
An Integrated Temporal Partitioning and Partial Reconfiguration Technique for
Design Latency Improvement �

Satish Ganesan and Ranga Vemuri
Department of ECECS, ML 0030

University of Cincinnati,Cincinnati, OH 45221.
fsatish,rangag@ececs.uc.edu

Abstract
Partially reconfigurable processors provide the unique abil-
ity by which a part of the device can be reconfigured, while
the remaining part is still operational. In this paper, we
present a novel partitioning methodology that temporally
partitions a design for such a partially reconfigurable pro-
cessor and improves design latency by minimizing reconfig-
uration overhead. This is achieved by overlapping execu-
tion of one temporal partition with the reconfiguration of an-
other, using the processors partial reconfiguration capability.
We have incorporated block-processing in the partitioning
framework for reducing reconfiguration overhead of parti-
tioned designs. A highlight of our partitioner is it’s ability
to handle loops and conditional constructs in the input spec-
ification. The proposed methodology was tested on several
examples on the Xilinx 6200 FPGA. The results show signif-
icant reduction in the design latency, leading to a consider-
able speed-up due to partial reconfiguration.

1 Introduction
Dynamically reconfigurable processors have the potential for
achieving high performance at a relatively low cost for a
wide range of applications. Reconfigurable devices, such as
Field Programmable Gate Arrays (FPGA), can also imple-
ment large designs by the virtue of partitioning the design
in time [1, 2] leading to run-time reconfigurable implemen-
tations of the design. However, the reconfigurable proces-
sors typically have a high reconfiguration overhead, which
degrades the performance of the design.

Certain partially reconfigurable processors [3, 4] possess the
unique capability by which a part of the device can be oper-
ational while the remaining part is being reconfigured. This
feature can be used to overlap execution and reconfiguration
of different portions of the design leading to partial, if not
complete, amortization of the reconfiguration overhead and
significant improvement in the design latency. This advan-
tageous feature of such partially reconfigurable computing
(PRC) systems motivates the work in this paper. We pro-
pose a novel technique to generate RTR designs for a PRC
device, that improves design latency by reduction of the re-
configuration overhead posed by the device. A highlight of
our partitioner is the capability to handle control constructs

�This work is supported in part by the US Air Force, Wright Laboratory,
WPAFB, under contract number F33615-97-C-1043.

in the input specification.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

TP1

TP2

TP3

TP4

TP5

INPUT
SPEC Partitioning

Temporal

Pipelining

TP1

TP3

TP3

TP5

TP2

TP2

TP4

TP4

1

2

3

4

TP5

Figure 1. Partitioning/Pipelining Methodology

Figure 1 depicts the overview of our approach. The first step
is to partition the design into a sequence of temporal seg-
ments. This is followed by a pipelining phase, where the
execution of each temporal partition is pipelined with the re-
configuration of the following partition. Referring to Figure
1, at the ith instant, TPi executes and TPi+1 reconfigures on
the PRC device. Reconfiguration time of segment T Pi+1 is
reduced due to overlap with execution of T Pi. Similarly, the
(i+ 1)th instant involves overlap of execution of T Pi+1 and
reconfiguration of TPi+2. This process is continued until all
the temporal segments have been loaded and executed.

Let Ri and Ei be the reconfiguration and execution time re-
spectively, of the ith TP segment on the target architecture.
The total latency of the design using our proposed technique
is:

Latn = R1+
n�1

∑
i=1

max(Ri+1;Ei)+En (1)

Hence when

Ri+1�Ei � 0 8i 1� i � n�1 (2)

there is complete amortization of the reconfiguration over-
head using partial reconfiguration. Hence, it is clear that
in order to obtain significant improvement in design perfor-
mance, the reconfiguration time of T Pi+1 should be com-
parable to the execution time of TPi. This allows maximal
overlap between execution and reconfiguration and results in
considerable reduction in reconfiguration overhead. When
device reconfiguration times are much higher than design ex-
ecution times, it becomes essential to group computationally
intensive structures, e.g. loops, in a single temporal segment
to increase Ei and thereby minimize Ri+1�Ei.

1

The remainder of this paper is organized as follows. In Sec-
tion 2, we discuss related work, and in Section 3 we detail
our PRC synthesis framework. In Section 4, we describe our
partitioning algorithm and in Section 5, the reconfiguration-
execution pipelining strategy. In Section 6, we discuss block
processing in conjunction with our approach. Section 7
presents results and in Section 8, we provide our conclud-
ing remarks.

