Multi- Dispatc h in the Java Virtual Machine:
Design and Implementation

Christopher Paul Duane Steve Wade
Dutchyn* Lu Szafron~ Bromling- Holstt
ABSTRACT inadequate. Indeed, the need for multiple-dispatch is ubiqui-

Mainstream object-oriented languages, such as C++ and
Java, provide only a restricted form of polymorphic meth-
ods, namely single-receiver dispatch. In common program-
ming situations, programmers must work-around this lim-
itation. We detail how to extend the Java Virtual Ma-
chine to support multiple-dispatch and examine the com-
plications that Java imposes on multiple-dispatch in prac-
tice. Our technique avoids changes to the Java programming
language itself, maintains source-code and library compat-
ibility, and isolates the performance penalty and seman-
tic changes of multiple-dispatch to the program sections
which use it. We have micro-benchmark and application-
level performance results for a dynamic Most Specific Appli-
cable (MSA) dispatcher, two table-based dispatchers (Mul-
tiple Row Displacement (MRD) and Single Receiver Projec-
tions (SRP)), and a tuned SRP dispatcher. Our general-
purpose technique provides smaller dispatch latency than
equivalent programmer-written double-dispatch code.

1. INTRODUCTION

Multiple-dispatch, where dynamic method selection de-
pends on the types of more than one (and potentially all)
arguments, is an area of considerable interest and current
research. Dynamic method selection on multiple arguments
arises naturally in common programming situations. Two
examples are binary operations such as equality testing and
event-based programming where actions depend on the dy-
namic type of both the component and event. The latter
exemplifies the container problem where static method over-
loading (e.g., single-receiver dispatch in Java', and C++) is

*{dutchyn,paullu,duane,bromling}@cs.ualberta.ca,
Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2E8

twade@csd.uwo. ca, Department of Computer Science, The
University of Western Ontario, MiddleSex College, London,
ON, Canada, N6A 5B7

! Java is a trademark of Sun Microsystems Inc.

Peamissionto make digital or hard copies of all or partof this work for
persondor classroomuseis granted without fee providedtha copies are
not made or distributed for profit or commeréal advantage andthatcopies
bea this notice andthefull citation onthefirst page. To copy othemwise,to
repubish, to poston sewersor to redistribute to lists,requies prior spedfic
permissia and/or afee

OOPSLA2000 Companion Minneapdis, Minnesota

Copyright ACM 2000 1-58113307-3/00/10 ..$5.00

tous enough that two of the original design patterns, Visitor
and Strategy, are workarounds to supply multiple-dispatch
within single-dispatch languages.

Despite being studied for more than a decade, multi-methods

have been limited to research object-oriented languages such
as CLOS, Dylan, and Cecil [2]. Experience with these lan-
guages has shown that programs utilizing multi-methods are
shorter, less error-prone to code, and more extensible. Un-
fortunately, multiple-dispatch has suffered from two draw-
backs: dispatch efficiency and potential ambiguities. Mod-
ern multiple-dispatch techniques are more efficient and the
ambiguities can be recognized during compilation [3]. Con-
sequently, we re-examine the design and implementation of
multi-methods within a production language (i.e., Java) and
their application in multi-method versions of Swing and AWT.

Others have extended the Java language in order to sup-
port multi-methods [1]. A preprocessor accepts an extended
version of Java with new multiple-dispatch keywords, and
emits the double-dispatch equivalent in standard Java. The
key advantage is that the system generates standard byte-
codes which can execute on any virtual machine. But, the
overhead of executing the double-dispatch bytecodes remain.

The language extension and preprocessor approach has
other limitations. First, existing tools do not support the
extensions; for example, debuggers do not elide the automat-
ically generated double-dispatch routines. Second, instance
methods appear to take objects only, which is too limiting.
Our experience with Swing shows that existing programs of-
ten double-dispatch on literal null and array arguments and
pass primitive types as arguments; multi-methods need to
support these non-object types. Third, preprocessors limit
code reuse and extensibility; adding multi-methods to an ex-
isting behaviour requires either access to the original source
code or additional double-dispatch layers.

2. AN EXTENDED JAVA VM

Our approach is to extend the Java Virtual Machine to
perform multiple-dispatch directly. The programmer labels
classes that require multiple-dispatch with a marker inter-
face, MultiDispatchable. This technique of using an empty
interface to mark special properties is accepted as part of the
Java programming language — the Cloneable interface op-
erates in the same way. We have not changed the syntax
of Java in any way. Indeed, our multiple-dispatch programs
are compiled by the existing javac compiler included with
the Java Development Kit.

Within the Sun Microsystems Research VM? we intercept
any multi-method definitions when classes are loaded, and
replace the standard invoker function with a multi-invoker.
The invoker is a VM routine which assists the interpreter
to begin a new method by constructing the new activa-
tion record and acquiring any needed locks for synchronized
methods. When a multi-method is called, our custom multi-
invoker examines the method arguments on the stack, lo-
cates an alternate method that is specific to the arguments,
and begins execution of this alternate method.

