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Abstract
We review behavioral and RTL test synthesis and synthesis for
testability approaches that generate easily testable implementa-
tions. We also include an overview of high-level synthesis tech-
niques to assist high-level ATPG.

1 Introduction
Synthesis for testability has been the subject of intense research
since the late 1980s, concurrent with research into synthesis to sat-
isfy area, timing and, more recently, power constraints. Originally,
synthesis for testability identified gate level optimizations that could
preserve or enhance circuit testability for a selected fault class with-
out the need for more specific testability insertion techniques. In this
domain, only the removal of combinational redundancies has been
widely adopted. Occasional predictions of the disappearance of scan
and related technologies in favor of synthesis for testability have
proven false. Synthesis providers have generally been unwilling to
restrict their optimization strategies to satisfy testability require-
ments (e.g., synthesis for robust path delay fault testability, synthesis
to reduce random pattern resistance) when they impact area or tim-
ing results.

Instead, more specific testability insertion techniques ranging from
ad hoc insertion of control or observe points to insertion of regular
structures such as scan chains and built-in self-test (BIST) have
emerged. These “invasive” techniques had been used in large com-
puters since the late 1970s, but were generally supported only by
custom CAD tools maintained by individual experts in test or manu-
facturing. In the early 1990s, commercial EDA vendors automated
testability analysis and insertion of these explicit testability struc-
tures by providingtest synthesis tools [5,36]. These vendors now
offer a diversity of scan-related technologies for use by IC designers.

1.1 Overview of High Level DFT Approaches
The need for fast time-to-market and increased productivity are driv-
ing the trend towards high-level design (behavioral and register-
transfer level (RTL). The fundamental behavioral synthesis tasks
consist of allocation, scheduling, and assignment, Allocation decides
the type and number of hardware resources that will be used to
implement the behavioral description, scheduling refers to specify-
ing the control step (clock cycle) in which each operation will be
executed, and assignment refers to the binding of each variable/oper-
ation to one of the allocated registers/functional units (FUs). Fast
and accurate estimation is required to traverse the search space for
possible solutions to each of these tasks [17,40].

A Control-Data Flow Graph (CDFG) is typically used to represent a
behavioral description. The data dependency edges in the CDFG
reflect data dependencies of operands on the results of other opera-
tions, while control edges represent the flow of control.

In this paper, we give an overview of several behavioral and RTL
design and synthesis approaches that have been proposed to generate
easily testable implementations, targeting partial scan (sequential
ATPG), fullscan and BIST methodologies. We also include an over-
view of high-level synthesis techniques to assist high-level ATPG.

2 Fundamental Approaches to Synthesis for
Testability

In the last decade, research in synthesis for testability has focused on
generation and processing of HDL specifications of system function.
Most HDL descriptions use Verilog, VHDL or C, and sometimes
serve a dual role as simulatable as well as synthesizable descriptions.
Many commercialtest synthesis tools operate post-compilation of an
HDL into a gate level netlist, either on technology-independent
(generic gates) or technology-dependent (mapped gates) descrip-
tions. EDA vendors and researchers are exploring the coupling of
HDL descriptions with testability structures, since it is attractive to
apply synthesis compilation and optimization technology directly to
a testable HDL description, optimizing functional and test logic con-
currently, rather than introducing testability after the HDL has been
processed.

Table 1 shows the operational level of testability insertion for
selected commercial EDA tools. One important criterion to evaluate
test insertion capabilities is their impact on design methodology [6].
Some tools require exporting and importing chip and module-level
netlists for testability modification, while others promise fully inte-
grated testability insertion at behavioral, RTL, technology indepen-
dent or technology-dependent design phases. Another important
evaluation criterion is the completeness of solution offered by a test
insertion tool, including ease of composition of testability structures
into a complete top-level test system, verification of correct protocol
and operation at the IC or system level, and test data generation.

Table 1: Operational Level of Testability Insertion

Name Synthesis Base
Testability Insertion

Level

Sunrise Viewlogic technology-depen-
dent

Mentor Autologic II technology-indepen-
dent

LogicVi-
sion

Synopsys HDL &
Design Compiler

HDL

IBM Booledozer tech-independent or
tech-dependent
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3 Behavioral Synthesis for Sequential ATPG
Synthesis for testability at the behavioral level is complicated by
the absence of a behavioral fault model that can be strongly corre-
lated to silicon defects. Therefore, researchers have focused on
innovative methods to include sequential ATPG or BIST objectives
into the behavioral compilation.

