AUTHENTICATION
FOR DISTRIBUTED SYSTEMS

Thomas Y. C. Woo and Simon S. Lam
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-91-19 May 1991

Authentication for Distributed Systems™

Thomas Y.C. Woo Simon S. Lam

Department of Computer Sciences

The University of Texas at Austin
Austin, Texas 78712-1188

April 16, 1991

Abstract

A fundamental concern in building a secure distributed system is authentication of various local and
remote entities in the system. We survey authentication issues in distributed system design. Some
basic paradigms underlying the design of authentication protocols are presented. An authentication
framework that can be used for the design of secure distributed systems is proposed. Three specific
authentication protocols relevant to this framework are presented. We conclude with an overview of two
existing authentication systems.

Keywords: Authentication, Distributed Systems, Networks, Protocols, Security.

“This work was supported in part by a grant from the Texas Advanced Research Program and by National Science
Foundation grant no. NCR-9004464.

Contents
1 Introduction
92 What Needs to be Authenticated?

3 Paradigms of Authentication Protocols

21 Protocols Based upon Symmetric Cryptosystemso oL
3.2 Protocols Based upon Asymmetric Cryptosystemso
3.3 Notion of TTUSt « « « ¢ v v o e e e e e e et e e e e e e e e e e e e

4 Authentication Protocol Failures

5 An Authentication Framework

5.1 Secure BOOtStTapPINE . « -« « v v v v v v e b e e e e e e e e e e e
5.9 TUser-Host Authentication v it i i i
5.3 Peer-Peer Authentication oot ot i i e e
5.4 Client-Server Authenticationo oo v oo e
55 Inter-domain Authentication e

6 Case Studies
6.1 KeTDOTOS . « v v o o e
6.2 SP X . i e

7 Conclusion

W 00~y WY

10

11
13
14
16
16
17

18
18
20

21

1 Introduction

A distributed system can be loosely understood to be a collection of hosts interconnected by a network.
The hosts communicate by sending and receiving messages over the network. Various resources (e.g.
files, printers) are distributed among the hosts and shared across the network in the form of network
services provided by servers. Individual processes (clients), desiring access to resources, direct their service
requests to the appropriate servers. Aside from such client-server computing, there are many other reasons
for-having s distributed system. For-example,; a-task can be divided up into subtasks that are executed
concurrently on different hosts.

A distributed system is susceptible to a variety of threats mounted by intruders as well as legitimate
users of the system. Indeed, legitimate users are more powerful adversaries since they possess internal
state information not usually available to an intruder (except after a successful penetration of a host). We
identify two general types of threats.

The first type is called host compromise threats; this refers to the subversion of individual hosts in a
system. Various degrees of subversion are possible, ranging from the relatively benign case of corrupting
a process’s state information to the extreme case of assuming total control of a host. Host compromise
threats can be countered by a combination of hardware techniques (e.g. processor protection modes) and
software techniques (e.g. security kernel/ reference monitor). These techniques are outside the scope of this
paper and interested readers are referred to [11] for an overview of the area of computer systems security.
In this paper, we assume that each host implements a reference monitor that can be trusted to properly
segregate processes.

The second type of threats is called communication threats; this includes threats associated with message
communications, and can be further subdivided into [24]:

(T1) eavesdropping of messages transmitted over network links to extract information on private conver-
sations,

(T2) arbitrary modification, insertion, and deletion of messages transmitted over network links to confound
a receiver into accepting fabricated messages,

(T3) replay of old messages; this can be considered a combination of (T1) and (T2).

(T1) is 2 passive threat, while (T2) and (T3) are active threats. A passive threat is one that does not
affect the system being threatened, whereas an active threat does. Therefore, passive threats are inherently
undetectable by the system, and can only be dealt with using preventive measures. For active threats,
a combination of prevention, detection, and recovery techniques can be employed. Additionally, there
are threats of “traffic analysis” and “denial of service”; we will not consider these because they are more
relevant to the general security of a distributed system than our restricted setting of authentication.

Corresponding to these threats, some basic security requirements can be formulated. For examples,
secrecy and integrity are two common requirements for secure communication. Secrecy specifies that a
message can be tead by its intended recipients only, while integrity specifies that every message is received
exactly as it was sent, or a discrepancy is detected.

A strong cryptosystem can provide a high level of assurance on both the secrecy and integrity of
messages. More precisely, an encrypted message provides no information regarding the original message,
hence guaranteeing secrecy; and an encrypted message, if tampered, would not decrypt into a legal message,
hence guaranteeing integrity.

Replay of old messages can be countered by using nonces or timestamps [8, 19]. Nonces are information
that is guaranteed to be fresh, i.e. has never appeared or been used before. Therefore, a reply that contains
some function of a nonce sent recently should be believed to be timely—in particular, it could have been
generated only after the nonce was sent. Perfect random numbers are good candidates to be nonces;

however their effectiveness is dependent upon the randomness that is practically achievable. Timestamps
are values of a local clock. Their use requires at least some loose synchronization of all local clocks, and
hence their effectiveness is also somewhat restricted.

The balance of this paper is organized as follows. In Section 2, we discuss what authentication means
as well as the various authentication needs in distributed systems. In Section 3, two classes of paradigms
of authentication protocols are presented. In Section 4, we discuss why realistic authentication protocol
are difficult to design. In Section 5, we propose an authentication framework for distributed systems,
and present specific authentication protocols that can be used within the framework. In Section 6, we
describe authentication protocols in two existing systems: Kerberos and SPX. In Section 7, we present
some conclusions.

2 What Needs to be Authenticated?

In simple terms, authentication is identification plus verification. Identification is the process whereby an
entity claims a certain identity, while verification is the process whereby such a claim is checked. Thus the
correctness of an authentication relies heavily on the verification procedure employed.

The various entities in a distributed system that can be distinctly identified are collectively referred to
as principals. There are three main types of authentication of interest in a distributed computing system:

(A1) message content authentication — verifying that the content of a message received is the same as it
was sent.

(A2) message origin authentication — verifying that the sender of a message received is as recorded in the
sender field of a message.

(A3) general identity authentication — verifying that the identity of a principal is as claimed.

(A1) is commonly handled by tagging a key-dependent message authentication code (MAC) onto a
message before it is sent. Integrity of the message can be confirmed upon reception by recomputing the
MAC and comparing it with the one attached. (A2) can be considered as a subcase of (A3). In general,
a successful general identity authentication results in a state of belief in the authenticating principal (the
verifier) that the authenticated principal (the claimant) possesses the claimed identity. Hence subsequent
actions performed by the claimant are attributable to the claimed identity; e.g. general identity authenti-
cation is needed for both authorization and accounting functions. In this paper, we restrict our attention
to general identity authentication only.

In an environment where both host compromise threats and communication threats are possible, prin-
cipals must adopt a mutually suspicious attitude toward one another. Therefore, mutual authentication,
whereby both communicating principals verify each other’s identity, rather than one-way authentication,
whereby only one principal verifies the identity of the other principal, is usually required.

In a distributed computing environment, authentication is carried out using a protocol involving mes-
sage exchanges. We refer to these protocols as authentication protocols.

Most existing systems employ only very primitive authentication measures or none at all, for examples:

e The prevalent login procedure requires users to enter their passwords in response to a system prompt.
Users are then one-way authenticated by verifying the (possibly transformed) password against an
internally stored table. However, no mechanism is available to the users to authenticate a system.
Such a design is acceptable only when the system is trustworthy, or the probability of compromise is
low.

Basic Cryptography

A cryptosystem comes with two procedures, one for encryption and one for decryption. A formal description
of a cryptosystem consists of the specification of its message space, key space, ciphertext space, the encryption
function and decryption function.

