6th USENIX Conference on Object-Oriented Technologies, January 29-February 2, 2001, San Antonio, Texas, U.S.A.
(Minor corrections made February 5, 2001)

Multi-Dispatch in the Java Virtual Machine : Design and Implementation

Christopher Dutchyn Paul Lt  Duane Szafron Steven Bromling Wade Holst

* Dept._of C_omputing Science ¢ Dept. of Computer Science
University of Alberta The University of Western Ontario
Edmonton, Alberta, Canada, T6G 2E8 London, Ontario, Canada, N6A 5B7
{dutchyn,paullu,duane,bromlif@cs.ualberta.ca wade@csd.uwo.ca
Abstract selection based upon the types of the arguments. This

method selection process is knowndispatch It can

Mainstream object-oriented languages, such as C+®ccur at compile-time or at execution-time. In the for-
and Javd, provide only a restricted form of polymor- mer case, where only the static type information is
phic methods, namely uni-receiver dispatch. In com-available, we havestatic dispatch(method overload-
mon programming situations, developers must working). The latter case is known afynamic dispatch
around this limitation. We describe how to extend the(dynamic method overriding or virtual functions) and
Java Virtual Machine to support multi-dispatch and ex-object-oriented languages leverage it to provide poly-
amine the complications that Java imposes on multimorphism — the execution of type-specific program
dispatch in practice. Our technique avoids changes tgode.

the Java programming language itself, maintains sourc
code and library compatibility, and isolates the perfor-

mance penalty and semantic changes of multi-metho . -
P y g ing dispatch. Uni-dispatchlanguages select a method

dispatch to the program sections which use it. We hav% O )
. o ased upon the type of one distinguished argument;
micro-benchmark and application-level performance re-

sults for a dynamicMost Specific ApplicabléMSA) multi—d_ispatchlanguages consider more than one, and
dispatcher, a framework-bas&ingle Receiver Projec- potentially all, of the arguments at dispatch time. For

. : . example, Smalltalk [14] is a uni-dispatch language.
tions(SRP) dispatcher, and a tuned SRP dispatcher. Ou{:LOSp[ZB,] and Cecil[[6]]are multi-dis Ztch lan Sa gs
general-purpose technique provides smaller dispatch | P guages.

. ) a(')ther terms, like multiple dispatch, are used in the liter-
tency than programmer-written double-dispatch code ) ) : :
: . . . ature. However, the term multiple dispatch is confusing

with equivalent functionality. . . . . .

since it can mean either successive uni-dispatches or a
single multi-dispatch. In fact, in this paper, we compare
multi-dispatch to double dispatch, which uses two uni-

dispatches.

e\le can divide OO languages into two broad categories
gased upon how many arguments are considered dur-

1 Introduction

Object-oriented (OO) languages provide powerful tools
for expressing computations. One key abstraction is th&€++ [24] and Java [15] are dynamic uni-dispatch lan-
concept of dype hierarchywhich describes the relation- guages. However, for both languages, the compiler
ships among types. Objects represent instances of thesensiders the static types of all arguments when com-
different types. Most existing object-oriented languagesiling method invocations. Therefore, we can regard
require each object variable to have a programmerthese languages as supporting static multi-dispatch. Fig-
assignedstatic type The compiler uses this information ure 1 depicts both dynamic uni-dispatch and static multi-
to recognize some coding errors. Tienciple of sub-  dispatch in Java.

stitutability mandates that in any location where type  Uni-dispatch limits the method selection process to con-
is expected, any sub-type ©fis acceptable. But, substi- sider only a single argument, usually the receiver. This
tutability allows that object variable to have a different is a substantial limitation and standard programming id-
(but relateddynamic typeat runtime. ioms exist to overcome this restriction. As a motivation
d for multi-dispatch, we describe one programming idiom

Another key facility found in OO | [ th
nother xey Taciity found In anguages IS metho that demonstrates the need for multi-dispatch, describe

LJava is a trademark of Sun Microsystems, Inc.



class Point {

int x, vy;

void draw(Canvas c) { // Point-specific code }
void translate(int t) {x+=t; y+=t;}
void translate(int tX int tY) {x+=tX y+=tY;}
}

cl ass Col orPoi nt extends Point {
Col or c;
void draw(Canvas C) { // Col orPoint code }

}
/] same static type, different dynam c types

Point Pp = new Point();
Poi nt Pc new Col or Poi nt () ;

/] static multi-dispatch
Pp.transl ate(5); // one int version
Pp.translate(1,2); // two int version

/1 dynami c uni-dispatch
Pp. draw(aCanvas); // Point::draw()
Pc. draw( aCanvas); // Col orPoint::draw()

Figure 1: Dispatch Techniques in Java

the type of thelbj ect argument before continuing to
perform a type-specific comparison. Another common
use for double dispatch is in drag-and-drop applications,
where the result of a user action depends on both the data
object dragged and on the target object. A generic drag-
and-drop schema forces the programmer to test data
types and re-dispatch to a more specific method. A third
example is in event-driven programming. As we saw
in Figure 2, applications are written using base classes
such agonponent andEvent, but we need to take ac-
tion based upon the specific types of badnponent
andEvent . Indeed, the need for multi-dispatch is ubig-
uitous enough that two of the original design patterns,
Visitor and Strategy are work-arounds to supply multi-
dispatch functionality within uni-dispatch languages.

Consider how the AWT example could be re-written if
dynamic multi-dispatch was available in Java. An equiv-
alent program, partially using multi-dispatch, would re-
semble Figure 2(b). For clarity, we have not completely
converted the code to use multi-dispatch; we maintain

how it can be replaced by multi-dispatch, list the ad-the case statement and double dispatch to select among

vantages of using multi-dispatch to replace the idiomatiavbuseEvent categories.

A more complete factoring

code, and measure the cost of using multi-dispatch withof MouseEvent into MouseBut t onEvent andMbuse-

one of our current multi-dispatch algorithms.

1.1 Double Dispatch

Mot i onEvent would eliminate the remaining double
dispatch, resulting in &ull Multi-Dispatch version of
the code. The dynamic multi-dispatcher will select the
correct method at runtime based upon tligpatchable

Double dispatctoccurs when a method explicitly checks argumentsn addition to thereceiver argumenthe in-
an argument type and executes different code as a réifance ofconponent ). Individual component types can
sult of this check. Double dispatch is illustrated in Fig- Still override the methods that accept specific event types

ure 2(a) (from Sun’s AWT classes) where thebcess-

(e.g. KeyEvent , FocusEvent) and will do so without

Event (AWEvent ) method must process events in dif- iNvoking the double-dispatch code.

ferent ways, since event objects are instances of differy,q multi-dispatch version is shorter and clearer.

ent classes. Since all of the events are placed in a queygyever. it requires the Java Virtual Machine
whose static element type BATEvent , the compiler (JVM) [20] to directly dispatch anEvent to the
loses the more specific dynamic type information. When,q ract processEvent (AWEvent) method.  Our

an element is removed from the queue for processing, it§,qgified JVM provides this facility and correctly
dynamic type must be explicitly checked to pick the ap-gyecutes the multi-dispatch code discussed above.
propri_ate action. This is an example of the well-known Furthermore, Table 1, a subset of Table 4, shows that
container problem [S]. multi-dispatch is substantially faster than interpreted
Double dispatch suffers from a number of disadvan-double dispatch and even faster than JIiT-ed double
tages. First, double dispatch has the overhead of indispatch. Note that the numbers in Table 1 are based on
voking a second method. Second, the double-dispatchingle-threaded code.

program is longer and more complex; this provides . . . :
more opportunity for coding errors. Third, the double- QUF €xperience with the Swing GUI classes [26] rein-

dispatch program is more difficult to maintain since forces our belief that double dispatch in AWT is a sig-

adding a new event type requires not only the code tdificant factor in Swing applications. First, Swing does
handle the new event. but another cascaelese i f not operate without AWT,; instead ea@®WrEvent is

statement. accepted by a SwingConponent. Therefore, every
mouse-click and key-press is double dispatched through

The need for double dispatch develops naturally in SevAWT into Swing. Next, Swing type-checks the event

eral common situations. Consider binary operations [4]land double dispatches again. Internally, Swing avoids

such as theonpar eTo( Cbj ect ) method definedinin-  further double dispatch by coding t#Event type
terfaceConpar abl e. The programmer must ascertain



package java.aw ; package java.aw;
cl ass Component { cl ass Component {

/1 doubl e dispatch events to subConponent voi d processEvent (AWEvent e) {...}

voi d processEvent (AWEvent e) {

if (e instanceof FocusEvent) {
processFocusEvent (( FocusEvent)e);

