
Abstract

Formal verification plays an important role in the
verification of complex processors. In this paper, we
discuss the usage and impact of equivalence checking in
the verification of TI ’s TMS320C27X DSP core. During
various phases of the design, we need to ensure the
correctness of the design, a significant part of which
could be best done with an equivalence checker. (For
example, verifying the functionality of the netlist after
CTS insertion with the one before CTS insertion). The
capabilities and limitations of the commercial
equivalence checkers are studied and a set of guidelines
for their effective usage during different phases of the
design is proposed. Also, a set of RTL coding guidelines
to make the design equivalence checker friendly is
detailed. Further, we discuss constrained mode
equivalence checking which could be used if the
implementation design is a super set of reference design.
The verification cycle time reduction and the salient
features of an automated methodology that was
developed specifically for our DSP core are described.

1 INTRODUCTION

As the integration capability of deep submicron technology
goes up, the trend is to include more and more
functionality in a single chip. This increases the
complexity of the design by many folds. The increase in
complexity increases verification time significantly. A
traditional verification methodology would be based on
simulations, which is depicted in figure 1.1. In this
method, simulation is used at each stage to verify the
correctness of the design. Due to this, simulation forms a
significant portion of the design cycle. This demands a
shift in verification strategy towards reducing the
simulation time to enable quick time-to-market. Formal
Verification has the potential to reduce the verification
time.

Formal Verification (FV) is a mathematical way of proving
the functional correctness of a design. FV comprises of (a)
Equivalence Checking (EC) (b) Model Checking (c)
Theorem proving. We used Equivalence Checking in the
verification of TMS320C27X (C27X) core, which is dealt
in great detail in this paper.

Addressing Ver ification Bottlenecks of Fully Synthesized Processor Cores
using Equivalence Checkers

Subash Chandar G (g-chandar1@ti.com), Vaideeswaran S (vaidee@ti.com)

DSP Design, Texas Instruments India

Fig 1.1: Traditional Verification flow

Equivalence Checking is a technique where the functional
equivalence between two abstracts or views of a design is
proved. EC therefore needs a reference designs against
which the design to be verified is checked for equivalence.

We organise this paper in the following way, section 2
discusses a verification methodology that uses EC. The EC
flows developed for verification of our designs and the
applications of EC as applied across and within our
designs are discussed in section 3. Section 4 discusses a set
of guidelines for effective use of EC & we conclude with
section 5.

2 VERIFICATION METHODOLOGY– HYBRID SOLUTION

Equivalence checkers find unparalleled advantages in the
verification of different abstracts of the same design. In a
synthesis based design it has been observed that a two pass
VHDL coding is a preferred coding strategy - the first pass
to get the functional correctness with a reasonable speed
and a second pass to modify the RTL model to tackle the
critical paths. Most often the processors are re-spinned just
for higher speed where RTL modifications are primarily
for better timing with no change in functionality. Also, to
get the best out a new technology, many devices go for a
re-spin where the current design is migrated to a faster
technology. Equivalence checkers are the best fit in these
scenarios.

A simulation based verification methodology described in
Fig1.1 is time consuming. This is because each view of the
design is verified using simulation, which is costly. The
time taken for RTL simulations might be tolerable but
netlist simulation times are prohibitively large. Verifying
several abstractions (which is common in a synthesis-based
methodology) would result in large amount of simulation
time thereby impacting the design cycle time. So complex
designs are forced to look for an alternate solution with
acceptable verification time. A Verification methodology
that uses equivalence checkers is the present-day solution.

Use of EC, not only cuts down the verification time, but
also ensures that no new bug gets introduced across various
abstracts. Simulation based verification does not guarantee
the same, if the bug that gets introduced is transparent to
the existing test vectors.

Equivalence Checking cannot replace simulation
altogether because it needs a reference model to start with.
An efficient solution could be a hybrid solution that uses
simulation to verify the reference model & Equivalence
Checkers to verify various views. This hybrid methodology
is shown in figure 2.1. Equivalence Checkers (functional
verification) along with Static Timing Analysis (timing
check) is a complete solution that can replace timing
simulations.

Fig 2.1: Verification Methodology based on a Hybrid solution

The commonly used commercial Equivalence Checking
tools are Design VERIFYer and Formality. Their merits
and de-merits are discussed in the following section.

