotonicity of VCG conflicts
with this general belief and can be strategically confusing
for the firm’s business.

In this work, we seek incentive-compatible mechanisms
that are revenue-monotone. This natural property comes at
the expense of social welfare - one can show that it is not pos-
sible to get incentive-compatibility, revenue-monotonicity,
and optimal social welfare simultaneously. In light of this,
we introduce the notion of Price of Revenue Monotonicity
(PORM) to capture the loss in social welfare of a revenue-
monotone mechanism.

We further study revenue-monotonicity for two important
online advertising scenarios. First one is the text vs image
ad auction where in an ad slot, one can either show a single
image ad or a few text ads. Second one is the video-pod
auction where we have a video advertising slot of k seconds
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which can be filled with multiple video ads. For the image-
text auction, we give a mechanism that satisfy both RM and
IC and achieve PORM of Zle % ~ Ink. We also show that
the PORM of our mechanism is the best possible by proving
a matching lower bound of Zle 1 on the PORM of any
deterministic mechanism under some mild assumptions. For
the video-pod auction, we give a mechanism that achieves a
PORM of (|logk| +1) - (2+1nk).
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1. INTRODUCTION

Fueled by the growth of Internet and advancements in
online advertising techniques, today more and more online
firms rely on advertising revenue for their business. Some
of these firms include news agencies, media outlets, search
engines, social and professional networks, etc. Much of this
online advertising business is moving to what’s called pro-
grammatic buying where an advertiser bids for each single
impression, sometimes in real-time, depending on how he
values the ad opportunity. This work is motivated by the
need of a desired property in the auction mechanisms that
are used in these bid-based advertising systems.

A standard mechanism for most auction scenarios is the
famous Vickrey-Clarke-Groves (VCG) mechanism. VCG
is incentive-compatible (IC) and maximizes social welfare.
Incentive-compatibility guarantees that the best response for
each advertiser is to report its true valuation. This makes
the mechanism transparent and removes the load from the
advertisers to calculate the best response. Social welfare
is the sum of the valuations of the winners. This value is
treated as a proxy for how much all the participants gain
from the transaction. What makes VCG mechanism versa-
tile is that it reduces the mechanism design problem into an
optimization problem for any scenario.

Even though this versatility of VCG mechanism makes it
a popular choice mechanism, however, it doesn’t satisfy an



important property, namely, that of revenue-monotonicity.
Revenue-monotonicity says that if one increases the bid val-
ues or add new bidders, the total revenue should not go
down. To see that VCG is not revenue-monotone, consider
a simple example of two items and three bidders (A, B, and
C). Say bidder A wants only the first item, and has a bid of
2. Similarly bidder B wants only the second item, and has a
bid of 2. Bidder C wants both the items or nothing, and has
a bid of 2. Now if only bidders A and B participate in the
auction, then VCG gives a revenue of 2, however, if all the
three bidders participate, then the revenue goes down to 0.

This lack of revenue-monotonicity (which has been noted
several times in the literature) is one of the serious practical
drawbacks of the celebrated VCG mechanism. To think of
it, an online firm that depends on advertising revenue puts
significant resources in its sales efforts to attract more bid-
ders as the general belief is that more bidders imply more
competition which should lead to higher prices. Now to tell
this firm that their revenue can go down if they get more
bidders can be strategically very confusing for them. To see
this from another perspective, say in a search engine firm,
there is a team which makes a UI change that increases the
click-through probability (CTR) of the search ads. These
changes are thought of as good changes in the firm as they
increase the effective bid of the bidders (the effective bid of
a bidder in search advertising is a function of its cost-per-
click bid and the CTR of its ad). Now if after making the
change, the revenue goes down, what was supposed to be a
good change may seem like a bad change. The point we are
trying to make is that there are many teams in a firm, and
for these teams to function properly, it is important that the
auction mechanisms satisfy revenue-monotonicity.

In this paper, with a focus on auctions arising in advertis-
ing scenarios, we seek to understand mechanisms that sat-
isfy this additional property of revenue monotonicity (RM).
It is well known that for various settings (including ours),
no mechanism can satisfy both IC and RM properties while
attaining optimal social welfare. In fact it is known that one
cannot even hope to get Pareto-optimality in social welfare
while attaining both IC and RM [10]. Thus to overcome
this bottleneck and develop an understanding of RM mech-
anisms, we relax the requirement of attaining full social wel-
fare, and define the notion of price of revenue-monotonicity
(PoRM). Price of revenue-monotonicity of an IC and RM
mechanism M is the ratio of optimal social welfare to the
social welfare attained by the mechanism M. The goal is to
design mechanisms that satisfy IC and RM properties and at
the same time achieve low price of revenue-monotonicity. To
the best of our knowledge, this is the first work that defines
and studies this notion of price of revenue-monotonicity.

We study two different advertising settings in this pa-
per. The first setting we study is the image-text auction.
In image-text auction there is a special box designated for
advertising in a publisher’s website which can be filled by
either k text-ads or a single image-ad. The second setting
is the video-pod auction where an advertising break of a cer-
tain duration in a video content can be filled with multiple
video ads of possibly different durations.

We note that revenue-monotonicity is an across-instance
constraint as it requires total revenue to behave in a cer-
tain manner across different instances, where a single in-
stance is defined by fixing the type of the buyers. Note
that incentive-compatibility is also an across-instance con-

straint. A lot of research effort has gone into understanding
incentive-compatibility, which has resulted in useful tools for
designing incentive-compatible mechanisms. Surprisingly,
hardly any work has gone into understanding and build-
ing tools for designing mechanisms which satisfy the desired
property of revenue-monotonicity. We believe that under-
standing revenue-monotonicity will shed new fundamental
insights into the design of mechanisms for many practical
scenarios.

1.1 Related Work

Ausubel and Milgrom [1] show that VCG satisfies RM
if bidders’ valuations satisfy bidder-submodularity. Bidders’
valuations satisfy bidders submodularity if and only if for
any bidder 7 and any two sets of bidders S, S’ with S C S’
we have Wr(SU{i}) —wWF(S) > wr(S'U{i}) —wF(S’), where
WF(SS) is the maximum social welfare achievable using only
S. Note that this is a general tool one can use to design
revenue monotone mechanisms - restrict the range of the
possible allocations such that we get bidder-submodularity
when we run VCG on this range. However, we can show
that this general tool is not so powerful by showing that for
our auction scenarios, it is not possible to get a mechanism
with PORM better than (k) by using the above tool.