There are two broad classes of cryptosystems, namely symmeiric and asymmetric cryptosystems 4. In . a
symmetric cryptosystem, the encryption and decryption keys are the same and hence need to be kept secret. In
an asymmetric cryptosystem, the encryption key is different from the decryption key and only the decryption
key needs to be kept secret while the encryption key can be made public. Because of this, it is important
that the decryption key cannot possibly be determined from the encryption key. Symmetric and asymmetric
cryptosystems are also referred to as shared key and public key cryptosystems, respectively.

Knowledge of the encryption key allows one to encrypt arbitrary messages from the message space, while knowl-
edge of the decryption key allows one to recover a message from its encrypted form. Thus, the encryption and
decryption functions satisfy the following relation: M is the message space, K x Kp is the set of encryp-
tion/decryption key pairs:

Vme M :¥(k k™) € Kg x Kp : {{m}i}z-1 =m (C1)

where {z}, denotes the encryption operation on z if y is an encryption key, and the decryption operation on z
if y is a decryption key. (In the case of a symmetric cryptosystem whose encryption and decryption keys are the
same, the operation performed should be clear from context.)
Two widely used cryptosystems are the Data Encryption Standard (DES) [1], a symmetric system, and RSA [3],
an asymmetric system. In the case of RSA, encryption-decryption key pairs satisfy the following commutative
property [2]:

YmeM:V(k,k)€ Kgx Kp : {{m}z-1}r =m (C2)

hence yielding a signafure capability: i.e. suppose k and k~! are P’s asymmetric keys, then {m};-: can be used
as P’s signature on m since it could only have been produced by P, the only principal who knows k=t By (C2),
P’s signature is verifiable by any principal with knowledge of k, P’s public key. Note that in (C2), the roles
of k and k! are reversed; specifically, k! is used as an encryption key while k as a decryption key. To avoid
confusion with the more typical roles for k and k' as exemplified in (C1), we refer to encryption by kP lasa
signing operation. In this paper, asymmetric cryptosystems are assumed to be commutative.

Since in practice, symmetric cryptosystems can operate much faster than asymmetric ones, asymmetric cryp-
tosystems are often used only for initialization/control functions, while symmetric cryptosystems can be used
for both initializations and actual data transfer.

References

[1] “Data Encryption Standard,” FIPS Pub 46, National Bureau of Standards, Washington, D.C., January 15,
1977.

[2] W. Diffe and M.E. Hellman, “Privacy and Authentication: An Introduction to Cryptography,” Proceedings
of the IEEE, Vol. 67, No. 3, pp. 397-427, March 1979.

[3] R.L. Rivest, A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures and Public-Key Cryp-
tosystems,” Communications of ACM, Vol. 21, No. 2, pp. 120-126, February 1978.

[4] G.J. Simmons, “Symmetric and Asymmetric Encryption,” ACM Computing Survey, Vol. 11, No. 4 pp. 305~
330, 1979.

e In a typical client-server interaction, the server, on accepting a client’s request, has to trust that (1)
the resident host of the client has correctly authenticated the client, and (2) the identity supplied
in the request actually corresponds to the client. Such trust is valid only if the system’s hosts are

trustworthy and its communication channels are secure.

The above measures are seriously inadequate for the following reasons: First, the notion of trust in
distributed systems is poorly understood; a satisfactory formal explication of trust has yet to be proposed.
Second, the proliferation of large-scale distributed systems spanning multiple administrative domains has
given rise to extremely complex trust relationships.

Host

User 1 User 2

=] Server Client .
Process Process

Reference Monitor

Figure 1: Principals in a Distributed System

In a distributed computing system, the entities that require identification are hosts, users and processes
[15]; hence they constitute the principals involved in an authentication. We describe them in the following

(see Fig 1):

o hosts — a host is an addressable entity at the network level, which is distinguished from its underlying
supporting hardware. For example a host H running on workstation A can be moved to run on
workstation B if desired by performing the bootstrapping sequence for H on B. A host is usually
identified by its host name (e.g. a domain name) or its network address (e.g. an IP address), whereas
a particular host hardware is usually identified by its factory assigned serial number e.g. a workstation
on a Ethernet can be identified by the unique Ethernet address of its Ethernet adaptor board.

o users — users are the entities ultimately responsible for all system activities. In other words, users
initiate and are accountable for all system activities. Most access control and accounting functions
are based on users. (For completeness, a special user called root can be postulated, who is accountable
for system-level activities, e.g. process scheduling.) Typical users include human users, as well as
accounts maintained in the user database. Note that users are considered to be outside the system

boundary.

e processes — processes are created by the system to represent users. They lie within the system
boundary and each of them is associated with a unique user. A process requests and consumes
resources on behalf of its associated user. Processes can be broadly divided into two classes: client
processes and server processes. Client processes are service consumers who obtain services from the
server processes, the service providers. A particular process can act as both a client and a server.
For example, print servers are usually created by (hence associated with) the user root, and act as
servers for printing requests by other processes, but as clients when requesting files from file servers.

Corresponding to the various principals, we identify the following major types of authentication ex-
changes in a distributed system:

o host-host — cooperation between hosts is often required for host-level activities. For example, topol-
ogy maintenance is typically done in a distributed manner such that individual hosts exchange link
information and update their internal topology maps accordingly. Another example is remote boot-
strapping. A host upon reinitialization, must be able to identify a trustworthy boot server to supply
the information (e.g. a copy of the operating system) required for correct initialization.

o user-host — a user gains access to a distributed system by logging onto a host in the system. In an
open access environment where hosts are scattered across unrestricted areas, a host can be arbitrarily
compromised and hence mutual authentication is required between the user and the host.

e process-process — two main subclasses can be identified:

1. peer process communication — peer processes must be satisfied with each other’s identity before
private communication can begin.

9. client-server communication — an access decision concerning a client’s request can be made
only when the client’s identity is affirmed; a client is willing to surrender valuable information
to a server only after it has verified the identity of the server.

As shown in later sections, these two classes of communication authentication are closely related,
and can be handled by similar protocols.

In the sequel, we will use authentication to refer to general identity authentication.

3 Paradigms of Authentication Protocols -

Authentication in distributed systems is invariably performed using protocols. A protocol is a precisely
defined sequence of communication and computation steps. A communication step transfers messages from
one principal (the sender) to another (the receiver), while a computation step updates the internal state of
a principal. Two distinct states can be identified upon termination of the protocol, one signifying successful
authentication and the other failure.

Although the goal of any authentication is to verify the claimed identity of a principal, the specific
success and failure states are highly protocol dependent. For example, the success of an authentication
during the connection establishment phase of a communication protocol is usually indicated by the distri-
bution of a fresh session key between two mutually authenticated peer processes; whereas in a user login
authentication, success usually results in the creation of a login process on behalf of the user.

We present protocols in the following format: a communication step whereby P sends a message M to

Q is represented as:
P — @Q: M

whereas a computation step of P is written as:
P:

where “...” is some specification of the computation step. As an example, the typical login protocol between
a host H and a user U is given below: f is a one-way function, that is, given y it is computationally infeasible

to find an z such that f(z) =y.

Approaches to Authentication

All authentication procedures involve the checking of some known information about a claimed identity against
information acquired from the claimant during the identity verification procedure. Such checking can be based
on the following three approaches [2]:

e Proof by knowledge — the claimant demonstrates knowledge of some information regarding the claimed
identity that can only be known/produced by a principal with the claimed identity. For example, the
knowledge of a password is used in most login procedures. A proof by knowledge can be conducted by
a direct demonstration of the knowledge e.g. typing in a password, or by an indirect demonstration e.g.
correctly computing replies to challenges posed by the verifier. Direct demonstration is not preferable
from a security viewpoint since a compromised verifier can record the submitted knowledge and later
impersonate the claimant by presenting the recorded knowledge. Indirect demonstration can be designed
to induce high confidence in the verifier, without leaving any clue on how the claimant’s replies are
computed. For example, in [1], a zero-knowledge protocol for proof of identity is proposed. This protocol
allows a claimant C to prove to a verifier V that C knows how to compute replies to challenges posed
by V without revealing what the replies are. These protocols are provably secure (under complexity
assumptions). However, additional refinements are needed before they can be applied in practical systems.

e Proof by possession — the claimant produces an item that can only be possessed by a principal with the
claimed identity. For example, an ID badge. For this to work, the item has to be unforgeable and be safely
guarded to avoid theft.

o Proof by property — this involves the direct measurement of certain properties of the claimant by the
verifier. For example, various biometric techniques are used: finger print, retina print, and so on. The
measured property has to be distinguishing, i.e. unique among all possible principals, to achieve correct
identification.