} else if (e instanceof MuseEvent) { voi d processEvent (MuseEvent e) {
switch (e.getID()) { switch (e.getID()) {
case MouseEvent . MOUSE_PRESSED: case MuseEvent . MOUSE_.PRESSED:
case MuseEvent. MOUSE_EXI TED: case MuseEvent. MOUSE_EXI TED:
processMuseEvent (( MouseEvent)e); processMuseEvent (( MouseEvent)e);
break; break;
case MouseEvent . MOUSE_MOVED: case MyuseEvent . MOUSE_MOVED:
case MuseEvent . MOUSE_DRAGGED: case MyuseEvent . MOUSE_DRAGGED:
processMuseMt i onEvent (( MouseEvent)e); processMuseMt i onEvent (( MouseEvent)e);
br eak; br eak;
}
} else if (e instanceof KeyEvent) { }

processKeyEvent ((KeyEvent)e);

} else if (e instanceof ConponentEvent) {
pr ocessConponent Event ( ( Conponent Event) e) ;

} else if (e instanceof I|nputMethodEvent) {
processl nput Met hodEvent ( (1 nput Met hodEvent)e);

/'l other events ignored by Conponent

}

voi d processFocusEvent (FocusEvent e) {...} voi d processEvent (FocusEvent e) {...}

voi d processMuseEvent (MouseEvent e) {...} voi d processMuseEvent (MouseEvent e) {...}

voi d processMuseMdti onEvent (MouseEvent e) {...} voi d processMuseMti onEvent (MuseEvent e) {...}
voi d processKeyEvent (KeyEvent e) {...} voi d processEvent (KeyEvent e) {...}

voi d processConponent Event (Conponent Event e) {...} voi d processEvent (Conponent Event e) {...}

voi d processl nput Met hodEvent (| nput Met hodEvent e) {...} voi d processEvent (| nput Met hodEvent e) {...}

(a) Double Dispatch in Java (b) Equivalent Code in Multi-Dispatch Java

Figure 2: Double vs. Multi-Dispatch in Java

into the selector (e.gfirel nternal Event()). De- (e) The existing class libraries are not affected.
§p|te the limitations th!s imposes on the programmer, it (f) The existing reflection API is preserved.

is clear that double dispatch is still the standard tech-

nique in Swing as well. 2. The introduction of a dynamic version of Java’s
Also, a multi-dispatch JVM could benefit other lan- static multi-dispatch algorithm.

guages. For example, Standard ML, Scheme, and Eiffel
have implementations which generate JVM-compatible
binary files. Extending these languages to include multi-
dispatch semantics becomes straightforward. Unlike ) . ) .
techniques based on source code translation, our multVe begin by reviewing some important details about the

dispatch JVM can be directly used by other languages. gni-dispatch JVM. l\_le>_<t, we sketch our JVM modifica-_
tions to enable multi-dispatch. Then, we present experi-

The research contributions of this paper are: mental results for implementations of our multi-dispatch
techniques. This is followed by a discussion of several
1. The design and implementation of an extended Javgomplex issues that a practical multi-dispatch Java must
Virtual Machine that supports arbitrary-arity multi- address and a description of some of the details of our
dispatch with the properties: implementation. Finally, we close with a description of
future work and a review of related approaches to multi-
dispatch.

3. The first performance results for table-based multi-
dispatch techniques in a mainstream language.

(@) The Java syntax is not modified.
(b) The Java compiler is not modified.

(c) The programmer can select which classes? Background
should use multi-dispatch.

(d) The performance and semantics of uni-The Java Programming Language [15] is a static
dispatch methods are not affected. multi-dispatch, dynamic uni-dispatch, dynamic loading



Dispatch Interpreter OpendIT

Type Time inus () | Normalized || Timeinus (¢) | Normalized
Double 0.91 (0.00) 1.00 048 (0.01) 1.00
Multi- 0.34 (0.00) 0.37 0.32 (0.01) 0.67
Full Multi- 0.32  (0.00) 0.35 0.32 (0.00) 0.67

Table 1: AWT Event Dispatch Comparison

(Call-site Dispatch Time in microseconds, Subset of Taple 4

object-oriented language. Our primary design goal isConceptually, the constant pool consists of an array con-
to extend the dynamic method selection to optionallytaining text strings and tagged references to text strings.
and efficiently consider all arguments, without affecting In Figure 3, clas®oi nt is represented by a tag entry at
the syntax of the language or any other semantics. Ouocation 1 that indicates that itisa Asstag and that we
secondary goals are to retain the dynamic and reflectivehould look at constant pool location 2 for the name text.
properties of Java. Then, the constant pool contains the text striRgi‘nt ”

In order to meet these goals, we chose to modify theat location 2. Therefore, a class symbol requires two

JVM [20] implementation, rather than modifying the constant pool gntr!es. Method reference_s are similar, ex-
. : cept they require five constant pool entries.
programming language itself. Java programs are com-

piled by j avac (or other compiler) into sequences of _
bytecodes — primitive operations of a simple stack- ; (T”E-Qis fgoim" Point
based computer. These bytecodes are interpreted by a| 3 ciass #4 ColorPoint
JVM written for each hardware platform. We began 4 TEXT "ColorPoint

; ; ] 5| METHOD  #1 #6 Point::<init>:()V
with the Cl.aSSICV.M (n9W known _as .thdqeseamh \ﬁr. 6| NAME&TYPE #7 #8 and for our initializer
tual Machiné) written in C and distributed by Sun Mi- 7 TEXT ninit>"
crosystems, Inc. Other JVM implementations exist and | 8 TEXT "Ov" _
many includgjust-in-time(JIT) compiler technology to 9 METHOD  #1  #10 Point: draw.(LCanvas;)\

i . . . 10| NAME&TYPE #11 #12 and for our method

enhance the interpretation speed at runtime by replacing | 11| Text “draw”
the bytecodes with equivalent native machine instruc- |12| TEXT "(LCanvas;V" _
tions. At present, our modified JVM is compatible with ij #‘é)“("TE&TYPE f’fcl,f‘ #15 used for our field
the OpenJIT 1.1.15 [21] compiler. 15| TEXT “"Color"

Before we look at how to implement multi-dispatch in ] .
the virtual machine, we first need to understand the bi- Figure 3: A Simple Constant Pool

hary representation that the virtual machine executesy our example, constant pool location 9 contains the tag
how method invocations are translated into the virtualgeclaring that it contains RETHOD. It references the

machine code, and how the JVM actually dispatches the, ass tag at location 1, to define the static type of the

call-sites. class containing the method to be invoked. In this case,
the class happens to i nt itself, but, more often,
2.1 Java Classfile format this is not the case. TheETHOD entry also references

the NAME-AND-TYPE entry at location 10. ThiSAME-

The JVM reads the bytecodes, along with some necesAND-TYPE entry contains pointers to text entries at lo-
sary symbolic information from a binary representation,cations 11 and 12. The first location, 11, contains the
known as a cl ass file. Each. cl ass file contains a method name, draw’. The second location, 12, con-
symbol table for one class, a description of its super{ains an encoded signaturgLCanvas; ) V" describing
classes, and a series of method descriptions containiniie number of arguments to the method, their types, and
the actual bytecodes to interpret. We leverage the symthe return type from the method. In our example, we see
bolic information, called theconstant pogl to imple- ~ one class argument with namedhvas” and that the
ment multi-dispatch. return type isvoi d.

Figure 3 shows the layout of the constant pool for thep 2 Static Multi-Dispatch in Javac
Col or Poi nt class shown in Figure 1.

p— el . itially el g . The Java compiler converts source code into a binary
The Research Virtual machine was initially released asldmssic ; f f _
reference VM. Sun later renamed it tBxact VM. With the advent representation. When it encounters a method invoca

of the HotSpotVM, the classic VM was renamed again, becoming the tion, j avac must emit a C_OnStant pool entry thq’[ de-
Research/M. scribes the method to be invoked. It must provide an



exact description, so that, for instance, the twans- M.,. If so, then the compiler drops/. from the candi-
| ate(...) methods inPoi nt can be distinguished at date list.

runtime.  Therefore, !t must examine the types of the.Unfortunater, both tests can fail. To illustrate this, eon
arguments at a call-site and select between them. This

. . : : ider the first two methods in Figure 4. The first argu-
selection process, which considers the static types of a : . :
. . o ment of the first methoddp! or Poi nt ) can be widened
arguments, can be viewed as a static multi-dispatch.

to the type of the first argument of the second method
The Java Language Specification, 2nd Edition(Poi nt). But the opposite is true for the second ar-
(JLS) [15] provides an explicit algorithm for static gument of each method. If we invokel or Box with
multi-dispatch calledViost Specific Applicabl@SA). two Col or Poi nt arguments, both methods apply. If the
At a call-site, the compiler begins with a list of all third method was not present, we would havearbigu-
methods implemented and inherited by the (static)ous methoerror. The third method, taking tw@o! or -
receiver type. Through a series of culling operations,Poi nt s, removes the ambiguity because it is more spe-
the compiler reduces the set of methods down to a singleific than both of the other methods. It allows both of the
most specific method. The first operation removesothers to be culled, giving a single most specific method.
methods with the wrong name, methods that accept
an incorrect number of arguments, and methods thafcol or Box( Col or Poi nt p1, Point p2) {...}
are not accessible from the call-site. This latter group| col or Box(Point pl, ColorPoint p2) {...}
includes private methods called from another class and /1" conflict method removes ambiguity
. col or Box( Col or Poi nt pl, ColorPoint p2) {...}
protected methods called from outside of the package.

