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Abstract

When learning a dependence from data, to avoid overfitting, it is im-
portant to divide the data into the training set and the testing set. We
first train our model on the training set, and then we use the data from
the testing set to gauge the accuracy of the resulting model. Empirical
studies show that the best results are obtained if we use 20-30% of the
data for testing, and the remaining 70-80% of the data for training. In
this paper, we provide a possible explanation for this empirical result.

1 Formulation of the Problem

Training a model: a general problem. In many practical situations, we
have a model for a physical phenomenon, a model that includes several un-
known parameters. These parameters need to be determined from the known
observations; this determination is known as training the model.

Need to divide data into training set and testing set. In statistics in
general, the more data points we use, the more accurate are the resulting esti-
mates. From this viewpoint, it may seem that the best way to determine the
parameters of the model is to use all the available data points in this determi-
nation. This is indeed a good idea if we are absolutely certain that our model
adequately describes the corresponding phenomenon.

In practice, however, we are often not absolutely sure that the current model
is indeed adequate. In such situations, if we simply use all the available data
to determine the parameters of the model, we often get overfitting – when the
model describes all the data perfectly well without being actually adequate. For
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example, if we observe some quantity x at n different moments of time, then it is
always possible to find a polynomial f(t) = a0+a1 · t+a2 · t2+ . . .+an−1 · tn−1

that will fit all the data points perfectly well — to find such a polynomial,
it is sufficient to solve the corresponding system of n linear equations with n
unknowns a0, . . . , an−1:

a0 + a1 · t1 + a2 · t2i + . . .+ an−1 · tn−1
i , i = 1, . . . , n.

This does not mean that the resulting model is adequate, i.e., that the resulting
polynomial can be used to predict the values x(t) for all t: one can easily show
that if we start with noisy data, the resulting polynomial will be very different
from the actual values of x(t). For example, if n = 1 and the actual value of
x(t) is a constant, then, due to noise, the resulting polynomial x(t) = a0 + a1 · t
will be a linear function with a1 ̸= 0. Thus, for large t, we will have x(t) → ∞,
so the predicted values will be very different from the actual (constant) value
of the signal.

To avoid overfitting, it is recommended that we divide the observations into
training and testing data:

• First, we use the training data to determine the parameters of the model.

• After that, we compare the model’s predictions for all the testing data
points with what we actually observed, and use this comparison to gauge
the accuracy of our model.

Which proportion of data should we allocate for testing? Empirical
analysis has shown that the best results are attained if we allocate 20-20% of
the original data points for testing, and use the remaining 70-80% for training.

For this division, we get accuracy estimates which are:

• valid – in the sense that they do not overestimate the accuracy (i.e., do
not underestimate the approximation error), and

• are the more accurate among the valid estimates – i.e., their overestimation
of the approximation error is the smallest possible.

What we do in this paper. In this paper, we provide a possible explanation
for this empirical fact.

2 Formal Description and Analysis of the Prob-
lem

Training and testing: towards a formal description. Our goal is to find
the dependence of the resider quantity y on the corresponding inputs x1, . . . , xn.
To be more specific, we assume that the dependence has the form

y = f(a1, . . . , am, x1, . . . , xn),
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for some parameters a1, . . . , am. For example, we can assume that the depen-
dence is linear, in which case m = n+ 1 and

y = a1 · x1 + . . .+ an · xn + am+1.

We can assume that the dependence is quadratic, or sinusoidal, etc.
To find this dependence, we use the available data, i.e., i.e., we use N sit-

uations k = 1, . . . , n in each of which we know both the values of the inputs

x
(k)
1 , . . . , x

(k)
n and the corresponding output y(k).

Let p denote the fraction of the data that goes into the training set. This

means that out of the original N patterns
(
x
(k)
1 , . . . , x

(k)
n , y(k)

)
:

• N · p patterns form a training set, and

• the remaining (1− p) ·N patterns form a testing set.

We use the training set to find estimates â1, . . . , âm of the parameters

a1, . . . , am. Then, for each pattern
(
x
(k)
1 , . . . , x

(k)
n , y(k)

)
from the testing set,

we compare the desired output y(k) with the result

ŷ(k) = f
(
â1, . . . , âm, x

(k)
1 , . . . , x(k)

n

)
of applying the trained model to the inputs. Based on the differences

dk
def
= y(k) − ŷ(k),

we gauge the accuracy of the trained model.

How do we gauge the accuracy of the model. Many different factors
influence the fact that the resulting model is not perfect, such as measurement
errors, approximate character of the model itself, etc.

It is known that under reasonable assumptions, the distribution of a joint
effect of many independent factors s close to Gaussian (normal) – the corre-
sponding mathematical result is known as the Central Limit Theorem; see, e.g.,
[1]. Thus, we can safely assume that the differences dk are normally distributed.

It is known that a 1-D normal distribution is uniquely determined by two
parameters: mean value µ and standard deviation σ. Thus, based on the differ-
ences dk, we can estimate:

• the mean value (bias) of the trained model, and

• the standard deviation σ describing the accuracy of the trained model.

A general fact from statistics: reminder. In statistics, it is known that
when we use M values to estimate a parameter, the standard deviation of the
estimate decreases by a factor of

√
M .

Example. The factor-of-
√
M decrease is the easiest to explain on the simplest

example when have a single quantity q, and we perform several measurements of
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this quantity by using a measuring instrument for which the standard deviation
of the measurement error is σ0. As a result, we get M measurement results
q1, . . . , qM . As an estimate for q, it is reasonable to take the arithmetic mean

q̂ =
q1 + . . .+ qM

M
.