3.1 Sequential ATPG Objectives
It has been empirically observed [10,22] that the complexity of gen-
erating sequential test patterns grows exponentially with the length
of cycles in the S-graph, and linearly with the sequential depth of
the FFs in the S-graph. Each node in the S-graph corresponds to a
FF, and there is a directed edge from nodeu to nodev if there is a
strictly combinational path from FFu to FFv in the sequential cir-
cuit. Gate-level DFT techniques like partial scan have been devel-
oped based on this topological analysis. These attempt to break all
loops, except self-loops, and minimize sequential depth. Behavioral
synthesis for testability approaches use similar measures, loops and
sequential depth, to synthesize testable implementations from
behavioral descriptions, while preserving the performance and area
constraints of the design.

3.2 Improving Register Controllability and
Observability

Traditional register assignment techniques aim to minimize the
number of registers needed to store all the variables. One way of
improving the controllability and observability of data path regis-
ters is to assign the variables of the CDFG to maximize the number
of (I/O) registers connected to primary I/O [25]. Also, the sequen-
tial depth from aninput register to anoutput register can be mini-
mized during register assignment, thereby improving the
controllability and observability of all registers of the data path.

The approach adopted in [25] assigns each primary output to an
output register, and then assigns as many intermediate variables as
possible to the output registers. Next, it assigns each primary input
to an input register, and as many of the remaining intermediate vari-
ables as possible to the input registers. Then the input and output
registers are merged if possible to minimize the total number of reg-
isters. Finally, unassigned intermediate variables are assigned to
extra registers. In most cases, the technique assigns a minimum
number of registers, while improving testability of the data path.
When two variables cannot share a register since their lifetimes
overlap, the operations of the CDFG can be re-scheduled such that
the lifetime of an intermediate variables does not overlap with the
lifetime of an input/output variable, and the intermediate variable
can be assigned to an I/O register. A mobility path scheduling tech-
nique has been proposed in [26] to minimize the sequential depth
between registers and to maximize the number of I/O registers in
the data path by sharing between I/O and intermediate variables.

3.3 Creation and Avoidance of Loops in the Data
Path

Since loops contribute significantly to the difficulty of sequential
ATPG, we discuss how loops are formed in a circuit generated by
high level synthesis, and ways of avoiding their formation.

3.3.1 Loops in the behavioral description
Corresponding to each loop consisting of data-dependency edges
present in the behavioral description (CDFG), a loop is formed in
the data path. The CDFG loops can be broken by selecting a set of
scan variables from the variables of the CDFG such that each
CDFG loop has a scan variable, and assigning each scan variable to
a scan register. The problem of selecting a set of scan variables to
break the CDFG loops with a minimum number of scan registers is
similar to selecting the minimum feedback vertex set (MFVS) to
break the loops in a gate-level S-graph, with an important differ-
ence. While each selected vertex in an S-graph corresponds to one
scan FF, the selected scan variables of a CDFG can share scan reg-
isters. Hence the MFVS is not necessarily a good solution to break-
ing CDFG loops with the minimum number of scan registers. In
[33], two measures, the loop cutting effectiveness measure and the
hardware sharing effectiveness measure, have been developed.
These measures are used to select a set of scan variables such that
the selected variables can be maximally shared (requiring a mini-
mal number of scan registers) and the chances of sharing other vari-
ables to break loops formed during the subsequent high level
synthesis steps are maximized.

A different approach has been adopted in [24]. At first, a set of
boundary variables, which determine the boundary of loops, are
selected to be assigned to the available scan registers, thereby
breaking the loops corresponding to each boundary variable.
Though the boundary variables cannot share the same register
because they are alive simultaneously, other intermediate variables
of the CDFG can share the registers with boundary variables. To
facilitate maximal sharing, boundary variables with shorter life-
times are preferred while selecting the scan variables. Next, the
intermediate variables are assigned to both the available scan regis-
ters as well as the existing I/O registers, using the register assign-
ment algorithms discussed in the previous section, to further
minimize the number of loops.

3.3.2 Loops formed by hardware sharing
Even when the CDFG has no loops, or all the CDFG loops have
been effectively broken by scan variables, hardware sharing of reg-
isters and functional units can further introduce loops in the data
path [33].