2 Related Work
Luk et al. [5] have proposed a strategy to combine two or
more designs into one reconfigurable design, based mainly
on the identification of components common to these de-
signs. They perform partial reconfiguration to reduce the
reconfiguration overhead. Turner and Woods [6] have sug-
gested a method to form reconfiguration sets by maximiz-
ing the static hardware between reconfigurations and achieve
speed-up using partial reconfiguration. Schwabe et al. [7]
take advantage of some of the features of the Xilinx XC6200
family of FPGAs to reduce the reconfiguration time overhead
by compression of the configuration bit streams.

Though the above methods proposed to reduce reconfigura-
tion overhead are sound, the authors assume that designs are
small and would fit on a single processor. However, many of
the designs are too large to be placed in a single device. The
approach we propose takes a single design and improves its
overall latency by coupling it with reduction in the proces-
sor’s reconfiguration overhead. We address the problem as
a structure-oriented partitioning problem that reduces recon-
figuration overhead between successive partitions.

3 PRC Synthesis Framework

PARTITIONED DESIGN

 High level Synthesis

TEMPORALLYComponent Library

 TEMPORAL
 PROPOSED

 PARTITIONING

RECONFIGURATION PIPELINING

PARTIALLY RECONFIGURABLE PROCESSOR

HOST-SIDE CONTROLLER

Logic/Layout Synthesis

 PROPOSED EXECUTION -

Area
Estimator

 Input Spec (VHDL/C)

TRANSLATED TO
BBIF

 Host

 Directives

Figure 2. PRC Synthesis Framework

Figure 2 depicts our synthesis framework. The input to the
framework is a behavioral specification in VHDL or C. The
specification is translated into an intermediate Control Data
Flow Graph (CDFG) representation and fed to the tempo-
ral partitioner. The partitioner, with the help of a behav-
ioral area estimator, produces a sequence of temporal seg-
ments that implements the design. High-level synthesis [8]
is performed on each temporal partition to produce a register
transfer level (RTL) implementation of the design. Logic and

layout synthesis generates bitmap files of the RTL temporal
partitions. A host-side controller loads and executes the syn-
thesized partitions on the PRC device. In the following sub-
sections, we detail our input model, the target architecture
model and the host-PRC interaction model.

3.1 Input Specification

(1) if <condition> then
 true body
 else
 false body

(2) case <expr> when
 choice1: body1
 choice2: body2
 choice3: body3
 choice4: body4
 end case

LOOP STATEMENT

CONDITIONAL STATEMENT

while <condition> loop
 loop-body
end loop

true-body

body1 body2 body3 body4

loop body false body

false-body

cond-eval

1 2 3 4

 T F

 T F

cond-eval

cond-eval

Figure 3. Control Constructs in BBIF

Blk_2

Blk_5

Blk_7

Blk_1

Blk_3 Blk_4

Blk_6

Input Set

Branch

Local Set

Function

Graph

(a) BBIF representation (b) Behavior Block

Figure 4. Behavior Block in BBIF
Our input model, called the Behavior Blocks Intermediate
Format (BBIF) [9], is a Control Data Flow Graph (CDFG)
extracted from the behavior specification. A conditional
statement translates into one block (that evaluates the condi-
tional predicate) and a collection of block branches, one for
each branch body. Similarly, a loop statement is realized by a
behavior block that implements the loop predicate evaluation
followed by a conditional branch either to the loop body or
outside the loop.

Figure 4 illustrates a typical behavior block. A block consists
of an set of input carriers, a set of local carriers, a set of func-
tions (operations) and a set of output carriers. The function
graph is a directed acyclic graph that captures the data flow.
Data flow between blocks happens strictly through branch
interface.

Note that the BBIF model denotes a single thread of control.
In other words, at any time only one of the blocks will be exe-

2

cuting. We plan to extend our methodology to multi-threaded
specifications, where more than one block can execute at the
same time.

3.2 Target Architecture Model

RC1 RC2

 Figure 5. Target Architecture
The target architecture model is illustrated in Figure 5. The
PRC device is split into two parts, RC1 and RC2. The design
is implemented on the RC such that, when T Pi executes on
RC1, T Pi+1 reconfigures on RC2. Similarly, when TPi+1 ex-
ecutes on RC2, T Pi+2 reconfigures on RC1. The PRC device
is divided into two parts as at any time there exists only two
active events on the device at a given time: execution and
reconfiguration. RC1 and RC2 have a fixed area and position
on the PRC device. This ensures that a TP on either of these
parts remains undisturbed between the time it reconfigures
and executes, thereby aiding partial reconfiguration.