Next, any methods which are not compatible with the Figure 4: Ambiguous and Conflict Methods

static type of the arguments are also removed. Thirimitive type&, when used as arguments, are tested at
test relies upon testingidening conversionsvhere one  compilation time in the same way as other types. Primi-
type T, can be widened to anoth&y,,,., if and only  tive widening conversions are defined which effectively

if Tsyp is the same type @&, Or a subtype of s,pe. impose a standard type hierarchy on the primitive types.
For example, &ocusEvent can be widened to akAT- The compiler inserts widening casts as needed.

Event because the latter is a super-type of the for-

mer. The opposite is not valid: asTEvent cannot 2.3 Dynamic Uni-Dispatch in the JVM

be widened to &ocusEvent ; indeed a type-cast from

AWFEvent to FocusEvent would need to be a type- NOW we turn our attention to dispatching polymorphic
checkecharrowing conversion. call-sites at runtime. Methods are stored in thé ass

] . ) _ file as sequences of virtual machine instructions. Within
Finally,j avac attempts to locate the singleost specific 5 stream of bytecodes, method invocations are repre-

method among the remaining subsestﬂtically appli-  sented byi nvoke bytecodes that occupy three bytes
cable methods. One methoM(T:.1,...,Ti..) iS CON-  The first byte contains the opcodexp6 for i nvoke-
sidered more specific thaW(T, ,,..., T>,) if and only i 1 ya1 ). The remaining two bytes form an index
if each argument typd ; can be widened td5; for  jntg the constant pool. The constant pool must con-
each(i = 1,...,n), and for somej, > ; cannot be  tain aMETHOD entry at the given index. This entry
widened toT; ;. In effect, this means that any set of contains the static type of the receiver argument (as
arguments acceptableMTs,1, ..., 7o) is also accept-  the cLass linked entry), and the method name and
able toMT' 1, ..., T ), but not vice versa. signature (through theAME&TYPE entry). Figure 5

Given the subset of applicable methoglayac selects ~Shows the pseudo-bytecddéor invoking the method
one M, as its tentatively most specific. It then checks Conponent. processEvent (AWEvent ) twice.

each other candidate methadd. by testing whether its From the opcodej nvokevi rtual , the JVM knows
arguments can be widened to the corresponding arguhat the next two bytes contain the constant pool index
ment in M;. If this is successful, thed/, is at least of aMETHOD descriptor. From that descriptor, the JVM
as specific as\l;; the compiler adoptd/,. as the new can locate the method name and signature. The JVM
tentatively most specific method — the methdf] is  parses the signature to discover that the method to be
culled from the candidate list. If the first test, whether invoked requires a receiver argument and one other ar-
M, be widened talM,;, is unsuccessful, then the com- gument. Therefore, the JVM peeks into the operand

piler checks the other direction: cadd, be widened to 4Java provides non-object typést e, char, short, i nt, | ong,
f1 oat, anddoubl e. These are called primitive types.
3The JLS separately recognizes identity conversionsous- 5Thei nvokei nt er f ace bytecodes occupy 5 bytes.
Event can be converted into BocusEvent). Javac does not dis- SRather than show constant pool indices, we show their valises

tinguish them, so we do the same for our exposition. rectly.



Component aComponent = new SubComponent (.. 1)- multi-dispatch will need to handle these special cases.

AWFEvent anEvent = new FocusEvent(...);

FocusEvent aFocusEvent = new FocusEvent(...);
aConponent . processEvent (anEvent); 3 DeSIQn
aConponent . processEvent (aFocusEvent);

(a) Polymorphic Call-sites in Source. o . . .
We now have sufficient information to describe the gen-

eral design for extending the JVM to support multi-

apush  aComponent dispatch. In short, we mark classes which are to use
apush anEvent multi-dispatch and replace their method invokers with
i nvokevi rtual Component::processEvent:(LAWTEvent;)V .

one that selects a more specific method based on the ac-
apush  aComponent tual arguments. Hence, existing uni-dispatch method in-
apush aFocusEvent vocations are unchanged in any way.

i nvokevi rtual Component::processEvent:(LAWTEvent;)V

Marking the. cl ass files without changing the lan-
(b) Polymorphic Call-sites in Bytecodes. guage syntax is straightforward. We created an empty
interface Mul t i Di spat chabl e and any class which
will provide multi-dispatch methods must implement
that interface. The cl ass file retains that interface
name and the virtual machine can easily check for this at

stack and locates the receiver argument. At this point, ) X .
the JVM has the information it needs to begin searching’'@sS 0ading time. Our implementation does not change
he syntax of the Java programming language or the bi-

for the method to invoke. The JVM has the name, the i X
signature, and the receiver of the message. nary. cl ass file formatin any way.

Figure 5: Polymorphic Call-sites — two views

The JVM Specification (section 5.4.3.3) provides a re-OUr interface-based technique allows us to retain com-

cursive algorithm foresolvinga method reference and Patibility with existing programs, compilers, and li-
locating the correct method: Beginning with the meth- Praries. Any class that implements our marker interface

ods defined for the precise receiver argument type, scalﬂas different semantics for dispatch. But, the semantics

for an exact match for the name and signature. If oneOf existing_uni-dispatch programs and Iibr_aries are not
is not found, search the superclaséthe receiver argu- changed since they do not implement the interface. The

ment, continuing up the superclass chain uhil ect , programmer retains.co.mplete control and resppnsibility
the root of the type hierarchy, is searched. If an exacfor designating multi-dispatchable classes. This allows
match is not found. throw afbst r act Vet hodEr r or the developer to consciously target the multi-dispatch

This look-up process applies to each of thevoke technique to known programming situations, such as
bytecodes. double dispatch.

This look-up process is a time-intensive operation, ToAt dispatch time, our multi-invoker executes instead of

reduce the overhead of method look-up, the resolvecﬁhe Qriginal JVM invoker. Our invoke_r locates a more-
method is cached in the constant pool alongside the Origpremse method based on the dynamic types of the invo-

inal method reference. The next time this method refer-c"“ltion arguments and executes it in place of the original

ence is applied by anothenvoke bytecode, the cached method.
method is used directly. The non-virtual mode invocations need to be handled
Once a method is resolved, a method-spedifiokeris specially. Constructors are never multi-dispatched. We

executed to begin the interpretation of the new method].cound _th"?‘t_ constructor_ chaining _W'th'n a class could
This invoker performs method-specific operations, suctaus€ |n_f|n_|te loops. Private and final multi-methods are
as acquiring a lock in the case®ofnchr oni zed meth- still multi-dispatched.

ods, constructing a JVM activation record in the case ofwe implemented two different dispatch algorithms.
bytecode methods, or preparing a machine-level activarirst, MSA implements a dynamic version of the
tion record fomat i ve methods. Java Most Specific Applicable algorithm used by the

The Research JVM recognizes a special case in invokin%avac compiler. Second, Single Receiver Projections

methods: any private methods, final methods, or con SRP) [17] is a high performance table-based technique
structors can be handled iman-virtualmode. Each of developed at the University of Alberta. We examine both

these situations do not require dynamic dispatch. But? framewt_)rk—based _SRP_ and a tunec_i SRP mplementa-
tion. Section 6 provides implementation details, but we
7Java provides only single inheritance of program code. first present the results of our experiments.




4 Experimental Results noring other costs. In the final benchmark, Swing, we re-
port execution times for a synthetic application that cre-

So far, we have used four different micro-benchmarksates a number of components and inserts 200,000 events

and a new implementation of Swing/AWT to test our into the event queue.

multi-dispatcher.

The first micro-benchmark uses thavac compiler 4.1 Javac — Compatibility Test

to recompile itself while running on the multi-dispatch _ _ ) .
VM. Thej avac compiler has not been modified, there- The first expenment requires the runtime to load _and
fore the experiment demonstrates the backward compafXecuté thej avac compiler to translate the entire

ibility of the modified VM for uni-dispatch applications. Sun-tool's hierarchy of Java source files intel ass
The measured overheads of uni-dispgtahac running files. This hierarchy includes 234 source files encom-

on the multi-dispatch VM are minimal. The other three passing 49,798 lines of code (excluding comments).

micro-benchmarks demonstrate multi-dispatch correctE@ch compilation was verified by comparing the error

ness, multi-dispatch performance as compared to doJMessages and by checksumming the generated bina-

ble dispatch, and multi-dispatch performance as arity/1€S: Each virtual machine passed the test; the timing
increases. Al of the micro-benchmarks are Sing|e_results are shown in Table 2. These times come from the

threaded Unix ti me user command and are averages, with stan-

dard deviation, of 10 runs.
For our application-level tests, we modified Swing, the

second-generation GUI library bundled with Java 2, to [avm [ Timein sec. ¢ [ Norm. ||
use multi-dispatch. As expected, Swing is a double- jak 6541+0.25 (0.39)] 1.00
dispatch-intensive library. We also converted AWT be- jdk-MSA | 67.38+0.31 (0.14)] 1.03
cause Swing depends heavily on AWT to dispatch the idk-fSRP | 68.22+0.45 (0.25)] 105
jok-tSRP | 67.13+051 (0.35) 1.03

events into top-level Swing components.