3 EC FLOW

Efficient usage of present-day Equivalence Checking tools
needs quite a bit of designer’s intervention, making
complete automation a challenge. This is because tools
vary in their strengths in verifying different designs, and
appropriate tool to be used can be best judged only with the
knowledge of the internals of the design. In addition,
providing correct options and guidance form key to the
efficient equivalence checking. Actual challenge is to
provide right options and guidance, most of which are
design specific.

Though coming up with generic automated efficient flow is
difficult, it is possible to optimize different phases with the
pre-knowledge of the abstracts on which EC is performed.
E.g. CTS inserted netlist can be ECed with pre-CTS netlist
efficiently with predefined set of mapping information for
clock network.

The study of EC tools and their application to our designs
are discussed in the following sub-sections 3.1 and 3.2.

3.1 Ground work

A complete knowledge of the capabilities of EC tools and
their applicability to the design is key to decide on the EC
engine for EC flow. The conclusion of our comparative

study of Design VERIFYer (ver2.3) and Formality
(1999.05-FM1.0) is to go for a combined solution. The
relative merits and de-merits of these tools as applied to
our designs are listed below.

�
 Formality - Merits

⇒ Capacity - ability to handle big designs with
acceptable run times

⇒ Fast and efficient in verifying math intensive logic
⇒ Good and extremely fast in verifying two gate

level netlist
⇒ Accepts Synopsys db - avoids the language

specific parsing
⇒ HDL interpreter is good - strength of Synopsys.
⇒ Easy to use
⇒ Run times in general are better compared to

Design VERIFYer
�

 Formality - De-merits
⇒ Inefficient/Incapable of understanding signal

properties. e.g. applying constraints like one-hot
encoding to some inputs

⇒ Inefficient with mapping specified - We have
observed repeated crashing of the tool while the
redundant ports were specified to be equivalent.

�
 Design VERIFYer – Merits

⇒ Efficient in understanding the signal properties
⇒ Efficient in understanding the constraints, like

redundant ports, rule based mapping, etc..

Fig 3.1 EC flow

⇒ Decent debug capabilities
⇒ Easy to use.

�
 Design VERIFYer - De-merits

⇒ Bad VHDL interpreter. One of our blocks was
never read into Design VERIFYer in the original
form. However formality had no problems.

⇒ Not so efficient in verifying math intensive blocks
⇒ Run times are in general more compared to

formality.

Based on the experiences with the EC tools we believe that
no one tool in the market really serves all the designer’s
needs. A combination of Design VERIFYer and Formality
seems to an acceptable solution for a designer. The EC
flow therefore supports both the engines with a simplified
user interface. The EC flow is shown in figure 3.1.

The EC flow comprises of User Interface, Presentation
Layer, EC Engines, and Debug Environments. User
Interface hides the tool specific details (like different
format for mapping rules), reads the input constraints and
passes it to presentation layer. Presentation layer has the
intelligence of our design related information (exact
hierarchy, default mapping for CTS, scan chain related
information) which are appropriately applied. Presentation
layer also decides on appropriate EC engine based on the
knowledge of our design and tools capabilities. E.g. for a
gate level validation, start with formality to get the benefit
of the fast runtime. In case of tool failure in verifying the
design, the flow switches over to Design VERIFYer and
performs an equivalence check. The presentation layer
develops the testbench based on failing patterns dumped
out by EC engine.

EC engines supported are Formality and Design
VERIFYer. Presentation layer and EC engine form the
basic Debug environment (DE-I). Advanced Debug
environment (DE-II) which is under development has the
capability to invoke designer’s favorite simulator with the
testbench generated by presentation layer. This flow is
closely integrated with CM databases to provide the
capability of verifying designs from different releases.

3.2 Application of EC

3.2.1 EC usage in C27X

We have a complete proven EC solutions in the
verification of C27X cores, this is depicted in figure 3.2.
 Our EC experiences across and within various C27X cores
is described below:

�
 C1 (50Mhz) to C3 (150Mhz) design:

 The prime objective of C3 was to achieve high
performance. C1 to C3 design modifications involved RTL
changes for speed and a new target technology node. Most
of the block interface was retained, making it an ideal case
for equivalence checkers. The various speed related
modifications in C3 are discussed in detail in [3]. The data
path blocks are coded in Module compiler Language
(MCL) for achieving higher speed goals. Equivalence
checkers were used in

1. RTL-to-RTL verification of C3 sub designs versus C1
sub designs
2. RTL (VHDL)-to-Netlist(MCL) verification for the
blocks coded in MCL.