3.3 Host-PRC Interaction Model

Partitioning/Pipelining phase

PRC

HOST-SIDE CONTROLLER

Execute
Load/

signals
Control

DEVICE

directives

Figure 6. Host-PRC Interaction Model

A host-side controller handles the interaction between the
PRC device and the host processor. The host processor is re-
sponsible for loading and executing the partitioned modules
on the PRC device. The host-side controller provides a hand-
shaking protocol between the host and the device. The con-
troller is a finite state machine (FSM), where in every state
the partitioned modules are either loaded, executed or no op-
eration is performed on them. State transitions are based on
control signals obtained from the design executing or recon-
figuring on the PRC device. The FSM is derived from a set of
host-controller semantics that are generated by the partition-
ing and pipelining phases. These directives are explained in
more detail along with the algorithm in the following section.

4 Temporal Partitioning
Given the block graph specification, the partitioner has to
temporally partition the graph into k segments such that:

(1) area(TPi) � area(RC1) 8 odd i 1 � i � k
(2) area(TPi) � area(RC2) 8 even i 1 � i � k
(3) 9 no loops across T Ps

When a design is too large to fit on the PRC device, the
procedure Temporal Partitioning(BBIF, blk area, prc area)
traverses the block graph and performs appropriate actions
based on the area and the block type of individual blocks,
which can be either a loop block (Lblk), conditional block
(Cblk), or a non-control construct block.

The procedure Partition Block(blk) is invoked to partition the
operation graph of a block when the estimated area of that
block violates the area constraint imposed on the partitioner.
Any operation graph partitioning algorithm can be used for
this purpose. The conditions imposed on such a partitioner
is as follows: (1) The partitioner should not introduce cycles
in the block graph (2) The partitioner should minimize the
average number of data transfers between partitions.

The block–partitioner generates a sequence of acyclic par-
titioned segments. The next block that is traversed by the
procedure Temporal Partitioning(BBIF, blk area, prc area is
the last segment in the sequence of the partitioned segments.
The last segment in the sequence is assigned the same type
as the original block. This will ensure that if the type of the
original block is Lblk or Cblk, the corresponding procedures
are invoked based on the type. The block–partitioning sce-
nario is illustrated in Figure 8.

The procedure Handle Loop is invoked when a block of type
Lblk is encountered in the BBIF block graph. The procedure
obtains the cumulative area of all the blocks in the entire loop
structure using an area estimator. If the estimated area meets
the area constraint, all the blocks in the loop are merged into
a single partition. If the area constraint cannot be met, the
exception is handled by grouping all the blocks in the loop
structure so that the loop fits on the entire PRC device. Ex-
ception handling is done to accommodate large loop bodies
in the input specification. If the loop does not fit on the entire
device either, the partitioner reports a failure as otherwise the
loop has to be partitioned across temporal segments.

If the block type encountered is a Cblk block, the procedure
Handle Conditional obtains the area of all the branches of
the conditional evaluating block. If the estimated area meets
the partitioner’s area constraints, these blocks are grouped
into a single partition. If the area constraint is violated, a host
polling strategy is adopted. Performing Partition Block be-
fore handling conditionals ensures that if a conditional block
is too large to fit on a device partition, it is partitioned into
smaller blocks before Handle Conditional is invoked on that
block.

The effect of the partition methodology described above on
the associated execution model is detailed in the following
sub–sections.

4.1 Execution Model for Loop Handling
When a Lblk structure is encountered in BBIF, the entire
loop is grouped into a single temporal partition if the area
constraint is not violated. This ensures that the correspond-
ing temporal partition spends a significant amount of time
in execution. The execution time can be maximally over-

3

Algorithm: Temporal Partitioning(BBIF, blk area, prc area)
Input: BBIF: the input block graph,

blk area: area constraint on TPi,
prc area : area of the PRC device

Output: Partitioned block graph
begin

area festimated area of block graphg
if (area> prc area) then
� for loop traverses block graph
for each blk in block graph

block type ftype of the current blockg
area festimated area of current blockg
if (area> blk area) then

Partition Block(blk)
end if
if (block type is Lblk) then

Handle Loop(blk, blk area, prc area)
else if (block type is Cblk) then

Handle Conditional(blk, blk area)
end if

end for
end if

end

Algorithm: Handle Loop(blk, blk area, prc area)
Input:

blk: a loop block in the BBIF graph,
blk area: area constraint on TPi,
prc area: area of PRC device