Ausubel and Milgrom [1] also show that bidder-
submodularity is guaranteed when the goods are substitutes,
i.e., the valuation function of each bidder is submodular over
the goods. However, for many practical scenarios, including
ours, the valuation function of the bidders is not submod-
ular. Ausubel and Milgrom [1] design mechanisms which
select allocations that are in the core of the exchange econ-
omy for combinatorial auctions. Here an allocation is in the
core if there is no coalition of bidders and the seller to trade
with each other in a way which is preferred by all the mem-
bers of the coalition to the allocation. Day and Milgrom [3]
show that core-selecting mechanisms that choose a core allo-
cation which minimizes the seller’s revenue satisfy RM given
bidders follow so called best-response truncation strategy.
Therefore the core selecting mechanism designed by [1] satis-
fies RM if the participants play such best-response strategy;
although this mechanism is not incentive-compatible.

Rastegari et al. [10] prove that no mechanism for gen-
eral combinatorial auctions which satisfies IC and RM can
achieve weakly maximal social welfare. An allocation is
weakly maximal if it cannot be modified to make at least
one participant better off without hurting anyone else. In
another work [9] they design a randomized mechanism for
combinatorial auctions which achieves weak maximality and
expected revenue monotonicity.

Another related work is around the characterization of
mechanisms that achieve the IC property. The classic re-
sult of Roberts [11] states that affine maximizers are the
only social choice functions that can be implemented us-
ing IC mechanisms when bidders have unrestricted quasi-
linear valuations. Subsequent works study the restricted
cases [2,6,12,13].

There is also an extensive body of research around de-
signing mechanisms with good bounds on the revenue. My-
erson [7] designs a mechanism which achieves the optimal
expected revenue in the single parameter Bayesian setting.
Goldbert et al. consider optimizing revenue in prior-free
settings (see [8] for a survey on this).



1.2 Our Results

As mentioned earlier, we study two settings: 1) image-
text auction, and 2) video-pod auction. Both these set-
tings can be described using the following abstract model.
Say there is a seller selling k£ identical items to n partici-
pants/buyers. Participant ¢ wants either d; items or noth-
ing, and has a valuation of wv; if gets d; items or 0 other-
wise. Demand d; is assumed to be public knowledge, and
valuation v; is assumed to be the private information of
the participant ¢. We want to design a mechanism that
is incentive-compatible, individually-rational (IR), revenue-
monotone, and maximizes social welfare.

For the image-text auction, the demand d; € {1,k}, i.e.,
each participant wants either 1 item (text ads) or k items
(image ad). For the video-pod auction, an item corresponds
to a unit time interval (say one second), and the demand d;
could be any number between 1 and k, i.e., d; € [k].

The first result of this paper is the following theorem.

Theorem 1 We design a deterministic mechanism for
tmage-text auction (MITA) which satisfies Individual Ratio-
nality (IR), IC, and RM with PORM of at most 3°F_, i~
In(k), i.e., the ratio of MITA’s welfare over the optimal wel-
fare is at most In(k).

The proof of Theorem 1 appears in Section 3. We outline
our mechanism over here: Let vi > ... > v,, be the val-
uations of text-participants and V7 be the maximum val-
uation of the image-participants. If max;ex j - v; is less
than Vi, MITA gives all the items to the image-participant
who has valuation Vi, otherwise MITA picks the highest j*
text-participants as the winners where j* is the maximum
number in [k] such that j* - v;= > Vi. Note that the j that
maximizes j-v; might be less than the j* which is the largest
j such that j-v; > V7. Also note that MITA sometimes picks
less than k text ads as the winner (even if there are k or
more text ads). VCG always picks the maximum number of
text ads (if it decides to allocate the slot to text ads); this
is one of the reasons why VCG fails to satisfy RM. When
we allow lesser number of text ads to be declared as win-
ners, intuitively, this increases the competition which boosts
the revenue and thus helps in achieving RM. Although this
comes with a loss in social welfare.

Surprisingly, we can also show that the above mechanism
achieves the optimal PORM for the image-text auction by
proving a matching lower bound. We show that a mech-
anism that satisfies IR, IC, RM, and two additional mild
assumptions of Anonymity (AM) and Independence of Ir-
relevant Alternatives (IIA) cannot achieve a PORM better
than Zle % Anonymity means that the auction mecha-
nism doesn’t depend on the identities of the participants (a
formal definition appears in Section 5). IIA means that de-
creasing the bid of a loosing participant shouldn’t hurt any
winner. Note that our mechanism satisfy both AM and ITA
as well. Formally, we prove the following theorem whose
proof appears in Section 5.

Theorem 2 There is no deterministic mechanism which
satisfies IR, IC, RM, AM, and ITA and has PORM less than

k 1
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Finally we prove the following theorem for video-pod auc-
tions.

Theorem 3 We design a Mechanism for Video-pod Auction
(MVPA ) which satisfies IR, IC, and RM with PORM of at
most ([logk| +1) - (2+1nk).

We give the formal proof of Theorem 3 in Section 4, and
outline the mechanism here. MVPA partitions the partici-
pants into (|logk| + 1) groups where each group g € [log k]
contains only the participants whose demands are in the
range [2971,29). MVPA selects winners only from one group.
We round up the size of eacgl participant in group g to 29,

thus we can have at most 57 number of winners from the

group g. Let v}‘” > ... 2> U,(,g) be the sorted valuations of
all the participants in group g. We define the Max Possible
Revenue of Group g (MPRG(g)) to be

— - (9)
MPRG(g) = jelﬂc%(g] v
As the name of MPRG(g) suggests, its value captures the
maximum revenue we can truthfully obtain from group
g without violating revenue-monotonicity. Let g* be the
group with the highest MPRG value and group g’ be the
group whose MPRG is second highest. The set of win-
ners are the first j participants from group ¢g* where j is
the largest number in [k/29] such that j - UJ(-Q*) is greater
than or equal MPRG(g'). We show that PORM of MVPA is
(llogk] +1)-(2+1Ink). °

2. PRELIMINARIES

Let N = {1,...,n} be the set of all participants, and
k be the number of identical items. We denote the type
of participant i by 0; = (d;,v;) € [k] x RT, where d; is
the number of items participant i demands and v; is her
valuation for getting d; items. Note that the valuation of
player ¢ for getting less than d; items is 0. Now in the
image-text auction, participants have demand of either 1 or
k. In the video-pod auction participants can have arbitrary
demands in {1,...,k}. Lets denote the set of all possible
types [k] x RT by © and the set of all type profiles of n
participants by ©" =0 x ... x O.