When the operations along a CDFG path from operationu to opera-
tion v are assignedn separate modules, withu andv assigned to the
same module, a loop of lengthn, termed anassignment loop, is cre-
ated in the data path. Consider an example CDFG consisting of two
paths shown in Figure 1. Let the given performance constraint be
three control steps, and the resource constraint be two adders. A
feasible schedule and assignment of the operations is: {+1:(1,A1),
+2:(2,A2), +3:(2,A1), +4:(3,A2), +5:(3,A1)}, where each tuple
refers to the control step and resource (adder). Figure 1(b) shows an
assignment loop RA1→RA2→RA1 (shown in bold) in the result-
ing data path. To create a loop-free circuit, the register RA1 needs
to be converted into a scan register. Other types of loops may also
be formed in the data path during resource sharing [33].

Formation of loops in the data path may be avoided by proper
scheduling and assignment. Consider the following schedule and
assignment satisfying the performance and resource constraints:

Synopsys Synopsys HDL &
Design Compiler

HDL and technology
dependent

Compass ASIC Synthesizer technology depen-
dent

AT&T Synovation HDL and technol-
ogy-dependent
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Figure 1. Loops formed during assignment: (a) Example CDFG, (b)
Assignment Loop, c) No Loops except Self-Loop

{+1:(1,A1), +2:(2,A1), +3:(1,A2), +4:(2,A2), +5:(3,A1)}. Figure
1(c) shows the resulting data path. It contains only two self-loops.
While one register needs to be scanned to break the loops of the
data paths in Figure 1(b), no register needs to be scanned for the
data path in Figure 1(c), assuming self-loops can be tolerated.

When formation of loops cannot be avoided due to the given perfor-
mance and resource constraints, registers selected to break the
CDFG loops can be reused to avoid creating loops during assign-
ment. In [33], a simultaneous scheduling and assignment technique
has been proposed which avoids formation of loops in the imple-
mentation, while satisfying the performance and area constraints.
At each iteration of the algorithm, from the operations that have not
yet been scheduled and assigned, an operationopi with least slack is
selected. The set of (module, control step) pairs, {(Mi, Ci)}, to
which or in which the operation can be assigned or scheduled, are
identified. For each pair, the cost in terms of testability, resource
utilization and flexibility for scheduling and assignment of subse-
quent operations, is computed. Subsequently, a pair with the small-
est cost is selected. A testability cost function is used to evaluate the
costs associated with each type of loop formed and the scan regis-
ters necessary to break the loops. In [24], an assignment technique
which minimizes the number of loops and maximizes the number
of I/O registers in the resulting data path has been proposed.

In conventional gate-level partial scan, the designer synthesizes the
module or chip without regard for testability, and then use gate-
level partial-scan techniques to break loops enabling efficient
sequential ATPG. Results from high level scan selection and loop-
breaking indicate that loop-free highly testable designs can be syn-
thesized that require significantly fewer scan FFs than conventional
processes.

3.4 Modifying the Behavioral Description to
Enhance Testability

A behavioral description can be modified to make the resulting
implementation more testable than the implementation generated

from the original description. In [9], the behavioral description is
analyzed to detect hard-to-test areas, classifying variables as con-
trollable, partially controllable, observable, and partially observ-
able. Based on the testability analysis, test statements, which are
executed only in the test mode, are added to improve the controlla-
bility and observability of all the variables in the description. The
modified behaviors produce circuits with higher fault coverage and
efficiency than the original description, at modest area overhead.

In hierarchical designs consisting of several modules, the top level
design constrains the controllability and observability of its mod-
ules’ I/O. A technique has been developed [37] to generate top level
test modes and constraints required to realize a module's local test
modes. The process of generating global test modes may reveal that
some constraints cannot be satisfied, in which case, either the top
level description, or the description of an individual module, must
be modified to satisfy the constraints [39]. It has been shown that
behavioral modification can yield an implementation with higher
test efficiency than the original design with a modest increase in
area.

A behavioral description can also be modified to make it more ame-
nable to the synthesis for testability techniques discussed in the pre-
vious sections. One approach is to transform the CDFG by adding
operations which do not change the original computation, but
enable more sharing of scan registers so as to minimize the number
of scan registers needed. In [16], deflection operations, with the
identity element as one of the operands (like add with 0), are
inserted between CDFG operations such that the original behavior
is preserved. These operations are added to eliminate resource shar-
ing bottlenecks, like overlapping lifetimes, such that more of the
selected scan variables can share the same scan registers, thereby
reducing the number of scan registers needed to break the CDFG
loops.

Also, deflection operations are added so that formation of loops can
be avoided during the assignment phase by maximally reusing
existing scan registers. Since the deflection operations need to be
executed in addition to the original operations, they are added only
when the performance and area of the design is not adversely
affected. Application of more complex transformations is discussed
in [34]. The overall effect is that synthesizing a testable data path
from the transformed specification requires fewer scan registers
than needed for the original specification.