Proof by knowledge and possession (and combinations thereof) can be applied to all types of authentication
needs in a secure distributed system while proof by property is generally limited to the authentication of human
users by a host equipped with specialized measuring instruments.

References

[1] U. Feige, A. Fiat and A. Shamir, “Zero Knowledge Proofs of Identity,” Proceedings of the ACM Symposium
on Theory of Computing, pp. 210-217, 1987.

[2] K. Shankar, “The Total Computer Security Problem,” JEEE Computer, Vol. 10, No. 6, pp- 5073, June 1977.

U— H U

H - U “Please enter password”
U — H P

H compute z = f(p)

retrieve user record (U, f(passwordy)) from user database
if z = f(passwordy) then accept; otherwise reject

As in the domain of communication protocols where a large body of existing protocols can be system-
atically constructed and analyzed by focusing on a few key ideas (i.e., 2-way handshake, 3-way handshake,

6

alternating-bit and sliding windows), we next examine several basic ideas that underlie authentication
protocol design.

Since authentication protocols make direct use of cryptosystems, their basic design principles also follow
closely the type of cryptosystem used. Specifically, we identify two basic principles for authentication, one
based on symmetric cryptosystems and the other on asymmetric cryptosystems.

Note that protocols presented in this section are intended to illustrate basic design principles only. A
realistic protocol is necessarily a refinement of these basic paradigms and addresses weaker environment

assumptions and/or stronger postconditions. Also, a realistic protocol may make use of both symmetric
and asymmetric cryptosystems.

3.1 Protocols Based upon Symmetric Cryptosystems

In a symmetric cryptosystem, knowledge of the shared key enables a principal to encrypt and decrypt
arbitrary messages; without such knowledge it is infeasible to obtain the encrypted version of a message, or
to decrypt an encrypted message. Hence authentication protocols can be designed based on the following
principle:

The ability to correctly encrypt a message using a key that is believed to
be known only by a principal with the claimed identity (and the verifier) (SYM)
constitutes a sufficient proof of claimed identity by the claimant.

Thus (SYM) embodies the proof by knowledge principle for authentication, i.e., a principal’s knowledge
is indirectly demonstrated through its ability to encrypt. Using (SYM), we immediately obtain the following
basic protocol: k is a symmetric key shared between P and Q.

P : create m =“l am P.”
: compute m’ = {m}y

P - Q: m,m’

Q : verify {m}x L

if equal then accept; otherwise reject

Clearly, the design principle (SYM) is sound only if the underlying cryptosystem is strong (i.e. it is
impossible to find the encrypted version of a message without knowing the key) and the key is secret (i.e.
shared only between the real principal and the verifier). Note that the above protocol performs only one-
way authentication, mutual authentication can be achieved by reversing the roles of P and). However, a
major weakness is its vulnerability toward replays. More precisely, an adversary could masquerade as P
by recording the message m' and later replay it to Q.

As mentioned before, replay attacks can be countered using nonces or timestamps. We modify the
above protocol by adding a challenge and response step using nonces: n is a nonce.

P — “lam P.”

Q — P: n

P : compute n’' = {n}j
P — Q: n'

Q verify {n}z L

if equal then accept; otherwise reject

Replay is foiled by the freshness of n. Thus even if a eavesdropper has monitored all previous authen-
tication conversations between P and @, it would still be unable to produce the correct n'. (This also
points out the need for the cryptosystem to withstand known plaintext attack, i.e. the cryptosystem is still
unbreakable given the knowledge of some plaintext-ciphertext pairs.) The challenge and response step can
be repeated any number of times until the desired level of confidence is reached by Q.

The above protocol is impractical as a general large-scale solution because each principal is required to
remember the secret key for every other principal he would ever want to authenticate. This presents major

initialization (i.e. the predistribution of secret keys) and storage problems. Moreover, the compromise
of any one principal can potentially compromise the entire system. These problems can be significantly
reduced by postulating a centralized authentication server A that shares a secret key kx with every principal
X in the system [19]. The basic authentication protocol then becomes:

P - Q “Iam P.”

Q — P n

P compute n’ = {n}ip

P - Q n'’

Q compute n” = {P,n'}x,

Q — A n

A recover (P, n’) from n” by decrypting with kg

compute m = {{n'}xp }ro
m

o =
|
O

verify {n}g, Lm
if equal then accept; otherwise reject

Thus the verification step by Q is preceded by a key translation step by A. The protocol correctness
now also Tests on the trustworthiness of A, i.e. it would properly decrypt using P’s key and reencrypt using
Q’s key. The initialization and storage problems are greatly alleviated since each principal now needs to
keep only one key. The risk of compromise is mostly shifted to A, whose security can be guaranteed by
various measures e.g. physical security and encrypting all stored keys using a master key.

3.2 Protocols Based upon Asymmetric Cryptosystems

In an asymmetric cryptosystem, each principal P publishes his public key kp and keeps secret his private
key k;l. Thus only P can generate {m}k;1 for any message m by signing it using kRt {m} Kyt can be
verified by any principal with knowledge of kp (assuming a commutative asymmetric cryptosystem). Thus
the basic design principle is:

The ability to correctly sign a message using the private key of the principal
with the claimed identity constitutes a sufficient proof of the claimed identity (ASYM)
by the claimant.

(ASYM) follows the proof by knowledge principle for authentication, in that a principal’s knowledge
is indirectly demonstrated through its capability to sign. Using (ASYM), we obtain a basic protocol as
follows: n is a nonce.

P — g “Tam P.”

Q — P: n

P : compute n’ = {n} Kot
P - @Q: n'

Q verify n e {n'}ep

if equal then accept; otherwise reject

The above protocol depends on the guarantee that {n} = cannot be produced without the knowledge

of k;l and the correctness of kp as published by P and kept by .

As in the case of symmetric keys, the initialization and storage problems can be alleviated by postulating
a centralized certification authority A that maintains a database of all published public keys [19]. The above
protocol can then be modified as follows:

P — @Q: “Tam P.”

Q — P: n

P : compute n' = {n}k;1

P — @ n'

Q — A: “I need P’s public key.”

A : retrieve ¢ = {P,kp} e from key database

A -~ G P,c

Q : recover (P, kp) from ¢ by decrypting with k4

. ?
verify n = {n'}ip
if equal then accept; otherwise reject

Thus ¢, called a public key certificate, represents a certified statement by A that P’s public key is kp.
Other information such as a specified lifetime and the classification of principal P (for mandatory access
control) can also be included in the certificate; such information is omitted here. Each principal in the
system only needs to keep a copy of the public key k4 of A.

In the above protocol, A is an example of an on-line certification authority. In other words, A supports
interactive queries and is actively involved in authentication exchanges. A certification authority can also
operate off-line such that a public key certificate is issued to each principal only once. The certificate is
kept by the principal and is forwarded during an authentication exchange, thus eliminating the need to
query A interactively. Forgery is impossible since a certificate is signed by the certification authority.