————

n

A deterministic mechanism M consists of an allocation
rule x : ©" — 2" which maps each type profile to a subset
of participants as the winners, and payment rule p : " —
(R*)n which maps each type profile to the payments of each
participant.

Let 0 = (61,02,...,0,) € O™ be a specific type profile.
Also let Ay be the set of all feasible solutions, i.e.,

Aez{sgz\q Zdigk}.

i€S
For each feasible solution A € Ay, the social welfare of
A (denoted by wr(A)) is equal to >, ., vi. To evaluate

the social welfare of a mechanism M on a type profile 6, we
compare the welfare of its solution to the optimal solution.

Definition 1 The welfare ratio of mechanism M = (x,p)
on type profile § € O" (denoted by WFR(M,0)) is the fol-
lowing.

maxaea, WF(A)

WFR(M, 0) = WE((0))



To capture the worst-case loss in social welfare across
all type profiles, we define the notion of price of revenue-
monotonicity.

Definition 2 The Price of Revenue Monotonicity of a
mechanism M (denoted by PORM(M)) is defined as fol-
lows:

PORM(M) = max WFR(M, 6)
gcon

The desired goal is to design mechanisms which have low
PORM value, where the best possible value is 1.

Note that since we are interested in mechanisms with
bounded PORM, we restrict ourselves to mechanisms that
satisfy consumer sovereignty. Consumer sovereignty says
that any participant can be a winner as long as he bids
high enough.

Now we will define a weakly monotone allocation rule
which is used in the characterization of deterministic IC
mechanisms. Let function z; : " — {0,1} be the re-
striction of function x to participant ¢. Here z;(.) is one
if participant 4 is a winner and zero otherwise.

Definition 3 We call allocation function x is weakly mono-
tone if for any type profile 0 € O™ and any participant
1 € [n] with demand d;, function x; ((ds,v;),0—;) is a non-
decreasing function in v;.

Note that if a deterministic mechanism M satisfies con-
sumer sovereignty and has a weakly monotone allocation
function then function z;((d;,v;),0—;) is a single step func-
tion. The value at which the function z;((d;, vi),0—;) jumps
from zero to one, i.e. the smallest value at which the par-
ticipant ¢ becomes a winner, is called critical value.

Definition 4 Let M = (z,p) be a deterministic mechanism
that satisfy consumer sovereignty and has a weakly mono-
tone allocation function, the critical value of participant i in
type profile 0 is v; = sup{v;|z; ((di,v:),0-:) = 0}.

The following lemma characterizes deterministic IC mech-
anisms (first given by [7]). We provide a proof sketch for the
sake of completeness (for a complete proof see e.g. [8]).

Lemma 1 Let M = (z,p) be a mechanism which satisfies
IR. Mechanism M is truthful (IC) if and only if the follow-
ings hold.

1. x is weakly monotone.

2. If participant i is a winner then its payment is its crit-

ical value (v ).

ProoOF. First we prove that if M is truthful then it satis-
fies both conditions 1 and 2. We prove the first condition by
contradiction. If x is not monotone then there exist partici-
pant 4, type profile 6, and two values vEl) > UEQ) such that ¢

wins in type profile ((di, UEQ)), G,i) but loses in type profile
((di, vgl)), 6’_1-). This makes incentive for participant ¢ to lie

for type profile ((di,vgl)), 0,1-) and announce its valuation

as ’UE2).

Consider an arbitrary participant ¢ who is a winner, now
we prove that the payment of participant 4 is its critical

value. Assume for contradiction that mechanism M charges
participant ¢ amount ¢; where ¢; < v in a type profile
((ds,vs),0—;). In this case, if participant ¢ had type (d:, ;)
where ¢; < ¥; < v; then 7 is not a winner in ((d;, 0;),0—;) as
v; is the critical value. Therefore, if the real type of partici-
pant i is (ds, ¥;), she has incentive to lie her type as (d;, v;),
become a winner, and pay c¢;. Hence, the payment cannot
be less than v;. Now suppose that there exists value v;
for which mechanism M charges ¢ amount ¢; which is more
than v;. In this case, if participant ¢ had type (d;, v;) where
v; < U; < ¢; then i is still a winner (as v; is the critical
value) and pays at most ¥; (as M satisfies IR). Therefore,
she has an incentive to lie her type as (d;,v;), become a
winner, and pay at most ¥;. Hence, the payment cannot be
more than v} for any winning valuation v;.

For the other direction, it is easy to check that any IR
mechanism that satisfies conditions 1 and 2 is truthful. [

3. IMAGE-TEXT AUCTIONS

In this section we give our Mechanism for Image-
Text Auction (MITA) which satisfies IR, IC, RM, and
PoRM(mITA) < Ink. Recall that in the image-text auction
we have k identical items to sell and there are two groups
of participants: the ones who want all the k£ items which
we call image-participants; and the ones who want only one
item which we refer to as text-participants. As a result there
are also two possible types of outcome: MITA gives all the
items to an image-participant; or it gives an item to each
member of a subset of the text-participants.

We start with explaining why VCG fails to satisfy RM
and how we address this issue in MITA. Consider the type
profile where we have one image-participant with type (k, 1)
and one text-participant with type (1,1). In this case ei-
ther of the participants can be the winner. The payment
of the winner in VCG is her critical value which is one.
However if we add one more text-participant with the same
type (1,1), the two text-participants win and each of them
pay zero. The reason for the payment drop is that VCG
always selects k winners from the text-participants. This
decreases the critical value of each text participant as the
valuation of the other text-participants helps her to win
against image-participants. In our mechanism we overcome
this issue by not guaranteeing that the maximal number of
text-participants can win an item. In other words, in our
mechanism it is possible that less than k text-participants
win an item even if there are more than k text-participants.
This way, intuitively, even if the number of text-participants
increase, it potentially creates more competition and hence
increases the payments.