Fig 3.2 EC Usage across C27X cores

3. Netlist-to-Netlist verification on C3 design was used to
verify various views like

- Scan-inserted netlist
- Repeater and spare gates inserted netlist (netlist

was hacked to insert repeater and spare gates)
- CTS-inserted netlist
- Post-layout netlist

Issues faced and solutions:
(i) MCL does not support hierarchy: The sub block ’alu’
netlist generated from MCL netlist is therefore flat. The
tools failed to complete equivalence check with
RTL/VHDL Netlist. To make EC feasible, each of sub
blocks of ’alu’ was coded as MCL functions. Each of this
function could be first verified. A script to edit MCL code
to create a black-box view of specified functions was
written, the resulting netlist (from Module Compiler) could
then be ECed.

(ii) Top-down EC: The post-layout netlist was flattened,
where as the pre-layout was hierarchical. The Top-down
verification approach had failed. Hence, we enforced rule-
based hierarchy extraction from the post layout netlist and
we could then verify the hierarchy-extracted netlist using
bottom-up approach. Bottom-up approach involves
verifying individual sub blocks first and verifying the next
level after block-boxing them, this cycle continues till the
top block is verified.

(iii) Redundant ports: One of our sub designs had
redundant ports. Both of the redundant ports were present
in C1 netlist. In C3, synthesis optimization resulted in
using only one port leaving the other ports unconnected.
Due to this EC failed. After providing the redundant ports
mapping information to the EC tool, the block passed EC.

(iv) Layout scan optimisation: Layout tools introduced lot
of extra ports at sub-design boundaries during scan
optimization. This resulted in mapping failure. The EC
reports were to be manually analyzed to check that rest of
the ports was equivalent.

(v) Multiple Clocks port mappings: CTS created lots of
clock ports for each sub-block with arbitrary names. This
posed mapping problems. We enforced a common prefix
for all new ports due to CTS, thereby making rule based
mapping feasible for EC.

(vi) Tristate Shifter was replaced with AND-OR shifters.
These two were equivalent only on a ’one-hot’ condition on
their shift controls. It is much easier to specify such
constraints in Design VERIFYer compared to Formality.
Design VERIFYer was used with ’one-hot’ property forced
on shift controls, to EC the shifter block successfully.

�
 C3 (150Mhz) to C4 (180MHz) design:

C3 to C4 was mere technology migration. EC was used to
verify Netlist-to-Netlist at all the stages similar to C3
design.

Issues faced and solutions:
(i) Due to boundary optimizations, bottom-up approach
could not be applied as block boundaries got optimized.
Most of the boundary optimizations are due to removal of
multiple inverters across block boundaries. Synthesis tool
renamed such ports with the suffix ’BAR’, which indicates
the inversion in the polarity. We could generate mapping
automatically using this suffix information. This could be
successfully used in ECing the sub blocks of the netlist.

The EC of VHDL verses MCL of datapath blocks of C27X,
replaced simulation completely in the verification of MCL
model. EC found one bug in auxiliary register file and
seven bugs in ’alu’ MCL code.

3.2.2 EC usage in our Next Generation core (C28X)

C28X core is object-code compatible to C27X. The
changes in most of the sub designs are incremental. All
C28X features are made effective only with new ports. This
guideline we followed helped us in doing EC of C28X sub
designs against corresponding sub designs of C27X, with
the newly added ports forced to inactive state. Here, we use
the EC tool’s capability of doing EC of two designs under
certain conditions. In this case, EC ensures the functional
correctness of C28X RTL in C27X mode. This is
illustrated in figure 3.3. Therefore the unit-level simulation
can primarily focus only on the incremental changes due to
C28X. This is a good example of an area where
Equivalence Checker cuts down the verification time of a
new design, which is a super-set of existing design.