3.3 Notion of Trust

It is easy to see that correctness of both the symmetric and asymmetric protocols presented above requires
more than the existence of secure communication channels between principals and the appropriate authen-
tication servers (or certification authorities). In fact, such correctness is critically dependent on the ability
of the servers (authorities) to faithfully follow the protocols. Each principal bases its judgment on its own
observations (messages sent and received) and its trust on the server’s judgment.

In some sense, the trust required of a certification authority is less than the trust required of an
authentication server, as all information (except its own private key) kept by the authority is public.

Furthermore, a certification authority has no way of masquerading as a principal since the private key of
a principal is never shared.

Our formal understanding of trust in a distributed system is at best inadequate. In particular, a formal
understanding of authentication would require both a formal specification of trust and a rigorous reasoning
method wherein trust is one of the basic elements.

4 Authentication Protocol Failures

Despite the apparent simplicity of the basic design principles for authentication protocols, realistic authen-
tication protocols are notoriously difficult to design. Several protocols were published and later found to
exhibit subtle security problems [3, 4, 8, 19].

There are several reasons for this difficulty. First, most realistic cryptosystems satisfy additional al-
gebraic identities other than those in (C1) and (C2) (see Box). These extra properties may generate
undesirable effects when combined with the logic used in a protocol [18]. Second, even assuming that the
underlying cryptosystem is perfect, unexpected interaction among the protocol steps themselves can lead to
subtle logical flaws. Third, assumptions regarding the environment and the capabilities of an adversary are
never explicitly specified, thus rendering it extremely difficult to determine when a protocol is applicable
and what final states are achieved.

We illustrate the difficulty by showing below an authentication protocol proposed in [19] that was found
to contain a subtle weakness [4, 8]: kp and kg are symmetric keys shared between P and A, and @ and
A, respectively, where A is an authentication server. Let k be a session key.

(1) P - A: P,Q,np

(2) A— P: {nP$Q,k7 {k7P}kQ}k‘p
(3) P — Q: {k7P}kQ

(4) Q — P: {ng}tr

(5) P -Q: {ng+ 1k

The message {k, P}, in step (3) can only be decrypted and hence understood by Q. Step (4) reflects
Q’s knowledge of k while step (5) assures @ of P’s knowledge of k; hence the authentication handshake is
based entirely on knowledge of k. A subtle weakness of the protocol arises from the fact that the message
{k, P}, sent in step (3) contains no information for @ to verify its freshness.! In fact, this is the first
message sent to @ notifying it of P’s intention to establish a secure connection. An adversary who has
compromised an old session key &’ can impersonate P by replaying the recorded message {k’, P}, in step
(3), and subsequently executing the steps (4) and (5) using &'.

To avoid protocol failures, formal methods may be employed in the design and verification of authenti-
cation protocols. A formal design method should embody the basic design principles as illustrated in the
previous section while informal reasoning such as:

“If you believe that only you and Bob know k, then any message you receive encrypted with k&
should be believed to have been sent by Bob originally.”

should be formalized within a verification method.

Early attempts at formal verification of security protocols followed mainly an algebraic approach [9, 10].
Specifically, messages exchanged in the protocol are viewed as terms in an algebra and various identities
involving the encryption and decryption operators (e.g. (C1), (C2)) were taken to be term rewriting rules.

INote that k is known to be fresh only by P and A.

10

A protocol is secure if it is impossible to derive certain terms (e.g. the term containing the key) from the
terms obtainable by an adversary. The algebraic approach is limited since it deals only with one aspect of
security, namely secrecy. Recently, various logical approaches have been proposed to study authentication
protocols [3, 2] Most of these logics adopt a modal basis, with belief and knowledge being their central
notions. The logical approaches appear to be more general, but they currently lack a rigorous foundation
as compared to the more well-established logics e.g. first-order logic and temporal logic. In particular, a
satisfactory semantic model for these logical systems has not been developed. Clearly, much research is

still needed to obtain sound design methods and to formally understand issues of authentication.

5 An Authentication Framework

We have so far presented various basic concepts of authentication. In this section, we synthesize these con-
cepts into a specific authentication framework that can be incorporated into the design of secure distributed
systems.

In particular, we identify five aspects of secure distributed system design and the associated authenti-
cation needs. For these five particular aspects, we demonstrate how authentication protocols can be used
to address specific needs. This section should not be regarded as exhaustive in scope, because in an actual
distributed system security framework, other issues may have to be addressed as well. The five aspects are
described below:

o Host initializations — all process executions take place inside hosts. Some hosts (e.g. workstations)
also act as entry points to the system by allowing user logins. The overall security of a distributed
system is highly dependent on the security of each of the hosts. However, in an open network
environment, not all hosts can be physically protected. Thus resistance to compromise must be built
into a host’s software to ensure its secure operation. This suggests the importance of the integrity
of host software. In particular, for a host that employs remote initialization, loading it with the
correct host software is necessary for its proper functioning. In fact, one way to compromise a public
host is to reboot the host with incorrect initialization information. Authentication can be used to
implement secure bootstrapping.

e User logins — login is the point where a user initiates its activities within the system. The identity
of the user is established at this point and all subsequent activities of the user are attributed to
this established identity. In particular, all access control decisions and accounting functions would be
based on this established identity. Therefore correct identification of users is crucial to the functioning
of a secure system. On the other hand, any host in an open environment is susceptible to compromise,
thus a user should not engage in any activity with a host without first ascertaining the host’s identity.
A mutual user-host authentication can be used to achieve the required guarantees.

e Peer communications — an advantage of distributed systems over a centralized one is the ability to
distribute a task over multiple hosts so as to achieve a higher throughput or more balanced utiliza-
tions. Correctness of such a distributed task depends on the ability of peer processes participating in
the task to correctly identify each other. Authentication can be used here to identify friend or foe.

o Client-server interactions — the client-server model provides an attractive paradigm for constructing
distributed systems. Servers are only willing to provide service to authorized clients while clients
are interested in dealing with the legitimate servers only. Authentication can be used to verify a
potential consumer-supplier relationship.

o Inter-domain communication — most distributed systems are not centrally owned or administered; for
example, a campus-wide distributed system is often an interconnection of individually administered

i1

departmental subsystems. Additional authentication mechanisms are required for the identification
of principals across subsystems.

n-.....'-.‘.

0
""""
00" %00,
0? o0,

-~ Physically Secure T,
,.-"." “ong
.g".. ~'.é.
§ Bootstrap Server B Certification Authority A :
' (ldH:kHkaI:ZdW,kW,kwl) (U,idc,kc)
Cryptographic gryggographic
1li - t -1
Facility kBl acility ks
Network
sgcyre
c el
HostH
VA
Reference Monitor
secupe sequte Smartcard C ,
charnel ch el User U
v [Display]
Cryptographic secure Key Pad
il channel
Facility Smartcard
—1 | | Reader [Cryptographic
idw, kw, ki Facility
PINc,idc, ka, kZ!

Figure 2: Distributed System Configuration

In the kind of malicious environments postulated in our threats model, some basic assumptions about
the system must be satisfied to achieve any reasonable level of security. We list a set of assumptions below
(for other possible assumptions, see [1, 15]). These assumptions are also depicted in Figure 2.

e Each host hardware W has a unique built-in immutable identity idw, and contains a tamper-proof
cryptographic facility that encapsulates the public key kw and the private key kj;} of W. The

12

cryptographic facility can communicate with the host reference monitor via a secure channel. Each
host that supports user logins also has a smartcard reader that can communicate with the host
reference monitor via a secure channel. Lastly, the host reference monitor has a secure channel to
the network interface.

o Each legitimate user U is issued a smartcard C' that has a unique built-in immutable identity idc.
Each smartcard C is capable of performing encryption and decryption, and encapsulates its private

key k', the public key for the certification authority k4 (see below) and a pin number PIN¢ for its
legitimate holder. (The pin number is assigned by a card issuing procedure.) The channel between
the smartcard and the smartcard reader is secure. Each smartcard has its own display, its own
keypad, and a clock.

e A physically-secure centralized bootstrap server B exists that maintains a database of all host in-
formation. More precisely, for each host H, it keeps a record (idm, km, kﬁl, dw, kw, k;Vl) specifying
the unique hardware W that can be initialized as H. All records in the database can be encrypted
under a secret master key for added security. B has a public key kp and a private key kl';l.

o A physically-secure centralized certification authority A exists that maintains a database of informa-
tion on all principals. More precisely, for each user U, A keeps a record (U,idg, ke), binding U to
its smartcard C. For each host H, A keeps a record (idy, idw), specifying the hardware W that H
is supposed to run on. Also, for each server §, A keeps a record of its public key certificate (.9, kg).
The certification authority A has a public key k4 and a private key kzl.