Let 6 be an arbitrary type profile where there are n, text-
participants with types (1,v1),...,(1,vn,) and ns image-
participants with types (k,Vi),...,(k,Va,). We define
mechanism MITA = (xMITA, pMITA) by giving allocation
function zM™A which is weakly monotone. Given the al-
location function, we obtain payment function pMITA us-
ing the critical values defined in Lemma 1 which makes the
mechanism truthful.

Allocation rule of MITA. Without loss of generality we
assume that v1 > v > ... > vy, and Vi 2 Vo > ... > V.
Also, we assume that n; > k, if not, we add fake text-
participants with value 0. For each j € [k] we consider
value j - v;. Let candidate set Cyp contains all the values



j € [k] such that j - v; is greater than or equal to Vi, i.e.,
Co = {j € [K]lj-v; = Vi}. If Co is empty, the image-
participant with type (k, V1) wins. If Cy is non-empty then
let j* be the maximum member of Cy, i.e., j* = maxjec, j.
In this case the first j* text-participants win.
Observation 1 Allocation function LMITA
tone.

is weakly mono-

PrOOF. Recall from Definition 3, in order to prove that
#MITA s weakly monotone, we have to show that for any
participant ¢ € [n] with demand d;, function z; ((di, vi), 0—s)
is a non-decreasing function in v;.

If ¢ is an image-participant then i wins if its valua-
tion is larger than max(W, max e j - v;) where W is the
largest valuation of the image-participants in 6_;. More-
over, bidder i loses for any value smaller than or equal to
max (W, max e j - v;). Therefore x; is weakly monotone.

If i is a text-participant then let v{ > v} > ... be the
sorted valuations of the text-participants and Vi be the
largest valuation of image-participants in 0_,. Let ¢t be
the smallest value such that there exist j € [k — 1] where
Vi, <t <vjand (j+1)-¢is greater than or equal to Vi. If
the valuation of bidder ¢ is larger than or equal to ¢t then she
wins since (j + 1) - t > Vi otherwise she does not win since
t is the smallest value for which there exist j € [k — 1] such
that (j + 1) -t > V1. Therefore z; is weakly monotone. [

In the following lemma we obtain the critical value (or
truthful payments) of the winners in LMITA using Lemma 1.
The lemma also gives an intuition to why we select j* text-
participants to win, which is the maximum j such that j -
Vj Z Vl

Lemma 2 If Cy, where Co = {j € [k]|j-v; > Vi}, is empty
then the first image-participant wins all the items with crit-
ical value max(Va, max;cp) j - v;5). If Co is not empty, the
first j* text-participants win the items where j* = mazjec,j
and all of them have critical value max(vi+1, ;/—,1)

PrOOF. We find the critical value (Definition 4) of a win-
ner by showing that if she has any valuation larger than the
critical value she wins and for any valuation less than the
critical value she doesn’t.

If Cp is empty then the first image-participant (with type
(k,V1)) wins all the items. As long as Vi is larger than
max(Va, max;cy) j - v;) participant (k, V1) wins. If V1 is less
than max(V2, max;epk) j - vj) then she loses to the image-
participant (k, V2) if max(Va, max;cy) j-v;) = Va2, or loses to
the text-participants if max(V2, max e j-v;) = max;epy) j-
vj. This means that the critical value of the first image-
participant is max(Va, max;cy) j - v;) if she is the winner.

If Cyp is non-empty then the first j* text-participants
win. Let ¢ € [j*] be an arbitrary winner. First we ob-
serve that for any valuation v, greater than or equal to

Vi .. . . . .
max(Vk+1, ]—*1)7 participant ¢ remains as a winner in type pro-

file ' = ((1,v;),0—;). This is because for any such change
in valuation of participant ¢ number j* remains in set Cl.
Moreover, this change does not add any new number j’ to
Cyr such that j° > j* because the valuations of the text-
participants with index greater than j* are not changed in
'

In order to prove that for any valuation v} less than crit-
ical value max(vik1, ;/—*1), participant ¢ is not a winner we

consider two cases: (A) when the critical value is equal to
;/—1, and (B) when the critical value is equal to vi41.

Case (A): We prove this case by contradiction. Let v; be
a valuation less than ;/—i for which participant ¢ is in the set of
winners in type profile 8’ = ((1,v}),0_;). Because v; is less
than ;/—i, the number of winners which contains participant
i cannot be less than or equal to j* in type profile #’. Let
j' € [k] which is greater than j* be the number of winners
in . This means that there are at least j' participants

whose valuation is larger than % in 6’. Note that all the

valuations in @ is the same as 6’ except v; which is decreased
to v}, therefore, there are also at least j participants whose
valuation is larger than % in 6 and hence j' is in set Cp.
This contradicts with the fact that j* is the largest member
of Cy.

case (B): In case (B) we have max(vkﬂ,;/—i) = Uk41
which implies that k - vg+1 is larger than Vi as j* € [k].
Therefore Case (B) can only happen when j* = k. Now
consider participant 7 decreases its valuation to value v} that
is less than wviy1, then it cannot be a winner as there are k
other participants whose valuations are more than v} while
we have only k items. [

The payment function of MITA is set to the critical val-
ues of the winners as specified in Lemma 2 which by using
Observation 1 and Lemma 1 implies MITA satisfies IC. More-
over, as the payments are always less than the participants’
bid IR property of MITA follows. Finally in the following
lemma we show that MITA is revenue monotone.

Lemma 3 Let 6’ be the type profile obtained by ei-
ther increasing the valuation of a participant or adding
a mew participant to the type profile 0, then we have
REVENUE(MITA, ') > REVENUE(MITA, ).

PROOF. Let v1 > we > ... be the valuations of text-
participants and V4 > V2 > ... be the valuations of image-
participants in 6. Similarly let v{ > v5 > ... be the valu-
ations of text-participants and V{/ > V5 > ... be the valu-
ations of image-participants in 6’. Note that for any i we
have v; < v} and V; < V; as we have one more participant or
a higher valuation in #’. Let  be the new added participant
or the participant which has higher valuation in ¢’.

We prove this lemma by considering the value of
REVENUE(MITA, #) for the case when text-participants win
and the case when an image-participant wins. If an image-
participant wins then it means that V1 > max;¢x) j - v; and
she pays max(V2, max;e[x) j - v5) which is the total revenue.