3.5 The Effect of A Controller on Testability
Most of the behavioral synthesis for test techniques concentrate on
improving the testability of the data path, assuming that the control-
ler can be made testable independently, and that its outgoing control
signals to the data path are fully controllable in test mode. However,
even when both the controller and the data path are individually
testable, the composite circuit may not be easily testable by gate-
level sequential ATPG. The main problem is control signal implica-
tions which may create conflicts during sequential ATPG [14]. The
controller may be redesigned such that the identified implications
are eliminated. The technique involves adding a few extra control
vectors to the existing control vectors which are outputs of the con-
troller. Application of the controller DFT technique has shown the
ability to produce highly testable controller-data path circuits, with
only marginal area overhead, even when both high-level and gate-
level loop-breaking DFT techniques fail.

Another high-level synthesis for testability technique which consid-
ers the effect of the control logic on the testability of the design is
[18]. Testability is measured not only based on sequential depth and
testability characteristics of data path modules, but also the testabil-
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ity of registers is determined by analyzing the control logic used to
control the loading of the registers.

4 RTL Synthesis for Testability
4.1 RTL Modification & Analysis for Testability
There are several alternatives to enhance RTL descriptions for test-
ability. The description can be augmented to improve testability by
rewiring internal signals to more controllable or observable nodes
when a test signal is active. With information regarding the connec-
tivity of the modules and the functionality of each module, transfor-
mations that restructure the data path and minimize control logic by
using don't care conditions extracted from the data path can yield
optimized 100% single stuck-at fault testable fullscan designs [8].

An RTL description can also be used to identify the hard-to-test
areas of a design, by analyzing testability ranges and the minimum
and maximum number of clock cycles needed to control and
observe an RTL node [12]. With RTL testability analysis, a partial
scan selection method has been proposed which results in signifi-
cantly better performance when compared to techniques limited to
gate-level information only. In [37], an efficient partial scan method
is developed to break data path loops. Both register nodes as well as
non-register nodes are considered for breaking, with register nodes
replaced by scan registers, and transparent scan registers placed on
non-register nodes, thereby significantly reducing the number of
scan registers needed.

4.2 Introduction of RTL Testability Structures
Testability structures, such as an IEEE 1149.1 boundary scan cell,
can be directly synthesized. RTL can be used to describe their func-
tionality. Several problems must be solved with such an approach to
avoid sub-optimal results or methodologies: meeting functional and
test mode performance constraints; automating safe connection of
the structure; recognizing and using custom library cell components
when available; and not violating technology rules (such as fanout
limitations). The use of specific testability-oriented compilation and
optimization directives embedded in the RTL description can also
guide synthesis in reducing problems such as those above.

Some testability structures are ill-suited to code directly into an
RTL, since they overconstrain synthesis. For instance, the function-
ality of a scan path can be coded into a Verilog description, but the
synthesis system will not recognize the special nature of the struc-
ture and hence will not exploit the opportunity to select among Q,
Q’ or SO outputs to meet design and technology constraints.

Knowledge of structural and functional knowledge embedded in an
RTL description has been used for non-scan DFT schemes like test
point insertion [15]. Instead of conventional techniques of breaking
loops by making FFs scannable, functional units are “broken” by
inserting test points, implemented using register files and constants.
It is shown that it suffices to make all the loops k-level (k>0) con-
trollable and observable to achieve very high test efficiency. This
new testability measure eliminates the need of traditional DFT tech-
niques to make one or more registers in each loop directly (k=0)
accessible to scan or primary I/O, significantly reducing the number
of test points needed while maintaining high fault coverage.

5 Behavioral Synthesis for BIST
To make a design self-testable using the pseudorandom BIST meth-
odology, it needs to be reconfigured during test mode into a set of
acyclic logic blocks (LBs). Each LB has the equivalent of a pseudo-
random test pattern generation register (TPGR) at each of its inputs,
and a signature register (SR) at each of its outputs. In situ BIST
requires reconfiguration of a functional register as a TPGR or SR.

Such a register can be implemented as a built-in logic block
observer (BILBO) [21]. In each test cycle, the TPGRs at the inputs
of a block generate pseudorandom test patterns, and the test
response of the block is captured by clocking data ports and ana-
lyzed by the SRs at its outputs. Many commercial BIST schemes
rely on insertion of partial scan or fullscan into the LB that can be
reconfigured to allow initialization and loading/unloading of stimu-
lus and response data during BIST.