Fach of the above assumptions is achievable with current technology. In particular, the technology
of battery-powered credit-card-sized smartcard with a built-in LCD display, keypad, and capable of per-
forming specialized computations has had steady progress in recent years. Also, specialized cryptographic
facilities and smartcard readers for hosts are already included as options from many vendors. The use of
a smartcard or other forms of computation aid is essential in realizing mutual authentication between a
host and a user, as unaided human users simply cannot carry out the intensive computations required by
an authentication protocol.

The bootstrap server and the certification authority are assumed to be centralized to simplify our
presentation. Decentralized servers/authorities can be supported by adding authentication between the
servers/authorities themselves (see Section 5.5). Such authentication can be carried out in a hierarchical
manner as suggested in X.509 [7].

While there is a certification authority in our authentication framework, there is no authentication
server. We made this choice because the level of trust needed in a certification authority (which distributes
public key certificates) is deemed to be less than that of an authentication server (as discussed in Section
3.3).

In the following subsections, we present some specific protocols designed to address authentication needs
in our framework. The protocols presented are not meant to be definitive or optimal (i.e. least number of
messages or the weakest initial assumptions). They serve to illustrate possible solution approaches.

5.1 Secure Bootstrapping

The following secure bootstrapping protocol is initiated when some host hardware attempts a Temote
initialization. This could take place after a voluntary shutdown, a system crash, or a malicious attack by
an adversary who attempts to penetrate the host. The secure bootstrap protocol allows a reinitialized host
to attain a “safe” state prior to resuming normal operation. In particular, a correctly loaded reference
monitor is ready to assume control of the host in this state.

13

Suppose that the hosts and the bootstrap server B are on the same broadcast network, hence allowing
the message in step (1) below to be received by B. In the following protocol, ny and np are nonces, k is
a session key, OS is a copy of the operating system, and 7" is a timestamp.

(1) W - all: “boot”, idw, {nw, idw }ky

(2) B : retrieve record (idg, kg, k;il, idw , kw, k;Vl) for W from database
recover ny from {nw,idw}i, by decrypting with k;vl

generate a random key k

compute m = {nw,ka, kB, k}ty

(3) B — W : m

(4) w : recover (nw,ka, k, k) from m by decrypting with ki

(5) W — B : {nw,“ready” }

(6) B — W : {nw,nB,idH,{k;f}kW,OS}k

(7) W — B : {{nB}k;}k

(8) B - W: {idy, idw, km, T}k;

(9) H validate certificate {idg, tdw, ks, T}k; by encrypting with kp

The basic idea of the protocol is as follows: In step (1), W announces its intention to reboot by
broadcasting a boot request. Only B who has knowledge of k;vl can recover the nonce ny. In step (2),
B generates a fresh key k to be used for loading O5. In step (4), W ascertains that m is not a replay by
checking the component nyy, since only B could have composed message m. Thus k4, kp and k in m can
be safely taken to be respectively the public key of certification authority A, the public key of B and the
session key to be used for loading OS. At this point, B has been authenticated by W.

When the message “ready” encrypted with k is received in step (5), B is certain that the original boot
request actually came from W since only W can decrypt m to retrieve k. Hence, B and W have mutually
authenticated each other.

Step (6) is the actual loading of O and transfer of the private key kffl of host H. The checksum
of 08 is included as part of OS, and it should be recomputed by W to detect any tampering of OS5 in
transit. W acknowledges the receipt of k5* and OS by returning the nonce np signed with kgfl. B verifies
that the correct np is returned. Then in step (8), a license signed by B affirming the binding of host idy
with public key kg and hardware idy is sent to H. This license is retained by H as a proof of successful
bootstrapping and of its identity. The timestamp field T within the license denotes its expiration date.

If secrecy of OS is not required, OS can be transferred without being encrypted first. However, the
checksum of OS5 must be sent in encrypted form.

5.2 TUser-Host Authentication

User-host authentication is performed when a user U walks up to a host H and attempts to log in. The
authentication requires the use of a smartcard C. A successful authentication provides a guarantee to host
H that U is the legitimate holder of C' and a guarantee to user U that H is a “safe” host to use, i.e., the
host holds a valid license (which may have been obtained through secure bootstrapping), and possesses
knowledge of the private key k‘;{l.

In most systems, the end result of a successful user authentication is the creation of a login process
by the host’s reference monitor on behalf of the user. The login process is a proxy for the user, and all
requests generated by the login process are taken as if they are directly made by the user. However, a
remote host/server has no way of confirming such proxy status, except to trust the authentication capability
and integrity of the local host. Such trust is unacceptable in a potentially malicious environment since a
compromised host can simply claim the existence of user login processes to obtain unauthorized services.

14

A solution to alleviate this trust requirement is to have a user explicitly delegate its authority to its
login host [1, 15]. The delegation can be done by having the user’s smartcard sign a login certificate to
the login host upon the successful termination of a user-host authentication protocol. The login certificate
asserts the proxy status of the host with respect to the user, and can be presented by the host in future
authentication exchanges.

Because of the possibility of forgery, the possession of a login certificate should not be taken as sufficient
proof of delegation. The host is also required to demonstrate the knowledge of a private delegation key

k; 1 whose public component &y is named in the certificate. Also, to reduce the potential impact of a host
compromise, the login certificate is given only a finite lifetime by including in it an expiration timestamp.

We present such a user-host authentication protocol below: we assume that the host holds a valid license
{idg,idw, ku, T} gt 28 would be the case if the host has executed the secure bootstrapping protocol. In

the following, no is a nonce, kq is the public delegation key, whose private counterpart ky —1 is kept secret
by the host, T} is a timestamp denoting the expiration date of the login certificate.

(1) C — H: ido, ne
(2) H — A: ido{id, tdw, kw, T}kgl
(3) A : check timestamp of certificate
: if timestamp expired, abort
(4) A — H: {de,de,kH,T}k—l {U, 'l-dc',kc}k-l
(5) H : generate new delegatlon key pair (kd, k7Y
(6) H - C: {de7 idw, kHyT}k;17{U kd’nc}k;{l
(7) C - U: idy, idw
(8) U : verify if idy /idw is the host desired
: if not, abort
(9) U - C: PIN
(10) C . verify PIN £ PINg
: if not equal, abort
11y C — H: {U,idH,kd}Tc}kgz
(12) H : verify correct delegation by decrypting

the login certificate {U, idm, kq, 1.} kot with k¢

The protocol proceeds as follows: A user walks up to a host and inserts his/her smartcard in the card
reader. The card’s identity ido and a nonce ng are sent through the card reader to the host in step (1). In
step (2) H requests user information associated with id¢ from certification authority A. Since the license
held by H was signed by B and hence not decipherable by C, a key translation is requested by H in
the same step. (Note that these licenses can be cached by H and need not be requested for every user
authentication.) After receiving a reply from A in step (4), H knows both the legitimate holder U of the
card C and the public key kg associated with the smartcard. Knowledge of U can be used to enforce local
discretionary control to provide service (or not), while k¢ is needed to verify the authenticity of C'. In
step (5), H generates a new delegation key pair (kq, k 1), H keeps k' private, to be used as proof of a
successful delegation from U to H.

