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Abstract

The Real-Time Specification for Java (RT'SJ) was first released in June 2000 due to the
needs arisen for safety-critical and real-time systems. The primary objective of the RTSJ
was to provide a platform that allows programmers to correctly reason about the temporal
behaviour of executing software. The RT'SJ has been implemented for both open source
and proprietary implementations, providing a foothold for research and deployment in
serious applications. As a consequence, its strengths and weaknesses are becoming clear.

One of the areas that requires further elaboration is asynchronous event handling
(AEH). The primary goal for asynchronous event handlers in the RTSJ is to have a
lightweight concurrency mechanism, on top of predictable and bounded behaviour. This
can only be achieved by using a real-time thread to execute as many handlers as possible.
Although the RTSJ provides both the flexibility of threads and the efficiency of events,
it is generally unclear how to map handlers to real-time threads effectively to achieve the
primary motivation, the lightweightness requirement, without causing side-effects (e.g.
priority-inversion). Furthermore the RTSJ is silent on how events can be implemented
and how their timing requirements can be guaranteed. As a result, most RT'SJ implemen-
tations simply mapped a released handler to a real-time thread and this results in a 1:1
relationship and therefore undermining the original motivation.

The current RTSJ is also criticised as lacking in configurability as applications were
unable to finely tune the AEH components to fit their particular needs. As a result,
various handlers with different characteristics must be handled in an implementation-
dependent manner and programmers do not have comprehensive configurability over their
AEH subsystem.

The main purpose of this thesis is, therefore, first to propose an alternative imple-
mentation guideline to guarantee timing requirements of a large number of concurrent
asynchronous events in the system while achieving the primary goal of AEH, and second
to refactor the current AEH API in the RTSJ to give programmers comprehensive con-
figurability in order for them to be able to specifically tailor AEH components to fit the
application’s particular needs. By attaining the purpose of this thesis, the development
of an efficient (hence scalable) and configurable (hence flexible) RTSJ application using

asynchronous event handlers in the real-time Java architecture can be better facilitated.
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Chapter 1

Introduction

Real-time and embedded systems are timely reactive systems, meaning that they must
react to their surrounding environment within time constraints and at a speed imposed
by the environment. The use of such systems in our daily life is rapidly growing and they
are widely applied in various application contexts, such as consumer electronics and em-
bedded devices, industrial automation, space shuttle, nuclear power plants, and medical
instruments. The number of embedded real-time systems used in a product ranges from
one to tens in consumer products and to hundreds in large professional systems. It has
been estimated that the market size of embedded systems is 100 times as large as that of
desktop and it is projected that the market size of such systems will grow continuously in

this decade [18].

Virtually all real-time embedded systems are inherently concurrent and must interact
closely with the real world [6]. This inherent concurrency must be efficiently supported.
Therefore, providing an efficient concurrency mechanism that facilitates the modeling of
parallelism in the real world is one of the main properties of a real-time programming lan-
guage. Recently there is a trend towards using object-oriented programming languages,
such as Java and C++, in real-time embedded systems because they offer several advan-
tages, for example reusability, data accessibility and maintainability, compared to proce-
dural programming languages using well-known object-oriented principles, encapsulation,
inheritance, and polymorphism. The use of object-oriented programming also offers a
number of additional benefits, including increased flexibility in design and implementa-

tion, reduced production cost, and enhanced management of complexity [54].



Java technology with its significant characteristics, such as cost-effective platform-
independent environment, relatively familiar linguistic semantics, and support for concur-
rency, has many advantages for developing real-time embedded systems compared to other
object-oriented programming languages. However, due to the non-deterministic behaviour
of the concurrency facilities in Java, the use of these facilities often introduces ambiguity
for developing real-time embedded systems. The weaknesses that lead to the ambiguity

in the Java concurrency model are identified and discussed in [67] as listed below:

e Lack of support for condition variables.

e Poor support for absolute time and time-outs on waiting.

No preference given to threads continuing after a notify over threads waiting to gain

access to the monitor lock for the first time.

Difficulties in identifying nested monitor calls and thread-safe objects.

Poor support for priorities.

Although concurrency-related facilities have been reinforced in Java 1.5 by introducing
the concurrency utility library, led by Doug Lea in JSR-166 [47], to help alleviate many of
the above problems, they have been designed without consideration to temporal guaran-
tees that real-time systems require. Note that, we did not make any specific assumption

on concurrency upon which the research work in this thesis is valid.

In order to support a predictable and expressive real-time Java environment, the Real-
Time Specification for Java (RTSJ) [5] has been developed to provide real-time extensions
to Java. The RTSJ has made several modifications to the Java specification to make true
real-time processing possible in the context of the standard Java language. For example,
threads (or schedulable objects) waiting to acquire a resource must be released in execution
eligibility order (i.e. priority) in the RTSJ. This applies to the processor as well as to
synchronised blocks. If schedulable objects with the same execution eligibility are possible
under the active scheduling policy, such schedulable objects are awakened in FIFO order.
This collectively guarantees the order in which threads are granted ownership of a monitor
or the order in which threads wake in response to the notify or notifyAll method. The
primary goal of the RT'SJ is, therefore, to provide a platform, a Java execution environment
and application program interface (API), that lets programmers correctly reason about

the temporal behaviour of executing software. To achieve this goal, the RTSJ focuses on



strengthening the Java concurrency model and enhancing the standard Java language in

the following seven areas:

e Thread Scheduling and Dispatching
e Memory Management
e Synchronisation and Resource Sharing

e Asynchronous Event Handling

Asynchronous Transfer of Control

Asynchronous Thread Termination

Physical Memory Access

Since the RTSJ has been approved by the Sun Java community, it has become one
of the most promising object-oriented programming languages for real-time systems in
recent years. As the RTSJ has been implemented, formed the basis for research and used
in serious applications, some strengths and weaknesses are emerging. One of the areas
which require further elaboration is asynchronous event handling (AEH). This is due to
the fact that the RT'SJ neither provides any implementation guidelines (in order to allow
variation on implementation decisions [5]) nor facilitates a configurable framework that
allows the programmer to finely tune the AEH subsystem to fit the application’s particular
needs [67]. As mature implementations of the RTSJ are becoming available, an assessment

of the current AEH techniques used in RT'SJ implementations is, therefore, timely.

1.1 Motivation

In an attempt to provide the flexibility of threads and the efficiency of event handling, the
RTSJ generalises Java’s mechanism for asynchronous event handling by distinguishing be-
tween events, something that can happen, and event handlers, logic that will be scheduled
for execution when the events happen. This distinction in the RTSJ is realised by intro-
ducing the notion of asynchronous events via the AsyncEvent class, and their associated
handlers via the AsyncEventHandler class. Asynchronous events in the RTSJ are viewed
as dataless occurrences that can be either fired (periodically or only once) by the applica-
tion or associated with the triggering of interrupts in the environment. The relationship

between events and handlers is many to many (i.e. a single AsyncEvent can have one or



more AsyncEventHandler objects, and a single AsyncEventHandler can be bound to one
or more AsyncEvent objects). Also handlers can be associated with POSIX signals for the

case where the RT-JVM is implemented on top of a POSIX-compliant operating system.

RTSJ defines preemptive priority-based scheduling and two types of schedulable objects
(i.e. instances of classes that implement the Schedulable interface): AsyncEventHandler
and RealtimeThread. From the application programmer’s perspective, they behave in the
same manner. In practice, however, real-time threads provide the vehicles for execution
of AsyncEventHandlers [69]. In other words, an AsyncEventHandler will be executed
some point later by an implementation-defined real-time thread® some time in the future.
Therefore it is necessary for an implementation to bind a handler to a server thread and
this binding is typically performed at run-time dynamically. The time at which a handler is
bound to a server thread and the number of such server threads required form the main dis-
tinguishing characteristics between AEH implementations. If this binding latency, which is
inevitably incurred when two objects are being attached to each other should be avoided, a
BoundAsyncEventHandler can be used to eliminate it. Once a BoundAsyncEventHandler
is bound to a real-time thread, the thread becomes the only vehicle for the execution of

that particular handler, establishing a static 1:1 relationship.

The driving design goal of the AEH model of the RTSJ is to have a lightweight concur-
rency mechanism [5] that is capable of supporting hundreds (if not thousands) of handlers;
consequently handlers must not incur the same overheads as real-time threads [5, 16, 69].
Therefore, if a system needs many AsyncEventHandlers and the binding latency is not
critical, the use of BoundAsyncEventHandler should be minimised as they incur the same
overhead as real-time threads. The lightweightness can only be achieved by using as few
as possible server threads to execute as many as possible handlers. Doing this, results
in smaller data structures in the real-time virtual machine, less stack space for server
threads, fewer context switches between server threads etc. The trade-off is an increase in
the latency between the event being fired and a handler being assigned to a server thread
for execution, compared to the static 1:1 relationship used for bound asynchronous event

handlers.

The RTSJ however does not provide any guidelines on how these events and their han-

11n this thesis, the real-time threads which are specifically created or maintained by the system for the

execution of released handlers are also called server threads or servers.



dlers can be implemented and how their timing requirements can be guaranteed [69] to
achieve this lightweightness, allowing variation in implementation decisions [5]. Regardless
of how well the implementation is designed, as the number of threads in a system grows,
operating system overhead increases, leading to a decrease in the overall performance of
the system. There is typically a maximum number of threads that a given system can
support, beyond which performance degradation occurs [72]. Therefore, the key challenge
in implementing asynchronous event handling for the RT'SJ is to limit the number of server
threads without jeopardising the schedulability of the overall system. A set of tasks said
to be schedulable if there exists at least one algorithm that can produce a schedule where
all tasks (handlers in the context of this thesis) in the set can be completed according to
a set of specified constraints (i.e. deadlines). By limiting the number of concurrent server
threads for execution of released handlers and still maintaining their schedulability, the
system can avoid throughput degradation, and the overall performance will be higher than
the unconstrained thread-per-handler or run-time thread creation models. This, therefore,
will enable the system to be more efficient and hence scalable. Here, an AEH algorithm is
said to be efficient if the algorithm can execute a larger number of released handlers using
a smaller number of server threads. Likewise, an AEH algorithm is said to be the most
efficient if it can execute a certain number of handlers using the least number of server
threads. Note that server threads themselves should be lightweight enough as fewer server
threads with much higher overheads do not make AEH more lightweight?. Consequently
efficient AEH algorithms have more space for additional server threads without perfor-

mance degradation, resulting in having more scalability.

In many RTSJ implementations, however, a released handler is simply executed in the
context of a currently available server or the run-time creates an ad-hoc server dynamically
for the execution of the released handler [12, 29, 60]. In [16, 69], possible implementation
strategies for AEH in the RTSJ and some of their corresponding schedulability analyses
have been proposed. One of the implementation strategies that appeared in both papers
is to use a priority-ordered queue (or one queue per priority level) and multiple servers.
This approach is more flexible than a single server approach in terms of dealing with han-
dlers whose execution might be suspended as a result of issuing a wait or a sleep method
call in the Thread class — for example, by calling the Thread.sleep, Object.wait, or

Thread. join methods, or any blocking I/O call. Hence, a server thread executing such a

2Later in Chapter 4 we have demonstrated the overhead of a handler is lightweight enough not to make

the overall performance of AEH worse.



handler may not be able to complete its execution without suspending. Once suspended,
it is unable to execute any other handler. These handlers are called blocking (or self-
suspending)® handlers in this thesis. The implementation challenge in meeting these goals
is made more difficult because the RTSJ is required to create a server, when a handler
is released and all the servers in the system are blocked, in order to avoid unbounded
priority inversion. The dynamic creation however is relatively expensive in terms of both
time and memory. Also there are other implementation issues to address, such as defining
the points where and when a server should change its priority to reflect the priority of
the handler which the server is executing, and clarifying the circumstances under which a
server is allowed to continue executing another handler after completing the execution of
the current one. Without having these issues addressed, it is likely that the model causes

unnecessary context switches or leads to invocation of superfluous servers.

Also the current AEH API in the RTSJ is criticised as lacking in configurability
[38, 46, 69] as it does not provide any means for programmers to have fine control over
the AEH algorithm and its components, such as the mapping between server threads and
handlers. The AsyncEventHandler class provides a default and immutable AEH imple-
mentation which mandates the way of handling asynchronous events. All asynchronous
events must be handled in an implementation-dependent way defined by the default AEH
implementation. Consequently, the programmer cannot tailor the AEH subsystem to fit
the application’s particular needs. For example a handler might be used to function as
interrupt handlers. Such handlers should normally be executed directly by the calling
thread or by the JVM at the highest priority level, and they do not have to be schedulable
objects which incur the associated overheads such as mapping and competing with other
schedulables for the CPU. In order to provide configurability for AEH, the current AEH
API must be refactored to give programmers options to execute handlers with different
characteristics in a different way. Furthermore, the RT'SJ does not require the documenta-
tion of the AEH implementation. These issues collectively affects the predictability of an
application; it is difficult for programmers to project how their handlers in the application

will behave at run-time and to regulate their behaviour. Therefore the current AEH API

3We do not see the potential delay incurred when accessing a synchronised statement or method as a
block. This is because priority inheritance will cause another handler already bound to a server to execute.
For example, if the server dedicated to a priority level blocks, the remaining pending handlers (if any) at
the priority level will also block until the server unblocks. In the mean time, a server associated with a
lower priority level will run, as a result of priority inheritance. Hence, the processor will not necessarily

become idle.



in the RTSJ imposes the following limitations:

e A single model for all types of events handlers — all asynchronous event must be han-
dled in the same implementation-dependent way; it is not possible for an application
to indicate a different implementation strategy for handlers with different character-

istics such as interrupt or non-blocking handlers.

e The lack of implementation configurability — the application is unable to configure its
AEH components (e.g. the size of the thread pool or to request different handlers
be serviced by different pools).

The underlying idea behind this thesis, therefore, is first that an AEH subsystem that
minimise the number of server threads for execution of released handlers is better able to
cope with systems that have a large number of handlers and hence is more scalable, and
second that offering comprehensive configurability over its AEH components is beneficial
for the programmer as they can be specifically tailored to fit the application’s particular
needs. In order for the RTSJ to become the first concurrent object-oriented real-time
programming language widely accepted?, it is therefore necessary to address the above

issues.

1.2 Objectives and Contributions

This thesis mainly concerns the efficient implementation and the comprehensive config-
urability of AEH in the RTSJ, which offers greater flexibility and better efficiency to
encompass handlers with different characteristics, while using the least possible number
of server threads, but without jeopardising the overall schedulability of the system. The

work in this thesis is therefore based on the premise that:

e The primary goal of AEH in the RTSJ is to have a lightweight concurrency mecha-
nism that is capable of support hundreds (if not thousands) of handlers. However,
the RT'SJ does not provide guidelines on how asynchronous event handlers can be
mapped onto server threads and how their timing requirements can be guaranteed

to achieve the lightweightness requirement.

e The RTSJ does not provide any means for programmers to have fine control over
AEH such as the mapping algorithm and its components. As the result, all asyn-

chronous events must be handled in an implementation-dependent way.

4Currently, C and C++ are widely accepted and used in real-time systems.



In the absence of the AEH implementation guidelines and the lack of configurability of
RTSJ AEH, the scalability of a RTSJ implementation to scale to systems of hundreds
of events is practically inhibited as most of the RTSJ implementations take a 1:1 AEH
mapping approach, where an invoked server thread executes only one handler and goes
back to the waiting state where it sleeps until invoked again®. Therefore, the major aim

of the research is twofold:

e How to provide a well-defined guideline to achieve the primary goal of AEH in the RTSJ,

the lightweightness, and

e How to facilitate comprehensive configurability over AEH components so that the AEH

subsystem can specifically be tailored to fit the application’s particular needs.

The following two propositions synthesise the central research hypothesis:
The current version of the RTSJ does not facilitate either a lightweight concurrency mechanism
or comprehensive configurability over its AEH. The efficiency and flexibility of AEH in the RTSJ

can be better achieved if the implementation
Proposition I: is aware of whether asynchronous event handlers are

e Blocking or Non-blocking, and

e Periodic (Hard) or Non-periodic (Soft).

to be able to reduce overheads both in time and space, and still meet the application’s

timing requirements.

Proposition Il: facilitates comprehensive configurability over its AEH facilities as the lack of
the property inhibits the scalability of the RTSJ implementation from scaling to systems
of hundreds of events. The problem is exacerbated by the presence of asynchronous

event handlers with different characteristics presented in Proposition |.

In order to prove the above propositions the following objectives are set out and dis-

cussed in detail in subsequent chapters:

Objective 1 Investigating and implementing AEH mapping algorithms that use the min-

imum number of server threads,

Objective 2 Drawing the distinction between blocking and non-blocking handlers to fur-

ther reduce the required number of server threads,

5For more information about the AEH mapping models, see Section 3.1.



Objective 3 Separating non-aperiodic and aperiodic handlers thereby allowing the use
of preemption threshold technique for hard (or periodic) handlers: this technique
lets the AEH subsystem further reduce the number of server threads for execution

of released handlers even in the worst case.

Objective 4 Refactoring of the current AEH API in the RTSJ, which results in giving

programmers full configurability over AEH subsystem,

Meeting these objectives forms the main contributions of this thesis. Therefore, the re-
search work of this thesis is based on the above problems and observations. Achieving these
goals will facilitate the development of an efficient and configurable RT'SJ application us-
ing asynchronous event handlers in the real-time Java architecture. The rationale behind
the research is mainly based on defining a more efficient AEH algorithm and refactoring
the current AEH API in the RTSJ to give programmers comprehensive configurability.
Note that, in the RTSJ, the semantics for the base scheduler essentially assume a unipro-
cessor execution environment. While implementations of the RTSJ are not precluded
from supporting multiprocessor execution environments, no explicit consideration for such
environments has been given in the specification. Therefore a uniprocessor execution

environment will also be the main focus of the research work for this thesis.

1.3 Organisation of the Thesis

In accordance with the motivations and objectives of the research, the thesis will be
organised with eight chapters. Brief descriptions of the remaining chapters are given

below:

Chapter 2. Event Handling in Real-Time Systems

This chapter explores concurrent programming models, thread and event-based, emphasis-
ing the flexibility of threads and efficiency of events. Also event handling facilities provided
by general-purpose and real-time systems, including programming languages, middleware
systems, and operating systems are discussed. Asynchronous event handling in the RTSJ
is also closely investigated, with particular emphasis to the API relevant to schedulable

objects, and its possible implementation strategies.



Chapter 3. Appraising AEH Models in Current RTSJ Implementations

This chapter examines various asynchronous event handling algorithms in some popular
RTSJ implementations with respect to efficiency and flexibility. To evaluate asynchronous
event handling implementation of two non-trivial RTSJ implementations, jRate [12] and
Java RTS [50], a model checking tool, UPPAAL [61], has been extensively used. This
chapter identifies the multiple-server switching phenomenon (MSSP) [37] found in the
Java RTS AEH. It takes place whenever the current running server changes its priority
to that of the handler to execute, due to queue replacement policy in that most real-time
OSs and middleware systems put a thread that has changed its priority at the tail of the
relevant queue for its new priority. The MSSP can be found in any system where the
mapping between executioner and executionee is required and the priority of executioners
dynamically changes to execute the larger number of executionees. Java RTS is an example

system which suffers from the phenomenon.

Chapter 4. Efficient AEH for the RTSJ

In this chapter, more efficient models for asynchronous event handling are proposed and
implemented. The underlying idea beneath the proposed models is to use as few servers
as possible. This is to achieve the primary intention of AEH in the RTSJ. They are
designed to serve handlers with different characteristics, blocking and non-blocking. To
validate the idea, the dynamic 1:N mapping model is discussed and emphasised for its
efficiency and scalability. Based on the dynamic 1:N mapping model, the notion of critical
sequences® for blocking and non-blocking handlers is defined. A critical sequence states
the handler releasing scenario under which the least upper bound of server threads is
required. For a set of blocking handlers, the critical sequence occurs when a handler is
released after or at the release time, and before or during self-suspension of a previously
released handler. For a set of non-blocking handlers, the critical sequence occurs when
handlers are released in a priority-ascending manner in turn during the previously released
handler being executed. Therefore, each blocking handler is required to have a single
server as it is generally not possible to know when a handler will self-suspend, and non-
blocking handlers are collectively required to have the number of servers as the number
of priority levels. Based on this, the equations that calculate the least upper bound of

servers required for both blocking and non-blocking handlers are derived for a given set

6This differs from critical path that is the sequence of tasks with dependencies which add up to the

longest overall duration.
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of handlers. The blocking and non-blocking AEH implementations are constructed, based
upon the dynamic 1:N mapping model, which also utilise the notion of critical sequences.
The critical sequences for blocking and non blocking handlers are particularly important
as they offer the ground upon which the least upper bound of server threads can be derived
and this allows programmers to safely assume that all released handlers can all be handled

with a proper set of the particular server notification and relinquishment rules.

Chapter 5. Applying Fixed-Priority Preemptive Scheduling with Preemption Threshold to AEH
in the RTSJ

This chapter discusses fixed-priority preemptive scheduling with preemption threshold
(FPPT) which reduces the number of effective priority levels for a given task set. To
perform the schedulablility analysis for the FPPT, tasks under consideration should be
periodic. Therefore, periodic and non-blocking task sets can successfully be scheduled with
the FPPT as the least upper bound of server threads for non-blocking handlers depends
on the number of priority levels. In this chapter, the non-blocking AEH implementation
is extended to support FPPT to reduce the least upper bound of server threads required
even at the critical sequence which completely depends on the number of priority levels.
Applying this technique to AEH in the RTSJ further reduces the number of server threads
required for periodic and non-blocking handlers, better achieving the primary goal of AEH,
the lightweightness.

Chapter 6. Refactoring AEH in the RTSJ

This chapter presents the refactored AEH API for the RTSJ. As the RTSJ does not pro-
vide any configurable facilities for AEH, most RTSJ implementations examined in this
thesis neither furnish programmers with well-defined documentation nor offer comprehen-
sive configurability over their AEH implementations. This fails to instill confidence in
programmers that their event handlers will behave predictably at run-time. To address
this issue, the configurable AEH API for the RTSJ is proposed and discussed with re-
spect to its benefits for programmers. The refactored AEH API lifts the limitations of
the current AEH API in the RTSJ, by giving programmers comprehensive configurability.
This enables AEH components to be specifically tailored to fit the application’s particular

needs.
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Chapter 7. Conclusions and Future Work

The final comments about the research results are given in this chapter. Additionally,

some directions for further research are also presented.
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Chapter 2

Event Handling in Real-Time
Systems

A major application area of concurrent programming is real-time systems [7, 67] as they are
inherently concurrent due to the parallelism that exists in the real-world objects which they
are monitoring and controlling. A primary issue associated with the production of software
for real-time applications that exhibit concurrency is how to express that concurrency in

the structure of the program.