If text-participants win then it means Vi < maxjeqx) Jj -
v; and there are j* winners where each of them pays
max(Vk+1, y—,}) If max(vgy1, y—,}) = ;./—,}, then the total rev-
enue is V4. If max(vgy1, Y—,}) = Uk+1, it implies that k - vg41
is larger than Vi. Remember that Cy = {j € [K]|j -v; > Vi}
and j* = maxjec, j therefore j* = k and hence the total
payment of the winners is k - vg41.

In summary the total revenue for type profile 6 is the
following.

REVENUE(MITA, 6) =

{maX(V%mane[k]j “v;) Vi>maxjep j-v; (A)

max(Vi, k- vk+1) Vi < maxjep j - vj (B)



Similarly the total revenue for type profile ¢’ is the following.

REVENUE(MITA, ) =

max(V{, k- vj41)

max(Va, max;ep) j - v5) Vi > maxjep j-vj (A)
Vi <maxjep j-vj (B)

Note that because for any i we have v; < v, and V; < V/
the following inequalities are straight forward.

Vi<W (1)
Vo<V, (2)
maxj-v; < maxj - v’ 3
sem? " = Gem Y ®)
k-vppr < k- kg (4)

If both REVENUE(MITA, ) and REVENUE(MITA, §’) take
their value from Case (A) then the proof of the lemma
follows from Equations (2) and (3). Similarly if both
REVENUE(MITA, §) and REVENUE(MITA, §’) take their value
from Case (B) then the proof of the lemma follows from
Equations (1) and (4).

If REVENUE(MITA, ) takes its value from Case (A) and
REVENUE(MITA, 0') takes from Case (B) then it means that
participant z is a text-participant which causes max;ex) j-v;
to be larger than V7. The following proves the theorem for
this case.

REVENUE(MITA, 6)

= max(V2, max j - vj)
JElk]

<W REVENUE(MITA, 6) takes
its value from Case (A)
=V participant x is a
text-participant
< max(‘/l,7 k- ’Ulle+1)
= REVENUE(MITA, §")

If REVENUE(MITA, 6) takes its value from Case (B) and
REVENUE(MITA, §’) takes from Case (A) then it means that
participant x is an image-participant. The following proves
the theorem for this case.

REVENUE(MITA, 6)

= max(Vi,k - vg+1)

< mz[u?j - v; REVENUE(MITA, §) takes
j€lk

its value from Case (B) and

the fact that vi > vit1

. ’
=maxj - v;

T is an image-participant
JE[K]

< max(Vs, max j - vj)
JElk]

= REVENUE(MITA, §)

O

In the above we proved that MITA satisfies IR, IC, and
RM. In the following theorem we bound the PORM of MITA
and finish this section.

Theorem 4 PORM(MITA) < Ink.

PROOF. Let A be the set of winner(s) which realizes the
maximum social welfare in type profile 6. If A contains only
one image-participant with valuation Vi then we also have
Vi > max;ep j - v;. Mechanism MITA also selects an image-
participant with the same valuation if Vi > max ey j - v;
and hence PORM(mITA) is 1. Otherwise we have Vi =
maX;c[x) J - v; Where MITA selects a set of text-participants
which overall gives social welfare V7 and hence again the
PORM(MITA) is 1.

Now we consider the case when A contains text-
participants. By adding enough dummy participants with
value zero, and without loss of generality, we assume that
set A contains the first k text-participants with highest val-
uations v1 > ve > ... > vr. Mechanism MITA selects ei-
ther the first j* text-participants with highest valuations
(v1 > v2 > ... > v;j=) or selects an image-participant with
valuation V1. Remember that j* is the greatest number in
set Cyp = {j|j € [k] Aj-v; > V1} which implies the following.

. . Vi
Vil e " +1,...,k} Uj,<7} (5)

Note that if MITA selects an image-participant then Equa-
tion (5) holds for j* = 0.

Now we consider the following two cases to prove the the-
orem.

If MITA selects an image-participant then we have the fol-
lowing.

2 etk Vi
\%1
e V1/9

<

- i

<Ilnk

PORM(MITA) =

Equation (5)

If MITA selects the first j* text-participants then we have the
following.

Djen %

2 je Vi
< e ¥t 341 ¥
- 2 jel) Vi

e Vi + X Vili

2 jelj+) Vi

Equation (5)
< Z:J'E[j*] vj + Z?:j*+l(2je[j*] v;) /3
B 2 jel Vi
because Vi < Z v;

JE*]

PORM(MITA) =

<

<Ink
[}

4. VIDEO-POD AUCTIONS

In this section we design a Mechanism for Video-Pod Auc-
tion (MVPA) which satisfies IR, IC, and RM whose PORM
is at most ([logk] + 1) - (2 + Ink). Note that all the log
functions are in base 2. Let 6 = ((d1,v1), ..., (dn,vn)) € O"
be an arbitrary type profile of n participants. We define
the allocation and payment function of MVPA for this type
profile.



Mechanism MVPA partitions the participants into |log k| +
1 groups GV ... GLogkl+1) where group G9 contains all
the participants whose demand is in the range [297%,29).
Mechanism MVPA selects winners only from one group G9).

Definition 5 Let M9 be equal to max(| 2 |,1) which is
the mazimum number of winners MVPA selects from group
G .

Note that we can select at least |2 | winners from G
since there are k items and the demand of each participant
is at most 29. Moreover, from the last group G(H8*1+1) e
can select at least one winner although LWJ =0,
since we assume the demand of all the participants are from
the set [k].

Let (d$9, (), ..., (d?,v$) be the types of all the par-
ticipants in group g where p = |G|. Here by adding
enough dummy participants, we assume p is always larger
than M. Also, without loss of generality we assume
v§g) > vé‘” > .2 v,(,g). We define the Max Possible Rev-
enue of Group g (MPRG(g)) to be the following.

MPRG(g) = max j-v'?

jeM(9)] J

As the name MPRG suggests, we will see that its value
captures the maximum revenue can be truthfully obtained
from group g. Let G be a group with the maximum
MPRG and G97) be a group with the second maximum MPRG
breaking the ties arbitrarily.