In step (6), H returns the nonce ng with the public delegation key kg4, and a copy of its license to
C. In step (7), C retrieves (idy,idw), the identity of H, from the license by decrypting it with k4. A
check is made to ensure that the timestamp in the license has not expired. The identity (idg, idw) is then
displayed on the card’s own screen. If the user decides to proceed, he/she enters on the card’s keypad
the pin number assigned to him in the card’s issuing procedure. In step (10), the pin number entered is

15

verified against the one stored in the card. If they are equal, C signs a login certificate binding the user U
with the host idg and the public delegation key kq. This is sent to H in step (11). The host (and others)
can verify the validity of the login certificate using kg, the card’s public key.

When user U logs out, the host erases its copy of the private delegation key k;l to void the delegation
from U. In the case that H is compromised after the delegation, the effect of the login certificate is limited
by its lifetime, T¢.

5.3 Peer-Peer Authentication

Peer-peer mutual authentication and cryptographic parameters negotiation (e.g. session key agreement)
are performed in the connection establishment phase of a secure connection-oriented protocol.

The following protocol mutually authenticates peers P and @, and establishes a new session key for
their future communication. Below, np and ng are nonces, while k is a fresh session key.

(1) P — A: PG

(2) A — P {Q, kol

(3) P — Q: {np, P}rg

(4) Q — A: Q,P,{np}r,

(5) A— Q: {Pv kP}kZh{{anka Q}kzl}kg
(6) Q — P: {{ankaQ}kzl’nQ}kP

(7 P — Q: {ng}x

In step (1), P informs A of its intention to establish a secure connection with Q. In step (2), A returns
to P a copy of Q’s public key certificate. In step (3), P informs Q of its desire to communicate along with
a nonce np. In step (4), @ asks A for P’s public key certificate and requests a session key at the same
time. In order for Q to subsequently prove to P that the session key k is actually from A (not @’s own
creation), A sends a signed statement containing the key k, np and @Q’s name. This basically says that k
is a key generated by A on behalf of Q’s request identified by np. The binding of k and np assures P that
k is fresh. In step (6), A’s signed copy of (np,k, Q) is relayed to P together with a nonce ng generated by
Q. P’s knowledge of the new session key k is indicated to Q by the receipt of ng in step (7).

5.4 Client-Server Authentication

Since both clients and servers are implemented as processes, the basic protocol for peer-peer authentication
in Section 5.3 can be applied here as well. However, several issues peculiar to client-server interactions
need to be addressed. They are described next.

In a general-purpose distributed computing environment, new services (hence servers) are made avail-
able dynamically. Thus instead of informing clients of every service available, most implementations use a
service broker to keep track of and direct clients to appropriate service providers. Thus a client would first
contact the service broker using a purchase protocol which performs the necessary mutual authentication
prior to the granting of a ticket. The ticket is later used by the client to redeem services from the actual
server using a redemption protocol.

Authentication performed by the purchase protocol proceeds as the protocol for peer to peer authen-
tication, while in the redemption protocol authentication is based upon possession of a ticket and some
information tecorded in the ticket. Such a ticket contains the names of the client and the server, a key
and a timestamp to indicate lifetime (similar to a login certificate). A ticket can only be used between
the specified client and server. A prime example of this approach is the Kerberos authentication system
discussed in Subsection 6.1.

16

Another special issue of client-server authentication is prozy authentication [13, 14, 22]. It is quite
common that in the course of satisfying a client’s request, a server needs to access other servers on behalf
of the client. For example, a database server, upon accepting a query from a client, may need to access
the file server to retrieve certain information on the client’s behalf. A straightforward solution would be
to require the file server to directly authenticate the client. However, this may not be feasible in general;
for instance, in a long chain of service requests, the client may not be aware of some request made by
one of the servers in the chain, and hence is not in a position to perform the required authentication. An
alternative solution is to extend the concept of delegation previously used in user-host authentication [13].
Specifically, a client can forward a signed delegation certificate aflirming the delegation of its rights to a
server along with its service request. The server is allowed to delegate to another server by signing its own
delegation certificate as well as relaying the client’s certificate. In general, for a service request involving a
sequence of servers, delegation can be propagated to the final server in the sequence through intermediate
servers, forming a delegation chain.

Various refinements are possible to extend the delegation scheme described. For example, resiricted
delegation can be accomplished by explicitly specifying a set of rights and/or objects in a delegation
certificate.

5.5 Inter-domain Authentication

Up to now, we have assumed a centralized certification authority that is trusted by all principals. However,
a realistic distributed system is often composed of subsystems that are independently administered by
different authorities. We use domain to refer to such an independently administered subsystem. Each
domain D maintains its own certification authority Ap that has jurisdiction over all principals within
the domain. Intra-domain authentication refers to an authentication exchange between two principals
belonging to the same domain, whereas inter-domain authentication refers to an authentication exchange
that involves two principals belonging to different domains.

Using the previously described protocols, Ap is sufficient for all intra-domain authentications for each
domain D. However, a certification authority has no way of verifying a request from a remote principal,
even if the request is certified by a remote certification authority. Hence, additional mechanisms are
required in the case of inter-domain authentication,

To allow inter-domain authentication, two issues need to be addressed: naming and trusi. Naming is
concerned with ensuring that principals are uniquely identifiable across domains, so that each authentica-
tion request can be attributed to a unique principal. A global naming system spanning all domains can
be used to provide globally unique names to all principals. A good example of this is the Domain Name
System used in Internet.

Trust refers to the willingness of a local certification authority to accept a certification made by a
remote certification authority regarding a remote principal. Such trust relationships must be explicitly
established between domains, which can be achieved in several ways:

¢ by sharing an inter-domain key between certification authorities that are willing to trust each other,

e by installing the public keys of all trusted remote certification authorities in a local certification
authority’s database, and

e by introducing an inter-domain certification authority for authenticating domain-level certification
authorities. In general a hierarchical organization corresponding to that of the naming system can
be imposed on the certification authorities. In this case, an authentication exchange between two
principals P and @ involves multiple certification authorities on a path in the hierarchical organization
between P and @ [5, 12]. The path is referred to as a certification path.

17

6 Case Studies

We study two authentication services, namely: Kerberos and SPX. Both were designed to address primarily
client-server authentication needs. Their services are generally available to an application program through
a programming interface. While Kerberos uses a symmetric cryptosystem, SPX is based on the use of both

symmetric and asymmetric cryptosystems.

6.1 Kerberos

Kerberos is an authentication system designed for use with MIT’s Project Athena [21]. The goal of Project
Athena is to create an educational computing environment based on high-performance workstations, high-
speed networking, and servers of various types. A large-scale (10,000 workstations/1000 servers) open
network computing environment is envisioned where individual workstations can be privately owned and
operated. Therefore, a workstation cannot be trusted to identify its users correctly to network services.
Kerberos is not a complete authentication framework required for secure distributed computing in general;
specifically, it addresses only issues of client-server interactions.

We will limit our discussion to the Kerberos authentication protocols and omit various administrative
issues concerning the use of Kerberos.

Kerberos’s design is based on the use of a symmetric cryptosystem together with trusted third-party
authentication servers; it is a refinement of ideas presented in [19]. The basic components of Kerberos
include authentication servers (Kerberos servers) and ticket-granting servers (TGSs). A database is main-
tained that contains information on each principal; in particular, it stores a copy of each principal’s key
shared with Kerberos. For a user principal U, its shared key ky is computed from its password passwordy;
specifically kyy = f(passwordy) for some one-way function f. The database is read by Kerberos servers
and TGSs in the course of authentication.