Concurrent programming is the name given to programming notation and tech-
niques for expressing (potential) parallelism and solving the resulting synchro-
nisation and communication problems. Implementation of parallelism is a topic
in computer systems (hardware and software) that are essentially independent
of concurrent programming. Concurrent programming is important because it
provides an abstract setting in which to study parallelism without getting bogged

down in the implementation details [6].

Until recently, general-purpose computer systems were centralised, isolated, and expen-
sive. Today, they are parallel, distributed, networked, and inexpensive. However, advances
in software construction have failed to keep pace with advances in hardware [58]. To some
extent, this is a result of the fact that current programming languages were conceived for
sequential and centralised programming. Programs written in procedural languages such
as Pascal, C, FORTRAN and COBOL have a single thread of control. Generally, they

have only one path at any particular execution of the program except when input data
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varies, in which case the path through the program may differ. Given the fact that the
inherently concurrent nature of real-time and embedded systems, the software must con-
trol the simultaneous operations of the coexisting hardware or software components in the
surrounding environment. As a consequence, providing an easy and efficient framework
for expressing parallelism in a real-time application has been an important research area
in the real-time community. Programming languages intended for use in the domain of
the real-time system therefore should have greater expressive power to provide the pro-
grammer with primitives that match the application’s parallelism. On top of this, there
are two other fundamental motivations for the support of the concurrent programming

model [67]:
e To fully utilise the processor

e To allow more than one processor to solve a problem

To cater for the necessity of the concurrency, several modern high-level programming
languages, such as Ada, C#, and Java, have direct support for concurrent programming

with the notion of threads and events.

In this chapter, general event handling techniques and facilities in high-level program-
ming languages, middleware systems, and operating systems are presented to closely inves-
tigate how they are implemented in terms of concurrent programming models to achieve
efficiency and flexibility. This chapter therefore first explores programming models for
concurrency, thread and event-based, emphasising the flexibility of threads and the effi-
ciency of events in Section 2.1. Mixed programming, that is a hybrid form of thread and
event-based programming that can be used to build more scalable and flexible systems, is
discussed next. (Asynchronous) event handling facilities provided by general-purpose and
real-time systems, including programming languages, middleware systems, and operating
systems are presented in Section 2.2. Each framework provides a slightly different scheme
towards its event handling, and the difference in the mapping between executionee (i.e.
handlers) and executioner (i.e. threads) is investigated in detail. Section 2.3 provides
an introduction to asynchronous event handling in the RT'SJ with particular emphasis to
the API relevant to schedulable objects. The section also discusses AEH implementation

issues with respect to efficiency and flexibility for the RTSJ.
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2.1 Concurrent Programming Models

Building highly concurrent systems, such as large-scale real-time systems managing many
information flows at once and maintaining peak throughput when demand exceeds re-
source availability, is inherently difficult [72]. Also such systems impose a number of new
challenges to application designers [64] (e.g. the demand of scalable data structures, max-
imum resource utilisation, race conditions, etc.). Many approaches have been proposed
to build concurrent systems, which generally fall into the two categories of thread-based
and event-based. The debate over whether threads or events are best suited for modelling
concurrency has been furious for decades [21]. For a given set of tasks, a scheduling algo-
rithm is said to be feasible if the tasks can be scheduled so that no missed deadlines ever
occur. The key issue of this debate is whether thread-based or event-based programming is
better suited for achieving feasible scheduling of concurrent activities in real-time systems
(or parallel programming techniques to provide better performance of the application in

the case of general-purpose systems).

The thread-based programming model has become the dominant form of expressing
concurrency. Thread support is standardised across most operating systems, and is well-
established. It is incorporated in modern languages, such as Java and Ada. While threads
are a commonly used concept for expressing concurrency in many high-level languages, the
characteristics of thread implementations has led many developers to prefer an event-based
approach due to its high resource usage and scalability limits [72]. However, event-driven
systems are generally built from scratch, and depend on mechanisms that are not well-
supported by most languages and operating systems. Furthermore, using the event-based
programming model for concurrency can be more complex to develop and debug than its

counterpart [64].

There also has been another long debate among programmers, language designers
and operating system designers associated with providing support for concurrency as to
whether it is appropriate to provide the support in a language or whether this should be
provided by the operating system only. Arguments in favour of supporting concurrency

in the programming languages include the following [6, 7]:
1. Tt leads to more readable and maintainable programs.

2. Compilers for languages that are unaware of potential concurrent executions of pro-

gram components may introduce race conditions in an attempt to optimise code
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execution.

3. There are many different types of operating system, defining the concurrency in the

language makes the program more portable.

4. An embedded computer may not have any resident operating system available.
Arguments against concurrency in a language include the following:

1. Different languages have different models of concurrency; it is easier to compose
programs from different languages if they all use the same operating system model

of concurrency.

2. It may be difficult to implement a language’s model of concurrency efficiently on top

of an operating system’s model.

3. International operating system and middleware standards, such as POSIX and the

.NET Framework, have emerged, and therefore programs become more portable.

This thesis, however, assumes that the approach of supporting concurrency in the
programming language level is more up to date and suited to cater for the current trend
of high level programing languages such as Ada, C#, and Java. In this section, the two
major concurrent programming models are first examined. Based on this, the mixed-mode
programming model is then discussed, emphasising its flexibility and efficiency that cannot

be accomplished with only providing a single abstraction of concurrency, thread or event.

2.1.1 Thread-based Programming

Interrupt (or event) handlers had originally been used for notifying the application of
the occurrences of both external and internal events and dealing with non-periodic I/O
activities. However, the thread abstraction was introduced to alleviate the programming
difficulties of using interrupt handlers (i.e. blocking is not permitted and long running
interrupts unnecessarily delay other tasks as interrupt handlers are typically performed
by the system with the highest priority). Threads are more flexible and can block. Under
this programming model, the functionality of the concurrent activities (e.g. controllers) in
the system is represented as a thread. They can be executed either based on the system
clock (time-triggered), or on the events fired (event-triggered) in the environment. In a
time-triggered system, the controller can be invoked either periodically or sporadically

[45]. This approach models the recurring behaviour of the physical system controlled by
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the real-time application. It monitors the environment in order to determine the status
of the real-time object it is controlling. Based on its findings, it writes to actuators which
are able to affect the behaviour of the target object. For example, in an environment
where sensor readings are used to control actuators, application threads will be triggered
periodically to guarantee that sensors are polled in time. Other threads might have more
irregular time triggers (e.g. at most or at least once per interval). In an event-triggered
system, sensors in the environment are activated when the real world object enters into
anticipated states. Then the events are signalled to the controller via interrupts. In the
above example, the sensors might send an interrupt signal to the real-time system every
time they perceive new readings informing the system that events that need to be handled

have arrived.

One of the main advantages of the thread-based programming model is that it is widely
accepted by the real-time community as a natural and powerful way of expressing concur-
rency in large scale applications, especially high concurrency I/O servers [64]. The concept
of threads enable parallel programming notion to be easily implemented, providing high
performance, particularly for multiprocessor systems [49]. This high performance can be
further excelled by relatively better support from advanced facilities such as OS, libraries,
debuggers and languages. Additionally, thread-based systems can achieve improved safety
and performance with only minor modifications to existing compilers and run-time systems
[64], which is an extremely powerful concept for system design. The system designer can
often be given a choice whether to implement the control algorithm as time-triggered or
event-triggered [67] under the thread-based programming model; generally event-triggered
implementation is considered to be often more flexible, mostly used in the non-safety crit-
ical community where as time-triggered one to be more predictable, prevailed in safety

critical real-time applications [39].

One of the most well-known difficulties imposed by the thread-based programming
model is synchronisation paradigms which are either too low-level, or too coarse-grained
[62]. Their error-prone low-level mechanisms such as a semaphore and coarse-grained
mechanisms such as a monitor do not allow for much parallelism by overspecifying the
amount of synchronisation required. Furthermore, there are situations where the thread-

based programming model is not appropriate including the following [49, 62] cited in [67].

e the external objects are many and their control algorithms are simple and non-
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Figure 2.1: Performance versus Number of Threads

blocking, and

e the external objects are interrelated, and their collective control requires significant

communication and synchronisation between the controllers.

In the former case, 1 to 1 mapping between a thread and an object controller may
lead to a proliferation of threads along with per thread overhead [67], which will likely
reduce the overall performance of the system as managing a large number of concurrently
active threads imposes larger latency, context switching, cache misses, release jitter, and
complexities of implementation. This is because there is typically a maximum number
of threads T' that a given system can support, beyond which performance degradation
occurs. This phenomenon is demonstrated clearly in Figure 2.1 [72]. In the figure, it is
shown that as the number of concurrent threads T increases throughput increases until T

= T', after which the throughput of the system degrades substantially.

In the latter case, communication and synchronisation protocols inevitably required
for the safe use of shared data are extremely complex [62] and this introduces all the well-
known pitfalls of using threads such as blocking, priority inversion and deadlock regardless

of how well the application is designed.

2.1.2 Event-based Programming

The high resource usage, scalability limits and performance degradation of the thread-
based programming model [64, 72] have led many programmers to prefer the event-based
counterpart. Under this paradigm [6], typically each event has an associated handler.
When events occur, they are queued and one or more server threads take events from the
queue and serve their associated handlers. When a server has finished executing a handler,
it takes another event from the queue, executes the handler. This iteration of execution

lasts until the queue is exhausted. The order of the event queue in which events are placed
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upon firing can be vary, depending on the queue placement policy such as FIFO (First-In-
First-Out), priority-ordered (if the language supports the notion), deadline-ordered (if the
underlying platform allows deadline monitoring), etc. To enable effective schedulability
analysis for real-time systems, the event queue should be priority-ordered or deadline-
ordered. With this approach, fewer threads (one or more servers) is required in compar-
ison with the thread-based approach, reducing the overall memory usage and alleviating

the performance degradation issue, presented in Figure 2.1.

The event-based model can be characterised by the separation of events and the han-
dling of events. An event can be generated by sensor interactions with the physical envi-
ronment such as temperature exceeding a threshold or changes made in the surroundings.
It could also be internal to a system such as reading a certain sequence of bytes in a
data stream (e.g. a particular tag in a text file). Another fundamental difference between
the thread- and the event-based programming model is that in the case of event-based
programming the application typically controls itself (i.e. without much help from the
underlying operating system), while in the case of the thread-based programming model
additional features of the operating system or language primitives should be available to
apply safe synchronisation and communication among threads, otherwise programmers
have to provide their own synchronisation and communication protocols, which can be

complex and error-prone.

In recent years, the event-based approach has been widely considered as the best way
to write highly concurrent applications [6, 21, 49]. This is mainly due to its advantages
that address the issues associated with the thread-based programming model including

the following:

e Complexities of concurrency: It spares the complexities of concurrency [62] by elim-
inating complex and expensive synchronisation and communication protocols re-
quired for the thread-based programming if only one server thread is used; other-
wise the model unnecessarily forces the programmer to cope with latent data races,

priority inversion and deadlock.

e Error debugging: The convenience of using threads is not worth the errors they
encourage [64, 72], except for multiprocessor systems. Since systems would become
exponentially complex in proportion to its size, the synchronisation and communi-

cation errors, particularly potential deadlocks when the system is composed of many
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modules are extremely hard to debug.

e Complexities of implementation: Event handlers in the event-based programming
which are normally short-lived [49] and consist of relatively simple logic [6] make the

application design and implementation more manageable to maintain and extend.

e Performance: The throughput of a simple server using kernel-supported threads de-
grades rapidly as many concurrent threads are required [21, 72], which is undesirable
property, especially in real-time applications as they must gracefully handle overload

conditions at any point while running.

e Memory usage: The event-based approach introduces a lower overhead as fewer
stacks are required [49] as it only need allocate the relatively small amount of mem-

ory, not a whole thread stack [21] - this reduces overall memory usage.

The event-based model alleviates all the above critical problems associated with the
thread-based programming model. If the mapping of event handler to server thread is
under program control, it is possible to ensure there is no need for explicit communication

between handlers [6].

One of the most notable disadvantages of controlling all external objects by event
handlers is that it is difficult to have tight deadlines associated with event handlers. This
is because long-running (or blocking) handlers make application non-responsive, and may
even cause the handlers to miss their deadlines!. Also, the event-based approach cannot
fully take advantage of multiprocessor systems for performance [72] unless multiple server
threads are used. Furthermore, it is even difficult to extend the model on such systems
as the handlers typically assume that there is no contention for shared resources [6].
Although, the event-based programming does not suffer from unbounded priority inversion
by implementing a priority inheritance protocol, there still is a certain non-preemptible
time. If a single thread is used to serve all the event handlers of the system, the server
thread is essentially a shared resource for which event handlers are competing. Therefore, a
low priority event handler, that is currently running, may delay the execution of a higher

priority handler until it completes. If the low priority handler blocks (e.g. waiting for

1The consequence of a deadline miss will depend on whether the real-time system is soft or hard. A
real-time system is said to be soft if meeting its deadline is desirable for performance reasons, but missing
its deadline does not cause serious damage to the environment and does not jeopardise correct system
behaviour. On the other hand, a hard real-time system may cause catastrophic consequences on the

environment under control if it misses its deadline.
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I/0) the situation is even worse as the whole system will halt until the handler regain the
execution. In either case, the real-time application will suffer from the priority inversion
(although bounded if multiple server threads and a priority inheritance algorithm are
supported) and this clearly affects the application’s predictability and responsiveness. If
multiple server threads are used to handle events to alleviate the problem depicted above,
concurrency becomes an issue again as handlers should now assume that there may be
some contention for shared software resources between server threads [6]. The single and
multiple server approach to model the event-based programming model are revisited later

in Section 2.3.2.

2.1.3 Mixed Programming

In many real-time control applications, periodic activities (e.g. sensory data acquisition,
system monitoring, etc.) represent the major computational demand in the system [8]
and such activities need to be cyclically executed at specific rates within predetermined
deadlines, which can be derived from the application’s temporal requirements [6]. These
cyclic activities that generally form the main part of the application logic and are exe-
cuted throughout their lifetime are appropriate to be implemented using time-triggered
threads. On the other hand, the applications have to respond to certain unanticipated
events which occur at random instants of time from both the internal and external envi-
ronments to model parallelism with the real world [45]. These additional control logics
often arrive aperiodically or sporadically within known intervals. This should be done in
parallel with the main application functionality, forcing the application to handle them as
they occur, outside its main control algorithm. This instance in general illustrates why it
is not sufficient to support only one abstraction to provide the programmer with flexible
and efficient control over the possible activities in the system. By focusing on a single ab-
straction for concurrency, thread or event, traditional models for real-time and embedded
software may ignore a great deal of the richness and complexity that is present in actual

systems.

Comparison between the event-based and the thread-based programming model in
terms of structure, performance, logical soundness, elegance, and correctness is conducted
in [30], the duality of each model. It concludes that results which traditionally illustrate
deficiency or sufficiency of one programming model compared to the other are not borne

out by the natural supremacy or fundamental properties, but an artefact of the imple-
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mentations [64] and supporting facilities [72] (e.g. compilers). Also the decision regarding
which paradigm to use is application-specific [30] as different applications have different

requirements.

The event-based approach is useful for obtaining high concurrency [49], but when
building actual systems, threads are necessary in many cases for exploiting multi-tasking
parallelism and dealing with blocking I/O mechanisms [72]. The two approaches of concur-
rent programming actually represent each end of extreme cases for designing concurrency.
The design space for concurrency is not limited to these two approaches. Rather, there
is an optimal configuration between these two extremes according to the needs of the
system. For example, by limiting the number of concurrent threads running in the sys-
tem and buffers incoming tasks in a queue from which the threads feed, the queue will
absorb excess concurrency at run-time and thus the response time increases with load
but throughput will not degrade. Supporting only one model of concurrency, therefore,
will not be efficient or flexible to design highly concurrent real-time systems [6, 49] and
severely constrains the programmers [8]. As a consequence, it is conceivable that both
programming models should be supported in order to allow the programmer flexibility
and efficiency as benefits from both models such as high throughput, ease of facilitating

parallelism and programming can be achieved.

2.2 Asynchronous Event Handling Facilities

This section examines event handling facilities provided by high-level programming lan-
guages, middlewear, and distributed systems and investigates how they are implemented to
help the application’s predictable and efficient behaviour, in the context of the concurrent

programming models discussed in Section 2.1.

2.2.1 Event Handling in General

An event handler is typically an asynchronous callback that handles raised events. Each
event is a piece of application-level information from the underlying framework. The events
are created by the framework based on interpreting lower-level inputs, which may be lower-
level events themselves. The events initially originate from actions on the operating system
level, such as interrupts generated by hardware devices, software interrupt instructions,
or state changes in controlling external objects. On this level, interrupt handlers and

signal handlers correspond to event handlers. In general, fired (or raised) events are
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processed by an event dispatcher within the framework. It manages the associations
between events and event handlers, and may queue event handlers or events for later
processing. Event dispatchers may call event handlers directly, or wait for events to
be dequeued with information about the handler to be executed (i.e. priority). Each
framework provides a slightly different scheme for event handling. In this subsection some
of main stream programming languages are discussed in terms of their event handling

approach.

Java

The event handling mechanism used in the original version of Java (1.0) has changed sig-
nificantly in modern version of Java. In the old Java 1.0 approach, the inheritance-based
event model, an event was propagated sequentially up the containment hierarchy until
either it was handled by a component or the root of the hierarchy is reached. Although
the inheritance-based model works fine for small applications, it does not scale very well
for large programs. This is mainly because the model wasted CPU time as it required
components to receive events in which they are not interested. The modern approach to
handling events in Java is based on the delegation event model [54], which defined standard
and consistent mechanisms to generate and process events. Its concept is quite simple:
a source generates an event and sends it to one or more handlers (or listeners in Java).
The handler simply waits until it receives an event. Once an event is received, the han-
dler processes the event and then returns. The advantage of the model is firstly that the
application logic that processes the event is cleanly separated from the logic of the event
source that generates those events, and an event source is able to delegate the processing
of an event to a separate piece of code, achieving synchronisation decoupling between par-
ticipants?. Secondly, events are delivered only to components that are interested in the
events and therefore general performance (i.e. response-times) is much better (especially

in applications with many events or with high-frequency type events).

The delegation event model is comprehensively used for user-interfaces in Java (the
Abstract Window Toolkit and the Swing Toolkit). The following explains the general

framework to map the delegation event model to the Java API:

e Events: In Java, an event is an object that describes a state change in a source.

The classic example of such events is a graphical user interface that generates events

2For more information about the decoupling, see Section 2.2.4
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as a consequence of a user interacting with the elements of it. Java defines sev-
eral types of events, such as ActionEvent that is generated when a button pressed,
ComponentEvent that is generated when the size, position, or visibility of a compo-
nent is changed, KeyEvent that is generated when keyboard input occurs, and so
on. Events may also occur that are not directly caused by interactions with a user
interface. For example, an event may be generated when a timer expires, a software
or hardware failure occurs, or an operation is completed. It is also possible to define

events that are appropriate for a particular application.

e Event Sources: A source is an object that generates an event. This occurs when the
internal state of that object changes in some way. For example the event source,
Button, generates ActionEvent when the button is pressed. Sources may generate
more than one type of events and therefore all registered listeners are notified and
receive a copy of the event object, multicasting. An event source must register
handlers (listeners in Java) in order for the listeners to receive notifications about
the events generated by the associated event source. The general form of registration

method is as the following:

public void addTypelistener(TypeListner listener)

where Type is the name of the event, and listener is a reference to the event listener.
When such an event occurs, the registered listener is notified. This is known as
unicasting the event if it has only one registered listener. For a listener to unregister

an interest in a specific type of event, the following method is used:

public void removeTypelistener( TypelListner listener)

For example, to remove a keyboard listener, removeKeyListener is called.

e Event Listeners: A listener that is notified when an event occurs is also an object
(interface) in Java. It has two prerequisite requirements. First it must be registered
with one or more sources to receive notifications about specific types of events.
Second, it must implement methods to receive and execute the generated events as

listeners in Java are interfaces.

The event handling mechanism used by the Java Swing is also based on the delegation
event model. In Java, essentially all event handling is performed by a single thread [67],
called the event dispatch thread. Therefore handlers are queued in a FIFO manner when

associated events are fired and executed by the thread in turn. Therefore it uses the single
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server event-based programming model via the event dispatch thread. However in Swing,
application threads (background threads) can be constructed in the application via two
classes, SwingWorker and Timer, each of which has a associated thread. The SwingWorker
class can be used to perform time-consuming or blocking events or the Timer class to
perform periodic events in the background. Listing 2.1 illustrates the code fragment
that spawns a separate thread to execute the workload inside the construct method in
a SwingWorker object. If the classes are used, the mapping between the executionee (a

section of code to be executed) and the executioner (server thread) becomes 1:1.

SwingWorker worker = new SwingWorker () {
public void construct() {

// do something time—consuming or blocking here

}

worker . start ();

Listing 2.1: A Simple Usage of SwingWorker

C# & .Net Framework

Some mainstream programming languages do not contain any built-in support for multi-
threaded applications, such as C4++2, or provide asynchronous event handling facilities
by its own semantics and specifications, such as C#. Instead they rely entirely upon the
operating system (i.e. POSIX, presented in the following subsection) or the library of
pre-coded APIs, such as .NET Framework, to provide these absent features. The .NET
framework [11] is a software framework that includes a large library and a virtual machine
that manages the execution of programs, including the notion of threads and asynchrony.
It is also designed for cross-language compatibility and therefore supports many program-
ming languages. They includes Visual Basic, C++, C#, Java, Perl, Python, etc. For
example C# [10] is developed mainly to work with .NET Framework and continuously
evolves along with it. C# supports event-driven programming via events and delegates.
A delegate in C+# is similar to a function pointer in C or C++. Using a delegate allows
the programmer to encapsulate a reference to a method inside a delegate object. The
delegate object can then be passed to code which can call the reference method. Events
are declared using delegates in C# and an event is a way for a class to allow clients to give

delegates to methods that should be called (i.e. handlers) when the event occurs. When

3The new version of the C++ language standard, C+-+09 [3], is being developed at the time of writing
with several new features. The standard is not yet finalised, however it is highly possible that it will

support multi-threading library.
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events are fired, the delegate(s) given to it by its clients are invoked. In C+#, the execution

of the method (handler) is performed by the calling thread and is therefore synchronous.

Although the .NET Framework does not directly provide an asynchronous event han-
dling scheme, it recommends the structured way of presenting asynchronous behaviour for
classes, called the Event-Based Asynchronous Pattern. The pattern provides an effective
way to expose asynchronous behaviour with the event and delegate semantics in C#. The
pattern is typically referred to as an asynchronous method call. A class that supports the
event-based asynchronous pattern has one or more methods named MethodNameAsync.
These methods may mirror the synchronous counterparts (i.e. without the suffix - Async)
which perform the same operation on the current thread. The asynchronous version of
methods spawns a separate thread that executes the associated handler in the background.
The PictureBox class in .NET Framework is a typical component that support the pat-
tern. The application can download an image synchronously by calling its Load method
or asynchronously by calling Load’s asynchronous counterpart, LoadAsync method, which

perform the downloading on a separate thread in the background.