The set of winners selected by MVPA is

(@0, @0}

where j is the largest number in [M‘97)] for which j - v§g R
is larger than or equal to MPRG(g’). In other words, the
number of winners (j) is the largest number in [M "] for
which j - v§.g ) > MPRG(g').

Now we use Lemma 1 to show that MVPA is truthful and
obtain the payments of winners.
Observation 2 Allocation function FMVPA g weakly
monotone.

ProOF. Note that MVPA sorts the participants according
to their valuation and selects the first j participants. There-
fore if any participant 4 increases its valuation it only helps
her to enter the winning set. Hence, the observation fol-
lows. [

In*the rest of this section we drop the group identifier of
M) and simply use M unless it is about another group.
In the following lemma we find the critical value of each

winner ¢ which is actually equal to its payment (pirv[VPA).

MVPA(Q)

Lemma 4 Let set of winners © contains the first j

participants with highest valuations from GY9") and 1)55,1)1 be
the (M + 1)th highest valuation in group G'9°) which is zero

if it does not exist. Then, the payment of participant i is the
following.

MPRG(g")

pMVPA(o) _ {max( ; 71}5\21)1) XS QZMVPA(G)

0 i & 2MVPA(g)

Proor. If participant ¢ is not a winner then its payment
is zero. When participant 4 is a winner then we prove that
its payment is equal to its critical value (Definition 4). In

’ *
order to prove that value max(%, vgfj +)1) is the critical
value of participant ¢, we show that for any value larger

than max(w,vgé’[?l) participant ¢ still wins and for
any value less than it she loses.
Remember that ’Uig ) > vég ) > ... > U,(,g ) are the valua-

59*)71159*) ’U(_g*)

sy Vg
are the valuations of the winners. Because group G\9") is the

group with the maximum MPRG, we have v](-g*) > MPRG(g")

tions of participants in group G ) and v

J
As there can be at most M winners from group G we

have v](-g*> > vg\fI:_)l. Therefore we have
MPRG(g') (g%

v](-g ) > max( UNI41)- (6)

Let participant ¢ with type profile (d59*>, vgg*)) be the ith
winner in group ¢* where i € [j]. We show that for any val-
MPRG (g’ *

7 = )’Uﬁ\glﬁl) par-
ticipant ¢ remains in the winning set. Equation (6) implies
that there are j participants in group GY") whose valua-
MPRG(g") (") )

j »Unr41

uation greater than or equal to max(

. If we decrease
MPRG(g") , (9™)
; s Unrp1) We

tions are larger than max(
the valuation of participant ¢ to max(

still have j participants in group G with valuations at
MPRG(¢") ,(9")
J

least max( ,Upr41)- Therefore, the value MPRG(g")

will be at least MPRG(g") and group GY") remains the win-
ning group,‘ hence participant ¢ remains in the winning set.

Now we prove that if the valuation of participant ¢ is less
%G(g/),vj(\f[:_)l), she cannot be in the win-
ning set. In order to prove this we consider two cases: (A)
when max(w, U}\/QI:.)J

7MPR].G("/) , 1}5\311)1) is equal to

than the max(

is equal to v}vgjj_)l, and (B) when
max( %G(g')_

Case (A): If max(%c;(g/), v](\fI:_)l) = vgjt,_)l and the val-
uation of participant ¢ is less than vgf[_‘_)l then it means that
there are M participants who have valuations greater than
the valuation of participant ¢. As there can be at most M
winners from group G, participant ¢ cannot be a winner.

Case (B): We prove this case by contradiction.
MPRG() (") ) = MPRGW) g g

Suppose max(

((dgg*),vfg*y)ﬁ_i) be a type profile in which the valua-

MPRG(g’)
J

tion of participant ¢ is less than while she is still

*\/
winner. Because the valuation of participant 4 (UEQ ) s

’
less than MPRGWD) 40 is in the winning set, in order for

MPRG(g*) to be larger than MPRG(g'), there has to be more

than j winners . Let j° > j be the number of winners in

¢'. Having j' winners in 6 and in order for G to be the

group with the highest MPRG we conclude that there are j’

%,G(g/) . Note
J

that the only difference between 6 and 6’ is that the valua-

tion of participant ¢ is higher in 8. Therefore, there are also
MPRG(g")
s/

participants with valuation greater than

at least j' participants with valuation greater than
in 0. This contradicts with the way we select the number of
winners (j) in # which is the maximum number for which

N C A /
j-v;? "’ is larger than MPRG(g"). O



The allocation function zMYP4 is weakly monotone (Ob-

servation 2) and the payments of the winners are their crit-
ical values (Lemma 4), therefore by Lemma 1 we conclude
that MvPA satisfies IC.

In the rest of this section first we prove that MVPA satisfies
RM and then bound its PORM.

Proposition 1 The total revenue of mechanism MVPA for
type profile 6 (REVENUE(MVPA, 0)) is the following.

REVENUE(MVPA, §) = max(MPRG(g'), M - Uz<vg121)

where g’ is a group with the second highest MPRG.

Proor. From Lemma 4 we know that there are j win-

ners and each of them pay max(w,vgjzl). There-

fore the sum of payments or the revenue of MVPA is j -
%G(g), Ugng_)l). The proof of the proposition follows
7MPRJ,G(9/) , vgvgji)l) is equal to vg\fﬁ)l

max(

if we show that when max(

then the number of winners (j) is equal to M.

%G(g), U%ﬁ’,ﬁl) is equal to vﬁé’ﬁl then as UE\ZJr)l
(9") -~ MPRG(g")
M = J

If max(

(g™)
v,y ~, we have M -v

IN

. Remember that j is
the maximum number in the set [M] for which j - v](-g*> is

larger than MPRG(g’). Therefore j is equal to M. [J

Lemma 5 Let 0’ be the type profile obtained by either
adding a new participant or increasing the valuation of a
participant in 0. Then,

REVENUE(MVPA, §') > REVENUE(MVPA, 6).