5.1 Minimizing Test Registers
A register cannot be configured both as a TPGR and an SR simulta-
neously, unless it is implemented as a concurrent BILBO
(CBILBO), which is very expensive in terms of area and delay pen-
alties. Hence, a self-adjacent register, which serves as both an input
and an output of a LB, poses a problem, since it may have to be
implemented as a CBILBO. An objective of generating self-testable
data paths with low area overhead is to minimize the formation of
self-adjacent registers [3,4,19,31].

In [3], it is assumed that every self-adjacent register will have to be
implemented as a CBILBO. Given the scheduling and assignment
of operations to modules, register assignment is performed to mini-
mize the number of self-adjacent registers, and hence the number of
CBILBOs. A conventional method of assigning a set of variables to
the minimum number of registers is to color a conflict graph with
the minimum number of colors. The nodes of the conflict graph cor-
respond to the variables of the CDFG, and there is an edge between
two nodes if the corresponding variables cannot be shared because
of their overlapping lifetimes. To minimize the formation of self-
adjacent registers, conflict edges are also added between two nodes
if the corresponding variables are an input and output of the same
module, either due to the variables being the input and output of the
same operation, or due to the variable being an input and output of
two different operations which are assigned to the same module.
Experimental techniques generate data paths with fewer self-adja-
cent registers and an equal number of total registers, when com-
pared with data paths produced by conventional register assignment
techniques.

Formation of self-adjacent registers can be completely avoided by
restricting the data path architecture used. In [31], the basic build-
ing blocks used to map a variable and the operation which generates
the variable is a test function block (TFB), which consists of an
ALU, a multiplexer at each of the inputs of the ALU, and a test reg-
ister (TPGR, SR, or BILBO) at the output of the ALU.

Instead of considering mapping of variables and operations of the
CDFG to individual registers and ALUs as done conventionally,
each (v, o(v)) pair, termed action, where v is a variable, and o(v) is
the operation producing v, is considered for mapping to TFBs. Two
actions, (v1, o(v1), (v2, o(v2)) are compatible and can be merged
(assigned to the same TFB) if (i) the lifetimes of v1 and v2 do not
overlap, and (ii) v1, v2 are not the inputs of o(v1), o(v2) respec-
tively. The second condition is needed to ensure that the output reg-
ister of a TFB does not become an input of the TFB, thus ensuring
that no self-adjacent register is formed. The assignment technique
first identifies sequences of compatible actions, each of which can
be merged and mapped to a single TFB. A prime sequence does not
contain any other sequence. Assignment to a minimal number of
TFBs is then achieved by finding a minimal set of prime sequences
which cover all the actions of the CDFG.

The restriction of one output register per TFB prevents the sharing
of operations whose output variables have overlapping lifetimes.
Self-testable datapaths with even fewer TFBs can be formed by
using an extended TFB (XTFB), which contains an ALU with mul-



tiple input as well as output registers[19]. During test mode, while
the two input registers are configured as TPGRs, only one of the
multiple output registers need to be configured as a SR, thus allow-
ing the presence of self-adjacent registers which have to be config-
ured as TPGRs but not SRs. By avoiding the use of CBILBOs while
still allowing some self-adjacent registers, use of XTFBs enable
generation of self-testable data paths with less test area overhead
than either the traditional high level synthesis techniques or the
BIST register assignment approach [3]. The test area overhead can
be further reduced by relaxing the requirement that the output regis-
ter of every ALU has to be a SR, instead allowing the test response
to propagate through other ALUs before being captured in a SR,
forming logic blocks with sequential depth between TPGRs and
SRs greater than 1. The above scheme results in fewer SRs but
reduces fault coverage, allowing trade-off between test area over-
head and fault coverage.

BIST overhead can be reduced by not only minimizing the number
of CBILBO registers that need to be used, but also the number of
TPGRs and SRs needed to test all the data path modules [32]. After
the scheduling and module assignment phases have been com-
pleted, register assignment can be done to maximize the number of
modules for which a register is an input register and hence can act
as a TPGR, and the number of modules for which a register is an
output register and hence can act as a SR; in the resulting data path,
the TPGRs and SRs can be maximally shared among the data path
modules, resulting in a minimal number of registers that need to be
converted to TPGRs or SRs. Every self-adjacent register in the data
path does not need to be converted into a CBILBO in order to pro-
vide a test environment for all the modules. Exact conditions under
which a self-adjacent register needs to be a CBILBO are given in
[32]. The register assignment phase can check the conditions and
try to avoid assignments leading to CBILBOs, whenever possible.