As mentioned earlier events handlers are executed synchronously in C#. However,
using the combination of events, delegates and the event-based asynchronous pattern, one
could achieve the asynchronous behaviour of event handling. Recall that a reference to
a method (handler) is encapsulated inside a delegate object which is called when an as-
sociated event occurs. By setting an asynchronous version of method to the associated
delegate it is possible to execute the method asynchronously. The relationship between
delegates and methods is many to many (therefore has a multicasting capability); a del-
egate object may refer to more than one method and a single method can be associated
with more than one delegate object. Delegates in C# are like function pointers and any
information required to handle events can be passed to the associated methods (handlers).
Like the delegation event model in Java, the modularity and the performance of the appli-
cation is increased by separating events from the the processing of an event to a separate
piece of code providing synchronisation decoupling. However the mapping between the
executionee (a section of code to be executed) and the executioner (server thread) is 1:1

using this approach.
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2.2.2 Real-Time Signals in POSIX Real-Time Extensions

POSIX (or Portable Operating System Interface) [31] is the collective name of related
standards specified by the IEEE to define the application programming interface (APT),
along with shell and utilities interfaces for software compatible with variants of the Unix
operating system, although the standard can apply to any operating system. POSIX
1003.1 defines the basic functions of a Unix operating system, including process manage-
ment, device and file system 1/O, and basic IPC (Inter-Process Communication) and time
services. Most of modern general-purpose operating systems support this standard. For
example most Linux distributions support it via the Linux Standard Base (LSB) [20]. The
real-time (1003.1b) and thread (1003.1c) extensions of POSIX 1003.1 define a subset of
POSIX interface functions that are particularly suitable for multi-threaded real-time ap-
plications. Specifically, POSIX 1003.1c extends 1003.1 to include the creation of threads
and management of their execution within a process. Real-time extensions defined by
1003.1b include prioritised scheduling, enhanced real-time signals, IPC primitives, high-
resolution timer, memory locking, synchronous I/0, asynchronous 1/O, and contiguous
files. Although there are other extensions to POSIX 1003.1 such as 1003.1d (additional
real-time extensions) and 1003.1j (advanced real-time extensions), the first two standards

(1003.1b and 1003.1¢) are most widely supported in many real-time operating systems.

POSIX Signals

Signals in POSIX are primarily used as a notification mechanism when an important
event has occurred in the system. Examples of such events are exception handling or
asynchronous interrupts. Signal delivery in POSIX is on per process basis. A process may
have one or more concurrently active threads inside. A process can signal another process
to synchronise and communicate. A process has a service function, called a signal handler.
When the system delivers a signal to the process, the signal handler is executed. Therefore

the signal mechanism provides asynchrony and immediacy, just as hardware interrupts do.

There is a number of pre-defined signals, each of which is allocated an integer value.
Most POSIX signals are used by the operating system; what they do is implementation-
defined by the system. There are also a number of implementation-defined signals for
application use. Each signal has a default handler, which usually terminates the receiv-
ing process. Example signals are: SIGBART for abnormal termination, SIGALRM for alarm

clock expiry, SIGKILL for illegal instruction exception, SIGTERM for terminating a process,
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Listing 2.2: An Interface to POSIX Signals in C
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SIGFPE for floating-point exception, and SIGPIPE for writing a pipe without readers (sig-
nals can also be identified by numbers and the correspondence between the number and
the symbolic name of each signal, that is given in the header file <signal.h>). Listing
2.2 [6] shows the specification of a C interface to the POSIX signal interface. There are
also signals which are to be used solely for application-defined purposes. An application-
defined signal (indicated by one of the numbers reserved for applications) is defined by
the function (i.e. the signal handler) which application sets up for the system to call back
when a signal with that number arrives. The action to be performed upon the occurrence
of a signal is specified by the data structure sigaction on the signal (i.e. sa handler
for a non real-time handler and sa_sigaction for a real-time handler). The information
provided by the data structure also includes a mask sa mask and a flag field sa_flag. A

signal handler can be set up using the function sigaction with other arguments of it.

Standard POSIX signals can be generated via the kill function. A process can also
request that a signal be sent to itself: when a timer expires (i.e. SIGALRM), when asyn-
chronous I/O completes, by the arrival of a message on an empty message queue, or by
using the C raise statement. POSIX maintains the set of signals that have been currently
masked by a process. The function sigprocmask is used to manipulate this set. The how
parameter is set to: SIG_BLOCK to add signals to the set, SIG_UNBLOCK to subtract signals
from the set, or SIG_MASK to replace the set. The other two parameters contain pointers to
the set of signals to be added/subtracted /replaced (set) and the returned value of the old
set (oset). Various functions (sigemptyset, sigfillset, sigaddset, sigdelset, and
sigismember) allow a set of signals to be manipulated. There are three ways in which a

process can deal with a signal based on the mask applied to the set:

e It can handle the signal by setting a function to be called whenever it occurs, which
is the default behaviour. The signum parameter in the sigaction function in List-
ing 2.2 indicates which signal to be handled, reaction is a pointer to a structure
containing information about the handler, and old_reaction points to informa-
tion about the previous handler*. The sa_handler member in the sigaction data
structure indicates the action associated with the signal and can be SIG_DFL (default

action, usually to terminate the process), SIG_IGN (ignore the signal), or a pointer

4Essentially, the information about a handler contains a pointer to the handler function (sa-handler
if the signal is a non-real-time signal, or sa_sigaction if the signal is a real-time one), the set of signals
to be masked during the handler’s execution (sa_mask), and whether the signal is to be queued (indicated

by setting sa_flags to the symbolic constant SA_SIGINFO).
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to a function (the code that gets executed when the signal is delivered).

e It can ignore the signal altogether (in which case the signal is simply lost) except
those used by the system to stop and destroy an errant process (e.g. SIGKILL).
This can be achieved by setting the value of sa_handler to SIG_IGN in a call to the

function sigaction.

e It can block the signal and either handle it later or accept it. Just as it is necessary
to be able to disable interrupts, it is essential that signals can be selectively blocked
from delivery. When a signal is blocked by adding the value of the signal to block to
the set, it remains pending until it is unblocked (i.e. removing its number from the
signal mask) or accepted. A signal is said to be accepted by a process (or thread)
when the signal is selected and returned by one of the sigwait functions. When it

is unblocked, it is delivered.

Essentially signal delivery is on per process basis, hence if a process ignores a signal, all
threads in the process do as well. However each thread has its own signal mask. Therefore,
threads in a process can choose to block or unblock signals independent of other threads.
Some signals are intended for the entire process. Such signals, if not ignored, are delivered
to any thread that is in the process and does not block the signal. A signal is blocked only

when all threads in the process block it.

POSIX Real-Time Signals

POSIX real-time extensions [31] extend the standard POSIX signals and the traditional
Unix signals to make the mechanism more responsive and reliable. The following lists the

improvements of the POSIX real-time signal [6, 45]:

e There are at least 8 application-defined real-time signals versus only two provided
by the standard POSIX. These signals are numbered from SIGRTMIN, the identifier
of the first signal, to SIGRTMAX, the identifier of the last signal. Only those signals

whose numbers lie between the two are considered to be real-time by POSIX.

e Real-time signals, whose value lie between SIGRTMIN and SIGRTMAX, can be queued,
while traditional Unix signals cannot. Queuing is a per signal option; one chooses
the queuing option for a real-time signal by setting SA_SIGINFO in the sa_flags field
of the sigaction structure of the signal. If not queued, a signal that is delivered
while being blocked may be lost. Hence, queuing ensures the reliable delivery of

signals.
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e Real-time signals can carry more data via a pointer to the siginfor_t structure
while a traditional signal has only one parameter: the number of the signal. The
additional structure contains the signal number, a code which indicates the cause
of the signal (for example, a timer signal) and an integer or pointer value. This
capability increases the communication bandwidth of the signal mechanism. As an
example, a server can use this mechanism to notify a client of the completion of a

requested service and pass the result back to the client at the same time.

e Real-time signals can be delivered in a priority-ordered manner: The smaller the
signal number, the higher the priority (i.e. SIGRTMIN is delivered before SIGRTMIN

+ 1 and so on).

e Real-time extensions provide a new and more responsive synchronous signal-wait
function called sigwaitinfo. The function suspends the calling process until the
signal arrives. To use this function, the signal must be blocked, and thus the han-
dler is not called when it is delivered. Instead, the function returns the selected
signal number and stores the information about the delivered signal in the info
argument. The function sigtimedwait has the same semantics as sigwaitinfo,
but allows a timeout to be specified for the suspension. If no signals are delivered
by the timeout, sigtimedwait returns -1 and errno set to EAGAIN. In contrast,
the POSIX synchronous signal-wait function sigsuspend remains blocked until the

signal handler executes.

Implementation of POSIX Real-Time Signals

The original POSIX signal model came from Unix and was extended to make it more
appropriate for real-time when the real-time extensions to POSIX were specified. With the
POSIX Thread Extensions, where the execution entities are threads instead of processes,
the model has become more complex and is a compromise between a per process model
and a per thread model. The complexity stems from selecting the target thread of a
signal. For single-threaded processes, the model determining the target process of a signal
is quite simple and straightforward, but for multi-threaded processes the implementation
of the model is undefined by POSIX. For example if more than one thread is eligible to
have a signal delivered to them, it is not defined which thread is chosen. Of course this
can be avoided if a programmer makes sure that only one thread is eligible for a specific
signal. However this will make the application much less flexible. In [15], the notion

of signal owner is proposed to eliminate the indeterminism associated multi-threaded
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processes when implementing the POSIX real-time signal. The signal owner is defined as
the thread that installed the signal handler last, or that made a call to any of sigwait
related functions last. Therefore determining the receiving thread with the signal owner
model is straightforward and reduces the overhead of checking every thread’s signal mask
to find the suitable thread to deliver the signal. However the following points should be

noted [6] when implementing or using the POSIX real-time signal:

e Signals generated as a result of a synchronous error condition, such as memory
violation and erroneous arithmetic operation, are delivered only to the thread that

caused the signal.

e Other signals may be sent to the process as a whole; however, each one is only

delivered to a single thread in the process.
e The sigaction function sets the handler for all threads in the process.

e The function kill and sigqueue can be applied to both processes and threads. A

new function pthread kill allows a process to send a signal to an individual thread.

e If the action specified by a handler for the signal is for termination, the whole process

is terminated, not just the receiving thread.

e Signals can be blocked on a per thread basis using a function pthread_sigmask
which has the same set of parameters as sigprocmask. The use of the function

sigprocmask is not specified for a multi-threaded process.

e The functions sigsuspend, sigwaitinfo or sigtimedwait operate on the calling

thread not the calling process.

e A new function sigwait allows a thread to wait for one of several blocked signals to
occur. It behaves the same as sigwaitinfo except that the information associated
with the signal is not returned. The signals are specified in the location referenced as
a parameter. The function returns zero when a successful wait has been performed
and the location referenced by sig contains the received signal. If more than one

real-time signal is pending, the one with the lowest value is chosen.

e If a signal action is set by a thread to ‘ignore’, it is unspecified whether the signal is

discarded immediately after it is generated or remains pending.

Although there are some ambiguity in the implementation of POSIX real-time sig-

nals as the above, the mapping between signal handlers and their execution entities (i.e.
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threads) is 1:1. In other words, a signal handler will always be executed by one of threads
that has installed the handler with the relevant signal of the handler in which the thread
is interested. If there is no threads to handle a delivered signal (i.e. all threads block
delivery of the signal), the signal remains pending until a thread unblocks the signal. This

greatly reduces the complexity of implementation due to the following two criteria:

e Dynamic mapping between signal handlers and threads are not required (as it is, to
some extent, static - threads register signals in which they are interested and signals

are delivered to the threads that registered the signals only),

e Priority changes of server threads can be bypassed if handlers are assigned to server

threads at the same priority level, and

e Run-time threads creation to execute signal handlers is avoided (even if there is no

threads to handle a signal).

2.2.3 Ada 2005

Ada [59] is object-oriented, real-time programming language that is intended for used
in large, long-lived applications where reliability and efficiency are essential, particularly
real-time and embedded systems. It is also the only ISO standard programming language
and has been continuously evolved from its inception (Ada 83, Ada 95, and the current
version Ada 2005). Unlike the first version of the language, Ada 83, which defined a single
language, the Ada 95 and 2005 definitions have a core language design plus a number of
domain-specific annexes, which include systems programming and real-time programming.
Ada 2005 adds further improvements to Annex D: Real-Time Systems Annex [59] by the
addition of advanced paradigms for scheduling and timing. Particularly it enables the
development of real-time programs with predictable behaviour. The core Ada language
says little about scheduling and priorities and hence, for example, entry queues® have
to be serviced in order of arrival. However the real-time systems annex defines various
scheduling policies in terms of priorities (i.e. EDF and Round Robin within priorities),
which gives more predictable behaviour and enables schedulability analysis. Note that to
conform to the real-time systems annex, an implementation must also conform to the sys-
tems programming annex which covers access to machine code, interrupt handling, some

extra requirements on representations and preelaboration, a pragma for discarding names

5The keyword Entry in the Ada language is used as a rendezvous mechanism among tasks and an entry
queue denotes the data structure that lists waiting tasks (or clients). If the Ada implementation does not

support the real-time annex, the order of the queue is FIFO.
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at run time, the pragmas for shared variables and packages for general task identification,

per task attributes and the detection of task termination.

Events and event handling are newly introduced features in Ada 2005 for the real-
time systems annex and the event handling facilities work essentially with timers (i.e. an
event is triggered by the passage of time, not by an action and such external and internal
actions must be handled by other means such as interrupts or asynchronous transfer of
control). There are four types of implicit and explicit events: Two are concerned with
monitoring the CPU time of tasks (The Timers package applies to a single task and the
Group_Budgets package to groups of tasks). The Task_Termination package is linked to a
termination of a task. The Timing Event package represents timers that measure real time
and are used to trigger events at specific real times. Although there are some differences
between these events due to their particular application context, they all essentially have

the same behaviour.

package Ada.Real_Time.Timing_Events is
type Timing_Event is tagged limited private;

type Timing_Event_Handler is access protected procedure

(Event : in out Timing_Event);
procedure Set_Handler (Event : in out Timing_Event;
At_Time : in Time;
Handler : in Timing_Event_Handler);
procedure Set_Handler (Event : in out Timing_Event;
In_-Time : in Time_Span;
Handler : in Timing_Event_Handler);

function Current_Handler (Event : Timing_Event)
return Timing_Event_Handler;
procedure Cancel_Handler (Event : in out Timing_Event;
Cancelled : out Boolean);
function Time_Of_Event (Event : Timing_Event) return Time;
private

. — not specified by the language

end Ada.Real_-Time.Timing_-Events;

Listing 2.3: The Ada.Real_Time.Timing Events Package Specification

Timing Events

Timing events are supported by a child package of Ada.Real _Time as illustrated in Listing
2.3. Timing Event represents a time in the future when an event to occur and is a
tagged limited private type. The event type being tagged indicates that values of
the type carry a tag at run time (polymorphism via dynamic dispatching operations or

late binding - deciding which procedure to dispatch at run time based on the parameter
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passed in) and that the type can be extended (inheritance). The keyword limited type
means that only those subprograms defined in the same package can be applied to the
type. The type Timing Event _Handler identifies a protected procedure to be executed
by the implementation when the timing event occurs and therefore is an access to the
protected procedure with the timing event itself being passed back to the handler when
the event is triggered. The event is said to be set if it is associated with a handler and
cleared otherwise. Two Set_Handler procedures are defined, one using absolute time, the
other relative; both use the clock within package Ada.Real _Time as the reference clock. A
call of Set_Handler for an event that is already set replaces the handler and the time of
execution. The function Current _Handler returns the handler associated with the event
if it is set or null otherwise. Cancel Handler clears the event if it is set and this can
also be achieved by calling Set_Handler with passing a null event. Hence the relationship
between handler and event is 1:1. The function Time_of _Event returns the time of the
event. As soon as possible after the time set for the event, the handler is executed, passing
the event as parameter. The handler is executed only if the timing event is in the set state
at the time of execution and this clears the event (i.e. it will not be triggered again unless

it is reset).

Implementation of Timing Events

The Ada 2005 Reference Manual (ARM) [59] recommends that the handler procedure
should be executed directly by the real-time clock interrupt mechanism (i.e. interrupt
handler of the reference clock). This is the most effective way for an implementation to
support timing events as the clock interrupt handler typically runs at the highest priority in
the system [7] and is executed directly by the system. Therefore the protected object that
embodies the handler procedure must have a ceiling of the highest interrupt priority (i.e.
Interrupt_Priority’Last which denotes the last interrupt priority value in the scalar
type Interrupt Priority). The framework for event handling in Ada 2005 provides a
lightweight facility for reacting to the arrival of a point in time and therefore avoids the
concurrency-related overhead. Again as for the POSIX real-time signals, this single server
thread approach greatly reduces the complexity of implementation due to the following

two criteria:

e Dynamic mapping between handlers and threads are not required (as they are typi-
cally executed by the system with the highest interrupt priority and hence no priority

change is required),
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e Run-time threads creation to execute handlers is avoided.

2.2.4 Event Handling in Distributed Systems

As the cost of microprocessors and communication technology has continually decreased
in real terms, distributed computer systems become a viable alternative to uniprocessor
and centralised systems in many embedded application area for reasons of reliability and
performance [6, 40]. Distributed system can be defined to be a system of multiple au-
tonomous processing elements cooperating in a common purpose or to achieve a common
goal. These autonomous processing elements are in general physically dispersed. In such
systems, events play a major role for exchanging information to facilitate communication
among these physically dispersed elements in the system. To effectively control the envi-

ronment, their communication must be efficient and reliable.

Recent trends towards server/client applications and open distributed systems are re-
sulting in an increasing number of middleware® products as object-oriented technology
has become very popular. The concept of a middleware was first introduced to facilitate
communication between entities in a heterogeneous distributed computing environment.
As one of the main responsibilities of a middleware is to manage the communication of
distributed components in the system; it can often be classified according to its commu-

nication model as follows [19]:

e Synchronous communication model: message passing, remote procedure calls (RPC),

notifications (or observer design pattern) (i.e. used in CORBA)

e Asynchronous communication model: tuple spaces, message queuing, publish/sub-

scribe (i.e. used in Real-Time Publish/Subscribe model)

The synchrony/asynchrony used to distinguish the communication models above is
based on synchronisation decoupling. That is producers are not blocked while producing
events, and consumers can be asynchronously notified of the occurrence of an event while
performing some concurrent activity. The production and consumption of messages do not
happen in the main flow of control of the producers and consumers, and do not therefore

happen in a synchronous manner. Space and time decoupling should also be taken into

6Large scale open distributed systems are generally build on top of a set of distribution mechanisms
packaged into a layer known as middleware and this technique, isolating the application from platform
specific differences both hardware and software and providing facilities to hide the undesirable aspects of

distribution, is often called distribution transparency.
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account in order for the distributed system to be more efficient and hence scalable. Space
decoupling indicates that the interacting parties do not know each other. The produc-
ers publish events through an event service and the consumers get the events indirectly
through the event service. The producers and consumers, therefore, do not hold refer-
ences to each other. Time decoupling shows that the interaction between producers and
consumers do not need to be actively participating in the interaction at the same time.
In particular the producer may publish events while the consumers are disconnected, and
conversely, the consumer might get notified about the occurrence of the events, for ex-
ample, while the producer of the events is disconnected. Decoupling of the above three
criteria removes all explicit dependencies between the interacting participants. This de-
coupling enable the resulting communication application to be well adapted to distributed
environments that are asynchronous. This should be noted that event handling approaches
presented in this section represents a higher level of abstraction for communication between
distributed entities. This differs from event handling approaches in centralised systems dis-
cussed in the previous section, although there are some similarities (e.g. their classification
is based on the synchronisation decoupling). However delivered messages or events must
be handled using a certain event handling approach in the receiver’s perspective. In this
section, therefore, communication models used in some well-known distributed systems
are presented first and then an exemplary event handling implementation for distributed

systems with respect to its dispatching scheme is discussed in the last sub-section.

Common Object Request Broker Architecture (CORBA) Event Service

As a CORBA extension, the CORBA Event Service [25] is introduced to alleviate some of
restrictions placed on the standard CORBA'’s synchronous request /replay communication
model. The communication model used in the standard CORBA is remote procedure
(or method) calls and therefore by its nature introduces a strong time, synchronisation,
and space coupling. The CORBA Event Service defines sets of interfaces and modules
to support asynchronous event delivery and many-to-many message delivery. The new
CORBA architecture is centred around the concept of an event channel, which allows
multiple suppliers to communicate with multiple consumers asynchronously in a decoupled
way. Event channels are implemented using standard CORBA objects and communication
with an event channel for consumers and suppliers is accomplished using either the push
and pull models of the communication. As their names imply, the push model allows an
active supplier to push an event to a passive push consumer and in the pull model, a

passive supplier waits for an active pull consumer to pull an event from it. As suppliers
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and consumers are decoupled by an event channel, the push and pull models can be mixed
in a single system. The CORBA Notification Service Specification [26] extends the Event
Service to provide new capabilities for flexible and accurate event delivery (event filtering
and QoS). The asynchronous communication of the Event Service is implemented on top
of CORBA’s standard synchronous method invocation and thus the substantial overhead
of performing a remote method invocation is incurred for every event communication.
The Notification Service suffers from the same problems as the Event Service in order to
maintain backwards compatibility. The architecture of an event channel implementation

is discussed in more detail later in this chapter.

CORBA Real-Time Specification

The standard CORBA lacks in the desirable features for developing real-time applications,
such as priority-based real-time event dispatching and scheduling, periodic event process-
ing, centralised event filtering, and correlations. The CORBA Real-Time Specification
[24], or RT-CORBA, extends the standard CORBA to support the quality of service re-
quirements and end-to-end predictability. The RT-CORBA 1.0 standard is designed for
fixed priority scheduling and RT-CORBA 2.0 targets dynamic scheduling. It provides
distributable threads as a first-class abstraction to achieve the real-time requirements. A
distributable thread can extend and retract its locus of execution points among opera-
tions in object instances across physical components by location independent invocations
and (optionally) returns. Within each node, the flow of control is equivalent to normal
local thread execution. Distributable thread-based programming models imply the need
for a number of supporting facilities; thread control actions (e.g. suspend, resume, abort,
time constraint change, etc.) and mechanisms that may have to be provided to support
maintaining correctness of distributed execution, and consistency of distributed data. All
of these facilities generally would be required in order for the system to be timely (e.g.
subject to completion time constraints). These supporting facilities, however, are not ad-
dressed in the RT-CORBA specification. It still uses the CORBA Event Service as its

primary communication model that is synchronous.