Output: Merged Loop Structure
begin

Lset fset of all blocks in loopg
area festimated area of Lsetg
if (area< blk area) then
� here, group loop in a single partition
merge all blocks(Lset)

� here, perform exception handling for loops
else if (area< rc area) then
� here, group loop on the entire device
merge all blocks(Lset)

else
report failure

end if
end

Algorithm: Handle Conditional(blk, blk area)
Input:

blk: a conditional block in the BBIF graph,
blk area: area constraint on TPi

Output: Merged Conditional Branches
begin

Cset fset of all branches of the conditional blockg
area festimated area of Csetg
if (area< blk area) then
� here, group branches in a single partition
merge all blocks(Cset)

else
� here, host waits for conditional predicate evaluation
adopt host polling strategy

end if

Figure 7. Partitioning Algorithm

BLK3

BLK1

BLK2

BLK1

BLK2_1

BLK2_2

BLK2_3

BLK2_4

BLK3

a) Before partitioning b) After partitioning

Figure 8. Partitioning Large Blocks
� � �

partition T P4
area occupied (part —— device) : part
host poll on (signal —— null) : flag

end T P4
partition T P5

area occupied (part —— device) : device
host poll on (signal —— null) : null

end T P5
partition T P6

� � �

Figure 9. Host Controller Semantics: Partitioning

lapped with the reconfiguration of the following temporal
partition to reduce it’s reconfiguration overhead. When the
loop executes, the next partition is reconfigured on the PRC
device. Execution of the loop partition completes when the
loop predicate evaluates to false. The corresponding host-
side controller semantics generated as by–products of parti-
tioning is shown in Figure 9.

When the entire loop cannot be grouped in a single parti-
tion, it is possible that the loop fits on the entire PRC device.
Two strategies can be adopted in this case. The first one is to
report a failure as the loop violates area constraints . A sec-
ond strategy would be to handle the exception by loading the
loop structure on the entire PRC device rather than reporting
a failure. The next temporal segment in this case is loaded
only when the loop has completed execution. No overlap of
execution and reconfiguration is possible (Ri+1�Ei = Ri+1,
where Ri and Ei are the reconfiguration and execution times
of T Pi) in this case. In our framework, we follow the sec-
ond strategy to accommodate large loop bodies in the input
specification.

4.2 Execution Model for Conditional Handling
A Cblk block in BBIF branches to two or more blocks in the
block graph. However, due to the single thread of control,
only one of these branches executes on the PRC. The host
should therefore load the appropriate branch depending on
the outcome of the conditional predicate evaluation. We call
this strategy the host polling strategy. In this case, the recon-
figuration of the branch cannot be overlapped with the exe-
cution of the condition evaluating block and this results in a
reconfiguration overhead for the branch block (Ri+1�Ei =
Ri+1, where Ri and Ei are the reconfiguration and execution
times of TPi). In order to achieve some amount of overlap,
we can group all the conditional branches into a single tem-
poral partition, provided the area constraint is met. Since all

4

TP1

TP2

TP3

TP1

TP2

TP3

(a) (b)

100

100

100

100

Figure 10. Block-Processing

the branches are reconfigured, the host need not wait on the
condition to evaluate. This ensures that the reconfiguration
of the branch overlaps with some amount of execution of the
condition evaluating block (Ri+1�Ei is minimized). In our
framework, the partitioner attempts to group the branches
into a single partition to reduce reconfiguration overhead.
However, if the grouping fails, the host polling strategy is
adopted.

5 Partitioning and Block-Processing
As we noticed before, reconfiguration overhead becomes in-
significant if execution time of a partition is comparable to
the reconfiguration time of the following partition. High ex-
ecution times are possible, if a partition can execute a loop.
In many application domains like Digital Signal Processing,
computations can be repeatedly performed on long streams
of input data. For example, a 4x4 FFT is usually performed
on hundreds of 4x4 input matrices and not on just one in-
put matrix. This approach known as block-processing has
been used to increase system throughput in the area of paral-
lel compilers [10], VLSI processors [11] and temporal parti-
tioning [12].