Table 2: Compatibility Testing and Performance

All experiments were executed on a dedicated Intel- (User+System Time to Recompiain. £ 00l s. in seconds)

architecture PC equipped with two 550MHz Celeron

processors, a 100MHz front-side bus, and 256 MB ofThe negligible differences between the uni-dispatch
memory. The operating system is Linux 2.2.16 with and multi-dispatch execution times demonstrate that
gl i bc version 2.1. The Sun Linux JDK 1.2.2 code was the overhead of running uni_dispatch code on a multi-
compiled using @u C version 2.95.2, with optimiza-  dispatch VM is essentially zero. Note that in our im-

tion flags as supplied by Sun's makefflesThe table-  plementation, table-based JVMs do not construct a dis-

based multi-dispatch code [22] was compiled using)G  patch table until the first multi-dispatchable method is
G++ version 2.952 The Sun JDK only supports the inserted.

gr een threading model, which is implemented using
pthreads under Linux. We report average and standard 2  Simple Multi-Dispatch
deviations for 10 runs of each benchmark.

We tested three different virtual machines. First, weln this micro-benchmark, we show that multi-dispatch
havejdk, the standard JDK 1.2.2 Linux runtime, run- iS correct and measure its overhead. The testing code
ning in interpreter mode. This JVM serves as a baselindS short and is shown in Figure 6. Note that_clg@s

for comparing the remaining four multi-dispatch sys- JDri ver implements the marker interfadél ti Di s-
tems. Second, we have a non-JIT multi-dispatch Jvmpat chabl e. The compiler uses static multi-dispatch to
with three different multi-dispatch techniqugdk-MSA  code all four calls tavDiDri ver. n(X, X) to execute
and two implementationgdk-fSRP and jdk-tSRP of ~ the method for two arguments of typepeqause that is
the same algorithm. Third, we have customized OpenJithe static type of bottanA and aB. Multi-dispatch ac-

1.1.15 to be compatible with our multi-dispatch Jvm. tually selects among the four methods based upon the
dynamic types of the arguments. Therefore, correct out-

For the first and second micro-benchmarks, (Tables %t consists of 100,000 repetitions of four consecutive
and 3) we report user+system time in seconds, alongnes: aa, AB, BA, andBB. For timing purposes, all out-
with normalized values against tjgk runtime. Forthe ¢ was redirected todev/ nul | to reduce the impact
third and fourth experiments (Table 4 and Figure 7), Weof input/output. Our results are summarized in Table 3.

describe individual dispatch times in microseconds, i9-1 4 taple-based techniques, jdk-fSRP and jdk-tSRP, suf-

$Typical flags are c2 fer from a substantial startup time, whergatk- MSA
Swith options -ansi -fno-inplicit-tenplates -fkeep-
inline-functions -Q2. 10There is one warning noting that 8 files used deprecated APIs.




class A { } Full Multi-Dispatch (FMD) eliminates the type-cases
class B extends A { } and the prpgrammer—coded t_ype—numb(_aring from
class MDIDriver inplenents MultiDispatchable { bD. It dIVIde.S l\./buseEveth into two _different
String m(A al, A a2) { return "AA"; } classes and eliminates thei t ch statement.
String m(A al, B b2) { return "AB"; }
String m(B bl, A a2) { return "BA"; } To avoid inlining effects, we added code for updating
String m(B bl, B b2) { return "BB"; } an instance variable to the body of eaphocess-
static public void m_ii n(stri ng args[]) { Event (AWEvent ). This experiment consists of dis-
fA' gﬁlA ':n:]e\boAa(D)S! ZE = 100000; patching a total of one million events througihocess-
A aB = new B(): Event (AWIEvent ). Each event type appears equally
MDIDriver d = new MDJDriver(); often, as we iterate over an array containing equal num-
fgr gt :a”mt Oiut=0; r: ;{-IO?S' i(E?aniA"*)ani)) _ bers of each event. We compute the loop overhead, sub-
5\)//St em out . Bri ntl n( q m anA, aB)): ’ t_ract the overhead amount, and_then divide the remaining
System out. println(d. m(aB, anA)); time by the number of events dispatched. The timing re-
Systemout. printin(d.n(aB, aB)); sults are shown in Table 4.
}} Also, we give an additional timing value for our cus-
} tom SRP implementation, where we disabled mutual ex-
clusion in the dispatcher. Currently our implementation
Figure 6: Simple Multi-Dispatch Testing Code uses a costly monitor to ensure that no other thread is up-

dating the dispatch tables during a multi-dispatch. High-

performance concurrent-read exclusive-write protocols
primarily uses existing data structures found in the JVMcan eliminate this overhead; the nolock value represents
interpreter and lazily computes any additional valuesihis highest-performance case.

This reduces the cost of program startup. ) o
As DD does not declare itself multi-dispatchable, the

similarity of the results in column 2 of Table 4 again
shows that our multi-dispatchable virtual machines do
not significantly penalize uni-dispatch code. Further,
we see that the cost of interpreting numerous expen-
sive JVM bytecodes, such asst anceof , followed by
anotheri nvokevi rtual (which is DD’s strategy), is
Table 3: Simple Multi-Dispatch more costly than our multi-dispatch techniques. The full
(User+System Execution Time in seconds) multi-dispatch implementation (FMD) is faster than the
partial multi-dispatch (MD). This is reasonable because
MD ends up double-dispatching two of every six events.

[ Ivm | Timein sec. €) | Norm. | Correct ||
jak 26.40 + 0.68 (0.07) 1.00 No
jdk-MSA | 28.88+0.83 (0.22) 1.10 Yes
j0k-TSRP | 31.563+091 (0.11) 1.20 Yes
jdk-1SRP | 29.48 +0.84 (0.17) 1.12 Yes

4.3 Double Dispatch of Events
Again, we see that the framework-based SRP technique
Our third experiment involves computing the perfor- suffers from considerable initial overhead. We hypothe-
mance differences between double dispatch and the twsize that it is a result of the object-oriented nature of our
multi-dispatch implementations of the example given inimplementation of the table-based techniques. In each
Figure 2. We constructed a synthetic type hierarchy ofdispatch, several C++ objects are created and destroyed
AWEvent classes, to match those in Figure 2. The dis-on the heap. Our tuned SRP implementation, jdk-tSRP,
cussion of Swing follows in Section 4.5. We also con-removes this overhead and provides faster dispatch per-
structed three different component types: formance than programmer-coded double dispatch.

OpendIT compilation gains only minor improvements

Double Dispatch (DD) implements  double dispatch for the multi-dispatch system. This matches our ex-
via type-cases and programmer-coded type nUMpectations since OpenJIT calls the sarakect Ml ti -

bering as shown in Figure 2(&). Met hod() routine that the interpreter uses, there is only

a slight benefit from avoiding some interpreter frame

Multi-Dispatch (MD) implements multi-dispatch as manipulations.

shown in Figure 2(b), where the type-cases from
DD have been replaced with multi-dispatch. 4.4 Arity Effects

11Type-cases are not the most effective double-dispatchniges, . . . .
but this code matches Sun’s AWT implementation. For a coispar ~ OUr final micro-benchmark explores the time penalties

with other double-dispatch techniques, see [8, 13]. as the number of dispatchable arguments and applicable



Interpreter OpendIT

Dispatch DD MD FMD DD MD FMD
JVM Time (@) | Time (¢) | Time (@) || Time (@) | Time (@) | Time ()
jdk 091 (0.00)] — = 048 (0.000] — -

jOk-MSA || 0.95 (0.00)| 2.63 (0.01)] 249 (0.02)|| 095 (0.00)] 255 (0.04)| 2.43 (0.03)
jOk-TSRP || 0.96 (0.01)| 3.12 (0.08)] 252 (0.05)| 0.96 (0.01)] 2.90 (0.05)| 2.47 (0.05)
jOk-tSRP || 0.94 (0.00)| 0.75 (0.03)] 0.72 (0.02)|| 0.95 (0.00)] 0.74 (0.02)| 0.7 (0.01)
nolock 005 (0.00)] 0.34 (0.00)] 032 (0.00)]] 0.95 (0.00)] 032 (0.01)] 0.32 (0.00)

Table 4: Event Dispatch Comparison
(Call-site Dispatch Times in microseconds)

methods grow. To do this, we built a simple hierarchytion. Also, our SRP implementations suffer only lin-
of five classes (one root clags with three subclasses ear growth in time-penalties as arity increases, whereas
B, C, andD, and finally class€ as a subclass af) and  MSA suffers quadratic effects.

constructed methods of different arities against that hi-
erarchy. We defined the following methods: Avty Effects on Mu-Dispatch

e classesA, B, C, D, and E contain unary methods
R n() (whereR represents the receiver argument
class).

e classe®, B, C, D, andE also implement five binary
methodsR. n{ X) whereX can be any oA, B, C, D,
orE.