Distributed Real-Time Specification for Java

The development of the RT'SJ has spurred on the interest for a distributed real-time Java
platform, resulting in extending the RTSJ [5] in a familiar way for Java programmers to
distributed real-time systems by enhancing the Java RMI to support application-specific

predictability of end-to-end timeliness for distributed applications. This work is under
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progress as Java Specification Request 50 (JSR-50) [23] and is called Distributed Real-Time
Specification for Java, or DRTSJ. As Java is a well-constructed multi-threaded language,
the DRTSJ also adapts the notion of distributable threads as the RT-CORBA does and
use them as a basic building blocks for execution and communication in the distributed
environment. It however treats asynchronous event handling as a concomitant facility and
hence, it has to be provided by some other means, such as vendor-specific added value
class libraries. The RTSJ’s asynchronous event handling, that is presented in Section
2.3, will be maintained solely for the local, not distributed, implementations of scheduling
framework primitives as the DRTSJ Expert Group have not yet made any commitment

about their appearance of distributed extensions in the DRTSJ [1].

Real-Time Publish/Subscribe Model

Although RT-CORBA enhanced capability to support asynchronous and many-to-many
communication model, it is realised by building on top of their existing communication
service that only support synchronous request/reply communication model. This syn-
chronous execution of an operation results in higher overhead imposed on the enhanced
communication service. The Real-Time Publish/Subscribe model proposed in [51] follows
the pure asynchronous many-to-many communication paradigm. This model attempts
to address some of the issues associated with synchronous request/replay communica-
tion model in addition to the need to maintain analysability, scalability and efficiency for
real-time purposes. It associates logical handles, also called distribution tag describing
the subscription of a message, to each message type. Messages can be generated and
received based only on the logical handles regardless of their source(s) or destination(s).
Consumers can subscribe to and receive all messages published with that logical handle.
Therefore, publishers and subscribers need not know each other. However, it also provides
information about source/destination of the message on a certain message type if needed.
Each distributed node has its own daemon consisting of three threads; Local manager,
Update manager, and Delivery manager. These managers are prioritised, giving the high-
est priority to the manager that deals with routing the messages. However, the messages
themselves are not prioritised and hence they are arrived and processed in a FIFO manner.
The Object Management Group recently released the Data Distribution Service Specifi-
cation for Real-Time Systems (or DDS) [27], based on the real-time Publish/Subscribe
communication model. The specification is developed with the needs of real-time systems
in mind and uses the Publish/Subscribe model comprehensively to achieve asynchrony (i.e.

data filtering is done in both topic- and content-based and data exchanging is managed
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Abstraction Space decoupling | Time decoupling | Synchronisation decoupling
Message Passing No No Producer-side
Remote Procedure Calls No No Producer-side
Notifications No No Yes
Tuple Spaces Yes Yes Producer-side
Message Queuing Yes Yes Producer-side
Publish/Subscribe Yes Yes Yes

Table 2.1: Decoupleness of Communication Models

by Global Data Space which act as a event channel in the RT-CORBA). It also defines a
extensive list of QoS parameters, via the QoSPolicy class, that allows the application to

finely tune the resources used by the system and ensures predictable behaviour.

Implementation of Centralised vs Distributed Systems

As discussed earlier, event handling in distributed systems is quite different from that in
uniprocessor and centralised systems. It requires additional functionalities to deal with
the loosely coupled and heterogeneous nature of distributed systems. The communication
paradigm provides an abstraction that describes how remote applications (or objects) can
communicate with one another in the distributed environment. The communication mod-
els are generally classified based on the level of asynchrony (or decoupleness) they provide.
They include message passing, remote procedure calls, notifications, shared spaces, mes-
sage queuing, and publish/subscribe. In [19] these communication models are compared
based on the level of decoupling, presented in Table 2.1. By nature, synchronous commu-
nication models introduce a strong time, synchronisation (on the consumer side), and also
space coupling. As a result, they produce higher latency of remote calls and larger failure
rate of event delivery than that of small distributed systems. Only the publish/subscribe
model provides full decoupling of both sides, producers and consumers, to enable the dis-

tributed system to be more scalable and flexible.

As a part of the TAO research project [56] conducted in Washington University, an
implementation of the Real-Time CORBA 1.0 and 2.0 along with a Real-Time CORBA
Event Service [28, 41, 57] has been developed and used in a wide range of distributed
real-time systems. The scheduling schemes in TAO are performed with a standard thread

pool model. Threads (i.e. distributable) are schedulable entities in the RT-CORBA and
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Figure 2.2: RT-CORBA Event Channel Dispatching

can be prioritised. Server applications can specify the default number of static threads,
maximum number of threads, and the default priority of all these threads. If an event
arrives and all existing threads are busy, a new thread may be created to handle the event
unless the maximum number of threads in the pool have been reached. Furthermore,
buffering can be enabled using priority queues at transient overload situations in order for
the event to be queued until a thread is available to process it. As shown in Figure 2.2,
the dispatching module of pending events is decoupled with the run-time scheduler for
allowing scheduling policies to evolve independently of the dispatching mechanism which
is fully priority-based preemptive. The run-time scheduler determines two priority values
of the events, a preemption priority and a sub-priority, according to the specific scheduling
policy defined by the event channel. The preemption priority is used to insert the event
onto the queue and the sub-priority is used by the dispatcher to determine where to put
the event in the priority queue. The dispatcher in Figure 2.2 is responsible for forwarding
the events to consumers by calling the push operation (i.e. depending on the priority of
the consumer for which the events are destined). This strategy ensures the consumers
execute in time to meet their deadlines. TAO’s Event Channel Dispatching Module also
supports other levels of concurrency models when dispatching events (i.e. single-threaded

priority-based dispatching).
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Figure 2.3: AEH Facilities in the RT'SJ

Although the RT-CORBA provides comprehensive specifications to implement scal-
able and flexible middleware, it leaves the mapping between objects (i.e. messages and
events) and execution entities (i.e. threads) as a quality of implementation issue. For
example TAO adapts a standard thread pool model as its events dispatching module, us-
ing Leader/Followers [55] concurrency design pattern, which essentially assigns a single
thread (a dispatcher) to an arrived event (i.e. a dynamic 1:1 mapping)”. Other implemen-
tations of distributed communication models take the similar approach as the TAO’s ORB
Core module. When distributable threads are used, the implementation of the mapping
becomes simpler as a reply/request communication is executed by a single distributable
thread across distributed nodes. However the distributable thread also has to be mapped
to and executed by a local thread. The mapping between the distributable and the local
threads becomes an issue again. However it is widely accepted and secure practice to map

the two entities 1:1 to alleviate concurrency related problems [28].
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2.3 Asynchronous Event Handling in the Real-Time Specification
for Java

Figure 2.3 illustrates the classes and interface in the RTSJ related to asynchronous event
handling. There are two types of schedulable objects that implement the Schedulable
interface: the AsyncEventHandler and the RealtimeThread class. Schedulable objects
in the RTSJ is the generalised form of entities that can be scheduled. Each schedulable
object may have a set of parameters that control their actual execution. The set of
parameters specifies timing, scheduling, memory, and thread group requirements for its
associated instance via Release, Scheduling, Memory, and ProcessingGroupParameters,

respectively.

e The ReleaseParameters class is a base abstract class of periodic, sporadic and
aperiodic release parameters. It characterises how often a schedulable object is
released and gives the general timing parameters that all schedulable objects require.
The timing parameters include an estimate of the worst-case execution time (cost)
and deadline, along with handlers for their cost overrun (optional in the RTSJ) and
deadline miss. A null handler can also be set to indicate that it is not concerned

with a missed deadline or a cost overrun.

e The SchedulingParameters class is a null abstract class in order to be fully exten-
sible [67] and there are two subclasses of it defined by the RTSJ, priority parameters
and importance parameters. The RTSJ requires its implementations to support at
least 28 unique real-time priority levels. The importance parameters are not used
by the RTSJ default priority-based scheduler which uses the priority parameters
only. However the importance parameters can be used, for example, to inform the
scheduler which schedulables are more critical when the system enters into a tran-
sient overload situation. Note that the importance parameters is used to denote
the notion of preemption threshold of a handler to apply fixed priority preemptive
scheduling with preemption threshold to AEH, which is presented in Section 5.3.

e The MemoryParameters class provides the maximum amount of memory used by

the object in its default memory area and in immortal memory®, and the maximum

"For more information about the Leader /Followers design pattern, see Section 3.1.4.
8The RTSJ provides two alternative to using the heap memory area. One is immortal memory which

can never be automatically reclaimed and hence can avoid the interference from the garbage collector.

The other is scoped memory which have a well-defined lifetime. Schedulable objects may enter and leave a
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allocation rate of heap memory. When a schedulable object which has memory
parameters exceeds its allocation or allocation rate limit, the error is handled as if
the allocation failed because of insufficient memory. The object allocation throws

an OutOfMemoryError.

e The ProcessingGroupParameters class allows a set of schedulables to be treated as
a group and to have an associated period, cost and deadline. Therefore it is mainly
used to bound aperiodic schedulables’ impact on the overall schedulability of the

system by implementing an aperiodic server technique [71].

RealtimeThreads and AsyncEventHandlers are both Schedulable objects in the
RTSJ in order to provide a framework from within which on-line feasibility analysis of
priority based systems can be performed for uniprocessor systems. However their detailed
semantics, usage, and design goals are different. In this section, the RTSJ event handling
facilities is discussed in detail. The basic event model is presented first, followed by a

priority-based implementation of asynchronous event handling.

2.3.1 The Basic Model

public class AsyncEvent {
/* constructor x/
public AsyncEvent();
/* methods */
public void addHandler(AsyncEventHandler handler);
public void removeHandler(AsyncEventHandler handler);
public void setHandler(AsyncEventHandler handler);
public void fire ();
public boolean handledBy(AsyncEventHandler handler);
public void bindTo(String happening);
public void unbindTo(String happening);

public ReleaseParameters createReleaseParameters();

Listing 2.4: The AsyncEvent Class

The RTSJ provides three essential classes to facilitate asynchronous event handling. They
are AsyncEvent (AE or event), AsyncEventHandler (ASEH or handler), and BoundAsync-
EventHandler (BASEH or bound handler). The AsyncEvent class is given in Listing 2.4.

The addHandler and removeHandler methods add and remove a handler to the set of

scoped memory area and when there are no schedulables active inside a scoped memory area, the allocated
memory is automatically reclaimed. When a schedulabe object is created, its initial memory area can be

set via MemoryArea in Figure 2.3.
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handlers associated with the event, respectively. Therefore an event can have more than
one associated handler. On the other hand, the setHandler method associates a new
handler with the event and remove all existing handlers. The fire method fires the
instance of AsyncEvent. When the method is called, the fireCounts of the associated
handlers are incremented and all attached handlers are released. The execution of first
three methods, addHandler, removeHandler, and setHandler is atomic with respect to
the execution of the fire method. That is handlers cannot be added, removed, or set while
the event is releasing the current set of associated handlers. The bindTo/unbindTo method
binds/unbinds the instance of AsyncEvent to an external event, a happening. The values of
happening are implementation-defined. An instance of AsyncEvent is considered to have
occurred (or fired) whenever the happening is triggered. The createReleaseParameters
method returns the release parameters associated with this event. The information can

then be used to fill in the parts of the release parameters of associated handlers (e.g. cost).

public class AsyncEventHandler implements Schedulable {

/* Constructors x/

public AsyncEventHandler ();

public AsyncEventHandler(boolean nonheap);

public AsyncEventHandler(boolean nonheap, Runnable logic);
public AsyncEventHandler(Runnable logic);
public AsyncEventHandler(SchedulingParameters scheduling ,
ReleaseParameters release ,
MemoryParameters memory,
MemoryArea area,
ProcessingGroupParameters group,

boolean nonheap);
other constructors are also available

/* AEH Methods */

/* 1. Schedulable interface methods */

public boolean addIfFeasibility ();

public boolean addToFeasibility ();

public boolean removeFromFeasibility ();

public boolean setlfFeasible(ReleaseParameters release ,

MemoryParameters memory);
other setlfFeasible methods are available

public boolean setSchedulingParametersifFeasible(
SchedulingParameters scheduling);
public boolean setReleaseParametersIifFeasible (
ReleaseParameters release);
public boolean setMemoryParameters|fFeasible (

MemoryParameters memory );

public boolean setProcessingGroupParametersIfFeasible(
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ProcessingGroupParameters group);
public MemoryArea getMemoryArea ();
public MemoryParameters getMemoryParameters ();
public ProcessingGroupParameters getProcessingGroupParameters ();
public ReleaseParameters getReleaseParameters ();
public Scheduler getScheduler();
public SchedulingParameters getSchedulingParameters ();
public void setMemoryParameters(MemoryParameters memory);
public void setProcessingGroupParameters(
ProcessingGroupParameters group);
public void setReleaseParameters(ReleaseParameters release);

public void setScheduler(Scheduler scheduler);

other setScheduler methods are available

/* 2. Daemon status mutator & accessor methods x/
public final boolean isDaemon ();

public final void setDaemon(boolean on);

/* 3. Event handling methods x/

protected int getPendingFireCount ();

protected int getAndClearPendingFireCount();
protected int getAndDecrementPendingFireCount();
protected int getAndlncrementPendingFireCount ();
public void handleAsyncEvent ();

public final void run();

Listing 2.5: The AsyncEventHandler Class

An AsyncEventHandler is a schedulable object encapsulating code that is released
for execution in response to the occurrence of an associated event. Each handler behaves as
if it is executed by a RealtimeThread or NoHeapRealtimeThread. There is not necessarily
a separate real-time thread for each handler, but the server real-time thread (returned by
currentRealtimeThread) remains constant during each execution of the run method. The
AsyncEventHandler class is alleviated in Listing 2.5. It has several constructors that allow
the passing of various parameter classes associated with a schedulable object (scheduling,
release, memory, processing group, and memory area parameters as discussed earlier)
along with the optional Runnable object. By setting the nonheap boolean parameter to
true the handler may not access the default heap memory. Application-defined handlers
can be created either by subclassing the base class and overriding the handleAsyncEvent
method or by passing a runnable object to one of the constructors. The methods in the

AsyncEventHandler class can be divided into three categories as follows (See Listing 2.5):

1. Schedulable interface methods which needed to support the schedulable interface,
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including the accessor and mutator methods of various parameters related to a

schedulable object. They are self-explanatory.

2. Daemon status mutator and accessor methods which are used to query and to allow

a handler to set/unset its daemon status, respectively.

3. Event handling methods that allows the programmer to create an application de-
fined handler by subclassing the class and overriding the handleAsyncEvent and
to manipulate the count of a handler. Note that, as metioned earlier, each handler
has a count which is called fireCount of the number of outstanding occurrences.
When an event occurs, the count is atomically incremented by one for each occur-
rence. The attached handlers are then released for execution under the condition
that any minimum inter-arrival time constraint has been obeyed for sporadic han-
dlers. fireCount is designed to remedy overload problems when handlers are being
heavily used (i.e. event bursts - handlers that release before their previous releases
have not been completed). In such cases, the fire count allows the currently associate
server thread to continue the execution associated with the new release as soon as the
old releases have finished. Therefore by correctly implementing and using the con-
cept of fireCount, the associated overheads such as starting and stopping the server
thread in which a handler run can be avoided. It is also possible to use fireCount
aggressively by calling the protected accessor methods in the AsyncEventHandler
class. Listing 2.6 demonstrates an aggressive approach to the use of fireCount.
The handleAsyncEvent method in the AsyncEventHandler class is executed once
and ignores all the event firings occurred between the first firing of the event and
the call to the getAndClearPendingFireCount method. This is useful and efficient
when it is sufficient to handle once for any number of the outstanding fire count.
The run method is the one that will be called by its server thread when the handler
is released. The method is final and therefore cannot be overridden. Therefore the
run method of a handler will invoke its corresponding handleAsyncEvent method or
the run method of the runnable parameter, repeatedly while the fire count is greater

than zero.

As presented in Figure 2.3, the BoundAsyncEventHandler class extends AsyncEvent-
Handler and most importantly has a dedicated server real-time thread (a server thread

can be associated with only one bound handler for the lifetime of that handler)®. They

9FEach BoundAsyncEventHandler has a dedicated real-time thread. The real-time thread can be

implementation-dependent (i.e. kernel thread) or an instance of the RealtimeThread class.
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// Aggressive approach to the use of fireCount
class AggressiveHandler extends AsyncEventHandler {
public void handleAsyncEvent {
// Do application—specific event handling here
getAndClearPendingFireCount ();

Listing 2.6: The Usage of fireCount in the RTSJ

package javax.realtime;
public class BoundAsyncEventHandler extends AsyncEventHandler {
/* constructors x*/
public BoundAsyncEventHandler ();
public BoundAsyncEventHandler(SchedulingParameters scheduling ,
ReleaseParameters release ,
MemoryParameters memory,
MemoryArea area ,
ProcessingGroupParameters group,
boolean nonheap,

Runnable logic);

Listing 2.7: The BoundAsyncEventHandler Class

are for use in situations where the added timeliness is worth the overhead of dedicating an
individual real-time thread to each handler. The BoundAsyncEventHandler class is given

in Listing 2.7.

In the RTSJ, happenings are referred to as external events and the software to handle
happenings is contained in the classes AsyncEvent and AsyncEventHandler. The RTSJ
specifies a three-layer mechanism for binding an external happening to an asynchronous

event handler [16]:

e Interface layer: External happenings are platform-specific and are informed to the
Java run-time of their occurrences. They can be operating systems signals on JVMs
implemented on top of an operating system such as those defined by the POSIX
standard, for example SIGALRM or hardware interrupts on JVMs that run without
the help of an operating system. Each happening has a name which is chosen and

assigned in an implementation-defined way.

e Asynchronous event layer: The bindTo/unbindTo method in the AsyncEvent class

associates/disassociates an external happening with a particular event:
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// Associates asyncEvent to Interrupt_5
asyncEvent.bindTo(" Interrupt_5");
// Diassociates asyncEvent from SIGALRM
asyncEvent.unbindTo (" Signal_-A");

Listing 2.8: bindTo/unbindTo Methods in the AsyncEvent Class

The two methods in Listing 2.8, bindTo/unbindTo, tells the interface layer to direc-
t/indirect the happenings with the specified names to/from the event object. The
logic of the event object is concrete and the interface layer calls its fire method
when the happenings occur. It then starts executing (or releasing) all the handlers
and bound handlers that have been associated with it. For internally generated

events, the fire method can be called directly by the application of JVM.

e Asynchronous event handler layer: AsyncEventHandler objects connect themselves to
one or more AsyncEvent objects with the addHandler or setHandler methods in
the AsyncEvent class. When an event is fired, it starts all the handlers attached to
it. The event causes the run method in the associated handlers to execute. The run
method calls the handleAsyncEvent method once for every time the event was fired
(i.e. while fireCount is greater than 0. Recall that each handler has a count (called
fireCount) of the number of outstanding occurrences. When an event is fired, the
count is atomically incremented.). The handleAsyncEvent method is therefore to be
overridden by subclasses to specify the application-specific code that gets executed

when the associated AsyncEvent is fired.

As well as supporting external happenings (i.e. hardware interrupts and operating
system signals), asynchronous event and their handlers can also be used to handle the

following internal events:

1. Asynchronous error conditions detected by the RT-JVM such as a deadline miss
or a cost overrun of a schedulable object: A schedulable object in the RT'SJ can be
associated with an ReleaseParameters object, which specifies the temporal require-
ments of the associated schedulable object. The following shows the most elaborate

constructor for a ReleaseParameters object.

protected ReleaseParameters(RelativeTime cost,
RelativeTime deadline ,

AsyncEventHandler overrunHandler ,

AsyncEventHandler missHandler)
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The cost refers to processing time units per release and the deadline refers to
the time from a release that the schedulable object has to complete its execution.
overrunHandler is an AsyncEventHandler object and will be called if an invoca-
tion of the associated schedulable object exceeds its cost on a particular release.
Note that cost monitoring is an optional facility in an implementation of the RTSJ
as this typically requires support from the underlying operating system. Similarly
missHandler is also an AsyncEventHandler object and is invoked if the run method
of the associated schedulable object is still executing after the deadline has passed.
Null missHandler and overrunHandler values indicates that no handlers should be
released when the deadline is missed or the cost overruns. With using asynchronous
event handlers this way it is possible to deschedule the schedulable object that caused
an error condition until some corrective action takes place and it is instructed to be
rescheduled. As an aside, it is unclear why the RTSJ chose to use handlers for the

error conditions rather than events.

2. Application-defined (software) error notification: Asynchronous events and event
handlers in AEH offer an interesting alternative to faults and software events [16].
Traditionally Java programmers pass faults to other scopes by throwing an exception,
returning an error code, or calling an error-handling method. Now it is possible to
trigger asynchronous events if the system falls into unwanted situations as a general

notification or a fault-handling mechanism.

3. Time-triggering events: Event handlers can also be time triggered. The abstract
Timer class in the RTSJ defines the base class from which timer events can be gener-
ated. There are two subclasses of the Timer class, OneShotTimer and PeriodicTimer.
The OneShotTimer class represents a timer that will only fire once (unless it is
restarted). The PeriodicTimer class encapsulates a timer that will fire on the first
occasion at the time indicated by the start time parameter in its constructor method
and periodically according to the time indicated by the interval time parameter in

the constructor.

As shown in this subsection, the RTSJ has made a good attempt to generalise real-
time activities away from real-time threads towards the notion of schedulable objects,
and intends to provide a framework from within which priority-based scheduling with

online-feasibility analysis can be supported [70].
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2.3.2  Configurability and Implementation of AEH

As discussed in Chapter 1, the RT'SJ neither facilitates a configurable framework to finely
tune its AEH subsystem to fit the application’s particular needs [67], nor provides any
implementation guidelines in order to allow variation on implementation decisions [5].
Whilst the goals of asynchronous event handling in the RT'SJ are laudable, their realisation
in the current version of the specification suffer from the following limitations due to the

lack of comprehensive configurability:

e A single model for all types of events handlers — all asynchronous event must be
handled in the same implementation-dependent way; the AsyncEventHandler class
provides the concrete implementation of an AEH algorithm that mandates the way
of handling events and it is not possible for an application to indicate a different
implementation strategy for various handlers with different characteristics such as

interrupt handlers or non-blocking handlers.

e Lack of implementation configurability — the AsyncEventHandler class provides no
facilities for the programmer to configure its AEH and therefore the application is
unable to finely tune its AEH components such as the thread pool or the AEH
mapping algorithm [35].

The above problems in the RTSJ severely limit the flexibility of the AEH implemen-
tation and consequently the RTSJ’s model has been criticised as lacking in this area
[35, 46, 69]. This also makes achieving the lightweightness of AEH entirely dependent on

the implementation.