Further, BIST (Built In Self Test) flow hacks the netlist
directly to rip-apart the scan-chain and re-stitches the flip-

Fig 3.3: EC usage in C28X RTL verification

flops forming number of stump channels. We need to
ensure the correctness of the functionality of the netlist
after this hacking. In order to improve the coverage, the
BIST flow inserts multiplexers to gain controllability of
internal points. Further more, to increase the observability
the state of intermediate points of a logic cone are captured
in a flip-flop, which is added for this purpose. All these
additions happen directly on the final netlist. EC is the best
fit to verify the BIST inserted netlist for functional
correctness.

Our experiences with EC show that a typical time to verify
a new netlist view was about a couple of hours for C27X
core. The functional simulation of the same netlist takes
about 10 days to run (around 350 assembly tests) assuming
regression to be running on one ultra machine. Hardware
accelerators can be used to speed up the simulation,
however it is an expensive solution.

4 GUIDELINES FOR EASY EC

1. Always EC between two successive stages of
abstraction. E.g. EC the pre-scan Vs post-scans Vs
Repeater + Spare gate inserted Vs CTS-inserted Vs
post-layout. Don’ t verify the PG netlist with the initial
netlist.

2. EC of Full chip RTL Vs gate-level flat netlist is very
inefficient. Maintain the hierarchy in the netlist to
enable hierarchical verification (bottom-up strategy
yields best results). Flat netlist could then be verified
against hierarchical netlist.

3. Pick the appropriate tool based on the merits and de-
merits listed above. E.g. Pick Design VERIFYer to
force if you were to force signal properties before
doing EC.

4. Use appropriate options based on the characteristics of
the design to the help the EC tool. E.g. Design
VERIFYer treats 'X' and 'Dont_Care' differently. So, if
your VHDL code contains 'X' assignments in case
statements then use the
"Enable_Dont_Care_Default_Mapping" attribute or
use "General_X_to_D_Conversion" as appropriate.

5. When comparing two gate-level netlist that are
structurally very different but with the same function
(E.g. same netlist obtained using Design Compiler and
Module Compiler), the best approach is to verify each
gate-level netlist against the original RTL.

6. Constrain the CTS flow to add a common prefix for all
the new ports that is created at sub block boundaries.
This will help in creating rule based mapping for
multiple clock ports.

7. Maintain the boundaries of the sub designs as much as
possible. This would help in bottom-up verification.

8. Do not combine the Boundary optimizations with
compile. Do Boundary optimization separately after

the compile. The reason behind this is to have
minimal changes when the sub design boundary is
disturbed, so that top-down EC can be applied. With
major changes, it is easier to do EC if the block
boundaries are retained

9. Extract the hierarchy from the post layout netlist
before ECing it. This reduces the EC time.

10. While writing a MCL code, partition the code into
functions, each function mapping on to a sub design.
The functions individually can be verified against the
VHDL model of the sub designs. This also allows an
easy way of black-boxing the sub design for the top-
level verification.

11. Avoid redundant ports in the RTL. A set of redundant
ports might be unconnected after synthesis
optimization. This would need additional mapping
information for successful EC.

12. Incremental changes to a design should be done as
much as possible with a new set of ports. This would
help in ECing the new model with new ports forced to
inactive state, to ensure the functional correctness of
old mode of operation.

5 CONCLUSIONS

We presented our experiences with the equivalence
checking as applied successfully in the verification of
commercial DSP cores. We highlighted the key areas
where EC is best fit. We described the hybrid flow
developed for verification of our designs. We shared our
experiences with the Issues faced with EC and solutions we
deployed. We concluded with a set of guidelines that would
help in easing the equivalence-checking job, thereby
making it more applicable to a design. Our future work
would be to add a simulation hook up to the EC flow, for
the extra flexibility of debugging. Our experiences with EC
reveal that a considerable amount of verification time can
be cut down reducing the total design cycle time.

REFERENCES

[1] Design VERIFYer(2.3) users guide & reference manual

[2] Formality(1999.05-FM1.0) users guide & reference manual

[3] A Framework for Cost Vs Performance Tradeoffs in the design of Digital
Signal Processor Cores by Karthikeyan Madathil, Subash Chander, et al - In
the proceedings of the conference on VLSI design 2000.

** Formality & Module Compiler are
 trademark of Synopsys
** Design VERIFYer is registered
 trademark of Chrysalis

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