Single-dispatch classes and methods do not have their in-
voker changed, and therefore we impose no penalty on their
operation. The only impact our multiple-dispatch virtual
machine applies to single-dispatch programs is to check for
the marker interface at class load time.

We implemented three different method lookup techniques
for the multi-invoker. First, Most Specific Applicable (MSA)
is a dynamic version of the existing static method selection
for Java. It serves as a reference platform to ensure we main-
tain compatibility with existing Java semantics. Next, Mul-
tiple Row Displacement (MRD) and Single Receiver Projec-
tions (SRP) [3] are implemented using a general-purpose dis-
patch table framework. Since there are overheads associated
with using the framework, we also re-implemented SRP as a
hand-coded dispatcher. In micro-benchmarks, this custom
dispatcher reduces the latency of a multi-method dispatch
to less than the equivalent double-dispatch code. Therefore,
programmers can write multiple-dispatch programs and ex-
ecute them faster than programmer-coded double-dispatch.

To complete our development environment, we created
a simple ambiguity testing tool, MDLint, that reports on
potentially ambiguous multi-methods. In keeping with the
defensive and security-conscious nature of Java, we also en-
sure that our Java Virtual Machine recognizes and reports
ambiguous dispatches by throwing a runtime exception.

3. RESULTS

A number of micro-benchmarks validate the correctness
and performance of our system.Also, our experience with
implementing multi-method versions of the Swing and AWT
libraries show the robustness and benefits of full-featured
multiple-dispatch in Java.

For example, we looked at an example double-dispatch

from the java.AWT.Component.processEvent () method. Our

custom SRP implementation requires only 0.90 us to dis-
patch a binary multi-method (including 0.40 ws cconcur-
rency overhead), whereas the original double-dispatch re-
quires 0.96 ps. As the parameter-arity increases, this dis-
parity increases in favor of multiple-dispatch.

For our application-level tests, we modified Swing to use
multiple-dispatch. We also converted AWT, because Swing
depends heavily on AWT to dispatch the events into top-
level Swing components. We modified 11% of the classes;
we removed 5% of the conditionals and reduced the aver-
age number of choice points per method from 3.8 to 2.0 in
the changed code. This reduction illustrates how multiple-
dispatch reduces code complexity. Our multiple-dispatch
libraries are a drop-in replacement that executes 7.7% fewer
method invocations, and gives identical performance with
applications such as SwingSet.

Our practical experience with Swing shows that an im-

2also known as the classic VM

plementation of multiple-dispatch must be compatible with
Java-specific language features. In particular, programs need
to perform multiple-dispatch on literal null and array ar-
guments, as well as accept primitive values as arguments
to multi-methods. Object arguments alone are insufficient.
Next, multiple-dispatch must support instance, static,
and private multi-methods; Swing even applies super multi-
methods. Finally, our implementation relaxes Java’s rigid
no-variant return type limitation and supports covariant
specialization on return types within a behaviour.

4. FUTURE WORK

One limitation of our existing system is that it does not
support JIT compilers. However, we have examined the
OpenJIT system and it appears to be a straight-forward
process to implement a multi-dispatch invoker using their
JIT framework. A second key improvement is to remove
locking from concurrent multiple dispatch. Benchmark tim-
ings suggest that we can reduce our dispatch latency by 40%
with this one alteration. Third, we have identified additional
places where our multiple-dispatch Swing/AWT implementa-
tions can be further re-factored. This will reduce the total
amount of code, and may increase performance as well.

Last, our custom SRP implementation provides for lazy
type numbering where new types are not placed into the
dispatch tables until they are required for multiple-dispatch.
‘We propose to extend this facility to class-unloading, so that
methods revert to lower-arity multiple-dispatch (or even single-
dispatch) whenever possible. We see great potential for this
technique in long-lived Java server applications.

5. CONCLUDING REMARKS

The primary research contribution of this work is the de-
sign and implementation of an extended Java Virtual Ma-
chine that supports general-purpose multiple-dispatch with
better performance than double-dispatch. Single-dispatch
performance and semantics, as well as source and binary
compatibility with existing class libraries, is maintained.

In contrast to other approaches, our implementation re-
quires no changes to the Java syntax or compiler. Our
multiple-dispatch also provides the full range of functionality
required of systems such as Swing and AWT, including sup-
port for primitive values, null, and arrays. Also, multiple-
dispatch with co-variant return types is permitted on in-
stance, static, and private methods, and super method
invocations.

Efficient, full-featured, compatible multiple-dispatch in a
mainstream language such as Java reduces the barriers to
adopting multi-methods in practice.

6. REFERENCES

[1] J. Boyland and G. Castagna. Parasitic methods: An
implementation of multi-methods for Java. In OOPSLA
’97 Conference Proceedings, pages 66—76. Association
for Computing Machinery, November 1997.

[2] C. Chambers. Object-oriented multi-methods in Cecil.
In ECOOP 92 Conference Proceedings, pages 33-56.
Springer-Verlag, June 1992.

[3] C. Pang, W. Holst, Y. Leontiev, and D. Szafron.
Multiple method dispatch using multiple row
displacement. In ECOOP ’99 Conference Proceedings,
pages 304-328. Springer-Verlag, June 1999.