5.2 Minimizing Test Sessions
In the most general BIST scheme, a test path through which test
data can go from the TPGRs to the SR at the output of a logic block
may pass through several ALUs. This leads to two or more test
paths sharing the same hardware (registers, ALUs, multiplexers,
buses), thus creating conflicts and forcing need for multiple test ses-
sions. Scheduling and assignment techniques have been presented
in [20], which uses test conflict estimates to generate data paths
which require minimal number of test sessions and hence have
maximal test concurrency. Experimental results show the ability to
data paths that require only one test session. Note that assignment
techniques like [32], which encourage sharing of TPGRs/SRs
between logic blocks may also lead to test path conflicts and hence
reduced test concurrency; the techniques in [20] do not address
such conflicts.

5.3 Adding Test Behavior
A general BIST scheme is proposed in [31], where only the input
and output registers are configured as TPGRs and SRs respectively.
Testability metrics are developed to measure the controllability/
observability of signals in the original design behavior, under the
application of pseudorandom vectors at the primary inputs. A test
behavior, executed only in the test mode, is obtained by inserting
test points in the original behavior to enhance the testability of
required internal signals. The test points need extra primary I/O,
implemented by extra TPGRs/SRs. The combined design and test
behavior are synthesized together using any high level synthesis
tool. A testing scheme is proposed which uses the test behavior to
generate tests for the complete design, controller and data path,
using only three test sessions.

5.4 Using Arithmetic Units as Test Generators
and Compactors

Instead of using special BIST hardware like TPGRs and SRs, func-
tional units can be used to perform test pattern generation and test
response compaction [28]. A high level synthesis methodology has
been proposed to synthesize data paths where high fault coverage
can be obtained using arithmetic test generators and test compac-
tors. A testability metric termed subspace state coverage is used to
guide the synthesis process, both in characterizing the quality of
test vectors required to provide complete fault coverage of each
functional unit, as well as the quality of test vectors seen at the
inputs of each operation in the CDFG after the degradation suffered
by the patterns due to propagation through various operations. For
each arithmetic unit in the module library, the input subspace state
coverage needed to obtain complete structural coverage is charac-
terized. Next an additional generator is applied at the inputs of the
CDFG and the state coverage measured at the inputs of the opera-
tions. If two operations, with S1 and S2 denoting the states covered
at their inputs, are mapped to the same arithmetic unit, the states
covered at the input of the unit is the union of S1 and S2. During
high level synthesis, assignment of operations to functional units is
done to maximize the state coverage obtained at the inputs of each
functional unit.

6 High Level Synthesis & Test Generation
Several techniques have been proposed to generate test vectors
using the high level description of a design [2,7,19,23,29,39]. We
briefly review here two approaches which use high level synthesis
to help in test generation. In [38], global constraints that the design
imposes on each module are passed to an ATPG tool to generate
gate-level tests for each individual module. Subsequently, the mod-
ule test sets are combined with the global test modes extracted [38]
to generate test vectors that can be applied at the primary inputs of
the hierarchical design. The high level description can be modified
to satisfy the global constraints whenever they cannot be satisfied at
the module level.

The ability to re-establish the context of test patterns generated for
a module at the top-level of a design allows reuse of test data. Pre-
computed test sets of the modules can be used to generate tests for
the complete design, provided the test environment for each mod-
ule, giving the set of symbolic justification and propagation paths to
and from the module, is known. Automating and developing new
DFT and ATPG techniques to facilitate test data reuse are becoming
very important as design reuse of cores and other components gains
popularity to improve designer productivity and companies seek to
leverage their intellectual property investments.

The test environment of an operation assigned to a module can be
used as the test environment for the module. In [7], the control and
data flow specified in the behavioral description of a design is used
to identify the test environment for an operation. The assignment
phase in high level synthesis is used to help ensure that each mod-
ule has at least one operation which has a test environment; if that is
not possible, test points are introduced to provide the test environ-
ment[ref]. The hierarchical tests, providing high fault coverage, can
be generated using the module tests and test environments more
quickly than test generation done at the gate-level. Inter-module
testing often remains a problem in such a macro test environment.

7 Further Perspectives
This paper has presented an overview of test synthesis and synthe-
sis for testability. It is intended as both a survey and perspective on
current practice. While the research results show great promise,



incorporation of the techniques in commercial synthesis and test
CAD products may be facilitated if the following issues are
addressed: a) currently, the proposed techniques are mostly applica-
ble to data-flow intensive and arithmetic intensive designs like DSP
filters and microprocessors. To broaden the scope of their applica-
bility, techniques need to be evolved for control-flow oriented
designs, like telecommunication applications; b) all the existing
high-level approaches consider only the stuck-at-fault model; other
testing methodologies like delay fault testing and IDDQ testing
have not yet been addressed.