The driving design goal of the AEH model of the RTSJ is to have a lightweight con-
currency mechanism that is capable of support hundreds (if not thousands) of handlers;
consequently handlers must not incur the same overheads as real-time threads. Therefore,
if a system needs many AsyncEventHandlers and the binding latency is not critical, con-
sider minimising the use of BoundAsyncEventHandler as they incur the same overhead as
real-time threads, meaning that they are not lightweight. The lightweightness can only
be achieved by using as few as possible server threads to execute as many as possible
handlers. Doing this, results in smaller data structures in the real-time virtual machine,
less stack space for server threads, fewer context switches between server threads etc. The
trade-off is an increase in the latency between the event being fired and a handler being

assigned to a server thread for execution, compared to the static 1:1 relationship used for
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bound asynchronous event handlers.

Some implementation will, however, simply map an event handler to a real-time thread
at run-time and the original motivations for event handlers will be lost as they become as
heavy-weight as threads. The point here is that enabling event handlers to use far fewer
system resources than actual real-time threads do, and therefore not to suffer the same
overhead as them is a primary goal of the RTSJ. Therefore, the key challenge in imple-
menting asynchronous event handlers is to limit the number of real-time threads without
jeopardising the schedulability of the overall system. Furthermore, the resulting imple-
mentations must provide efficient and predictable mappings between these two entities,

the asynchronous event handler and the real-time thread.

In [16, 69], possible implementation strategies for asynchronous event handling have
been proposed and the feasibility analysis, if one server thread is used, also has been de-
rived. The single server approach is one extreme of the possible implementation strategies
whilst dynamically allocating a distinct server thread for each handler resides at the other
extreme. Although the latter is simple to implement and adequate for systems with a
small number of events, it is expensive for a large number of events and therefore do not
achieve the primary goal of the RTSJ. With a single server approach it is recommended
that the order of the handler queue should be priority-ordered to enable effective schedu-
lability analysis. The priority of the server thread dynamically changes to reflect the
priority of the handler it is executing. Furthermore it is necessary to implement a priority
inheritance algorithm in order to get usable bounds for the priority inversion, as a released
higher priority handler will not immediately be executed even if a lower priority handler
is executing. The priority of the server should therefore be defined to be the maximum
of the priority of the handler it is currently executing and the priority of the handler at
the head of the handler queue. The time at which the priority of the server increases
is based on the inheritance algorithm in use (i.e. basic inheritance and priority ceiling
protocol). Although the priority of the server changes in this approach, it is essentially a
fixed priority system. Two main disadvantages with the single server approach are also

identified as follows:

e Potentially Unbounded Priority Inversion - A priority inversion occurs whenever a
lower priority task executes while some ready to execute higher priority task waits

[45]. With the single server approach, priority inheritance algorithms [6] give usable
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bounds when the server causes priority inversion. However it only works under the
assumption that the currently executing handler does not block (e.g. issue a sleep
or wait method call) as higher priority pending handlers will also be indefinitely

delayed. Multiple servers are required to avoid this problem.

e No-Heap Event Handlers - asynchronous event handlers in the RTSJ may indicate
that they will not access heap memory to safely preempt the garbage collector. The
single server model will fail when there is a mixture of heap and no-heap event
handlers. The solution to this problem is again to have two set of multiple servers,
heap and no-heap, and two handler queues. The set of heap servers executes heap

event handlers and the other set of no-heap servers performs no-heap event handlers.

The standard response time equation for an arbitrary task ¢ in a fixed-priority system,
where the response time of tasks are smaller than or equal to their respective periods, is

given below [2]:

Ri=Ci+Bi+ Fﬂ C, (2.1)

j€hep(i)' 7
where R;, C;, B;, and T; represent the worst-case response time, the worst-case compu-
tation time, the worst-case blocking time'® and the period of thread i, respectively. Also
hep(i) represents the set of tasks with a higher or equal priority than/to i. The equation

starts from R} = C; + B; + > )Cj, and computes iteratively until Rﬁ»“ = R! for

j€Ehep(i
some [ > 1. The above equation is extended to capture the single server model as the

following [69]:

Ri=Ci+Bi+ Y, Hﬂcpt > [?WCW max  C (2.2)

jchept(i)! 7 Icheph(i)! ! keleph(i)
In Equation 2.1, the interference from only the threads with a higher priority is consid-
ered. However Equation 2.2 takes the non-preemptible nature of the single server approach
into account by incorporating the maximum of all low priority event handlers. hept (i) rep-

resents the set of threads whose priority is higher than or equal to thread/handler ¢ and

10B; represents the maximum blocking time that thread i can suffer for the priority ceiling protocol
model currently in use for the system. In this thesis, the term blocking (or self-suspending) is also used
to designate the time during which a thread is suspended for some external operation, such as an I/O
operation or a remote procedure. Therefore B; used here differs from the blocking (or self-suspending)
time of thread. The schedulability analysis that includes the blocking factor is discussed in detail in

Section 4.5.
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heph(i) illustrates the set of handlers whose priority is higher than or equal to thread /han-
der i. leph(i) is the set of handlers whose priority is lower than or equal to thread/handler
1. The worst-case non-preemptible time is therefore the maximum of all the low priority

handlers.

Another implementation strategy in both papers is to use a priority-ordered queue (or
one queue per priority level) and multiple server threads. This approach is more flexible
than a single server approach in terms of dealing with blocking event handlers. However
it is still required to create a server when all the servers in the system block to avoid
unbounded priority inversion and assume that there may be some contention for shared
software resources (i.e. handler queue). The dynamic creation and protecting shared
resources however are relatively expensive in terms of both time and space. Also there
are other implementation issues to address, such as defining the points where and when a
server changes its priority to reflect the priority of the handler which the server is currently
executing, and clarifying the circumstances under which a server is allowed to continue
executing another handler after completing the execution of the current handler. With-
out having these issues addressed, it is likely that the model causes unnecessary context

switches or leads to invocation of superfluous servers.

In this section, only sporadic and periodic asynchronous event handlers are considered
which is the main focus of this thesis. However, to have analysable aperiodic event han-
dlers, it is required for them to use an aperiodic server technique [71]. This is because
aperiodic schedulable objects have no well-defined release characteristics and therefore
they may impose unbounded demand on the processor’s time [6]. The one that is most
relevant to the RTSJ is a deferrable server using processing group parameters [67]. When
processing group parameters are assigned to one or more aperiodic schedulable objects, a
server thread is effectively created with its start time, cost (capacity) and period which
collectively define the points in time where the server’s capacity is replenished. Any ape-
riodic schedulable object that belongs to a processing group is executed at its defined
priority while the server still has capacity. When capacity is exhausted, the aperiodic
schedulable objects are not allowed to execute until the start of the next release when its
capacity is replenished. If the application only assigns aperiodic schedulable objects of the
same priority to a single processing group, then the functionality of a deferrable server

can be obtained.
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2.4 Summary

This chapter has outlined the research that is relevant to the design and implementation
of asynchronous event handling for real-time systems. We began with an overview of con-
current programming models, emphasising the flexibility of threads and the efficiency of
events. As both of them has its own benefits when properly implemented, it is concluded
that the mixed programming model should be supported in order to obtain the benefits
from both models such as high throughput, ease of facilitating parallelism and program-

ming. This ultimately allows the program to tailor the application to fit its specific needs.

A survey of event handling facilities provided by main stream programming languages
and middleware systems was also presented. Either directly or indirectly they support a
notion of threads and a level of asynchrony to facilitate concurrent programming. Some
programming languages such as C# do not provide asynchronous event handling facilities
by its own semantics and specification. Such languages rely on the underlying operat-
ing system (i.e. POSIX) or the library of pre-coded APIs (i.e. .NET framework). As
mentioned earlier, the section, event handling in distributed systems, mainly discusses a
higher level of abstraction for communication between distributed entities. This differs
from event handling approaches in centralised systems discussed in the previous section, al-
though there are some similarities (e.g. their classification is based on the synchronisation
decoupling). However delivered messages or events must be handled using a certain event
handling technique in the receiver’s perspective. Communication models used in some
well-known distributed systems are presented first and then an exemplary event handling
implementation for distributed systems was discussed with respect to its local event han-
dling approach. Regardless of their internal and external structures they can be classified
into two class with respect to the mapping between the executionees and the execution-
ers. One is the single server approach (i.e. where the single server thread executes all
the released handlers) and the other is the 1:1 mapping (i.e. where a single server thread
executes a single handler). Some of the investigated languages or middleware systems are
able to support both forms. However there is no framework that provides asynchronous

event handling with fewer server threads than the number of handlers concurrently active.
Lastly, asynchronous event handling in the RT'SJ was discussed in terms of its basic API

model and implementation. In the RTSJ, an occurrence of an events may be initiated by

application logic, by mechanisms internal to the RTSJ implementations (i.e. handlers with
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periodic release parameters), or by the triggering of a happening external to the JVM (such
as a software signal or a hardware interrupt handler). An event can also be fired in program
logic by the invocation of the fire method of an event. The triggering of an event due
to a happening is implementation-dependent except as specified in POSIXSignalHandler
which lets the programmer handle POSIX signals if the underlying operating system is
compliant to POSIX. An event can have a set of handlers associated with it, and when the
event occurs, the fireCount of each handler is incremented, and the handlers are released.
An event is an object that represents an internal or external happening and is used to
inform event occurrences to handlers. The relationship between events and event handlers
is many to many and handlers can be associated with a POSIX signal. The RTSJ allows
considerable freedom in the implementation of asynchronous event handling. We have also
considered two prevailing models for asynchronous event handling from the single server
approach to the simple thread per handler model, found in the literature. This chapter
was concluded by identifying the outstanding issues associated with AEH in the RTSJ,
efficiency and flexibility.
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Chapter 3

Evaluating AEH Models in

Current RTSJ Implementations

In appraising the efficiency and scalability of asynchronous event handling models for real-
time Java applications, this chapter presents and discusses various asynchronous event han-
dling algorithms used in some popular RT'SJ implementations. To achieve the lightweight-
ness requirement of AEH in the RTSJ, a real-time server thread should execute as many
released handlers as possible without causing any concurrency-related issue. Therefore
it is especially highlighted how the mapping between asynchronous event handlers and
real-time server threads is performed in the RTSJ implementations to reduce the number

of real-time server threads required.

In Section 3.1 various asynchronous event handling algorithms are investigated regard-
ing their respective mapping approaches. In Section 3.2 two exemplary RTSJ implementa-
tions, jRate and Java RTS, are designed and constructed using the networks of automata
formalism provided in the UPPAAL model checking tool. The constructed AEH mod-
els give us interactive analysis of their run-time behaviour during early design stage and
also offers the exhaustive dynamic behaviour for proving safety and liveness properties.
Section 3.3 presents the formal analysis of the two constructed models by simulating and
verifying them using CTL (Computation Tree Logic) [4] to guarantee that they are free
from unwanted behaviour and to examine their respective least upper bounds of real-time

server threads.
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3.1 Current AEH Implementations of the RTSJ

There are several different approaches to implementing asynchronous event handling (AEH)
in the RTSJ. This section presents the approaches used in some popular RTSJ imple-
mentations. The descriptions for the AEH implementations presented here give us their
general run-time behaviour and explain the respective pros and cons of their approaches.
The RTSJ anticipates future embedded systems having a large number (even hundreds of
thousands [5]) of handlers. By limiting the number of concurrently active server threads
for the execution of released (or pending) handlers, the system can avoid throughput
degradation and therefore the overall performance will be higher than that of an uncon-
strained server-per-handler model. Consequently this will enable the system to be more
efficient (i.e. lightweight) and scalable (i.e. more handlers). It is, therefore, important
to appreciate how the AEH algorithms are implemented to deal with multiple handlers
simultaneously released in the system. The implementations presented below include the
Reference Implementation (RI), OVM, Jamaica, jRate, and Java RTS. It should be noted
that the only open-source RT'SJ implementation available allowing its source code to be
accessed is jRate [12]. The detailed behaviour of AEH in other implementations presented
here is obtained via private communications [22, 29, 50] not via formal documentation.
The following defines the classification of AEH mapping models based on the number of

handler(s) that a server thread executes during a single release at run-time:

e 1:1 Mapping - An invoked server thread executes one handler and goes back to the
waiting state where it sleeps until invoked again. The mapping can be either static

or dynamic as follows:

- Static - Each server thread has a statically bounded handler. In other words,
handlers are permanently associated with a server thread and the server thread
can only be dedicated to a single bound handler for execution at any one time.
The static 1:1 mapping model must be used to implement bound asynchronous
event handlers [5]. The OVM [29] implementation of the RTSJ uses this ap-

proach for all handlers.

- Dynamic - The bindings between server threads and handlers take place at run-
time dynamically. There is, therefore, inevitably some latency between the
handler being released and the server thread starting to execute the handler.
Unlike the static 1:1 mapping model, server threads are chosen to be invoked

at run-time (i.e. servers are not statically bound to handlers, providing full
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space decoupling of both sides). The dynamic 1:1 mapping model is used in

the RTSJ’s reference implementation (RI) [16] and jRate [12].

e 1:N Mapping - A 1:N mapping implies that N handlers are executed by a single server
thread. The invoked server thread executes N handlers during a single release that
is between the instants from being invoked to relinquishing the CPU. The mapping

can also be either static or dynamic as follows:

- Static - A server thread has a statically bound group of handlers to execute.
In other words, the group of handlers are permanently associated with a server
thread and the server thread can only be dedicated to the group for execution
at any one time. N can therefore be in the range from 1 to the number of
handlers in the group. The static 1:N mapping model is used in Jamaica [22]

by having a dedicated server thread per priority-level.

- Dynamic - An invoked server thread executes N handlers per invocation, where N
is in the range [1,00]. Once the server thread is invoked, it executes N handlers
in turn before going back to the waiting state. The actual value N varies,
depending on the AEH algorithm and the event firing sequence. Here again,
unlike the static 1:N mapping model, server threads are chosen to be invoked
at run-time (i.e. servers are not statically bound to handlers, providing full
space decoupling of both sides). Java RTS 2.0 [50] tries to employ the dynamic
1:N mapping model. However there is a phenomenon called the MSSP, that
prevents the implementation from fully realising this mapping model. For more

information about the phenomenon, see Section 3.1.5 and 3.3.4.

3.1.1 The Reference Implementation (RI) from TimeSys

The RI [60] uses a simple scheme for AEH. It creates a server thread each time a handler
is released and there is no active server thread for that handler [16]. The created server
thread terminates when the fire count for that handler goes to 0 (i.e. all outstanding firings
of the event have been handled). This AEH implementation is the most intuitive way of
constructing the AEH subsystem. The mapping of server threads to handlers in the RI can
therefore be classified as a dynamic 1:1 mapping, whilst a static 1:1 mapping is referred
to that is used for bound handlers that provide a dedicated server thread per handler
for their life time. In addition to the run-time server creation and destruction overhead,

the dynamic 1:1 mapping will also likely produce a proliferation of server threads along
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Figure 3.1: AEH in Jamaica

with per thread overhead and context-switches when released handlers are many and their

control algorithm is simple and non-blocking.

3.1.2 OVM from Purdue University

In OVM [29], each handler has a dedicated server thread permanently bound to it for
the life-time of the handler. Consequently the AEH implementation of the OVM is not
different from the expected implementation of bound handlers of the RTSJ. It therefore

does not realise the main motivation of having non-bound handlers in the RTSJ.

3.1.3 Jamaica from Aicas

The AEH implementation in Jamaica [22] allocates a dedicated server thread per priority
level. Each priority level has a queue and a dedicated server thread. Therefore it realises a
static 1:N mapping in the absence of dynamic priority changes, as depicted in Figure 3.1.
This works well as long as the handlers’ logic is non-blocking. The least upper bound of
server threads used in Jamaica is smaller than that of the static or dynamic 1:1 mapping.
The priorities of server threads are static and therefore the run-time priority changes
of server threads are not required. This property of Jamaica considerably reduces the
complexity of its AEH implementation. However it causes unbounded priority inversion if
a handler blocks. When a server thread executes a handler and it blocks, a lower priority
server thread is given the CPU and executes its handler. If the blocked server thread has
pending handlers in its associated queue, they are also blocked until the corresponding
server thread unblocks. To avoid this, it is necessary to dynamically create a new server

thread (or take one from a pool of server threads if available). However the implementation
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Figure 3.2: States and Valid Transitions in the Leader/Followers Pattern

does not take the corrective action when required.

3.1.4 jRate from Washington University

The AEH implementation in jRate [12] uses a well-known architectural design pattern, the
Leader/Followers [55]!, that provides a concurrency model where multiple server threads
can demultiplex handlers and execute them. The main component of the Leader/Follow-
ers design pattern is a pool of server threads by which the released handlers are executed.
There is only one active server thread at a time, the leader, that waits for a handler to be
released on a set of events. Meanwhile, other threads, the followers, can queue up waiting
their turn to become the leader. After the current leader thread detects a handler, it first
promotes a follower thread to become the new leader and then it plays the role of a process-
ing thread, which demultiplexes the event handler and perform application-specific event
processing. Multiple processing threads can run concurrently while the current leader
thread waits for a new event handler to arrive. After executing its handler, a processing
server thread reverts to a follower that waits in the pool for its turn to become the leader
thread again. Having the pool of server threads, run-time server creation and destruction
overhead is avoided and the server threads in the pool take turns de-multiplexing handlers.
Figure 3.2 illustrates the states and the valid transitions of threads in the Leader/Follow-

ers pattern.

A UML sequence diagram for jRate AEH is shown in Figure 3.3. The essential be-
haviour of the AEH implementation in jRate is based on the Leader/Followers design

pattern described above. However it simplifies some of the actions performed in the de-

IThis design pattern is also used in the TAO research project presented in Section 2.2.4.
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Figure 3.3: UML Sequence Diagram for jRate AEH

sign pattern; the leader does not promote a follower to be the new leader but the run-time
or event firing thread will notify a follower directly to be the new leader. In order for
handlers in jRate to be executed by a pre-defined set of server threads, the programmer
has to create an instance of the PooledExecutor class and pass it to handlers as a pa-
rameter when they are constructed. Then the instance of PooledExecutor plays a major
role as a server pool in the implementation and manages key AEH structural components
such as server threads, event flags, and a counting semaphore. When a server pool is
constructed, the number of server threads to be created in the pool can be specified via an
integer variable, executorNum. Other schedulable related parameters can also be passed
in at the construction of server pools. There are two event flags, taskAvailable and
executorIdle, created for each server thread. When a server thread is started, it waits
on taskAvailable until notified by the run-time or the event firing thread. executorIdle
is used to block the run-time or the event firing thread while its associated server thread
executes. executorAvailable is a counting semaphore that is a counter for a set of
available resources, rather than a locked/unlocked flag of a single resource. It therefore
holds the number of available server threads and decides to continue or block the exe-
cution based on the availability of the server threads. When a server thread is notified

and therefore becomes active, the application-specific event handling is performed via the
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run() or handleAsyncEvent () methods in the currently associated handler. The handler
is executed while the number of fireCount is greater than 0. After the completion of the
handler the server signals the counting semaphore taskAvailable to make itself available

for future use and also signals the executorIdle event flag to indicate the server is idle.

It is therefore easy to see that the mapping between the server thread and the handler
in jRate AEH is a dynamic 1:1 mapping based on the Leader/Followers design pattern.
The run-time or the event firing thread notifies an available server thread when a handler
is released. The number of server threads required to execute a certain number of released
handlers is discussed later in this chapter using the UPPAAL model checking tool. There
are two other main drawbacks in the jRate AEH implementation. One is that the run-time
or the event firing thread blocks when all the server threads in the pool are either ready
or running until one of them becomes idle. This inevitably incurs unbounded priority
inversion when a handler with a higher priority is released and all the server threads
in the pool are busy executing lower priority handlers. The other shortcoming is that
handlers with different priorities are executed at the server threads’ priority level in a
FIFO manner as if they were assigned the server threads’ priority. This is due to the fact
that the server threads in jRate do not change their priority levels to reflect that of the
handlers that they are currently executing and all the server threads in the pool will have
the same level of priority that was assigned when the pool is constructed. If the released
handler has a higher priority level than that of the server threads, then another form of
priority inversion will occur. Therefore programmers may not assume that handlers will
be executed according to the priorities that they were originally assigned. Although this
static priority approach significantly reduces the complexity of the AEH implementation
in jRate, it is obviously inadequate for real-time systems due to the priority inversion. A
possible solution to this problem would be to create an instance of PooledExecutor for
each priority level and to assign handlers to the corresponding PooledExecutor with the
same priority. However this will incur considerable overhead in terms of both time and

space when priority levels are many.

3.1.5 Java RTS (Real-Time System) from Sun Microsystems

The Java RTS AEH 2.0 implementation [50] consists of two main data structures, queues
of pending handlers (i.e. this refers to queues which store handlers that have been released,

but not started their execution yet) and a pool of server threads waiting to be notified
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(or invoked) to execute pending handlers. The queues of pending handlers are used to
store and dispatch the released handlers in a priority ordered manner. The server pool
is used to manage a set of server threads by which the pending handlers in the queues
are executed. The programmer can configure the size of the pool and additional server
threads may also be created when a handler is released and all server threads in the pool

are busy.

The run-time behaviour of Java RT'S AEH is quite different from the other implemen-
tations and exhibits two particularities in order to enable asynchronous event handlers
in Java RTS to be more lightweight, in the effort to realise the dynamic 1:N mapping
model. The implementation tries to achieve this by allowing server threads to execute
more than one handler as long as it does not produce any concurrency related side-effect
such as deadlock and priority-inversion. One of the particularities of the Java RTS AEH
implementation is that server threads changes their priorities to reflect those of handlers
that they are executing at the time, and the binding between the released handler and
the server thread is dynamically performed at run-time when the handler is scheduled for
execution, not at its release time, a late binding technique. The main idea is to maintain
a server thread ready as soon as a handler is released. When a handler is released, it is
enqueued in the pending handler queue at its priority as there is one queue per prior-
ity level. After the insertion, the run-time or the event firing thread which released the
handler looks for the ready server. In the RTSJ ’'ready’ means a server that is in the
‘ELIGIBLE-FOR-EXECUTION’ state - a RealtimeThread can be (i.e. EXECUTING,
BLOCKED, ELIGIBLE-FOR-EXECUTION). However, in the context of the Java RTS
AEH a ’ready server’ requires that the server is ready but not preempted. This is because
a preempted server already has a handler bound to it, and it must not be allowed to
change its priority as it has already been assigned the right priority level for the handler
being executed by the server. If there is the ready server and its priority is higher than
or equal to that of the released handler, no further action is required. If the ready server
has a priority lower than the released handler’s priority, then the ready server’s priority is
increased to the handler’s priority level. If no ready server exists, a new one in the pool
is notified (or one is created, if no server threads available at the time of the release), its

priority is configured accordingly, and becomes the new ready server.