Dispatch Latency (microseconds)

e classes, B, C, D, andE implement 25 ternary meth-
ods,R m( X, Y) whereX andY can be any of, B, ¢ . .
C, D, OrE. 1 2 3 4

Arity (including single receiver)

e classe®\ B, C, D, andE implement 125 quaternary
methods,R m( X, Y, Z) whereX, Y, andZ can be
any ofA, B, C, D, OrE.

Figure 7: Impact of Arity on Dispatch Latency

4.5 Swing and AWT

MSA looks at one fewer dispatchable arguments thary - fing| test is to apply multi-dispatch to AWT and
the table-based techniques because the receiver ar94iing applications. To do this, we needed to rewrite

ment has already been dispatched by the JVM. For inawT and Swing to take advantage of multi-dispatch.
_stance, given a unary method, MSA makes no W!den'We modified 11% (92 out of 846) of the classes in the
ing conversions for dispatchable arguments. A binar

y ; . . o .
. - AWT and Swing hierarchies. We eliminated 171 deci-
method requires MSA to check (_)nly one widening €O 5ion points bu? needed to insert 123 new methods to
version. Thz tab_le-bazed tic?nlque;]s ddr_spatchh%n al Err'eplace existing double-dispatch code sections. Within
?huenj]%q'\t/ls and gain no benefit from the dispatch done ¥he modified classes, we removed 5% of the condition-

als and reduced the average number of choice points per
We invoke one million methods for each arity. This method from 3.8 to 2.0 per method. This reductionillus-
means that each of the unary methods is executettates the value of multi-dispatch in reducing code com-
200,000 times. However each of the quaternary methodplexity.

is executed only 1,600 times. After computing the IOODF all, 57 classes were added, all of them new event types

overhead via an empty loop, we determine the elapse : . :
. - ; .~ "T0 replace those previously recognized only by a special
time to millisecond accuracy and determine the time . . . .

. . . type id (as in the AWT examples described previously).
taken for each dispatch. Our results are shown in Fig- - . : :
ure 7 Our multi-dispatch libraries are a drop-in replacement

’ that executes a total of 7.7% fewer method invocations
We can evaluate the arity effects in the uni-dispatch casand gives virtually identical performance with applica-
by coding a third level of double dispatch. Already the tions such asswi ngSet . In our sample application,
overhead of constructing a third activation record ex-we found that the number of multi-dispatches executed

ceeds the dispatch time of our tuned SRP implementaalmost exactly equaled the total reduction in method in-



Uni-Swing Multi-Swing

Stage Methods || Uni-Methods | Multi-methods
warm-up 901,938 901,795 160 (0.02%)
event loop || 32,543,684 27,807,327 2,350,172 (7.7%)

Table 5: Swing Application Method Invocations

vocations. This suggests that every multi-dispatch reknows thatA. niL( B) andB. n( A) are candidates. Nei-
placed a double dispatch in the original Swing and AWTther one is more specific than the other, so the compiler
libraries. aborts with an error. We can fix that by statically typing
the receiver argument t&4, but multi-dispatch sees ex-
actly the same conflict at runtime. OMPLi nt program
warns about the problem. If the programmer disregards
the warning, our JVM detects the error and throws an
Anbi guousMet hodExcept i on.

We verified the operation of the entire unmodified
Swi ngSet application with our replacement libraries.
Finally to measure performance, we timed a simple
Swing application that handles 200,0807Event s of
different types. The timing results are given in Table 6.
Throwing a runtime exception may seem neither elegant

Dispatch [ Uni-Swing Multi-Swing nor acceptable, but one of the key attributes of the JVM
JVM Time () | Time ©) is to maintain security. A malicious programmer can
J_gt _— gg-gg Eggg TS separately compile each class so that errors are not evi-
J - . . . . . . .

ik TSRP | 2933 (0.42)| 28.30 (0.30) dent until execution. The JVM must protect itself from

these possibilities, and throwing an exception is the only
Table 6: Swing App_licat_ion Execution Time option. As we noted, ouwDLi nt tool can recognize
(Event loop times in seconds) and report potential ambiguities, exception inconsisten-

The Swing and AWT conversion also demonstrates thé'€S and return-type conflicts at compile time.

robustness of our approach. We needed to support multifhe second difficulty centers around the fact jratac
dispatch on instance and static methods. Nolock valuegonsiders methods with different argument types as dis-
are not given because Swing breaks our simplificatiortinct. This means that they can have different return
that dispatch tables are not updated concurrently, anéypes. Multi-dispatch forges additional connections be-
jdk-fSRP values are not given because the frameworktween classes based on the additional dispatchable argu-
based system does not support static methods. Swingients. This means that methods whjdvac consid-

and AWT expect to dispatch differently @bj ect and  ered distinct are now overriding each other. In the exam-
array types. In modifying the libraries, we found numer- ple, we see that the twe2( . . . ) methods override each
ous opportunities to apply multi-dispatch to private, pro-other for multi-dispatch. Our multi-dispatch implemen-
tected, and super method invocations. In addition, sevtations throw arn | | egal Ret ur nTypeChange excep-

eral multi-methods required the JVM to accept covariantion, unless the more specific method returns a subtype
return types from multi-methods. All of these featuresof the original returned value.

are required for a mainstream programming language.

Another ramification of the fact that uni-dispatch Java
considers different argument combinations as distinct
methods is thatavac does not ensure that thér ows

auses are compatible. As with any overriding

. . I
BeS|tdes tper;orr_?r?nce agd C?rreqtness,ﬁ_mLIJ:}|—d|sEatrc]: Enethod, we would want a more specific multi-method to
must contend with a number of serious difticufties whic covariantly-specialize the set of exceptions. Our type-

Lhe] avac c;)hmgner cantnot recogmge;a Thhey ?re' am- checker validates this, but, in compliance with the VM
ﬂlgtuous me Ot t;rvocz;l |onst causeh y inheri ar:(ce Cofspemflcatlon our virtual machine neither checks nor re-
icts, incompatible return type changes, masking o ports this inconsistency.

methods by primitive widening operations, and null ar-
guments. Each of these is illustrated in Figure 8. WeThe third difficulty involves the use of literal null as an
have developed a tool calledLi nt that can identify —argument. If nullis statically typed, as in the firstinvoca-
these problems and warn the programmer. tion of n8() , thenj avac performs static multi-dispatch
with that type. This restricts the set of applicable meth-
odsj avac will consider. In our example, an ordinary
JIVM can avoid loading clasa The multi-dispatch JVM
recognizes that8( C) might apply (since is dynami-

5 Multi-Dispatch Issues

The first difficulty is that multi-dispatch, even in a
single-inheritance language, can suffer from ambiguou
methods. The two examples using tiiemethods illus-

trate this. For the first method invocation, the compiler



class A {

void m(B bl) {...}
void mi(int i) {...}}
B extends A {
m(Aal) {..}
mi(byte b) {...}}
C extends B {...}
class MDJIssues {

int n2(A al, Aa2) {...}
String n2(B bl, B b2) {...}

cl ass
voi d
voi d

cl ass

void nB(A al) {...}
void nB(B bl) {...}
void nB(Ccl) {...}

public static void main(String args[]) {
A Ab = new B(); // static: A, dynanmic:
B Bb = new B(); // static: B, dynamc:

/1 multi-dispatch difficulties
Bb. mL(Bb); // javac: anbiguous nethod
Ab. ml(Bb); // javac: OK, MDJ: anbi guous

/1 inconpatible return type change
int i nm2(Bb, Bb); // javac: bad return type
int j m2(Ab, Ab); // javac: OK, MDJ: exception

/1 null arguments are nore consi stent

Aa=null;

nB(a); // regular Java: executes nB(A)
/1 MDJ: |oads C, executes nB(C)

m3(null); // both execute nB(C)

/1 stronger referential integrity
nmB(Ab); // regular Java: executes nB(A)
/1 MDJ: executes nB(B)

nB(new B()); //both execute nB(B)

/] primtive w dening hides correct nethod

B
B

byte b = 7;
Ab. m4(b); // javac: wdens, calls A mi(int)
// MDJ: ignores B.mi4(byte), calls A mi(int)

Ab. mi(int(b)); // programmer wi dening

Figure 8: Examples of Multi-Dispatch Issues

cally of null type and null is subtype of clas}. There-
fore, multi-dispatch Java loads clagsn order to de-

the third and fourth invocations af3( . . . ) . By replac-
ing Ab with its value, we have altered the execution of a
program.

The last difficulty is more complex and, at this time,
unsolved. The compiler selects a method based upon
widening operations and may change the type of primi-
tive arguments. In the example, the compiler inserts in-
structions to convett from abyt e to ani nt . At run-
time, we have lost all traces thiatwas originally spec-
ified as abyte. Indeed, the programmer might have
wanted to force that exact conversion; the bytecodes
would be identical to compiler-generated conversions.