Incorporation of high-level synthesis for testability techniques in
commercial CAD tools will be driven by the need for faster time to
market and increased productivity. These market requirements
already motivate design capture at higher levels of abstraction.
Commercial behavioral synthesis offerings from CAD vendors
have increased the acceptability of high level synthesis in the
design methodology. As the most important design decisions and
activities move to higher levels, it is sensible to migrate the appro-
priate test-related decisions. Otherwise, re-visiting the design trade-
offs at lower levels to consider testability risks time-to-market and
productivity gains.

8 References
[1]M.S. Abadir and M.A. Breuer, “A Knowledge Based System for Design-

ing Testable VLSI Chips,”IEEE Design & Test of Computers, 2(4):56-
68, August 1985.

[2] J.R. Armstrong, “Hierarchical Test Generation: Where We Are, And
Where We Should Be Going,”Proc. EURO-DAC, pp. 434-439, 1993.

[3] L. Avra, “Allocation and Assignment in High-Level Synthesis for Self-
Testable Data Paths,”Proc. International Test Conference, pp. 463-
472, 1991.

[4] L.Avra and E.J. McCluskey, “Synthesizing for Scan Dependence in
Built-In Self-Testable Designs,”Proc. International Test Conf., pp. 734
- 743, 1993.

[5] R.G. Bennetts, Guest editor, “Metamorphosis in Design: Test Synthe-
sis,” IEEE Design & Test of Computers, Vol. 12, No. 2, Summer 1995.

[6] R.G. Bennetts and K.D. Wagner, “Test Synthesis: Towards Higher Lev-
els of Abstraction,Proc. Electronic Design Automation & Test Confer-
ence, Asia, 1995.

[7] S. Bhatia and N. K. Jha, “Genesis: A Behavioral Synthesis System for
Hierarchical Testability,”Proc. European Design and Test Conference,
1994.

[8] S. Bhattacharya, F. Brglez, and S. Dey, “Transformations and Resyn-
thesis for Testability of RTL Control-Data Path Specifications,”IEEE
Transactions on VLSI Systems, 1(3):304-318, Sept. 1993.

[9] C.-H. Chen, T. Karnik, and D.G. Saab, “Structural and Behavioral Syn-
thesis for Testability Techniques,”IEEE Transactions on Computer-
Aided Design, 13(6):777-785, June 1994.

[10] K.T. Cheng and V.D. Agrawal, “A Partial Scan Method for Sequential
Circuits with Feedback,”IEEE Transactions on Computers, 39(4):544
- 548, April 1990.

[11] V. Chickermane, J.Lee, and J.H. Patel, “Addressing Design for Test-
ability at the Architectural Level,”IEEE Transactions on Computer-
Aided Design, 13(7):920-934, July 1994.

[12] G. De Micheli, “Synthesis and Optimization of Digital Circuits,”New
York, McGraw-Hill, Inc., 1994.

[13] S. Devadas, A. Ghosh and K. Keutzer, “Logic Synthesis,”New York:
McGraw-Hill, Inc., 1994.

[14] S. Dey, V. Gangaram, and M. Potkonjak, “A Controller-Based Design-
for-Testability Technique for Controller-Data Path Circuits,”Proc. Int’l
Conference on Computer-Aided Design, pp. 534 - 540, 1995.

[15] S. Dey and M. Potkonjak, “Non-Scan Design-for-Testability of RTL
Data Paths,“Proc. Int’l Conference on Computer-Aided Design, pp.
640 - 645, 1994.

[16] S. Dey and M. Potkonjak, “Transforming Behavioral Specifications to
Facilitate Synthesis of Testable Designs,”Proc. Int’ l Test Conf., pp.
184-193, 1994.

[17] D.D. Gajski and L. Ramachandran, “Introduction to High-Level Syn-

thesis,”IEEE Design & Test of Computers, Vol. 11, No.4, Winter 1994.
[18] X. Gu, K. Kuchcinski, and Z. Peng, “Testability Analysis and Improve-

ment from VHDL Behavioral Specifications,Proc. EURO-DAC, 1994.
[19] H. Harmanani and C.A. Papachristou, “An Improved Method for RTL

Synthesis with Testability Tradeoffs,”Proc. Int’l Conf. on Computer-
Aided Design, pp. 30-35, 1993.

[20] I.G. Harris and A. Orailoglu, “Microarchitectural Synthesis of VLSI
Designs with High Test Concurrency,”Proc. Design Automation Conf.,
pp. 206-211, 1994.