Another particularity of the Java RT'S AEH implementation is that the current run-

ning server notifies a server thread in the pool right before it starts to execute the handler
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that it removed from the queue, only if there are one or more pending handlers. When
a ready server thread gets the CPU (its state changes from ELIGIBLE-FOR-EXECUTION to
EXECUTING), it picks up the first handler from the pending handler queue corresponding
to its priority or it will look for a pending handlers in queues of lower priorities if the
corresponding queue at its priority is empty. If it does not find any pending handler, it
returns to the thread pool and waits until it is picked up from the pool again: the server
thread is now no longer ready. If the server thread finds a pending handler, it removes
the handler from the queue and it rechecks whether the queue is empty (and also lower
priority queues if the queue at its priority is empty) after removing the handler. If the
server thread finds another pending handler, it notifies a server thread in the pool or
creates a new server thread and the newly notified (or created) server thread becomes
ready for the priority of the first found handler. If all queues are empty the server thread
starts to execute the handler without notifying or creating a new server thread. Finally
the current server binds itself to the handler that it has removed from the queue, set up
the execution context according to the handler’s timing parameters and starts executing
the application-specific event handling. If the handler contains blocking code, the ready
server thread will execute the remaining pending handler(s). If a higher priority handler
is released at this time, the run-time or the event-firing thread will increase the priority of
the ready server thread to that of the released handler. The ready server thread therefore
will preempt the running server to prevent priority inversion. When the server thread fin-
ishes the execution of the handler, it checks the queue for pending handlers. If there are,
the server will bind itself to the highest priority handler in the queue and executes it after
adjusting its priority accordingly. Otherwise, the server returns to the pool. Before the
execution of the handler, the server notifies one of the server threads in the pool to have a
new ready server at the priority of the first handler in the queue only if there are pending
handlers in the queue as done before. Therefore when the current running server blocks,
the ready server is going to execute the pending handlers. It should be noted that the

server thread in Java RT'S AEH never increases its priority by itself except when it is ready.

The following simple scenario that is taken from the private communications with
Sun Microsystems for Java RTS 2.0 AEH algorithm [50] explains its run-time behaviour:
“When a server thread T1 in the pool is invoked to execute a handler, it does not promote
another thread T2 to be ready right after it is active. It promotes another server thread to
be ready right before it starts executing the handler it just has taken out from the handler

queue and therefore thread T2 will continue the job and will take care of the next released
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handler if T1 blocks. When T1 completes the execution of its handler, it does not return
immediately to the pool. First, it checks if another handler is released and not bound yet.
If it finds one, it will bind itself to this handler and will execute it. It can bind itself to a
handler running at its current priority or find a handler with a lower priority, in this case
its priority is automatically adjusted during the binding process. With this mechanism
and the run-to-block semantic of the real-time priorities, thread T1 is able to serve a
number of handlers without additional context switches (if none of the handlers includes
blocking code). When no more released handlers are available in the queue, thread T1
finally returns itself to the pool. Thread T2 will take the CPU, find no pending handlers

and returns itself to the pool too.”

3.2 Formal Automata Models in UPPAAL

UPPAAL [61] is a toolbox for modelling (via graphical editor), validation (via graphical
simulation, simulator) and verification (via automatic model-checking, verifier) of real-
time systems jointly developed by Uppsala and Aalborg University. UPPAAL systems
are modelled as networks of timed automata extended with integer variables, structured
data types, and channel synchronisation. The simulator is used for interactive analysis of
system behaviour during early design stages while the verifier, which is a model-checker,
covers the exhaustive dynamic behaviour of the system for proving safety and bounded
liveness properties. The verifier, which is a symbolic model checker, is implemented using
sophisticated constraint-solving techniques where efficiency and optimisation are empha-
sised. In this section, UPPAAL (version 4.0.10) is extensively used to design, simulate,

and verify the AEH implementations as it offers the following advantages:

e It offers a user-friendly environment for modelling target systems via graphical editor.

e Verification is based on a relatively well-known language, CTL. Therefore it is easy

to learn and understand.

e UPPAAL has been successfully applied in many case studies from communication

protocols to multimedia applications [32].

e It also incorporates the notion of time.

Other than the above, the most important property that UPPAAL offers for designing
an AEH model is that it provides an inexpensive means for interactive analysis of the de-

signed system’s behaviour during early design stages. Other widely-used model checking
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tools such as SPIN [42] do not provide interactive analysis of the system’s behaviour dur-
ing early design stage. Their simulation and verification are normally based on a complete
specification. This particularly provides an important benefit when designing an AEH
model which does not have a concrete and complete specification. For example the tool
allows many different schemes for notifying server threads and relinquishing the CPU to
be employed during early design stage so that their respective partial behaviour can be
observed at run-time before defining any concrete specification. Based on this observation,

more efficient schemes can be found.

This section presents the AEH subsystems of two RTSJ implementations, jRate and
Java RTS, designed using the networks of automata? (Readers are referred to [4] for a more
detailed explanation about UPPAAL). These two implementations are chosen as they use
relatively advanced AEH algorithms and hence are non-trivial. For example jRate uses the
Leader /Followers design pattern for its AEH and Java RTS uses the late binding technique

in the effort of reducing the number of server threads required at run-time.

3.2.1 Modelling Architecture

This section presents a modelling architecture to design an AEH implementation using the
automata formalism of the UPPAAL tool. The idea of the architecture is to decompose the
functionalities of the AEH system into several different conceptual components. The com-
ponents included in the models are the environment, handler queue, thread pool, and base
scheduler. They represent the atomic building blocks for constructing the AEH subsystem
and allow their run-time status to be observed. For example the handler queue hold the
information regarding the number of pending handlers and their respective priority levels
and the information is used by other components at run-time to simulate a certain AEH
mapping. This applies to other components as well. They provide the essential informa-
tion for the AEH subsystem to work correctly. The base scheduler actively controls the
overall behaviour of the AEH subsystem using the provided information (i.e. scheduling
server threads). Some components which exist in the actual implementations have been

abstracted away. Such components include the application and thread pool management

2The source for all the UPPAAL automata models presented in this thesis is freely available at
www.cs.york.ac.uk/rts/djmin/work/AutomataModelsForAEHtecs.zip. It also includes all the queries
used to verify the models in this thesis. The queries that verify safety and liveness properties are presented
in Section 3.3. Note that simple reachability properties are not presented in this thesis, but are included

in the source.
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layer. It is valid abstraction due to the following reasons. First, the application responds
to a fired event in the environment by releasing the associated handlers. However, from
the AEH subsystem’s perspective the results are the same with the environment releas-
ing and queuing the associated handlers directly. Second, the thread pool management
represents the operations, which controls the invocation and synchronisation of waiting
server threads in the thread pool, to execute the pending handlers. In the designed AEH
models in this thesis, the thread pool component controls itself, managing the invocation
and synchronisation of waiting server threads. Therefore such components that can be
abstracted away have been omitted from the models to reduce the size of the state space
to speed up the verification. All the components are designed into two automata in each

model and are presented below:

e Environment: This component represents the environment that non-deterministically
fires an event which, in turn, releases an associated handler. The priority levels of
released handlers can be varied based on the simulation and verification scenarios.
Note that in the RTSJ every occurrence of an event increments fireCount by one
in each attached handler, and an event may have one or more associated handlers.
To reduce the complexity of the modelling we assume that fireCount never goes
beyond 1 (i.e. the same event releases a different handler each time it is fired) and an
event has only one associated handler. The former assumption is valid in the sense
that once a server thread is bound to a handler it will be used to execute the handler
while fireCount of the handler is greater than zero and therefore the mapping will
stay the same. The latter assumption is also valid in the sense that events in the
model can be fired randomly without timing restrictions allowing the model to have
the full randomness and hence firing events twice or more consecutively has the same

effect as an event releasing two or more handlers.

e Handler Queue: This component models a pending handler queue and the operational
methods on the queue for adding and removing handlers in a priority-ordered man-
ner. The AEH implementation in jRate does not use this component as it dispatches
released handlers immediately to available server threads without temporarily hold-

ing them in a queue.

e Server Thread: This component is responsible for the representation of four states
that server threads can hold at any given time, namely waiting, ready, running,
preempted. When server threads are created they are in the waiting state and are

made ready upon the occurrence of handlers’ being released. Ready server threads
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are scheduled for execution and are made running based on their priorities. When
they are in the running state, a server thread may be preempted when there is a
higher priority server thread waiting in the thread run queue. The blocked state is
absent in the component in order for them to be given a well-defined cycle of execu-
tion. If server threads are allowed to block, the model will indefinitely or frequently
block, resulting in memory exhaustion when verifying the models. Furthermore it is
easy to see that if a handler contains blocking (or self-suspending) code, a separate
server thread is required to prevent priority inversion. For example if a server thread
blocks while executing a handler, all the pending handlers will also block (not being
able to execute until the blocked server unblocks). To prevent this it requires another
server to continue executing the pending handlers. If that server blocks as well, it
needs another server thread again. This iteration lasts until there are no pending
handlers, resulting the system to require the same number of server threads as the

number of blocking handlers®.

e Thread Pool: This component represents a pool of server threads. This component is
responsible for managing server threads preallocated in the pool at the initialisation
phase. The number of server threads can typically be configured when started. They
are notified when handlers are released and dynamically join the pool to wait for a

new released handler when they complete.

e Base Scheduler: This component represents the basic functions and interactions of
the base scheduler, PriorityScheduler, of the RTSJ. The scheduler schedules server
threads preemptively in a priority-ordered manner and allows a server thread to run,
yield, and be preempted. It checks the current status of the AEH system at normal
scheduling points (i.e. when a handler is released) and is responsible for activating

and deactivating server threads in the pool accordingly.

The above components are combined and accordingly modified to realise each AEH
implementation. Some component may even be absent from a certain AEH model and
some are extensively modified to fit the actual AEH algorithm used in the implementations.
However it should be noted that the base abstraction template constructed and used for
the AEH automata models in this thesis is the same in order for different AEH automata

models to be fairly compared.

3This proposition is discussed in detail in Section 4.1.
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3.2.2 AEH Automata Models in UPPAAL

In this section we presents the AEH automata models for the two AEH systems used in
jRate and Java RTS. The models have been designed with a number of modelling patterns
recommended in [4] to speed up the verification and reduce the size of the state space (i.e.
the overall memory consumption). The design patterns used in the models include variable

reduction, synchronous value passing, atomicity, and abstraction.
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notify[tid]?
st_stat[tid]=READY,
invoked[tid]++

Waiting preempted[tid]? run[tid]?
st_stat[tid] st_stafftid]
=PREEMPTED =RUNNING
run[tid]?
id]=RUNNING
Preempted Running
yieldCPU[tid]?

id|=WAITING

Figure 3.4: ServerThread Automaton for jRate AEH

Listing 3.1: Global Declarations and Functions in the AEH Automata Models
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jRate AEH Model

In this section the extended UPPAAL automata model for the AEH implementation in
jRate is presented. The original automata model was first introduced in [34]. Here it has
been extended, primarily to reduce the complexity of the model and to be compatible
with the extended automata model for Java RTS AEH presented in the following section.
Listing 3.1 shows the global declarations for variables and channels, and prominently
used functions in the jRate automata model. The same set of the global declarations
and functions is also used for the Java RTS AEH automata model with two additional
synchronisation channels, an extra integer variable, and one more function. The channels
and variables are explained along with their usage as they appear. The model of the jRate
AEH implementation has two automata, ServerThread and Scheduler each of which

discussed in turn as follows:

ServerThread The template, depicted in Figure 3.4, is the automaton of a server thread
and represents its main behaviour (i.e. states realised by locations). The template has
one formal parameter, a type threads which is defined on line 7 in Listing 3.1. The type
threads is an integer variable with the range [1, MAXFC| inclusive. It is passed to the tem-
plate at the instantiation and a number of instances of the template, defined by MAXFC,
is created. If MAXFC is set to 6, 6 server threads will be created with a unique id set to 1
to 6 for each instance: ServerThread(1), ServerThread(2), ..., ServerThread (MAXFC).
The ids are then used with synchronisation channels to identify a specific server thread
to communicate with by the Scheduler automaton in the jRate AEH automata model.
It has four locations: Waiting, Ready, Running, and Preempted. Locations in a UP-
PAAL automata model are connected by edges (or transitions). Edges are annotated with

selections, guards, synchronisations and updates, explained as follows:

e Selections: Selections non-deterministically bind a given identifier to a value in a

given range. The other three labels of an edge are within the scope of this binding.
e Guards: An edge is enabled in a state if and only if the guard evaluates to true.

e Synchronisation: Processes can synchronise over channels. Edges labeled with com-

plementary actions over a common channel synchronisation.

e Updates: When executed, the update expression of the edge is evaluated. The side

effect of this expression changes the state of the system.
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The initial location is Waiting and a server thread can be one of the four locations

(states) at any given time as follows:

1. Waiting refers to the state where it is created but has not been made ready yet (i.e.

server threads in the thread pool waiting to be invoked is in this state).

2. Ready refers to the state where it may be selected to have its state changed to
Running. In other words, it has been invoked (or notified) by the occurrence of

handlers’ being released but is still in the thread run queue, waiting to get the CPU.

3. Running refers to the state where it is current running on the CPU. When the
transition takes place from Running, it may proceed to one of two states, Waiting

or Preempted, based on the current status of the AEH system.

4. Preempted refers to the state where it is preempted by a higher priority server thread
and it may proceed to Running when it becomes eligible for execution again (i.e. has

the highest priority).

There is an integer array, st_stat [threads], used extensively in the automaton to in-
dicate the current status of server threads. The length of the array is the number of server
threads preallocated in the pool (See line 20 in Listing 3.1). The integer variable MAXFC
is primarily used to limit the number of handlers that may be released for the automata
models to have a verifiable bound and is also used to specify the number of server threads
to be created for the pool. Therefore each server thread has one array component with its
id as an index, representing the current state of the server thread (Recall that the type
threads is an integer variable in the range [1, MAXFC] and therefore there will be MAXFC
components of the array such that st_stat[1], st_stat[2], ..., st_stat [MAXFC]). The
values that can be assigned to the array are four constant integer values: WAITING, READY,
RUNNING, and PREEMPTED (See lines 10-13 in Listing 3.1). There are also four synchro-
nisation channel arrays with the same number of components as that of server threads
using the type threads: notify[threads], run[threads], yieldCPU[threads], and
preempted [threads]. With the channel arrays, an automaton that synchronises over the
channel can do so with the right automaton among ones that use the same channel. Each
server thread uses a component of the channel arrays with its id as an index. Therefore
notify[1]! synchronises with notify[1]? where the number 1 being the id of a server
thread. The template starts from the initial location Waiting. Every location in the tem-
plate waits for (or receives) a synchronisation using the label channelName [tid]? where

tid represents the id of a server thread. The meaning of the channels are self-explanatory
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(overallHandlersReleased<MAXFC)
tmpPrio=p,
overallHandlersReleased++

notify[notifyServer()]! AnEventFired
putThread(tmpPrio, notifyServer()),
tmpPrio=0

runft_id]!
procBusy=true

(procBusy &8& p_th<trgFirst())

Executing

Initial .
(listrgEmpty() && !procBusy) BeingPreempted
p_th =trqg[0][0], t_id =trg[O][1],
remove Thread()

preemptedf[t_id]!
putPreemptedThread(p_th, t_id),
yield()

(IprocBusy &&
istrgEmpty() &&
overallHandlersReleased==MAXFC)
eval()

(p_th == trgFirst())
yieldCPU[t]!
yield()

Figure 3.5: Scheduler Automaton for jRate AEH

and they are triggered accordingly by the Scheduler automaton. Each transition from
one location to another sets st_stat[tid] to the appropriate value. In the jRate AEH
automata model, various numbers of server threads are created and put into the thread
pool when the system is instantiated. They are, in turn, notified to be the leader server
thread. An integer array, invoked[threads] defined on line 18 in Listing 3.1, is used to
keep track of the number of server threads invoked from the pool as increased by 1 when-
ever they take a transition from Waiting to Ready. The information will give us the least
upper bound and the least lower bound of server threads used to handle a given number
of event handlers when verifying the run-time properties (See Section 3.3). When simu-
lated and verified in UPPAAL, 3 to 6 ServerThreads are created and put in the thread
pool. Note that more than 6 simultaneous ServerThreads for the automata models cause
state-space explosion which is a common problem in UPPAAL [4]. The verification was

performed on a machine with 2048 MB of main memory.

Scheduler This is the automaton which represents the base scheduler of the RTSJ (i.e.
PriorityScheduler) depicted in Figure 3.5. To simplify the overall model, Scheduler
maintains other architectural modelling components such as the thread pool, thread run
queue (trq[MAXFC] [2]), and pending handler queue (phq[MAXFC]) for the Java RTS au-
tomata model, which otherwise would have to be modelled in separate automata. This also
applies to the Java RTS AEH automata model presented in the next section. Scheduler
in the jRate AEH automata model maintains two internal data structures: the thread run
queue and the thread pool. The thread run queue is a two-dimensional integer array for

storing and dispatching server threads in a priority-ordered manner. Each component of
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the array therefore has two sub-components that are used for each waiting server thread
in the thread run queue to store its information; the first column is used to indicate the
priority and the second column represents the id of a server thread. The thread pool
data structure simulates normal thread pool operations. It has one user-visible operation,
notifyServer (), that is used comprehensively by this automaton. The operation looks
for a waiting server thread in the pool by searching incrementally and invoke the first
found one. The template has four outgoing transitions from the initial location, Initial.

Each transition is explained below:

1. The transition to the location AnEventFired: This transition represents that a han-
dler is released as the result of an event firing. The transition has a selection anno-
tated (p:p-levels), which non-deterministically binds p to an integer in the range
set by p-levels (See line 5 in Listing 3.1). p-level is a type like threads and is
set to an integer value in the range [1, PRIORITY_LEVELS], representing the priority
of a handler. Therefore p can be an integer in the range 1 to PRIORITY_LEVELS,
inclusive. When the transition takes place, a priority level is non-deterministically
bound to p, representing the released handler’s priority. The transition updates an
integer variable tmpPrio to the value of the released handler’s priority level p for
the later use and increments overallHandlersReleased by one, which keeps track
of the overall number of released handlers. The variable is used to give the AEH
automata models a verifiable bound (i.e. if overallHandlersRelea sed becomes
equal to or greater than MAXFC the transition is disabled, binding the overall num-
ber of handlers within a certain value). The location AnEventFired is committed
(marked with a ¢). Committed locations in UPPAAL are the most restrictive in
the sense that time may not progress and interleavings with normal locations are
not allowed in them. Therefore one of outgoing transitions from a committed lo-
cation must take place without delay or interleavings with other locations (urgent
and normal). They are frequently used in the models to establish happens-before
relationships and to reduce the state space for the verification. The outgoing transi-
tion from the location AnEventFired then makes the invoked server thread (leader)
ready by synchronising with the corresponding ServerThread automaton over the
channel notify[notifyServer()]! and puts the server thread in the thread run

queue.

The above two transitions collectively and conceptually represents that the environ-
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ment randomly fires events. When an event is fired, the occurrence of the event with
the associated handler’s priority level is informed to Scheduler. Then it notifies a
server thread in the pool and the invoked server is made ready with the released
handler. Therefore it is assumed that server threads put in the thread run queue

have their respective handlers bound to them.

. The transition to the location Executing: This transition is guarded by the con-
straints (!istrqEmpty() && !procBusy), which corresponds to the state where the
thread run queue is not empty and the CPU is idle. Therefore the transition is en-
abled whenever there is a pending server thread in the thread run queue and the
CPU is not occupied. The thread run queue is always kept in a priority-ordered
manner. Scheduler therefore always executes the highest priority thread first. On
the transition two integer variables, p_th and t_id defined on line 22 and 23 in
Listing 3.1, that respectively represent the priority and the id of the current run-
ning server thread, are updated accordingly by taking the first waiting thread out
from the thread run queue. The variables are used throughout the execution of the
server thread to identify the current running server thread and the priority of it
when requested. The next transition from the location Executing to the initial lo-
cation immediately takes place, synchronising with the corresponding server thread
automaton over the channel run[t_id]!. As a result, the server thread automaton
moves its location from Ready to Running. It also updates the status of the system
accordingly (i.e. procBusy, defined on line 21 in Listing 3.1, that represents the

boolean CPU state occupied or not is set to true).

. The transition with the channel yieldCPU[t]!: The transition is guarded by the
constraints (p_-th > trqFirst()), which corresponds to the state where the current
running server thread has the highest priority. This means that the current running
server thread finishes the execution of the bound handler and therefore it yields the
CPU. The transition also updates all the relevant information using the operation
yield() such that procBusy is set to false, p_th and t_id are set to 0, and CS
is incremented by one. The integer variable CS is to keep track of the number of
context-switches incurred for the verification purpose. The transition conceptually

puts the yielding server thread in the pool for the next use, synchronising with the

current running server thread over the channel yieldCPU[t]!.

. The transition to the location BeingPreempted: As soon as the guard (procBusy &&

p-th<trgFirst()) on the transition to the location BeingPreempted is satisfied,
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which corresponds to the state where there is a higher priority server thread ready in
the thread run queue while a lower priority one occupies the CPU, the transition is
enabled. Then the outgoing transition from the location BeingPreempted is imme-
diately performed (as committed), synchronising with the corresponding automaton
of the server thread over the channel preempted[t_id]! and updating the status
of the AEH system accordingly by invoking the operation yield(). As the result of
the synchronisation, the corresponding server thread automaton moves its location
from Running to Preempted. Note that, the putPreemptedThread () method, which
operates on the thread run queue, puts the server thread being preempted at the

front of all pending server threads with the same priority in the thread run queue.

5. The transition to the location End: This transition is designed in Scheduler in
order to provide well-defined life-time of the AEH automata model. When overall-
HandlersReleased reaches the predefined value MAXFC, the CPU is idle, and there
are no server threads pending in the thread run queue, then the transition will take
place, allowing the system to halt safely (i.e. event firings are no longer allowed and
the only outgoing transition from the location End is self-looping). The operation
eval () is performed in the transition, which evaluates the overall number of server
threads invoked and the overall number of server threads required. Therefore the
resulting values from the operation are used to derive the overall number of server
threads required to execute handlers under a particular handler releasing scenario

(See Section 3.3). The operation is as follows:

void eval () {
int i=1;
while (i <= MAXFC) {
if(invoked[i] >= 1) {
// lgnores multiple invocations

overallSTsRequired++;

}

// Counts all invocations

overallSTslnvoked = overallSTslnvoked + invoked[i];
i++;

Java RTS AEH Model

In this section the extended UPPAAL automata model for the AEH implementation in
Java RTS is presented. The original automata model was introduced in [34]; here it

has been extended, primarily to show more detailed behaviour when a server changes its
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st_stat[tid]=READY
notify[tid]? jority[tid]?
st_stat[tid[=READY,
invoked[tid]++

Read

N
Waiting preempted[tid]? run(tid]?
st_statltid] st_stat]tid]
=PREEMPTED =RUNNING
run[tid]?

st_statftid=RUNNING
Preempted Running
yieldCPULtid]? .
st_stat[tid]=WAITING loop(tid]?