There are two main protocols in Kerberos. One is used in authenticating a user login and installing
an initial ticket at the login host. We refer to this as the credential initialization protocol. The other is a
client-server authentication protocol, and is used when a client requests services from a server. We describe
both protocols below.

Kerberos servers are used in the credential initialization protocol. Let U be a user who attempts to
log in host H, and f be the one-way function for computing ky from U’s password. The protocol can be

specified as follows:?2

U — H : U
H — Kerberos : UTGS
Kerberos : retrieve ky and krgs from database

generate a new session key &
: create ticket-granting ticket tickras = {U, TGS, k, T, L} kros
Kerberos — H : {TGS,k,T, L, tickrgs }ry

H—U : “Password?”
U — H : passwd
H : compute £ = f(passwd)

recover k, tickpgs by decrypting {TGS,k, T, L, tickrgstr, with £
if decryption fails, abort login

otherwise retain tickpgs and k

erase passwd from memory

2K erberos in the following protocol refers to a Kerberos server.

18

If passwd is not the valid password of U, ¢ would not be identical to ky and decryption in the last
step would fail.3 Upon successful authentication, the host obtains a new session key k and a copy of the
ticket-granting ticket tickrgs = {U,TGS,k, T, L}kss Where T is a timestamp, L is the ticket’s lifetime.
The ticket-granting ticket is used to request server tickets from a TGS; note that tickrgs is encrypted with
krgs, the shared key between TGS and Kerberos.

A ticket by itself does not constitute sufficient proof of identity, since it is susceptible to interception
or copying. Therefore a principal, when presenting a ticket, is also required to demonstrate knowledge
of the session key & named in the ticket. An authenticator is used to provide such a demonstration (see
below). The protocol for a client C' to request network service from a server S is as follows: T1 and T3 are
timestamps.

(1) ¢ — TGS : S, tickrags, {C, Tl}k
(2) TGS : recover k from tickrgs by decrypting with kras
: recover Ty from {C,T1}r by decrypting with &
check timeliness of T} with respect to local clock
: create server ticket ticks = {C, S, k', T', L'} i
(3) TGS — C : {5, k', T, L', ticks}s

(4) C : recover k', ticks by decrypting with &
(5) C — 5 : tz'cks,{C, Tg}kl
(6) S : recover k' from ticks by decrypting with kg

recover Ty from {C, Ty} by decrypting with &’
: check timeliness of Th with respect to local clock

In step (1), client C presents its ticket-granting ticket tickTas to TGS to request a ticket for server
§.4 (’s knowledge of k is demonstrated using the authenticator {C,T1}x- In step (2), TGS decrypts
tickrgs, recovers k and uses it to verify the authenticator. If both decryptions in step (2) are successful
and T} is timely, TGS creates a ticket tickg for server S and returns it to C. Holding tickg, C repeats the
authentication sequence with §. Thus, in step (5), C presents .5 with ticks and a new authenticator. In
step (6), S performs verifications similar to those by TGS in step (2). Finally, step (7) assures C of the
server’s identity. Note that this protocol requires “loosely synchronized” local clocks for the verification of
timestamps.

Kerberos can also be used for authentication across administrative/organizational domains. Each
administrative/organizational domain is called a reaim. Each user belongs to some realm, one that is
identified by a field in the user’s id. Services registered in a realm will only accept tickets issued by an
authentication server for that realm.

To support cross-realm authentication, an inter-realm key is shared between two realms. The TGS of
one realm can be registered as a principal in another realm by using the shared inter-realm key. Thus
a user can obtain a ticket-granting ticket for contacting a remote TGS from its local TGS. When the
ticket-granting ticket is presented to the remote TGS, it can be decrypted by the remote TGS using
the appropriate inter-realm key to ascertain that it was issued by the user’s local TGS. In general, an
authentication path spanning multiple intermediate realms is possible.

Kerberos is still an evolving system. The latest version being Version V5 [16]. Various limitations of
previous versions of Kerberos were discussed in [6], and some, but not all, have been remedied.

3In practice, f may not be 1-1. It suffices to require that given two distinct elements = and y, the probability of f(z) being

equal to f{y) is negligible.
4Note that each client process is associated with a unique user (the user who created the process). It inherits the id of the
user and the ticket-granting ticket issued to the user during login.

19

6.2 SPX

SPX is another authentication service intended for open network environments [23]. It is a major component
of the Digital Distributed System Security Architecture [12]. SPX offers functionalities similar to those of
Kerberos; specifically, SPX also has a credential initialization protocol and a client-server authentication
protocol. In addition, SPX has an enrollment protocol that is used to register new principals. In this
subsection, we focus only on the first two protocols and will omit the enrollment protocol and most other

administrative issues

Corresponding to Kerberos servers and TGSs, SPX has a Login Enrollment Agent Facility (LEAF)
and a Certificate Distribution Center (CDC). LEAF is similar to a Kerberos server, and is used in the
credential initialization protocol. CDC is an on-line depository of public key certificates (for principals
and certification authorities) as well as encrypted private keys of principals. Note that CDC needs not be
trustworthy as everything stored in it is encrypted and can be verified independently by principals.

Besides LEAF and CDC, there are also certification authorities (CAs) in SPX. The CAs are organized
hierarchically. All CAs operate off-line and are selectively trusted by principals. Their function is to issue
public key certificates (binding names and public keys of principals). Global trust is not needed in SPX.
Typically, each CA has jurisdiction over just a subset of all principals, while each principal P trusts only a
subset of all CAs, referred to as the trusted authorities of P. Scalability of the system is greatly enhanced
by the absence of global trust and on-line trusted components.

The credential initialization protocol is performed when a user logs in. It installs a ticket and a set of
trusted-authority certificates for the user upon successful login. We present the protocol below: U is a user
who attempts to log in host H, passwd is the password entered by U, T' is a timestamp, L is the lifetime
of a ticket, n is a nonce, h; and hy are publicly-known one-way functions, k is a (DES) session key, kg,
kLEAr, ka are respectively the public keys of U, the LEAF server, and a trusted authority A of U, and
k{]l and kgé Ap are respectively the private keys of U and LEAF:

(1) U — H : U, passwd

(2) H — LEAF U,{T,n,hi(passwd)} i, zae

(3) LEAF — CDC : U

(4) CDC — LEAF : {{kal}hz(passwordvﬁ hl(pCZSS’UJOTdU)}k, {k}kLEAF
(5) LEAF : recover k by decrypting with kigp

recover {kﬁl}hz(msswordv) and hy(passwordy) by decrypting with &

verify hi(passwd) I (passwordy)
: if not equal, abort
(6) LEAF — H : {{kgl}hg(passwordU)}n
(7) H : recover k{f by decrypting first with n and then with ho(passwd)
: generate (RSA) delegation key pair (k4, k7 ")
: create ticket ticky = {L,U, kd}kl—ll
(8) H—CDC : U
(9) CDC — H : {4, kA}k{—J-l

In step (1), user U enters its id and password. In step (2), H applies the one-way function hy to the
password entered by U and sends the result along with a timestamp T’ and a nonce n in a message to LEAF.
LEAF, on receiving the message from H, forwards a request to CDC for U ’s private key. The private key of
U is stored as a record ({k{,l}hz(msswomzj), hi(passwordy)) in CDC; note that compromise of CDC would
not reveal these private keys. In step (4), CDC sends the requested private-key record to LEAF using
a temporary session key k. In step (5), LEAF recovers both {k{}l}h?(msswwdv) and hy(passwordyr) from

20

CDC’s reply. LEAF then verifies passwd by checking hy (passwd) against hy(passwordy); if they are not
equal, the login session is aborted and the abortion logged. Note that hy(passwordy) is never revealed to
any principal except LEAF, thus password guessing attacks would require contacting LEAF for each guess
or compromising LEAF’s private key.