6 Implementation

In this section, we describe how the JVM is extended to
support dynamic multi-dispatch. We begin by examin-
ing how to indicate to the JVM which classes are multi-
dispatchable. We then examine where multi-dispatch
must occur and, finally, we review three different multi-
dispatch implementations.

6.1 Marking Multi-Dispatch Classes

We tell the JVM that multi-dispatch is required on a
class-by-class basis by implementing the empty inter-
faceMul ti Di spat chabl e in each class that is multi-
dispatchable. The Java programming language has al-
ready leveraged this idea for marking class capabilities
with the C oneabl e interface. We use theul ti -

Di spat chabl e interface to denote that any method sent
to a multi-dispatch receiver should be handled by the
multi-dispatcher. For efficiency, we add a flag to the
internal class representation to indicate that a class is

termine its place in the type hierarchy, and decides thamulti-dispatchable, rather than searching its list ofiinte

nB8(C) is the most-specific method. Literal nulls, as
shown in the second invocation o8(), illustrate the
inconsistency of standard Java; it now agrees with th
multi-dispatch JVM that8( C) should be invoked. The
ordinary JVM can still avoid loading class because

j avac has already static multi-dispatchedn8( C) *2.
Presumably, the argument is usedi( C), so the or-
dinary JVM will end up loading class, just like the
multi-dispatch JVM.

The null argument problem is an example of a more gen

eral referential transparency problem in Java. Inconsis

faces at each method invocation. The value of this flag
is set once, at class load time.

%ur selection ofvul ti Di spat chabl e as the marker

requires us to recognize multi-dispatch on a class-by-
class basis, not on a method-by-method or argument-
by-argument basis. That is, every method invocation
where the uni-dispatch receiver is a member of a multi-
dispatchable class goes through our multi-dispatcher.
Furthermore, because interfaces are inherited, this ap-

proach requires any subclass of a multi-dispatchable
class to also be multi-dispatchable. Maost importantly,

tent invocations can occur when expressions are substgny method invocation where the receiver argument

tuted in place of variables. This is becays®ac might

is not marked for multi-dispatch continues unchanged

apply more precise type information from the substitutedy, g, the uni-dispatcher. The benefit of this is that the
expression. As an example, compare the execution Oéyntax of Java programs is unchanged, and the perfor-

L2There is a subtlety here becaysevac selects the most-specific
method from the method dictionary of the static type of theeieer.
Therefore, dynamic uni-dispatch still may not select thestgpecific
method of the receiver’s dynamic class.

mance and semantics of uni-dispatch remains intact.

The techniques used tnark code as multi-dispatchable
and to implementmulti-dispatch method invocations



are independent.Mul ti Di spat chabl e marks entire  The core component of our system is thel ect -

classes without language extensions, but our JVM acMul ti Met hod() routine, which locates a more-specific

tually supports multi-dispatch on a method-by-methodmethod applicable to a set of arguments. We have exper-

basis. An alternate tagging mechanism, that marked inimented with three different multi-dispatch techniques;

dividual methods as multi-dispatchable, may be possibléhey are examined in the following sections. For each

if we permitted language extensions. technique, we also describe our solution for the imple-
mentation issues described in section 5.

6.2 Adding Multi-Dispatch .
ing Multi-bispatc 6.3 Reference Implementation:MSA

As part of the uni-dispatch of amvoke bytecode, the  our reference implementation is an extension of the
JVM finds a method pointer from the array of methods \jost Specific Applicable algorithm described in section
in the receiver argument class. At this point, the in-15 11 of The Java Language Specificatiand in sec-

terpreter loop is about to build a new frame to execut&jon 2.2 of this paper. In particular, we re-examine the

the found method. The interpreter loop (and classic VMsteps described in section 2.2 in light of the dynamic ar-
JIT compilers) proceed to call a special function, calledgyment types being used.

thei nvoker that handles the details of building the

new frame and starting the new method. The ResearcM/hen the multi-invoker is called, it has access to the
JVM uses different invokers for native, bytecode, syn-Met hodbl ock that has already been found by the uni-
chronized, JIT-compiled, and other method types. Simdispatch resolution mechanism. We also have the top of
ilar to the OpenJIT system [21], we replace this invokerthe operand stack, so we can peek at each of the argu-
function with a custonmulti-invokerthat computes the Ments. Last, we have the actual receiver, which can pro-
correct multi-dispatch method. Once the more precise/ide the list of methods (including inherited ones) that it

method is known, we simply invoke it directly. implements.

The multi-invoker is installed at class-load time. The Every method is represented bymat hodbl ock con-
interpreter loop and invoker for uni-dispatch are un-taining many useful pieces of information. First, it holds

changed. This supports our claim that uni-dispatch proth® name of the method. Second, it contains a handle
grams and libraries suffer no execution time penalties. t0 the class that contains this metfédThird, it con-

. ) tains the signature which we can parse to get the arity
OpenJIT is supported in exactly the same way. Ev-ang types of the dispatchable arguments. For perfor-
ery method contains @onpi | edCode function pointer  mance, we parse the signature only once. We add two
onto which OpenJIT installs its compiled method body.fje|gs to thenet hodbl ock: int arity to cache the
Once the compilation is complete, OpenJIT saves thgrity andal assd ass **argd ass to hold the class

compiled method body of any multi-method to a new handies for the dispatchable arguments.
field ol dConpi | edCode and installs a pointer to a rou- ) ) ) .
tineDi spat chmul ti () . This replacement invoker sim- With these three pieces of information, we implement a

ply calls the same method specializasl ect Mul ti - dynamic version of the MSA algorithm directly. Wher-
Met hod() that the interpreter uses. If the more precise€Ver the original algorithm would use the static type of
method-body is already compiled, then OpendIT jumpsAn argument, we apply the known dynamic type instead.
into the ol dConpi | edCode, executing the more spe- In the original MSA algorithm, the compiler would com-
cific compiled method. Alternately, if the more precise Pare the static type of each argument with the corre-
method is not already JIT-ed, th@spat chMul ti () sponding declared type for the candidate method. In

sets it to be compiled and invokes the interpreter on thdhe dynamic case, we have the arguments on the stack,
bytecode version. so we can find their dynamic types. We compare each

) ~_argument’s dynamic type against the declared type of
Unfortunately, we must disable much of the inlining the corresponding argument of the method. We dis-
facility of OpenJIT when using multi-dispatch.  The card any method that is not applicable due to access
uni-dispatch OpenJIT compiler can inlingrivate, rights rivate methods) or whose declared types do

static, andfinal methods because they can neverpot match the arguments on the stack. The remaining
change. With multi-dispatch, this is no longer true — atmethods arelynamically applicable

a given call-site, the selected multi-method may change o
depending on the arguments to the current invocation! N€ issue of null-valued arguments becomes significant
The JIT compiler and VM must work together to en- at this point. JLS chapter 4 recognizes the need for a
sure that every method invqcation is checked for multi-" 13gecall that methods might be inherited; this class handtaes
dispatch and correctly specialized. original implementing class.




null typeto represent (untyped) null values. It further turnedDTF_Type pointer.

declares in section 4.1 that the null type can be coerceﬂ a dispatcher has not been instantiated, and the just-

to any non-primitive type. Also, section 5.1.4 allows null loaded class is uni-dispatch only, we defer the regis-

types to be widened to any object, array or interface tyloetration in order to reduce the ove,rhead to uni-dispatch

Statically, this means that an (untyped) null argument . . patc
rograms. If the just-loaded class is marked for multi-

can be widened to any class. In the dynamic case, W%ispatch and the dispatcher has not been instantiated, the
want to do the same. Therefore, whenever we encounter

i rocess is more complex. First, we instantiate a new dis-
a null argument we accept the conversion of that null toP P

a method argument of type class, array, or interface patcher. Then, we register each class that has already
' ' " been loaded, ensuring that its superclasses and superin-

Unfortunately, if we have a null argument, we may retainterfaces are registered first.

a method which accepts arguments of classes that are net

yet loaded. We need to force these classes to be Ioadeodna”y’ as the last part of registering a class with the
10 ensure that the next step operates correctly. Ispatcher, we need to see whether any methods from

other classes were held in abeyance until this class was
Given the list of applicable methods, the MSA algorithm loaded. This can occur if the methods from other classes
finds the unique most specific method. Again the operexpect dispatchable arguments of the class we are just
ation is identical to the process that jreevac compiler  now loading. As we shall see below, we deferred regis-
follows. One applicable method is tentatively selectedtering these methods until the class was loaded.

as the most specific. Each other applicable method Sava's facility for dynamically reloading classes forces

tested by comparing argument by argument (includingus to ensure that two classes with the same name are

th? receiver argument) "?‘ga'”St the tentatively most Speasslgned differenDTF_Types. Java ensures that two
cific. At each step, we discard any methods that are less ; -
o ' . . Classes with the same name are treated as distinct by
specific. We continue this process until only one can-._ .. . .
... insisting that each one is loaded by a different class-

methods remain. In the latter case, we have an ambigﬂpaoler [19]. ‘We apply the same technique by supply-

. : . ing the DTF framework with a name consisting of the
ous method invocation and we throw anbi guous-
, . ) classloader name, followed by:*” and followed by the
Met hodExcept i on to advertise this fact. S
class name. The system classloader is given the empty

Next, we verify that the return type for our more spe- name “”.
cific method is compatible with the compiler-selected -
: For a class marked for multi-dispatch, we need to reg-
method. This check relaxes JLS 8.4.6.3, where we must . : : .
) . ! . Ister its methods along with their types, vijava-
reject any invocation that has a different return type

S 'AddMet hod(...). If this class implementsul ti -
yet ensures type-safety. If the return type is different, _ . . :
) Di spat chabl e directly, then we register all of its meth-
we throw arl | | egal Ret ur nTypeChange exception at

runtime ods, including i_nherit_ed ones. Alternately, l\'m_l ti-

' Di spat chabl e is an inherited interface for this class,
then we know that its superclass has already registered
its methods. Therefore, we do not need to register them;

we only need to register the methods that we directly
Our SRP framework-based techniques is taken from thémplement.