Figure 10 illustrates the use of block-processing in conjunc-
tion with our partitioning methodology. The partitioner pro-
duces 3 temporal partitions. The design has to be executed
for 100 input data streams which implies that the design has
to be executed 100 times. Let us assume that the execu-
tion time for each TP is 5 µs and the reconfiguration time
is 500 µs. Therefore, the reconfiguration overhead for T P2
will be 455 µs (5 µs is saved by overlap with the execution
of T P1). However, if we perform block-processing by se-
quencing all 100 computations on each temporal partition,
the total execution time of each TP is now 500 µs. Recon-
figuration overhead of TP2 is now reduced to 0. Thus block-
processing amortizes the reconfiguration overhead over 100
inputs. Block-processing is possible only for applications
that process large streams of input data. We represent such
applications by a graph having an implicit outer loop as
shown in Figure 10a. Note that block-processing is pos-
sible if there are no dependencies among computations for
different inputs. This means there should be no loop-carry
dependencies due to the implicit outer loop among different
iterations of the loop. Most of the DSP applications fall in
this category.

For this approach, Equation 3 can now be rewritten as: When

Ri+1�m�Ei � 0 8i 1� i � n�1 (3)
there is complete amortization of the reconfiguration over-
head; where m is the number of input data streams for which

computation is performed.

6 Results
The proposed algorithms were integrated in the SPARCS en-
vironment (Synthesis and Partitioning for Adaptive Recon-
figurable Computing Systems) [13]. For obtaining results,
we used the following benchmarks: 4x4 Discrete Cosine
Transform (DCT), 2 dimension 4x4 Fast Fourier Transform
(FFT), 16-tap Finite Impulse Response Filter (FIR), a Syn-
thetic Example (SEG), 1 dimension 4x4 FFT and the Traffic
Light Controller (TLC).

High-level synthesis was performed using ASSERTA [9].
VELAB [14] was used to perform logic elaboration at RT
level and XACT6000 tools were used for place and route.
Due to the poor quality of the available tools, only a small
portion of the total area could be used for logic to enable suc-
cessful routing. The area constraint given to the partitioner
took the routing overhead into account.

Table 1 provides the comparative results obtained by us-
ing the partial reconfiguration (PR) technique proposed in
this paper (refer Figure 7) versus the full reconfiguration
(FR) technique. For the FR technique, the only step per-
formed is temporal partitioning with the area constraint be-
ing the area of the entire device. The table lists the follow-
ing data: #TP: number of temporal partitions, #Inp blocks:
number of input streams of data (this will be 1 if block
processing is not used), Rec. time: total time spent only
in configuration/reconfiguration in µsecs, Exec. time: to-
tal time spent in execution in µsecs, Throughput: total time
taken to process all data in µsecs (rec:time + exec:time),
%rec - percentage of the total time spent in reconfiguration
(rec:time=throughput � 100), Speed-up: factor by which la-
tency improves (throughput(FR)=throughput(PR)). Recon-
figuration for the PR approach was performed using a 33
MHz PCI bus and the design clock frequency was 16 MHz
for all these benchmarks. In the case of the FR approach,
the results were obtained using a 10 MHz clock. The re-
duced clock speed for the FR approach is due to the fact that
the area of the partitions generated are larger, which impacts
placement and routing, which in turn determines the clock
speed.

We observe from Table 1 that following our methodology re-
sults in good improvement in the design throughput as com-
pared to the FR approach. Block-processing was followed
for the DCT, 1d-FFT, 2d-FFT and FIR examples for both the
approaches. For DCT, total reconfiguration time was reduced
to 2.52% of the total latency using the our approach and re-
sulted in a speed up factor of 2.0. The 2d-FFT, FIR and 1d-
FFT benchmarks also showed significant improvements in
design throughput and considerable reduction in the recon-
figuration overhead. The SEG consisted of a sequence of
cascaded loops. The partitioner grouped each of these loops
into separate partitions. The total reconfiguration time for
the SEG was reduced to 30% using our approach as com-
pared to the 61.3% using FR. Also, a speed up of 1.8 over

5

Design Method # TP # Inp Rec. time Exec. time Throughput % rec. Speed-up
Blocks (µs) (µs) (ms) vs full

DCT PR 48 180 51.47 1991 2.04 2.52 2.0 x
FR 22 180 1995.7 2088 4.08 51.2

SEG PR 3 1 165 385 550 30 1.8x
FR 2 1 610 385 995 61.3

2d FFT PR 9 140 56.8 446.25 0.5 11.4 1.7x
FR 4 140 456.6 245 0.7 65.2

FIR PR 6 150 56.6 273.7 0.33 17.2 1.71x
FR 3 150 274.9 198.2 0.47 58.04

1d FFT PR 3 165 54.03 154.7 0.21 25.7 1.52x
FR 2 165 154.8 103.1 0.26 59.5

TLC PR 1 1 86 0.9 86.9 98.9 1x
FR 1 1 86 0.9 86.9 98.9

Table 1. Latency improvement and Reconfiguration Time Reduction using PR approach