Having determined the password to be valid, LEAF sends the first part of the private-key record
encrypted by n to H in step (6). (The nonce n sent in step (2) is used as a symmetric key for encryption.)
In step (7), H recovers k' by decrypting the reply from LEAF first with n and then with ho(passwd). H

then generates a pair of delegation keys and create a ticket ticky. In step (8), I Tequests the public key
certificate for a trusted authority of U from CDC. CDC replies with the certificate in step (9). In fact,
multiple certificates can be returned in step (9) if U trusts more than one CA. These trusted authorities’
certificates were previously deposited in the CDC by U using the enrollment protocol.

The authentication exchange protocol between a client C' and a server S is described in the following.
To simplify the protocol specification such that a single public key certificate is sent in step (2) and also in
step (5), we made the following assumption: Let the public key certificate of C' be signed by A such that
Ag is one of the trusted authorities of §. Similarly, let the public key certificate of § be signed by Ag such
that Ag is one of the trusted authorities of C. Below, T is a timestamp, and £ is a (DES) session key:

(1) C — CDC : S
(2) CDC — C - {S, kg}k;1
Bl
(3) c - 5 : T, {k}ks,t‘icko,{k;l}k
(4) S — CDC : C
(5) CcDC — 8 {C,kc}kzz
o
(7) S : validate ticke by encrypting with k¢
(6) S - C : {T+ 1}

In step (1), C requests the public key certificate of § from CDC. In step (2), CDC returns the requested
certificate. C can verify the public key certificate by decrypting it with k4, which is the public key of Ag
obtained by C when it executed the credential intialization protocol. In step (8), tickc and the private
delegation key k;l generated in step (7) of the credential initialization protocol, as well as a new session
key k are sent to S. Only S can recover k from {k}x; and subsequently decrypt {k;l}k to recover k;l.
Possession of ticko and knowledge of the private delegation key constitute sufficient proof of delegation
from C to §. However, if such delegation from C to S is not needed, {{k}ks}k;al is sent in step (3) instead

of {k;l}k; this acts as an authenticator for proving C’s knowledge of k;l without revealing it. In steps
(4) and (5), S requests the public key certificate of C', which is used to verify tickc in step (7). Finally, S
returns {7 + 1}; to C and mutual authentication between C and S is completed.

SPX is a relatively recent proposal. Hence, no extensive study of its security properties has been done.
Tt is necessary that such a detailed study be performed before its general adoption.

Although SPX offers services similar to those of Kerberos, its elimination of on-line trusted authenti-
cation servers and the extensive use of hierarchical trust relationships are intended to make SPX scalable
for very large distributed systems.

7 Conclusion

With the growth in scale of distributed systems, security has become one of the major concerns and
limiting factors in their design. For example, security has been strongly advocated as one of the major
design constraints in both the Athena [21] and Andrew [20] projects. Most existing distributed systems,

21

however, have been designed without a well-defined security framework, and their use of authentication is
nonexistent or limited to only the most critical applications.

Various authentication needs for distributed systems have been described in this paper, and some
specific protocols are presented. Most of them are practically feasible in today’s technology and their
adoption and use should be just a matter of need.

To cope with the complexity of understanding and managing security, a formal approach should be
used. A formal approach allows the precise specification of a security framework and rigorous analysis. A
basis for developing such an approach can be found in [17].

Acknowledgements We thank Clifford Neuman (University of Washington) and John Kohl (MIT)
who reviewed the section on Kerberos. We are also grateful to the anonymous referees for their constructive
comments.

References

[1] M. Abadi, M. Burrows, C. Kaufman and B.W. Lampson, “Authentication and Delegation with Smart-cards,”
Techincal Report 67, System Research Center, Digital Corporation, October 22, 1990.

[2] P. Bieber, “A Logic of Communication in Hostile Environment,” Proceedings of the Computer Security Founda-
tions Workshop, pp. 14-22, 1990,

[3] M. Burrows, M. Abadiand R. Needham, “A Logic of Authentication,” ACM Transactions on Computer Systems,
Vol. 8, No. 1, pp. 18-36, February 1990.

[4] R.K. Bauer, T.A. Berson and R.J. Feiertag, “A Key Distribution Protocol using Event Markers,” ACM Trans-
actions on Computer Systems, Vol. 1, No. 3, pp. 249-255, 1983.

[5] A.D. Birrel, B.W. Lampson, R.M. Needham and M.D. Schroder, “A Global Authentication Service without
Global Trust,” Proceedings of the IEEE Symposium on Foundations of Computer Science, pp. 223-230, 1986,

[6] S.M. Bellovin and M. Merritt, “Limitations of the Kerberos Authentication System,” Proceedings of the USENIX
Conference, Winter 1991.

[7] “CCITT X.509 The Directory-Authentication Framework,” see also ISO 9594-8.

[8] D.E. Denning and G.M. Sacco, “Timestamps in Key Distribution Protocols,” Communications of the ACM,
Vol. 24, No. 8, pp. 533-536, August 1981.

[9] D. Dolev and A.C. Yao, “On the Security of Public Key Protocols,” IEEE Transactions on Information Theory,
Vol. IT-30, No. 2, pp. 198-208, March 1983.

[10] S. Even and O. Goldreich, “On the Security of Multi-Party Protocols,” Proceedings of the IEEE Symposium on
Foundations of Computer Science, pp. 34-39, 1983. .

[11] M. Gasser, Building a Secure Computer System, Van Nostrand Reinhold Company, New York 1988.

[12] M. Gasser, A. Goldstein, C. Kaufman and B.W. Lampson, “The Digital Distributed System Security Architec-
ture,” Proceedings of the National Computer Security Conference, pp. 305-319, 1989.

[13] M. Gasser and E. McDermott, “An Architecture for Practical Delegation in a Distributed System,” Proceedings
of the IEEE Symposium on Resecarch in Security and Privacy, pp. 20-30, 1990.

[14] P.A. Karger, « Authentication and Discretionary Access Control in Computer Networks,” Computer Networks
and ISDN Systems, Vol. 10, pp. 27-37, 1985.

[15] J. Linn, “Practical Authentication for Distributed Computing,” Proceedings of the IEEE Symposium on Research
in Security and Privacy, pp. 31-40, 1990.

[16] “RFC: Kerberos Version 5 Draft 4,”, Network Working Group, MIT Project Athena, December 20, 1990.

[17] S.S. Lam, A.U. Shankar and T.Y.C. Woo, “Applying a Theory of Modules and Interfaces to Security Verifica-
tion,” Proceedings of the IEEE Symposium on Research in Security and Privacy, May 1991.

22

[18] J.H. Moore, “Protocol Failures in Cryptosystems,” Proceedings of the IEEE, Vol. 76, No. 5, pp. 594-602, May
1988.

[19] R.M. Needham and M.D. Schroeder, “Using Encryption for Authentication in Large Networks of Computers,”
Commaunications of ACM, Vol. 21, No. 12, pp. 993-999, December 1978.

[20] M. Satyanarayanan, “Integrating Security in a Large Distributed System,” ACM Transactions on Computer
Systems, Vol. 7, No. 3, pp. 247-280, August 1989.

[21] J.G. Steiner, C. Neuman and J.I. Schiller, “Kerberos: An Authentication Service for Open Network Systems,”
Proceedings of the USENIX Conference, Winter 1988.

[22] K.R. Sollins, “Cascaded Authentication,” Proceedings of the IEEE Symposium on Research in Security and
Privacy, pp. 156—163, 1988.

[23] J.J. Tardo and K. Alagappan, “SPX: Global Authentication Using Public Key Certificates,” Proceedings of the
IEEE Symposium on Research in Security and Privacy, May 1991.

[24] V.L. Voydock and S.T. Kent, “Security Mechanisms in High-Level Network Protocols,” Computing Surveys,
Vol. 15, No. 2, pp. 135-171, June 1983.

23