Dispatch Table Framework (DTF) [22]. This is a toolkit __ ) ) ) _
of many different uni-dispatch and multi-dispatch tech_Thls method registration process is complicated by our

niques. In order to call the DTF to dispatch a caII-site,deS're to load classes lazily. If a method accepts an argu-

we need to inform the DTF of the various classes andNeNt With a class not yet seen by the JVM, we know that

methods present in our Java program. Our interface con® could never dispatch to it until that class is loaded

sists of a number of straightforward routines to performWe set that method aside for future registration.
this registration. If all of the argument types for the method are al-

The JVM maintains in-memory structures for each€2dy registered with the DTF, then we proceed to reg-
loaded cl ass file. We have extended thal ass- ister the method. We providereet hodbl ock pointer
d ass structure to contain BTF_Type field. It contains that we want the framework to return if this method

a pointer to the C++ object generated by the DTF. OncdS the dispatched target. We bundle up BwF.Type

a class is dynamically loaded by the JVM, we Checkvalues found in thed assCl ass structures for each
to see if we must register it with the dispatcher. If the 2rgument class (including the receiver argument) and

dispatc_her has already been instantiated, we register theisas mentioned above, our DTF-based systems do not permit null
class vigj avaAddd ass(...) and store away the re- as a dispatchable argument. Therefore, this guarantes.hold

6.4 Table-based Dispatch




pass them to the framework. The framework returns ave register additional methods and/or classes to a new
DTF_Behavi or pointer that we store in thenet hod- one.

bl ock. Our custom SRP code implements multi-dispatch as a

Dispatch becomes a very simple operation. We buildcritical section, protected by a mutual-exclusion lock.
an array of theDTF_Type pointers from the arguments We have devised, but not as yet implemented, a tech-
on the Java stack. If we encounter a null argumentnique which would eliminate the lock overhead (approx-
we throw aNul | Poi nt er Excepti on. TheDTF_Type imately 0.38us for every multi-dispatch) and allow con-
array, along with theDTF_Behavi or pointer from the current multi-dispatch. The trade-off is that every thread
compiler-selected method allow the framework to locatewould need to halt while the multi-dispatch tables are
themet hodbl ock pointer that we had previously regis- being updated.

tered. The OpenJIT support for multi-dispatch is still primi-

We expect that the returnetet hodbl ock pointer is  tive; in particular, we eliminate all inlining actions. Ehi
the method for multi-dispatch. We validate it againstis a conservative approach and one can identify situa-
the compiler-selected method. If the return type hagions where inlining in multi-dispatch Java would pro-
changed, we abort the dispatch and throw Bhegal - vide correct results. ldentifying these opportunitied wil
Ret ur nTypeChange exception. Otherwise, we call the yield higher overall performance.

found method’s original invoker and return its value as

the result of the interpreter’s call to a method invoker. Other multi-dispatch techniques exist, including com-

pressed n-dimensional tables [1, 12], look-up au-
Single Receiver Projections Single Receiver Projec- tomata [9, 10], and efficient multiple and predicate dis-
tions (SRP) [16] is a technique that considers a multi-patch [7]. A comprehensive exploration of these tech-
dispatch as a request for the joint most specific methochiques using Java is incomplete at this time.
a_lva|lable on each argument. For a given argument POSIA hother significant improvement for multi-dispatch is to
tion and type, an ordered (most-specific to least-specific . .
. . o ncorporate our code testing tool into thavac com-

vector of potential methods is maintained. The vectors . o : .

o . - piler. At this time, MDLi nt exists as a separate ex-
for all the argument positions are intersected to provid ; ) .

. cutable which will recognize and warn the program-

an ordered vector of all applicable methods. Because of

i . : mer about common ambiguities and difficulties. It ana-
the ordering, this vector can be quickly searched for th o : -

) yzes a complete application and identifies the code sec-
most applicable method.

tions where the programmer could invoke an ambiguous

SRP uses a uni-dispatch technique to maintain thenethod, or have a conflicting return type.

vector of potential methods for each individual argu- 5 - reference implementation, MSA, supports multi-

ment. These vectors are typically compressed to con-. . o
. . . dispatch on all method types (instaneg,ati c, i n-

serve space. Many different compression techniques are

] . . terface, private, etc.), except constructors. Because
known: row displacement, selector coloring [2], and ) } .
. : ; the same bytecode is used to invoke a constructor in the
compressed selector table indexing [25]. Our imple-

: . . superclass and a constructor with different arguments,
mentation uses selector coloring, because timing exper- o S T
: o . ! e cannot distinguish the two possibilities. This issue
iments [17] indicates that technique provides the fastes e

. . IS a specific instance of the need to applguper to
dispatch times. . .

an argument other than the receiver. Fortunately, in our

experience, this requirement does not arise in common

7 Future Work programming practice (except for constructors).

Our MSA and tuned SRP dispatchers are the most corfur tuned SRP implementation allows our dispatch
plete. They suppontul | as a dispatchable argument, tables to identify only those types that are multi-
multi-dispatch on othernvoke bytecode®, widening ~ dispatched. Thisazy type numberings reversible, al-

of primitive dispatchable arguments, and multi-threadedowing the tables to shrink as classes are unloaded.
dispatch. Our table-framework-based dispatchers do ndf turn, multi-methods can revert to lower arity multi-
currently support all of these facilities. Adding them dispatch (or even uni-dispatch). We see great promise in
would provide additional flexibility and allow them to this technique for long-lived Java server applications.
fully support the Java programming language semanticSthe DTF framework contains another dispatchidul-

In particular, we have a two-table deS|.gn. that will aIIovy tiple Row Displacemeri22] (MRD) that operates 15%
one thread to dispatch through an existing table, whilgagster than SRP. Therefore, we expect that dispatch could

15Signaled by implementing the empty interfacgsti cMl ti - be enhanced to provide even lower latency by applying
Di spat chabl e andSpeci al Mul ti Di spat chabl e.




this technique. Unfortunately, MRD currently does notinto many individual methods, one for each combina-
support incremental dispatch table updates in the samion of classes (and superclasses). A method invocation
way that SRP does. In a dynamic environment such ass replaced by a call to the dispatcher which searches via
Java, incremental updating of dispatch tables is desirreflection for an exact match. That method is then in-
able. Enhancing MRD to support incremental updates izoked. This system suffers from exponential blowup of
another research priority. methods.

Last, our marker interfac&ul ti Di spat chabl e de-  Chatterton’s second approach examines the performance
notes that each method in a given class is to be multiof various double dispatch enhancements. He pro-
dispatched. Our JVM relies on this tag only to inform vides a modified C++ preprocessor which analyses the
it about which methods are eligible for multi-dispatch. entire Java program. It can build a number of dif-
Therefore, without changing our multi-dispatch imple- ferent double-dispatch structures, including cascaded
mentation, alternate Java syntax would allow us to seand nestedi f...el se-if...el se statements, inline
lectively mark individual methods (and their overriding swi t ch statements, and simple two-dimensional tables.
multi-methods) as multi-dispatchable, rather than entireAgain, he expands every possible argument-type com-
classes. We would like to explore the space of conservabination in order to apply fast equality tests rather than

tive language extensions to expose this feature. slow subtype checks. A significant restriction is that full-
program analysis is required. This defeats the ability
8 Related Work to use existing libraries and diminishes Java’s dynamic

class loading benefits.
Others have attempted to add multi-dispatch to ) ) . )
Java through language preprocessors. Boyland angne |n.teres_t|’ng language for mult|-d|spatch is Leavens
Castagna [3] provide an additional keywqrdrasiteto ?r.\d _M|Illste|n.s_TupIe [18]. They “descrlbe a language
mark methods which should have multi-dispatch proper- similar in spirit t‘? C++and Java _that p(_arm_lt_s the pro-
ties. They effectively translate these methods into equivIrammer to specify at each call-site the individual argu-
alent double-dispatch Java code. By translating directlyents that will be considered for multi-dispatch. This
into compiled code, they apply a textual priority to avoid paper does not descnpe an implementation; .|t appears to
the thorny issue of ambiguous methods. Unfortunatelybe a modgl of F’_Ote”t'a' syntax and se_manncs only. _A
the parasitic method selection process is a sequence Bfture project might be to implement his syntax specif-

several dispatches to search over a potentially exponeriC@lly into the Java environment. In particular, a sim-
tial tree of overriding methods. ple syntax extension would alloguper method invo-

cations on arbitrary multi-dispatch arguments.
The language extension and preprocessor approach has i
other limitations. First, existing tools do not support Another recent development MultiJava[11]. There,

the extensions; for example, debuggers do not elide th[ehe authors extend the Java language Wlth_ac_idltlonal
automatically generated double-dispatch routines. SecYNt@x to support open classes and multi-dispatch.