[21] B. Konemann, J. Mucha, and G. Zwiehoff, “Built-In Logic Block
Observation Techniques,”Proc. Int’ l Test Conference, pp. 37-41,
1979.

[22] D.H. Lee and S.M. Reddy, “On Determining Scan Flip-Flops in Par-
tial-Scan Designs,”Proc. Int’l Conference on Computer-Aided Design,
pp. 322-325, 1990.

[23] J. Lee and J.H. Patel, “Architectural Level Test Generation for Micro-
processors,”IEEE Trans. on Computer-Aided Design, 13(10):1288-
1300, Oct. 1994.

[24] T.-C. Lee, N.K. Jha and W.H. Wolf, “Behavioral Synthesis of Highly
Testable Data Paths under Non-Scan and Partial Scan Environments,”
Proc. Design Automation Conf., 1993.

[25] T.-C. Lee, W.H. Wolf, N.K. Jha and J.M. Acken, “Behavioral Synthesis
for Easy Testability in Data Path Allocation,”Proc. Int’l Conf. Com-
puter Design, 1992.

[26] T.-C. Lee, W.H. Wolf, and N.K. Jha, “Behavioral Synthesis for Easy
Testability in Data Path Scheduling,”Proc. Int’l Conf. on Computer-
Aided Design, pp. 616-619, 1992.

[27] A. Majumdar, R. Jain, and K. Saluja, “Incorporating Testability Con-
siderations in High-Level Synthesis,J. Electronic Testing: Theory &
Applications, pp. 43-55, Feb. 1994.

[28] N. Mukherjee, M. Kassab, J. Rajski, and J. Tsyzer, “Arithmetic Built-
In Self Test for High-Level Synthesis,”Proc. 13th IEEE VLSI Test
Symp., 1995.

[29] B.T. Murray and J.P. Hayes, “Hierarchical Test Generation Using Pre-
computed Tests for Modules,”Proc. Int’l Test Conf., pp. 221-229,
1988.

[30] C. Papachristou and J. Carletta, “Test Synthesis in the Behavioral
Domain,”Proc. Int’l Test Conf., pp. 693-702, 1995.

[31] C.A. Papachristou, S. Chiu, and H. Harmanani, “A Data Path Synthesis
Method for Self-Testable Designs,”Proc. Design Automation Conf.,
pp. 378-384, 1991.

[32] I. Parulkar, S. Gupta, and M.A. Breuer, “Data Path Allocation for Syn-
thesizing RTL Designs with Low BIST Area Overhead,”Proc. Design
Automation Conf., pp. 395-401, 1995.

[33] M. Potkonjak, S. Dey, and R. Roy, “Behavioral Synthesis of Area-Effi-
cient Testable Designs Using Interaction Between Hardware Sharing
and Partial Scan,”IEEE Transactions on Computer-Aided Design,
14(9):1141-1154, Sept. 1995.

[34] M. Potkonjak, S. Dey and R. Roy,” Considering Testability at Behav-
ioral Level: Use of Transformations for Partial Scan Cost Minimization
Under Timing and Area Constraints,”IEEE Transactions on Com-
puter-Aided Design, 14(5):531-546,1995.

[35] J. Steensma, F. Catthoor, and H. De Man, “Partial Scan at the Register-
Transfer Level,”Proc. Int’l Test Conf., 1991.

[36] Test Synthesis Seminar,Digest of Papers, IEEE Int’l Test Conference,
1994.

[37] P. Vishakantaiah, J.A. Abraham, and M. Abadir, “Automatic Test
Knowledge Extraction From VHDL (ATKET),”Proc. Design Automa-
tion Conf., pp. 273-278, 1992.

[38] P. Vishakantaiah, J.A. Abraham, and D.G. Saab, “CHEETA: Composi-
tion of Hierarchical Sequential Tests Using ATKET,”Proc. Int’l Test
Conf., 1993.

[39] P. Vishakantaiah, T. Thomas, J.A. Abraham, and M.S. Abadir, “AMBI-
ANT: Automatic Generation of Behavioral Modifications for Testabil-
ity,” Proc. ICCD, pp. 63-66, 1993.

[40] Walker, R.A., and S. Chaudhuri, “Introduction to the Scheduling Prob-
lem,” IEEE Design & Test of Computers, Vol. 12,No.2, Summer 1995.


	CD-ROM Home Page
	1996 Home Page
	DAC96
	Front Matter
	Table of Contents
	Session Index
	Author Index