PRrROOF. Let x be the new added participant or the partic-
ipant which has the increased valuation in #’. Throughout
the proof we show MPRG of each group g in type profile 6 by
MPRGg(g) and in type profile 8’ by MPRGg/(g). Similarly, we

show the jth highest valuation of the participants of group
b (g7,9) (g*,6")
g by v; '
o'

As the jth highest valuation of the participants of each
group can only increase by adding participant x, we conclude

in type profile 8 and by v in type profile

. (9,6") (9,9)
Vg,V v > v (7)
Remember that MPRGy of each group g is max; ¢ pr(e)]J -
(g,0) . .
v;""" and using Equation (7) we get
Yg MPRGy(g) > MPRGg(g). (8)

In order to prove this lemma we consider two cases: (A)
adding participant x does not change the winning group
GY") and (B) adding 2 changes the winning group.

Case (A): Let g” be a group with the second highest
MPRG in &', it is possible that ¢ is equal to g”.

REVENUE(MVPA, §') = max(MPRGy (g”), M - v}ﬂ:_’f/))
Proposition 1

> max(MPRG (g'), M - v}fflf/))

definition of g”
> max(MPRGg(g), M - v$,?)
Equations (7) and (8)
=REVENUE(MVPA, 0)

Case (B): Let GY'") be a group with the highest MPRG
in @'. We have

MPRGg(g") > MPRGa(g') (9)

as g* has the highest and g’ has the second highest MPRG in
6.

MPRGg(g") > M v ?  As MPRG(g") = Joax J v ?
> M9 As 0@ > og"0)
(10)

Let § be the group with second highest MPRG in 6’. Because
g™ is no longer the winning group in ¢’ it can be a candidate
for the group with the second highest MPRG in #’ and hence
we have the following.

MPRGy(g") < MPRGy/(g") < MPRGy/ () (11)

The following equations conclude the proof of this case.

REVENUE(MVPA, §) = max(MPRGg(g"), M - vg\ﬂ:f))

< MPRGy(g")

by Equations (9) and (10)
< MPRGy (§)

by Equation (11)

(g".0) )

< max(MPRGy/ (§), M Ui 1

= REVENUE(MVPA, §)
U

The following lemma which bounds PORM of MmvPA fin-
ishes this section.

Theorem 5 PORM(MITA) < (|logk| +1) - (2+Ink)

PROOF. Let WF(g) to be the maximum social welfare
achievable if we select the winners only from group G,
Let A be a set of winner(s) which realizes the maximum
welfare in type profile . Note that as there are |logk] + 1

groups, one group (§) has a subset of participants from A
WE(A)

whose social welfare is at least Tog kl 4T and hence the fol-
ogk]+1
lowing.
. WF(A)
> 12
Wr(g) 2 logk| +1 (12)

Now we prove the following claim about MPRG(§).

WF(9)
2fInk

Claim 1 MPRG(g§) >

PRrROOF. Let B be the set of participants from group el
which give the maximum social welfare. Because the de-
mands of all the participants of G9) is in range [297',29),
size of B is at most |k/297!'|. Remember from Defini-
tion 5 that M9 = max(|k/29], 1) is the maximum number
of winners that MVPA potentially selects from group G,
Therefore, we have |B| <2- M@ +1.

Throughout the proof, we drop the superscript from M
and simply refer to it as M.

Let v1 > w2 > ... > wvao.pm41 be the valuations of the
participants in B; if B has less than 2 - M + 1 participants
we add enough dummy participants with valuations zero.



Remember that MPRG(§) = max;c(a J - v§-g>

least 1 (see Definition 5) which implies

where M is at

; Vi € [M] (13)

< MPRF;(@)
i
The following equations conclude the proof of the claim.
2-M+1
WF(§) = Z ;i
2-M+1

Sut >

i=M+1
2-M+1

<sz+ Z UM

i=M+1

replacing v; with vy for ¢ > M
M MPRG(§)
< R
D5t
=1 i=M+1

by Equation (13)
< (24 Ink)MPRG(9)

2‘§1 MPRG(9)
M

a

Remember G is the group with maximum MPRG value.

Let 5 be the number for which MPRG(g™) is equal to j - v<g ).

MVPA gelects the first 4" participants

Allocation function z
where j* is the maximum number for

from group G

which j* <ff is larger than MPRG(g'). Therefore we can
conclude that 4 < 7" and hence
wr(zMVPA(0)) > mPra(g). (14)

The following equations conclude the proof of the theorem.

MVPA(O)) > MPRG(g*)

by Equation (14)
> MPRG(9)

WF(z

G97) has the highest MPRG
WE(g)
— 2+1Ink
Claim 1
N WF(A)
~ (|logk| +1)-(2+1nk)
by Equation (12)

S. LOWER BOUND

In this section we prove Theorem 2. As mentioned ear-
lier we need two additional mild assumptions of anonymity
and independence of irrelevant alternatives (which we define
below) on the class of mechanisms for which we prove our
lower bound.

Definition 6 A mechanism (M = (x,p)) is anonymous
(AM) if the following holds: Suppose 61,02 € O™ are two
type profiles which are permutations of each other (i.e. the
set of type profiles are same just that the identities of par-
ticipants to whom those types belongs are different). Say
02 = w(01). Also say x(61) = S1 and x(02) = S2. Then
So = 7(S51).

Definition 7 Let 6 € ©" be an arbitrary type profile and
i € N be an arbitrary participant with type 0; = (d;,v;). A
mechanism (M = (z,p)) satisfies Independence of Irrelevant
Alternatives (ITA) if we decrease the bid of a losing partici-
pant, say participant i, to U; < v; then the new set of winners
1s a super set of the previous one, i.e., x(0) C xz((d;, v;), 0—;).
In other words, decreasing the bid of a losing participant does
not hurt any winner.

The proof outline of Theorem 2 is the following. Let
M* = (z*,p") be a mechanism which satisfies all the five
properties and has the optimal PORM opPT (i.e., OPT =
PoRM(M™)). We study the behavior of M* in a few
type profiles. Let e be an arbitrary small positive real
value. First we show that when there are only two par-
ticipants with types (k,1) and (k,1 + €), M”* gives all
the k items to the participant with type (k,1 + €). The
revenue of M™ from these two participants is 1. Then,
we add k more participants to create type profile § =
(1,1—e),(1,3 —e),...,(l,E —¢€),(k,1),(k,1+¢€)). The
RM property requires M* to make at least the same rev-
enue for 6. From this constraint we are able to show that
M”™ assigns all the items to participant k + 2 with type
(k,1+ €) and hence gets social welfare 1 + €. Note that the
maximum social welfare happens when the set of winners is
{1,...,k} which implies WFR(M*,0) > S°F 1 — k. ¢ (see
Definition 1). Because PORM(M* ) > WFR(M ,0) for any
0 € ©" we conclude that opT > ZZ 3

First we study the behavior of M* when we have only two
participants with types (k,1) and (k,1 4+ €).