Then, the resulting estimation error q̂ − q, i.e., the difference between this es-
timate and the actual (unknown) value q of the quantity of interest has the
form

q̂ − q =
q1 + . . .+ qM

M
− q =

(q1 − q) + . . .+ (qM − q)

M
.

By definition, for each difference qi − q, the standard deviation is equal to σ0.
and thus, the variance is equal to σ2

0 .
Measurement errors corresponding to different measurements are usually

independent. It is known that the variance of the sum of independent random
variables is equal to the sum of the variances. Thus, the variance of the sum
(q1 − q) + . . . + (qM − q) is equal to M · σ2

0 , and the corresponding standard
deviation is equal to

√
M · σ2

0 =
√
M · σ0. When we divide the sum by M , the

standard deviation also divides by the same factor. So, the standard deviation

of the difference q̂ − q is equal to

√
M · σ0

M
=

σ0√
M

.

Let us use the general fact from statistics. We estimate the parameters
of the model based on the training set, with p ·N elements. Thus, the standard

deviation of the corresponding model is proportional to
1√
p ·N

.

When we gauge the accuracy of the model, we compare the trained model
with the data from the testing set. Even if the trained model was exact, because
of the measurement errors, we would not get the exact match. Instead, based
on (1− p) ·N measurements, we would get the standard deviation proportional

to
1√

(1− p) ·N
.

We want to estimate the difference dk between the trained model and the
testing data. It is reasonable to assume that, in general, the errors corresponding
to the training set and to the testing set are independent – we may get positive
correlation in some cases, negative correlation in others, so, on average, the
correlation is 0. For independence random variables, the variance is equal to
the sum of the variances. Thus, on average, this variance is proportional to(

1√
p ·N

)2

+

(
1√

(1− p) ·N

)2

=
1

p ·N
+

1

(1− p) ·N
=

1

(p · (1− p)) ·N
.

Thus, to get the smallest possible estimate for the approximation error, then,
out of all possible values p, we need to select the value p for which the product
p · (1− p) is the largest possible.

Which values p are possible? The only remaining question is now: which
values p are possible?
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Our requirement was that we should select p for which the gauged accuracy
is guaranteed not to overestimate the accuracy. In precise terms, this means
that the standard deviation of the trained model – i.e., the standard deviation
of the estimate ŷ(k) – should be smaller than or equal to the standard deviation
of the difference dk by which we gauge the model’s accuracy:

σ
[
ŷ(k)

]
≤ σ[dk].

Here, dk = ŷ(k) − y(k) is the difference between:

• the estimate ŷ(k) whose inaccuracy is cased by the measurement errors of
the training set and

• the value y(k) whose inaccuracy is cased by the measurement errors of the
testing set.

So, we must have

σ
[
ŷ(k)

]
≤ σ

[
ŷ(k) − y(k)

]
.

In general, for two random variables r1 and r2 with standard deviations σ[r1]
and σ[r2], the smallest possible value of the standard deviation of the difference
is |σ[r1−]σ[r2]| (see, e.g., [1]):

σ[r1 − r2] ≥ |σ[r1]− σ[r2]|.

In particular, for the difference dk = ŷ(k) − y(k), the smallest possible value of
its standard deviation σ

[
ŷ(k) − y(k)

]
is∣∣∣σ [ŷ(k)]− σ

[
y(k)

]∣∣∣ .
Thus, to make sure that we do not underestimate the measurement error, we
must guarantee that

σ
[
ŷ(k)

]
≤
∣∣∣σ [ŷ(k)]− σ

[
y(k)

]∣∣∣ ,
i.e., that a ≤ |a− b|, where we denoted a

def
= σ

[
ŷ(k)

]
and b

def
= σ

[
y(k)

]
.

In principle, we can have two different cases: a ≤ b and b ≤ a. Let us
consider these two cases one by one.

• If a ≥ b, then the desired inequality takes the form a ≤ a − b, which for
b > 0 is impossible.

• Thus, we must have b ≤ a. In this case, the above inequality takes the
form a ≤ b− a, i.e., equivalently, 2a ≤ b.

Thus, we must have

2σ
[
ŷ(k)

]
≤ σ

[
y(k)

]
.
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Since the inaccuracy of the estimate ŷ(k) comes only from measurement errors
of the training set, with p ·N elements, we have

σ
[
ŷ(k)

]
=

σ0√
p ·N

for some σ0. Similarly, since the inaccuracy of the estimate y(k) comes only
from measurement errors of the testing set, with (1− p) ·N elements, we have

σ
[
y(k)

]
=

σ0√
(1− p) ·N

.

Thus, the above inequality takes the form

2 · σ0√
p ·N

≤ σ0√
(1− p) ·N

.

Dividing both sides of this inequality by σ0 and multiplying by
√
N , we conclude

that
2
√
p
≤ 1√

1− p
.

Squaring both sides, we get
4

p
≤ 1

1− p
.

By bringing both sides to the common denomination, we get 4 − 4p ≤ p, i.e.,
4 ≤ 4p+ p = 5p and p ≥ 0.8.

Thus, to make sure that our estimates do not overestimate accuracy, we need
to select the values p ≥ 0.8.

Towards the final conclusion. As we have mentioned earlier, out of all
possible values p, we need to select a pone for which the product p · (1 − p) is
the largest possible. For p ≥ 0.8, the function p · (1− p) is decreasing. Thus, its
largest values is attained when the value p is the smallest possible – i.e., when
p = 0.8.

So, we have indeed explained why p ≈ 80% is empirically the best division
into the training and the testing sets.
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