ond, instance methods appear to only take argument-ghe MultiJava_compiI_er emits double-dispatch type-case
that are objects, which is too limiting. Our experience bytecodes for invocations of the open-class methods and

with Swing shows that existing programs often dou_multi—methods. The emitted bytecode is accepted by
ble dispatch on literahul | and array arguments and standard JVMs, but suffers a substantial overhead from

pass primitive types as arguments; multi-methods need€TPreting slow subtype-testing bytecodes. Unfortu-

to support these non-object types. Third, preprocessordately, multi-dispatch can only apply to methods defined
limit code reuse and extensibility; adding multi-methods USing the open-class syntax and only within the program

to an existing behaviour requires either access to thdext that imports the open-class definitions. If subclasses
wish to further specialize the multi-methods, additional

original source code or additional double-dispatch lay- = ) o

ers. open-class definitions are required. Compilation of these
further open-subclasses may result in multiple layers of

Chatterton [8] examines two different multi-dispatch type-case double-dispatch. Internally, MultiJava indine

techniques in mainstream languages: C++ and Javahe multi-method bodies into a static method in a sep-

First, he considers providing a specialized dispatchegrate anchor class — this means that the multi-methods

class. Each class that participates as a method receiveisappear from the binary code and become invisible to

must register itself with the dispatcher. To relieve thethe reflective subsystem in Java. Finally, MultiJava is a

programmer of this repetitive coding process, he propaper design at this til& so performance comparisons

vides a preprocessor that rewrites the Java source to ire not possible.

clude the appropriate calls. Each method, marked with

the keywordmulti, is also expanded by the preprocessor 1®Personal communication at OOPSLA 2000.




9 Concluding Remarks [6]
We have presented the design and implementation of
an extended Java Virtual Machine that supports multi- 7
dispatch. This is the first published description of how
to implement arbitrary-arity multi-dispatch in Java. In [g)
contrast to the more verbose and error-prone double-
dispatch technique, currently found in the AWT (Fig-
ure 2), multi-dispatch typically reduces the amount of [©!
programmer-written code and generally improves the[

readability and level of abstraction of the code. 10]

Our approach preserves both the performance and se-
mantics of the existing dynamic uni-dispatch in Javalt!
while allowing the programmer to select dynamic multi-
dispatch on a class-by-class basis without any language
or compiler extensions. The changes to the JVM it-
self are small and highly-localized. Existing Java com-[12!
pilers, libraries, and programs are not affected by our
JVM madifications and the programs can achieve per-
formance comparable to the original JVM (Table 2).  [13]

In a series of micro-benchmarks, we showed that our
prototype implementation adds no performance over-
head to dispatch if only uni-dispatch is used (Table 2)[14]
and the overhead of multi-dispatch can be competitive
with explicit double dispatch (Table 4). (15]

We have also introduced and implemented an extensiof16]
of the Java Most Specific Applicable (MSA) static multi-
dispatch algorithm for dynamic multi-dispatch. In ad-
dition, we have performed the first head-to-head comy,; o,
parison of table-based multi-dispatch techniques imple-
mented in a mainstream language. In particular, we im-
plemented Single Receiver Projections (SRP). Overall,
our tuned SRP implementation performs as well (or bet{18]
ter) than programmer-targeted multi-dispatch. With per-
formance improvements in concurrency, we expect ouf, g;
tuned system to out-perform type-case double dispatch.

References 20]

[1] E. Amiel, O. Gruber, and E. Simon. Optimizing multi-meth
dispatch using compressed tablesO@PSLA 1994 Conference

Proceedings pages 244-258. Association for Computing Ma-
chinery, October 1994.

P. Andre and J. Royer. Optimizing method search with lgok
caches and incremental coloring. @OPSLA 1992 Conference
ProceedingsAssociation for Computing Machinery, 1992.

[3] J. Boyland and G. Castagna. Parasitic methods: An impfem
tation of multi-methods for Java. I@OPSLA 1997 Conference (23]
Proceedingspages 66—76. Association for Computing Machin- [24]
ery, November 1997.

[21]

[2] [22]

[4] K. Bruce, L. Cardelli, G. Castagna, The Hopkins ObjecoG, [25]
G. T. Leavens, and B. Pierce. On binary metho@lkeory and
Practice of Object System$(3):221-242, 1995.

[26]

[5] T.Budd.An Introduction to Object Oriented Programming, Sec-
ond Edition Addison-Wesley, 1997.

C. Chambers. Object-oriented multi-methods in Ceciln |
ECOOP 1992 Conference Proceedingages 33-56. Springer-
Verlag, June 1992.

] C. Chambers and W. Chen. Efficient multiple and predickge

patching. INDOPSLA 1999 Conference Proceedingsges 238—
255. Association for Computing Machinery, November 1999.

D. Chatterton. Dynamic Dispatch in Existing Strongly Typed
Languages PhD thesis, School of Computing, Monash Univer-
sity, Monash, Australia, 1998.

W. Chen. Efficient multiple dispatching based on autamnbtas-
ter's thesis, GMD-ISPSI, Darmstadt, Germany, 1995.

W. Chen, V. Turau, and W. Klas. Efficient dynamic lookumas
egy for multi-methods. IEECOOP 1994 Conference Proceed-
ings pages 408—431. Springer-Verlag, July 1994.

C. Clifton, G. T. Leavens, C. Chambers, and T. MilsteMul-
tiJava: Modular symmetric multiple dispatch and exteresibl
classes for Java. I®OPSLA 2000 Conference Proceedings
pages 130-145. Association for Computing Machinery, Qatob
2000.

E. Dujardin, E. Amiel, and E. Simon. Fast algorithms ¢éom-
pressed multimethod dispatch table generatid@M Transac-
tions on Programming Languages and Systeh%1):116—165,
January 1998.

C. Dutchyn. Multi-dispatch in thdava Virtual MachineDesign
and implementation. Master’s thesis, Department of Comput
ing Science, University of Alberta, Edmonton, Alberta, @da,
2001. In preparation.

A. Goldberg and D. Robsorsmalltalk-80 The Language and its
Implementation Addison-Wesley, 1983.

J. Gosling, B. Joy, G. Steele, and G. Brachhe Java Language
Specification, 2nd EditianAddison-Wesley, 2000.

W. Holst, D. Szafron, VY. Leontiev, and C. Pang. Multi-tmed
dispatch using single-receiver projections. Technicald®e98-
03, Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada, 1998.

W. M. Holst. The Tension between Expressive Power and
Method-Dispatch EfficiencyPhD thesis, Department of Com-
puting Science, University of Alberta, Edmonton, Alberta,
Canada, 2000.

G. T. Leavens and T. D. Millstein. Multiple dispatch @smhtch
on tuples. InOOPSLA 1998 Conference Proceedingages
244-258. Association for Computing Machinery, October4199

S. Liang and G. Bracha. Dynamic class loading in the Java
tual machine. ITDOPSLA 1998 Conference Proceedingages
36-44. Association for Computing Machinery, October 1998.

T. Lindholm and F. Yellin.The Java Virtual Machine Specifica-
tion, 2nd Edition Addison-Wesley, 1999.

H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama, Y. Spohda
and Y. Kimura. OpenJIT: An open-ended, reflective JIT compil
framework for Java. IEECOOP 2000 Conference Proceedings
Springer-Verlag, 2000.

C. Pang, W. Holst, Y. Leontiev, and D. Szafron. Multiphethod
dispatch using multiple row displacement. HCOOP 1999
Conference Proceedingpages 304—328. Springer-Verlag, June
1999.

G. L. Steele.Common LispDigital Press, 1985.

B. StroustrupThe C++ Programming Language: Third Edition
Addison-Wesley, 1997.

J. Vitek and R. N. Horspool. Compact dispatch tablesdpr
namically typed programming languages.Hroceedings of the
International Conference on Compiler Constructid®96.

K. Walrath and M. Campionélhe JFC Swing Tutorial: A Guide
to Constructing GUIsAddison-Wesley, 1999.