Figure 3.6: ServerThread Automaton for Java RTS AEH

priority. Readers are referred [34] for the original AEH automata model for Java RTS.
Here we discuss only different features designed for the Java RTS AEH automata model
from the jRate one presented in the previous section. Most components used in the Java
RTS AEH model such as the environment, server thread, scheduler and thread pool are
essentially the same as those in the jRate AEH model, with minor differences. However a
pending handler queue is used in this AEH automata model as released handlers are first
stored in the pending handler queue before the binding to a server thread. There is only
one queue for the entire AEH model and therefore it is priority-ordered. Although the
actual Java RTS AEH implementation has one queue per priority level, the behaviour of
the single-queue approach in the Java RT'S AEH model is identical with the multiple-queue
approach in the actual implementation as long as the queue is kept in a priority-ordered

manner. This is again to reduce the state space when verifying the model.

Server Thread The automaton model, depicted in Figure 3.6, represents the main be-
haviour of server threads in Java RT'S AEH. There are two additional transitions from the
location Running. One goes back to the location Ready, synchronising with Scheduler
over the channel changePriority[tid]?. The other one is a self-looping transition that
synchronises on the channel loop[tid]?. Note that server threads in the AEH automata
model wait for (or receive) a synchronisation, not send (or fire) one. The transitions are
added to reflect the Java RT'S AEH implementation that it allows server threads to execute
more than one handler and to change their priorities dynamically to that of the handler

to which they are currently bound. The two additional transitions work as follows:

1. The self looping transition from the location Running: This is required in the Java
RTS AEH automata model as it allows server threads to execute more than one
handler as long as the condition specified in Scheduler with the transition Initial

to Looping is satisfied. The channel in this automaton waits for the synchronisation.
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(st_stat[t_id]'=RUNNING)
runft_id]! procBusy=true,

\© notification=false. tmplD=0
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(lisphgEmpty()

&& p_th==phgFirst())
tmplD=notifyServer(),
getHandler(),
notificationEval()

p:p_levels
(overallHandlersReleased<MAXFC)
tmpPrio=p,

overallHandlersReleased++, putHandler(p

(lisphgEmpty() && !ready)
notify[tmpID]!

putThread(phgFirst(),tmplD),
notifyServer(), ready++

(t_id>10) WithHandler

(ready)

adjustReadyServer() AnEventFired

(Iready)
notify[notifyServer()]!
putThread(tmpPrio, notifyServer()),
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L_I0=L | notificationEval(), changePriority[t_id]! (procBusy && p_th<traFirst())
run[t id]! | Executing tmplD=notifyServer() putThread(phgFirst(), t_id+10), RIOCLUSY e D _IN=IIQLIS
ready-- (t_id<20) G (t_id<10) getHandler(), yield Initial preempted[t_id]! BeingPreempte
Reevaluation . WithoutHandler | (isphqEmpty()) pi‘{e‘lngemme"mead“’—‘“ Lid+20),
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p_th=trg[0][0], t_id=trg[0][1], (IprocBusy && j

istrqEmpty() && eval()
overallHandlersReleased==MAXFC &&
isphqEmpty())

removeThread()

Figure 3.7: Scheduler Automaton for Java RTS

The transition conceptually illustrates that the current running server thread finishes
the execution of its currently bound handler and continues the execution with the

first handler in the pending handler queue.

2. The transition from Running to Ready: When a server thread removes the first
handler from the pending handler queue, it changes its priority to that of the removed
handler if the priority of the server thread is higher than that of the removed handler.
When a thread changes its priority it is added to the tail of the thread run queue
within the same priority range. This transition models this behaviour and makes
the current running server thread ready from running by adding the server to the
tail of the thread run queue for its new priority. The effect of the priority change of

server threads are discussed in detail later in this section.

Scheduler The automaton in Figure 3.7 depicts the base scheduler of the RTSJ (i.e.
PriorityScheduler) in Java RTS. Scheduler has six outgoing transitions from the initial
location, synchronising with server thread automata over various channels. Scheduler in
the Java RTS AEH model more complex (i.e. more transitions) than the counterpart in
the jRate AEH model. This is mainly because the AEH implementation in Java RTS
allows server threads to execute more than one handler once it is invoked until all pending
handlers in the queue are consumed. This behaviour requires more information to be

available at run-time for the AEH system to work correctly. The followings explain each
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outgoing transition in the automaton from the initial location Initial and they differ

(more or less) from the transitions presented in the jRate Scheduler automaton:

1. The transition to the location AnEventFired: The transition has an additional up-
date, putHandler (p), which enqueues the released handler in the pending handler
queue, reaching to the location AnEventFired. Now there are two possible outgoing
transitions from AnEventFired to the initial location based on the existence of a
ready server thread. If there is the ready server thread, the adjustReadyServer ()
operation is performed, in which the priority of the ready server is adjusted to that
of the released handler if the priority of the ready server thread is lower than that of
the released handler. Otherwise (i.e. there is no ready server), Scheduler notifies
a new ready server via notify[notifyServer()]!, and updates the system status
accordingly (i.e. ready++). The integer variable, ready, is used to keep track of the
number of ready server threads in the system (and also to check the existence of a

ready server) and is expected to always be equals to or lower than 1.

2. The transition to the location BeingPreempted: The transition is identical to that
in the jRate AEH Scheduler automaton. However, in the outgoing transition from
the location BeingPreempted the method putPreemptedThread() puts the server
thread being preempted at the head of the queue at its priority and it adds 20 to its
id, t_id, to indicate merely that this particular server thread was preempted. This
is done to distinguish between waiting server threads in the thread run queue based

on their status (e.g. was it preempted or not?).

3. The transition with the location Looping: The transition is guarded by the con-
straints (p_th>trqFirst() && st_stat[t_id]==RUNNING && !isphqEmpty()) that
corresponds to the state where the priority of the current running server still has the
highest priority and there is one or more pending handlers in the queue. It then pro-
ceeds to the location Executing, synchronising with the corresponding server thread
over the channel loop[t_id]!. As a result of the transition the corresponding server
thread automaton takes the self-looping transition, representing the condition under
which it is allowed to continue execution with another handler at the head of the

pending handler queue.

4. The transition to the location Executing: The transition is identical to that in the
jRate AEH Scheduler automaton, updating the two integer variables, p_th (rep-

resenting the current running server’s priority) and t_id (representing the server’s
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id), and removing the first server thread from the queue. The transition leads to the
anonymous committed location where two possible outgoing transitions are defined
based on the current status of the removed server thread. A server thread conceptu-
ally has a property of telling us its state, whether it yielded the CPU as the result of
changing its priority (i.e. 10 is added to its id), was preempted (i.e. 20 is added to
its id), or is a new ready server. If the server taken from the queue yielded due to the
priority change or was preempted, then Scheduler is able to execute it from where
it left off. If the variable is less than 10 (meaning that the server is a newly notified),
the server thread is made running and decreases ready by one, synchronising the
corresponding server thread over the channel run[t_id]!. Otherwise it proceeds to
Executing without the synchronisation as it should be further evaluated. From the
location Executing, one transition out of two outgoing ones is taken, again based on
the evaluation of t_id. It now tells us whether the server yielded the CPU as a result
of priority change or was preempted. If it was preempted (i.e. t_id>20), it goes
up and executes from where it stopped the execution of its handler. Otherwise it
proceeds to the next location, Reevaluation, where there are two possible outgoing
transitions. Here the Scheduler makes a choice, again based on reevaluating t_id.
If it is greater than 10, which means that the server already has a handler to execute
bound to the server, it proceeds to the location WithHandler, where it determines
whether to notify another server in the pool based on the current state of the AEH
system. If t_id is less than 10, it proceeds to the location WithoutHandler which
has three outgoing transitions. If the handler queue is empty (i.e. isphqEmpty()),
the server yields the CPU and goes back to the pool. If the queue is not empty
and the priority of the first handler in the queue is lower than that of the server,
the server takes the first handler out and changes its priority to that of the handler.
Hence it is placed back at the tail of the handler queue via the channel synchroni-

sation, changePriority[t_id]! with the corresponding server thread [5]*. In the

4The RTSJ states that for a schedulable object whose active priority is changed as a result of explicitly
setting its base priority, this schedulable object is added to the tail of the queue for its new priority level.
This is somewhat contrary to what the RTSJ tries to address for the base scheduler (i.e. it calls for the
FIFO priority scheduler to not force periodic context switching between tasks of the same priority and
therefore the base scheduler in the RT'SJ is meant to minimise the number of context-switches between
same priority threads). However the semantics and requirements for priority changes defined in the
RTSJ unintentionally make the context-switching more frequent when schedulable objects change their
priorities. See Section 3.3.4 The Multiple-Server Switching Phenomenon for a more detailed explanation

about this behaviour.

81



transition it adds 10 to its id, t_id, to show this particular server thread has a han-
dler to execute so that Scheduler is able to execute the server thread from where it
left off later on. Otherwise it proceeds to the location WithHandler where the server
notifies another server in the pool only when there are one or more pending handlers
in the queue and no ready server. Otherwise it continues without the notification.

Now the server thread is finally running, going back to the initial location.

3.3 Formal Analysis of the Models

In this section we specify several properties for the models defined in Section 3.2. The
AEH automata models are simulated and verified using a simplified version of CTL (Com-
putation Tree Logic) in UPPAAL. The query language in CTL consists of path formula
and state formula. State formula describes individual states, whereas path formula quan-
tify over paths or traces of the model. In path formula, A and E mean every path and
some path, and [ | and <> represents all states and some state, respectively. For example
A[ ] ¢ asks whether the given formula ¢ is always true in all reachable states, whereas E[ ]
o says that there should exist a maximal path such that ¢ is always true. E<> ¢ can be
expressed as there exists a maximal path such that ¢ is true in some state. Furthermore,
— represents the leads to or response property, written ¢ — ¢ which is read as whenever
¢ is satisfied, then eventually ¢ will be satisfied. There are generally 3 forms of properties
when verifying a formal model: reachability, safety and liveness. Reachability properties
are the simplest form of properties. They ask whether a given state formula, ¢, possibly
can be satisfied by any reachable state. In UPPAAL, they are expressed using the syntax
E<> ¢. Safety properties are on the form that something bad will never happen. In
UPPAAL, they are expressed using the syntax A[ ] and E[ ]. Liveness properties are of
the form that something will eventually happen. In Uppaal these properties are written
as A<> and ¢ — ¢. Readers are referred to [4] for a more detailed explanation about
the query language for UPPAAL. The set of constructed properties for the model can be
classified into three criteria and the following shows some of the queries we used to verify
the properties. Note that simple reachability properties verified successfully against the

model are not listed here.

1. Model consistency: The properties of this category guarantee that the models comply

with the RTSJ.

2. Model safety: The properties of this category guarantee that the models are free
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from unwanted behaviour and give us their respective worst case scenarios.

3. Run-time behaviour: The properties of this category show us one possible path of
the exhaustive dynamic behaviour of the AEH models during run-time. One path is
presented for each AEH, which is obtained using the UPPAAL simulator. This allows
us to observe their respective run-time behaviour such as the mapping, notification
rule and relinquishment rule as the path progresses. For example, the path presented

for Java RTS AEH produce a MSSP in order for us to observe its cause at run-time.

3.3.1 Model Consistency

e Property 1: A server with a higher priority will always execute in preference to a server

with a lower priority when both are eligible for execution.
procBusy==true && Scheduler.Executing — p_th>=Scheduler.trqFirst()

e Property 2. The currently executing server thread will immediately be preempted by a
higher priority ready thread.
a. procBusy==true && Scheduler.BeingPreempted — p_th<Scheduler.trqFirst()
b. E<> procBusy && Scheduler.AnEventFired && p_th<Scheduler.trqFirst()
c. E<> procBusy && Scheduler.Executing && p_th<Scheduler.trgFirst()
d. E<> procBusy && Scheduler.End && p_th<Scheduler.trqFirst()
In order to prove this property, all the above four queries (a - d) should be considered

as a whole. This is because the tempting query to prove this property
p-th<Scheduler.trqFirst() — procBusy==true && Scheduler.BeingPreempted

will not hold (i.e. when p_th<Scheduler.trqFirst() is satisfied Scheduler does
not necessarily have to move to the BeingPreempted location due to non-determinism).
Therefore we first check the query a which asks that whenever the BeingPreempted
location is reached, the priority of the first server in the thread run queue is always
higher than the priority of the current running thread. The second query b checks
if there is a path where the priority of the first thread in the thread run queue is
higher than that of the current running server and the Scheduler automaton is in
the AnEventFired location. Similarly the third and fourth queries, ¢ and d, are
constructed. a and b hold true and c and d are not satisfied. The results can be
interpreted such that when the priority of the first server in the queue is higher than

that of the current running thread, only two actions, event firing and preemption,
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are possible. Therefore from the results of the queries, it can be concluded that the
current running thread will be immediately preempted by a higher priority ready

server, as an event firing should be considered asynchronous.

e Property 3. The release of a handler may occur regardless of the current status of the

AEH models at any time.

1. After the release of and before the execution of the previously released handler:
E<> Scheduler.AnEventFired && phglen > 1

2. Before the completion of the previously released handler that is currently being

executed:
E<> p_th==i && Scheduler.AnEventFired && tmpPrio==]j
3. After the completion of the previous handler:

E<> Scheduler.AnEventFired && invoked[1]==1 && !procBusy && phglen==
&& trqlen==0

e Property 4. A preempted server will always be placed at the head of the run queue for

its priority level.

ServerThread(n).Running && p_th==i && Scheduler.BeingPreempted —
trq[1][1]-20==n && Scheduler.trqFirst() > i

The variable n and i represent the id and the priority of the current running server,
respectively. Therefore the above query is read as if the current running server n
with the priority ¢ is preempted, the priority of the thread in front of n is always
higher than that of n, which is .

e Property 5. The server thread that changes its priority will be added to the tail of the

thread run queue within the range of its priority.

ServerThread(n).Running && p_th==2 && Scheduler.WithoutHandler && p_th >
Scheduler.phqFirst() && !Scheduler.isphqEmpty() — trq[trglen-1][0]==1 &&
trg[trglen-1][1]-10==n

The variable n represents the id of the current running server. This query is designed
to check for the situations where the server thread changes its priority to the lowest.

Other priority changes, such as 4 to 3, cannot readily be checked as it is not possible
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to determine the position of the server thread added to the tail for its new priority.

However the query partially guarantees this property, along with Property 6 below.

e Property 6. The pending handler queue (phq) and the thread run queue (trq) is always

performed in a priority-ordered manner.

For trq: A[] trq[0][0]>=trq[1][0] && trq[1][0]>=trq[2][0] && ... &&
trq[n-1][0]>=trq[n][0]
For phq: A[ ] phq[0]>=phq[1] && phq[l]>=phq[2] && ... && phq[n-1]>=phq|n]

e Property 7: When an event occurs its attached handler is released for execution.
tmpPrio==3 — Scheduler.phqFirst() == 3
3.3.2 Model Safety
e Property 1. The AEH models are always guaranteed free from a deadlock.
A[ ] not deadlock

e Property 2. There is always zero or one server thread running on the CPU at any point

in time.

A[ ] ServerThread(1).Running + ServerThread(2).Running + ... +
ServerThread(n).Running <=1

e Property 3 for only the Java RTS AEH model: There is only one or none ready server

at any point in time.

A[] ready <1

e Property 4. The least upper and lower bounds of server threads required as the number

of released handers increases.
E<> Scheduler.End && overallSTsRequired==i && overallSTsInvoked==1

To observe how many server threads are required for executing a certain number of
handlers we vary the two constant integer variables, PRIORITY_LEVELS and MAXFC,
for each verification. They vary from 3 to 6 and this effectively constraints the

AEH environment that releases handlers. If PRIORITY_LEVELS and MAXFC are set to
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PRIORITY_LEVELS | MAXFC | Max STs (i) | Min STs (4)

jRate AEH

SO | O | O[O | O [ W O W N
SO | O | T O T W O W N
SO || T [ O | T WO W N

Java RTS AEH

Y| U O | U [ O | UU [ [ W O W N
S| UL OY | U W | OU [ O [ QO [ W N
NN NN NN N[NNI N

Table 3.1: The Number of Server Threads Required as The Number of Priority Levels or

Concurrently Active Handlers Increases
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3 and 3 respectively, it restricts the environment such that the maximum number
of handlers that can be released is 3 and their priority levels can be in the range
[1,3] inclusive. With those numbers it generates 3 x 3 x 3 (hence 27) different but
possible scenarios of handlers’ releasing as follows (the higher the number the higher

the priority):

l=il=i 2=il=i g=i=I1
1-1-2 2—-1-2 3-1-2
1-1-3 2-1-3 3-1-3
1-2—-1 2-2-1 3-2-1
1-2—2 2-—2-2 3-2-2
=2=8 2=-2=8 $=2-3
1-3-1 2-3-1 3-3-1
1-3-2 2-3-2 3-3-2
1-3-3 2-3-3 3-3-3

If the timing property is also included in the combinations, it becomes (3x1)x(3x3)
X (3x3) = 243 possible scenarios. This is because the first released handler conceptu-
ally represents that it is released after the previous handler completes but the second
and the third handler may be released before the previous handler starts executing,
in the middle of the previous handler being executed, or after the previous handler
completes. If those numbers for PRIORITY_LEVELS and MAXFC increase, scenarios
that the verifier in UPPAAL generates become considerably larger. Among those
possible event firing scenarios the verifier therefore gives us the worst and the best
event firing combination in terms of the number of server threads required. The vari-
able ¢ indicates the least upper and lower bounds of server threads required. If the
properties is satisfied with 4 set to 3, this means that there is a event firing scenario
with PRIORITY_LEVELS and MAXFC set to a certain value, where it requires 3 server
threads and they are explicitly invoked. For example if overallSTsRequried is 1
and overallSTsInvoked is 3 means that a server thread was invoked three times
and it executed all the released handlers. However this scenario depicts that handlers
are released in a discrete manner where a handler is released after the completion of
the previous handler. The variable ¢ and two variables, overallSTsRequired and
overallSTsInvoked, are therefore introduced to eliminate the scenarios that involve
discrete (not simultaneous) event firings. In such event firing combinations only one

server thread is needed as there is always one released handler to execute.

The results from the two AEH automata models are shown in Table 3.1. Recall

that the blocked state is absent in the automata models in order for them to be
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given a well-defined cycle of execution. The jRate AEH automata model requires
the same number of server threads as the number of simultaneously released handlers
regardless of the scenario of event firings. As the number of handlers increases, the
number of server threads required is also increasing. The least upper and lower
bounds of server threads required are the same for the model and it shows the run-
time behaviour of the dynamic 1:1 mapping in general. Therefore the number of
server threads required in the jRate AEH automata model entirely depends on the
number of released handlers, not on the handlers’ blocking or priority levels in the
system. On the other hand, the Java RTS AEH automata model requires p + 1
server threads in the worst case, where p represents the number of priority levels
in the system. If the number of handlers in the system is equal to or less than p,
the least upper bound of server threads required is p or less in the Java RTS AEH
model. However the least lower bound number is 2 regardless of the number of
released handlers. The best cases are observed only when released handlers have the
same priority level as this does not require server threads to change their priorities,
in which the MSSP (See Section 3.3.4) cannot be seen and all other scenarios require
more than 2 server threads due to the MSSP. Note that, if all handlers block, it is
easy to see that the Java RTS AEH implementation will require the same number

of server threads as that of the released handlers.

Property 5. The least upper and lower bounds of context-switches incurred to serve a

certain number of handlers.
E<> Scheduler.End && CS==j

The operation yield() increments the variable CS by one and it is called whenever
a context switch between server threads is made. The variable j is replaced with
a natural number when verifying this property. The results from three models are
shown in Table 3.2. To observe how many context-switches are incurred for a certain
number of released handlers we vary the two variables PRIORITY_LEVELS and MAXFC
as done for verifying the previous property. The least upper bound of the context-
switches are all the same for the models and increases as the number of released
handlers increases. This is because the context-switches are incurred when the run-
ning server thread yields or is preempted. The worst case number of preemption
will occur when the low priority thread is released first and other events are released
in a priority-ordered manner before the event completes. Therefore the worst case

number of context-switches is:
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PRIORITY_LEVELS | MAXFC | Max CS (j) | Min CS (5)
2 3 3
3 3 5 5
4 7 7
5 9 9
3 5 5
4 4 7 7
jRate AEH 5 9 9
6 11 11
4 7 9
5 5 9 9
6 11 11
6 5 9 9
6 11 11
2 3 2
3 3 5 2
4 7 2
5 7 2
3 5 2
4 4 7 2
Java RTS AEH 5 9 2
6 9 2
4 7 2
5 5 9 2
6 11 2
6 5 9 2
6 11 2

Table 3.2: The Number of Context Switches Incurred as The Number of Priority Levels

or Concurrently Active Handlers Increases
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R;
2 iehp(i) ’7’1}—‘ +n

where hp(i) is the set of higher priority threads than 4, R; is the worst case response
time of the thread 4, T} is the period of the thread j [6] and n is the number of
active server threads. Here it is assumed that the first task that gets the CPU does
not incur a context-switch as the CPU was empty®. If there are 6 handlers released,
the worst case context-switches is 11. This applies to all the models. Again the
least lower bound of the context-switches for the Java RTS automata model, which
is 2 regardless of the number of released handlers, is observed only when released
handlers have the same priority level as this does not require server threads to change
their priorities, in which the MSSP cannot be seen. All other scenarios require more

than 2 context-switches.

3.3.3 Run-time Behaviour

The run-time behaviour of the AEH automata models is obtained by the UPPAAL sim-
ulator. The simulator in UPPAAL is a validation tool that enables examination of the
possible dynamic executions of a system during early design (or modelling) stages. In
this sense, it provides an inexpensive mean of fault detection prior to verification by the
model-checker. The simulator is also used to visualise executions (i.e. symbolic traces)
generated by the verifier. The Message Sequence Chart (MSC) panel is used to provide the
visulisation and displays an MSC view of the randomly generated trace by the simulator
(guided trace by the user is also possible by manually selecting one of enabled transitions).
Figures 3.8 to 3.11 shows the MSC snapshots of randomly generated trace for the AEH
automata models presented in Section 3.2. In the MSC view there is a vertical line for
each process, and a horizontal line for each synchronisation point. The process name of
each vertical line is indicated in the upper part of the MSC panel. The node names shown
on the vertical lines indicate the control location of the automaton. If the random option
is selected in the simulator, it starts a random simulation where the simulator proceed

automatically by randomly selecting enabled transitions.