Lemma 6 Mechanism M™ in type profile ((k,1), (k,1 + €))
gives all k items to the second participant and make one
unit of revenue, i.e., z*((k,1),(k,14+¢€) = {2} and

p* ((k,1),(k,14¢€)) = (0,1).

PRrOOF. First we study type profile ((k,v1), (k,v2)) for
general values vi,v2 € RT where v1 < vo. We prove that
M* gives all the items to the second participant.

Claim 2 z* ((k,v1), (k,v2)) =
where v1 < va2.

{2} for any vi,va € Rt

PROOF. First note that M™* has to have a winner for this
type profile because otherwise its social welfare will be zero
while the maximum social welfare is vo. This makes the
social welfare ratio of M™ to be undefined.

Now we prove that if * ((k,v1), (k,v2)) = {1} then M* ei-
ther violates IC or AM. Lets call type profile ((k, v1), (k, v2))
by 6™ and suppose for the sake of contradiction z* (0(1>) =
{1}. From Lemma 1 we know that if participant 1 increases
his bid to v she still wins, hence z*(0®) = {1} where
0® = ((k,v2), (k,v2)). Now if in type profile # partic-
ipant 2 decrease his bid to w1, again from Lemma 1 we
conclude that she cannot win, i.e., z*(8®) = {1} where
0 = ((k,v2), (k,v1)). Type profile V) is §® with partic-
ipant 1 swapped with participant 2 but in both of them the
first participant wins which contradicts with AM. []

Claim 2 directly proves that the winner in type profile
((k,1),(k,1+¢€)) is the second participant. The only thing
remains is to show that her payment (p2) is 1. Note that
payment p2 cannot be less than one because otherwise by
Lemma 1 participant 2 wins all the items in type profile



((k,1), (k, p2)) which contradicts with Claim 2. Payment ps
cannot be larger than one because otherwise for any value
1 < v2 < p2 participant 2 wins all the items in type pro-
file ((k,1), (k,v2)). This contradicts with Lemma 1 which
states that the payment p2 is the smallest value for which
participant 2 wins the items.

Now we add k more participants each of which wants only
one item. In the following lemma we prove that RM forces
M to assign all of the items to one of the participants who
want all the items.

Lemma 7 For the set of k+ 2 participants with type profile
0(0) = ((17 1- 6)7 (17 % - 6)7 R (17 % - 6)7 (ka 1)7 (k7 1 + 6))’
mechanism M™ assigns all the k items to either participant
k + 1 or participant k + 2, i.e., z* (0(0)) ={k+1} or

x* (6?(0)) ={k+2}.

PROOF. We prove the lemma by contradiction that if M™
assigns the items to a subset of the first k participants
it satisfy be RM. We consider a class of k type profiles
O, ..., 0% where ) is built from §“~). The only pos-
sible difference between ) and ¢~ is in the valuation of
participant ¢. If participant ¢ is a winner in 80~ then we
obtain 6 by increasing the valuation of the ith participant
from % — e to 1 — e. Note that the payment of participant ¢
in 907 is at most her valuation which is % — ¢ and in
it remains the same by Lemma 1. If participant ¢ is not a
winner in 8¢~ then we obtain 6 by decreasing his valu-
ation to zero. Note that by ITA, no winner turns to a loser
in ).

Let j € {1,...,k} be the largest number for which partic-
ipant j is a winner in 69 ~1 and we increase his valuation to
1 — e in Y. Note that at the start in type profile 0 the
set of winners is a non-empty subset of {1,...,k}. There-
fore there is at least one such j for which participant j is
a winner in 69 since decreasing the non-winners valuation
does not reduce the size of the winners.

Now we prove that there is no winner in the set of partic-
ipants {j + 1,...,k} in type profile 69, Assume otherwise
and let p € {j +1,...,k} be the smallest number for which
participant p is a winner in ). Note that when we decrease
the valuation of each participant j < p’ < p to zero to ob-
tain 9(1’/), participant p remains as a winner in all of them
by ITA. Therefore, participant p is a winner in type profile
9= and we increase his valuation in 6 which contra-
dicts with the fact that j is the largest number for which
participant j is a winner in gu—b,

The payment of participant j in 89~ is at most its val-

uation which is % — ¢. When we increase his bid to 1 — € in

type profile 09 its payment remains the same by Lemma 1.
Note that by construction of 89 the valuation of all partic-
ipants in {1,...,7} is either zero or 1 — €. If the valuation
of them is 1 — € and they are winner, by AM their payment
i % — €. Therefore the total payments or revenue of M”* in
09 is at most j - (% —¢€) =1—j- e since there is no other
winner in set of participants {j + 1,...,k} in type profile
o)

Note that type profile ) is obtained from type profile
((k,1),(k,1+¢€)) by adding k more participants. However
the revenue of #¥) is 1 — j - € that is strictly less than 1
which is the revenue of ((k,1), (k,1+ €)) by Lemma 6. This
contradicts with the RM property of M™, hence M™ has to

assign the items to either participant £+ 1 or k4 2. [

Now we show how from Lemma 7 we can derive The-
orem 2. Note that the maximum welfare for type profile
00 = ((1,1-e),(1,2—€,..., (1, £ —e), (k, 1), (k, 1 +¢))
realized when we give one item to each of the first k partici-
pants for which we get the total social welfare Zle % —k-¢,
i.e., the nominator of Definition 1 for this type profile is
Zle % — k - €. The denominator of Definition 1 is at most
1+ ¢ by Lemma 7. Therefore the ratio of the welfare for
this type profile is at least W Because OPT is the
maximum ratio over all type profiles (see Definition 2) we

Sk 1/i—k-e . . ko1
have opr > =4=1="—— which results in orT > D€
e(k=3F 1 1/0)

1+€ °
Note that the value €' can be made arbitrarily small by
selecting a sufficiently small value for €. Therefore we prove
that for any positive small real value ¢ we have opPT >

Zf:l 1 — ¢ which implies Theorem 2.

where € =
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