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

0 50 100 150 200 250 300 350 400 450 500

la
te

nc
y

(u
s)

number of blocks

FR
PR

Figure 11. 1d DCT: Throughput vs #i/p blocks for FR
and PR

the FR approach was achieved. The final example, TLC, fit
in a single device. Hence no partitioning was required and
therefore results for both approaches remain the same.

Figure 11 presents the variation of the latency for different
values of the number of input blocks for both the PR and FR
approaches. Figure 12 shows the corresponding speed-up of
PR over FR. We observe that when the number of blocks pro-
cessed is low, the speed-up achieved is close to 1. This is be-
cause, a major portion of the time is spent in reconfiguration
for both the approaches. The amount of overlap achieved us-
ing the PR approach is negligible. When a very large number
of input blocks are processed, reconfiguration time is very
less when compared to the total execution time for both the
approaches. The maximum speed-up was achieved when the
number of input blocks was around 180.

7 Concluding Remarks
In this paper, we have presented a novel temporal partition-
ing, and execution and reconfiguration pipelining technique
to partition designs for partial RC systems. The goal was
to partition such that reconfiguration overhead posed by the
processor is minimized and design latency is improved. The
partitioning was performed with the knowledge of the struc-
ture of the input specification. We also proposed performing
block-processing along with partitioning to improve design
performance. The experimental results obtained demonstrate

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 50 100 150 200 250 300 350 400 450 500
sp

ee
d

up

number of blocks

Speed-up

Figure 12. 1d DCT: Speed-up vs #i/p blocks
the effectiveness of our technique. We observed that captur-
ing loop structures into partitions improved design through-
put significantly.

References
[1] M.Kaul and Ranga Vemuri, “Temporal Partitioning combined with Design Space

Exploration for Latency Minimization of Run-Time Reconfigured Designs”, De-
sign and Test in Europe, DATE 98, IEEE Computer Society, Paris, 1998 pp.389-
396.

[2] K. M. GajjalaPurna and D. Bhatia, “Partitioning in Time: A Paradigm for Re-
configurable Computing”, ICCD98, IEEE Computer Society, October, 1998, pp.
340-345.

[3] Xilinx Corporation, San Jose, California, XC6200 Datasheet, 1997.
[4] Atmel Corporation, San Jose, California, http://www.atmel.com.
[5] N. Shirazi, W. Luk, “Automating Production of Run-Time Reconfigurable De-

signs”, Field-Programmable Gate Arrays, FPGA 1996, pp.147-156.
[6] J-P Heron, R.F. Woods, “Accelerating run-time reconfiguration on FCCMs”, IEEE

Symposium on Field-Programmable Custom Computing Machines, FCCM ’99,
Preliminary Proceedings, Napa, CA, April 21-23, 1999.

[7] S. Hauck, Z. Li, E. J. Schwabe, “Configuration Compression for the Xilinx
XC6200 FPGA”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Vol. 18, No. 8, August, 1999, pp. 1107-1113.

[8] D. D. Gajski, N. D. Dutt, A. Wu, S. Lin, High-level Synthesis: Introduction to
Chip and System Design, Kluwer Academic Publishers, 1992.

[9] N. Narasimhan “Formal Synthesis: Formal Assertions Based Verification in a
High-Level Synthesis System”, PhD Thesis, University of Cincinnati, 1998.

[10] M. Wolf, High Performance Compilers for Parallel Computing, Addison-Wesley
Publications, 1996.

[11] S. Y. Kung, VLSI Array Processors, Prentice Hall, 1988.
[12] M. Kaul, R. Vemuri, “Integrated Block-Processing and Design-Space Explo-

ration in Temporal Partitioning for RTR Architectures”, Reconfigurable Architec-
tures Workshop, RAW’99, Springer Publ., pp.606-615.

[13] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri, “An
Integrated Partitioning and Synthesis System for Dynamically Reconfigurable
Multi-FPGA Architectures”, Reconfigurable Architectures Workshop, RAW’98,
Springer Publ., pp.31-36.

[14] Xilinx Corporation, San Jose, California, VELAB Reference Manual, 1998.

6

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