A run-time behaviour of the jRate AEH automata model

Figure 3.8 shows the MSC for a randomly generated run-time scenario of the jRate AEH
automata model by the UPPAAL simulator. The two variables PRIORITY_LEVELS and

5The exact schedulability analysis that also models context-switch times is referred to Section 4.5.
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Figure 3.8: A Random Simulation for jRate AEH automata model
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MAXFC is both set to 3 and therefore 3 handlers are released with three different prior-
ity levels. There are three server threads waiting in the pool. First Scheduler detects
a handler releasing and therefore notifies ServerThread(1). It makes the server thread
running and the server thread yields the CPU after the completion of the handler, go-
ing back to the waiting state. Scheduler detects another handler releasing and notifies
ServerThread (1) again as it is in the Waiting state. The third (and therefore the last)
handler is released and Scheduler notifies ServerThread(2). Now there are two server
threads in the thread run queue. ServerThread(1) is made running first as its pri-
ority is higher than the ServerThread(2). After the completion of ServerThread(1),
ServerThread(2) is made running and executes its bound handler. Lastly it yields the
CPU. In the location End, the variables overallSTsInvoked and overallSTsRequired
are set to 3 and 2, respectively. This means that for this combination of 3 handlers be-
ing released, 2 server threads are required with 3 invocations. As discussed earlier these
resulting values indicate that there were discrete handlers releasing as the two values are
not equal. This is true because the second handler is released after the completion of the

first handler and therefore ServerThread (1) is invoked twice.

A run-time behaviour of the Java RTS AEH automata model

Figures 3.9 to 3.11 show the MSC for a randomly generated run-time scenario of the
Java RTS AEH automata model by the UPPAAL simulator. They collectively depict a
single scenario where a latter chart immediately follows its former one. The variables
PRIORITY_LEVELS and MAXFC are also set to 3, having 3 handlers to be released. The first
released handler has the priority 1 and Scheduler notifies ServerThread(1) upon the
release of the handler. The second handler is then released with the priority 1 and there
is the ready server thread, ServerThread(1). Therefore the ready server still keeps its
priority as the priority of the released handler is the same as that of the ready server.
Recall that according to the late binding model that the Java RTS uses, when a handler
is released, no further actions are required if there is a ready server and the priority of
the server is equal to that of the released handler. The third handler is released with the
priority 2 and therefore the AEH subsystem increases the ready server’s priority to 2. Now
there is the ready server with the priority 2 and 3 pending handlers in the queue. Then
ServerThread (1) is made running and takes the first handler in the pending handler
queue. Before it starts executing the handler it notifies ServerThread(2) as there are two
pending handlers in the queue. ServerThread(2) is made ready at the priority of the first

handler at the time, which is 1 and ServerThread (1) starts executing the handler. After
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the completion ServerThread (1) loops and takes the first handler from the queue. As
a binding process, the current server adjust its priority to that of the taken-out handler
which is 1. Now there is a ready server in the thread run queue with the priority 1 and
hence the current server is put to the tail of the thread run queue due to the priority
change®. The ready server therefore gets the CPU and takes the last remaining handler in
the queue. As its priority is the same as the last handler in the queue, it starts to execute
the handler without a priority change. After the execution ServerThread(2) yields the
CPU as there are no pending handlers in the queue. ServerThread(l) now again gets
the CPU and executes its bound handler. Therefore the overall server threads required
is 2 to execute 3 released handlers with 2 unnecessary context-switches for this particular

handler releasing sequence.

3.3.4 The Multiple-Server Switching Phenomenon

The AEH automata model for Java RTS has demonstrated that it tries to reduce the
number of server threads required by allowing server threads to execute multiple handlers
under certain circumstances. As shown in the previous section, there are however occa-
sions the AEH model in Java RTS constantly causes unnecessary context-switches, which
we call the Multiple-Server Switching Phenomenon (MSSP). The phenomenon occurs in-
evitably whenever the currently executing server changes its priority to the value of the
first handler in the pending handler queue to execute the handler. Having one or more
pending handlers in the queue, there is a ready server with the priority of the first handler
in the queue according to [50]. Therefore the ready server will immediately preempt the
currently executing server when the current server changes its priority to that of the first
handler in the queue as the ready server will be at the same priority level. This is because
the RTSJ defines that a schedulable object that changes its active priority is added to the

tail of the run queue for its new priority level.

The UPPAAL model checking tool also provides run-time simulation of automata
models, not only the best and worst case behaviour by exhaustively searching every path
of automata models. Using the simulator in the tool, we are able to find the scenarios that
involve the MSSP. This subsection explains one of the simplest scenarios that causes the
phenomenon. Assume that the thread pool is created with a sufficient number of server

threads and the AEH subsystem has just started. Also assume that we have 3 pending

6This is called the multiple-server switching phenomenon, which is explained in Section 3.3.4 in more

detail.
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handlers with different priority levels in the queue, namely H3, H2 and H1 (The last numeric
character of the name of handlers indicates the priority of them and the higher the number
the higher the priority). Hence there is a ready server, S1, at the priority 3. When the
ready server gets the CPU, it takes the first handler, H3, from the queue and checks the
queue. There are pending handlers, H2 and H1. So it notifies one of the server threads,
S2, in the pool and S2 is made ready with the priority 2. Then S1 starts to execute H3.
After the completion of the handler, S1 checks the pending handler queue and finds out
that the queue is not empty. Thus it takes the first handler, H2, from the queue and
adjusts its priority to 2. Now the running server, S1, is added to the tail of the thread
run queue for its new priority. Hence S2 gets the CPU and polls the first handler in the
queue, which is H1. As soon as S2 sets its priority to 1, it will be preempted by S1 of the
priority 2. Then S1 will continue to execute the handler, H2. Here we have two additional
context-switches in order for S1 to execute two handlers, H3 and H2. This phenomenon is
constantly recurring when the currently executing server lowers its priority to the value
of the first handler in the queue and there is the ready server, which is waiting at the
priority of the first handler in the queue. Furthermore, the AEH subsystem now does not
have a ready server as the server threads, S1 and S2, now have the handlers to execute.
Therefore if a handler is released at these instants, another server will be notified and be
made ready. The MSSP is also seen in the best case scenarios, where 2 server threads are
required regardless of the number of released handlers. For example when there are three
pending handlers, each of which has a unique priority, in the pending handler queue, 2
server threads are required with 2 unnecessary context-switches. As discussed here, the
AEH model in Java RTS tries to reduce the number of server threads required on average
by allowing server threads to execute more than one handlers in turn. Regardless of the
number of the released handlers in the system it requires 2 server threads unless higher
priority handlers are released or handlers block (or self-suspend) while executing in the
best case as shown in Table 3.1. However it seems that the implementation causes the
multiple-server switching phenomenon that produces extra context-switches on average
and demands another ready server thread as a result. The phenomenon occurs due to the

following reasons:

1. For the implementation-defined threads, the RTSJ underspecified their behaviour at

run-time, and

2. The operation that sets a thread’s priority typically causes the thread that changed

its priority to be put at the tail of the thread run queue for its new priority.
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This phenomenon must be addressed to fully utilise the dynamic 1:N mapping model for

an efficient and predictable AEH implementation of the RT'SJ.

3.4 Summary

In this chapter we first investigated asynchronous event handling algorithms used in various

RTSJ implementations. The followings summarise their respective approaches:

e RI - Dynamic 1:1 mapping with run-time server creation and destruction overhead

OVM - Static 1:1 mapping

Jamaica - Static 1:N mapping

jRate - Dynamic 1:1 mapping using the Leader/Followers design pattern

Java RTS - Dynamic 1:N mapping using a thread pool

As discussed in Chapter 2, the asynchrony used to distinguish the distributed commu-
nication models is based on synchronisation, time, and space decoupling. Recall that
synchronisation decoupling means that producers are not blocked while producing events,
and consumers can be asynchronously notified of the occurrence of an event while per-
forming some concurrent activity. Space decoupling indicates that the interacting parties
do not know each other. Time decoupling shows that the interaction between produc-
ers and consumers do not need to be actively participating the interaction at the same
time. Decoupling of the above three criteria removes all explicit dependencies between the
interacting participants and enables the resulting communication application to be well
adapted to distributed environments that are asynchronous. The only AEH implemen-
tation which offers both synchronisation and space decoupling is provided in Java RTS
by using a thread pool, although time decoupling is not achieved in the implementation.
However, note that, applying the notion of time decoupling to real-time systems is not
appropriate as asynchronous events and their handlers must complete within deadlines.
Java RTS AEH is also the only implementation that tries to reduce the overall number of

server threads required on average without causing priority-inversion.

To evaluate asynchronous event handling of the two RTSJ implementations, jRate
and Java RTS, UPPAAL has been extensively used. The two AEH automata models
for each implementation have been designed, simulated and verified. They have been

shown to be consistent with the RTSJ and the properties including reachability, safety
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and liveness have been verified successfully. The verifier in UPPAAL has generated some
measurements for resource usage and overheads using the AEH automata models. The
verification results show that the jRate AEH model uses the same number of server threads
as the number of simultaneously released handlers, regardless of the sequence of event
firings. The Java RTS AEH model, on the other hand, require a smaller number of
server threads on average although the same number of server threads are required in the
worst case. The results from the simulation and the verification demonstrates that the
AEH model used in Java RTS is relatively efficient by allowing server threads to execute
multiple handlers under certain event-firing sequences. However, there are occasions when
the Java RTS AEH model constantly causes unnecessary server-switching, multiple-server
switching phenomenon (MSSP), incurring more context-switches on average. The MSSP
can be classified as a concurrency-related issues (such as priority inversion) and takes place
whenever the current running server changes its priority to that of the handler, which it will
next execute, due to queue replacement policy in that most real-time operating systems
and middle-wares put a thread that has changed its priority at the tail of the relevant
queue for its new priority. Changing priorities of server threads is comprehensively used
in the Java RTS AEH implementation in order for the current running server to reflect the
priority of the handler that it currently executes. In order for the AEH implementation
to be more efficient and hence more scalable it is necessary to effectively deal with the
MSSP. Note that the MSSP is not specific to Java RTS AEH. It can be found in any
system where more than one server thread is concurrently active and their priorities are
changed dynamically. The next chapter presents and discusses a logical approach to derive
the least upper bounds of server threads for blocking and non-blocking handlers. Based on
this, two new AEH models are developed to use the least upper bounds of server threads

in the worst case while avoiding the MSSP.
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Chapter 4

Efficient AEH for the RTSJ

Asynchronous event handlers in the RT'SJ are primarily designed to execute a few lines of
code and then exit while threads are intended to execute for a long time and expected to
wait for resource, sleep, change its priority, generally taking full advantage of the available
support [16, 37]. This explains the foremost driving goal of AEH in the RT'SJ, which is to
realise a lightweight concurrency mechanism that is capable of support hundreds (if not
thousands) of handlers. Consequently handlers should not incur the same overheads as
real-time threads [5, 16, 69]. Therefore handlers are not expected to wait, block, sleep, or
change their scheduling parameters; notwithstanding, the RT'SJ permits these possibilities,
allowing handlers to call self-suspending code (e.g. wait (), sleep(), blocking I/O opera-
tions, etc.). As a consequence all the AEH algorithms used in the RTSJ implementations
discussed in Chapter 3 are designed based on the assumption that handlers might block
(or self-suspend) in the course of execution, except the Jamaica’s AEH implementation.
This effectively prevents handlers from being lightweight as it is necessary to allocate a
single server to each released handler to avoid priority inversion for meaningful schedula-
bility analysis. In many applications, most handlers will not self-suspend and therefore
can be handled in a more efficient way, enabling them to be more lightweight (i.e. using
fewer servers on average). Fewer servers result in smaller data structures in the real-time
virtual machine, less stack space for server threads, fewer context-switches between server
threads etc. The AEH implementation challenge in meeting these goals is made virtually
impossible because the RT'SJ allows a handler to block (or self-suspend) during its execu-
tion. Hence, a server thread executing a handler may not be able to complete its execution
without suspending. Once suspended, it is unable to execute any other handler. Therefore

if each handler does not have a real-time thread for its execution, priority inversion will
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be incurred. For example, if the server dedicated to a priority level blocks, the remaining
pending handlers (if any) at the priority level will also block until the server unblocks. In
the mean time, a server associated with a lower priority level will run, causing priority
inversion. It should be noted, however, that the potential delay incurred when accessing
a synchronised statement or method is not considered as a suspension. This is because
priority inheritance will cause another handler already bound to a server to execute — the

one that has the required lock?!.

In Chapter 3, the AEH models used in some popular RT'SJ implementations were clas-
sified based on their run-time behaviour (i.e. how they map handlers to server threads at
run-time). With a 1:1 mapping model both dynamic and static, it is not possible to realise
the main motivation of non-bound asynchronous event handlers in the RT'SJ. The static
1:N mapping model does reduce the number of servers to execute a greater number of
handlers. For example, Jamaica allocates a dedicated server per priority level. Therefore
it requires the same number of servers as that of the priority levels, not that of handlers.
However the model is subject to priority inversion if handlers block (or self-suspends).
Hence when using Jamaica, all blocking handlers must be designated as bound handlers.
Of course, there is no run-time check to catch the case where a handler does block, and
hence unbounded priority inversion can still silently occur. The AEH implementation in
Java RTS is classified as a dynamic 1:N mapping as they allow a server to execute as
many handlers as possible without causing any undesirable behaviour such as unbounded
priority inversion. However, as identified in the previous chapter, there are occasions when
the Java RT'S AEH model constantly causes unnecessary context-switching between server

threads, the MSSP.

In this chapter, two new AEH models are developed for blocking and non-blocking
handlers to achieve the lightweightness requirement of AEH in the RTSJ. They use fewer
server threads on average and their least upper and lower bounds of server threads are also
derived. It is also shown that the new AEH models outperform other AEH models used
in the current RT'SJ implementations. In this chapter, we first examine the dynamic 1:N
mapping to determine the worst case handler releasing sequence that requires the least

upper bound of server threads. Based on the results of this, two new AEH models for

10n a multiprocessor system this may not be the case. The lock that the current running thread on
one processor tries to acquire may already be possessed by a thread on another processor. This may result

in the former processor being idle until the thread holding the lock releases it.
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the RTSJ are proposed, namely blocking AEH and non-blocking AEH. The handling of
blocking and non-blocking handlers is kept separate in order to take advantage of non-
blocking handlers. With blocking handlers it is generally required to have an additional
server waiting at the priority of the first handler in the queue to take over the CPU if
the currently running server blocks as a precautionary measure. This is not the case with
non-blocking AEH. The common underlying idea for both models is to enable servers to
execute multiple handlers as long as they do not cause any concurrency-related side effects
such as unbounded priority inversion, run-time server creation and destruction overhead,
and the MSSP. It is also discussed how the two new AEH models effectively remedy the

MSSP and the other concurrency related side-effects.

4.1 Critical Sequence for Dynamic 1:N Mapping Model

Mapping models are based on the following facts derived from AEH in the RTSJ such
that:

e Handlers require servers to execute.

e Once a handler starts to execute, the server cannot execute other handlers until the
current handler finishes. In other words, a server can execute only one handler at

any time.

The above statements collectively define the ground upon which the mapping between
servers and handlers can be established. On top of this, the mapping model must also

meet the following additional requirements.

e Requirement 1: It must preserve the priority-based execution of handlers in order

to carry out some form of priority-based schedulability analysis,

e Requirement 2: It must prevent any concurrency-related issue such as priority
inversion, unbounded blocking, and the MSSP without a breach of Requirement 1,

and

e Requirement 3: It should use the least number of servers for a given number of

handlers without a breach of Requirement 2.

Therefore, the most efficient approach to the dynamic 1:N mapping is to use the existing
servers to execute as many pending handlers as possible whenever it can preserve the
priority-based execution of handlers and prevent any concurrency-related issue. Require-

ment 1 can be achieved by dynamically adjusting the priority of the current running server
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to that of the handler to be executed. For Requirement 2, it is imperative to define a set
of rules for the condition under which the invocation and the relinquishment of servers
should take place. To prevent priority inversion and unbounded blocking it is necessary
to invoke additional servers. However as more than one active server at the same time is
the source for the MSSP, any additional servers must be invoked wisely and the number
of active servers should be kept to a minimum at all times. Requirement 3 can be realised

by invoking a server only when absolutely necessary in conjunction with Requirement 2.

Based on the requirements of the general servers and handlers framework, the least
upper and lower bounds of servers required for a given set of handlers can be derived by
considering all possible handler releasing scenarios. For example, assuming handlers do
not self-suspend and there are two handlers (H1 and H2) to be released, there are 9 possible

releasing scenarios as follows:
e Scenario 1: H2 has a lower priority than that of H1i
e Scenario 2: H2 has the same priority as that of H1
e Scenario 3: H2 has a higher priority than that of H1
Each scenario has 3 possible release sequences as follows:
e A: H2 is released at the same time as H1 (i.e. the critical instance).

e B: H2 is released in a discrete manner such that H2 is released at or after the com-

pletion of H1.
e C: H2 is released after H1 starts executing and before H1 completes.

For example Scenario 2.A represents the handler releasing sequence such that two han-
dlers with the same priority are released at the same time. Note that there is another
possible handler releasing sequence, Scenario D, where H2 is released before H1 is released.
This scenario, however, is precluded from the set of handler releasing scenarios as it is
already accounted for (For example Scenario 1.D is equivalent with Scenario 3.B or 3.C).
Depending on the scenario and the number of handlers, the number of servers required
may or may not increase. Figure 4.1 depicts all the handler releasing sequences as the
number of released handlers increase. At each table, the first column represents the sce-
nario and the second column shows the number of servers required on the corresponding
scenario. Initially only one server is required with one released handler H1. When H2 is

released, 8 scenarios do not require an additional server. As for example Scenario 1.C, that
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Figure 4.1: All Possible Scenarios in an Iterative Manner

is H2 with a lower priority is released after H1 with a higher priority starts executing and

before H1 completes, can be handled with one server while meeting all the requirements.

On the other hand, Scenario 3.C which reads as H2 with a higher priority is released
after H1 starts executing and before H1 completes, requires an additional server to prevent
priority inversion; Without the additional server priority, inversion will occur in Scenario
3.C as a higher priority handler H2 will be blocked until H1 finishes. To prevent this pri-
ority inversion, it is necessary to have another server ready to execute H2 as soon as it is

released to meet Requirements 1 and 2 and therefore Scenario 3.C requires 2 servers.

Now assume that there is another handler H3 to be released. Each release scenario has
the same 9 nested scenarios possible, resulting in 81 possible scenarios as shown in Figure
4.1. Among all the possible scenarios, only the sequence, from Scenario 3.C to nested
Scenario 3.C, requires an additional server with H3 releasing. All the other scenarios
require 1 or 2 servers, regardless of the number of handlers. This is because the scenario
that requires 3 servers is such that H1 is released first, H2 is released before H1 completes,
and H3 is released after H2 starts executing and before H2 completes, requiring 3 servers to
cater for 2 preemptions as shown in Figure 4.2. This set of 9 scenarios can be iteratively
applied until all handlers are released. By enumerating all possible scenarios for a given
number of handlers, it is shown that the number of servers increases as the number of

priority levels increases. This is because only Scenario 3.C, which involves a higher priority
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Figure 4.3: Numbers of Servers for Blocking Handlers

handler, requires an additional server. We call such a sequence (sequential happenings of
Scenario 3.C) that demands the least upper bound of servers the critical sequence for the
dynamic 1:N mapping model. Deductively, the following defines the condition under which

a critical sequence of handler releases H = {H;, H;_1, ..., Ha, H1 } occurs:

In a fixed priority system where handlers do not self-suspend, a critical sequence
of the handler releases occurs when handlers are released in a priority-ascending
manner in turn and one is released in the middle of a previously released handler
being executed, that is, 7; is in the range [r;—1, 7i—1 + C;_1] exclusively, for every
handler in H. (Where r; and e; denote the release and the execution time of H;

and the greater the value ¢, the higher the priority.)

Based on the critical sequence, therefore, the least upper bound of servers required is

equal to the number of priority levels in the system for non-blocking handlers. Conse-
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quently the value N in the dynamic 1:N mapping is the number of released handlers per
priority level for non-blocking handlers in the worst case. For the best case, it requires
only one server. Of course, this assumes FIFO scheduling within the same priority level.
If there is a requirement for round-robin or EDF scheduling within priority, more servers

will be required.

If the restriction placed on the self-suspension is lifted, the scenario C should be nested

as follows to cater for self-suspension:
e 1. H2 is released before H1 self-suspends.
e II: H2 is released during the self-suspension of H1.
e III: H2 is released after H1 resumes the execution after the self-suspension.

As a result, there are 15 exhaustive scenarios for the two handlers releasing as shown in
Figure 4.3 and the number of servers required no longer depends on the number of priority
levels. The number of servers required is now dependent on the number of handlers. All
scenarios will require to assign a single server for each handler that self-suspends to prevent
unbounded blocking, except when handlers are released in a discrete manner, Scenario 1.B,
2.B, and 3.B and when H2 has a lower or equal priority and is released after H1 resumes the
execution after the self-suspension, Scenario 1.C.III and 2.C.III. Deductively, the following

defines the condition under which a critical sequence of a set of blocking handlers H occurs:

In a fixed priority system where every handler self-suspends, a critical sequence of
handler releases for handler set H occurs when a handler is released after or at
the release time of a previous handler, and before or during the self-suspension of
the previous handler, that is, r; is in the range [r;, r; + ss;] exclusively, for every

handler in H. (Where ss; denotes the finishing time of H;'s self-suspension.)

Therefore, if all handlers are potentially self-suspending, The value N in the dynamic
1:N mapping becomes 1 in the worst case as each handler requires a single server, regardless
of the number of priority levels in the system. If blocking and non-blocking handlers are
mixed, and the blocking handlers can be identified at run-time by the RT-JVM, it is
possible to assign a single server per blocking handler and schedule non-blocking handlers
using either a static or dynamic 1:N mapping. Based on the critical sequence of the 1:N
mapping model for blocking and non-blocking handlers, therefore, the least upper bound

of servers required wg of the system in the worst case is given by
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if w4 + Bs < 1, then wyg = 74 + G (4.1)

if T4 + Bs > 1, then wy = 1y (4.2)

where 7w, denotes the number of priority levels, (s represents the number of blocking

handlers, and v indicates the total number of handlers in the system.

4.2 Blocking AEH

The AEH implementation in Java RTS assumes that handlers may block. Under this as-
sumption, it tries to reduce the number of server threads required on average by using the
late binding technique and having an additional server thread as a precautionary measure
for the current running thread’s blocking. Note that, in Section 4.1, we classified scenarios
into three categories with respect to self-suspension, I, II, and ITI. If H2 is released after
the self-suspension of H1 and H2 has an equal or lower priority than that of H1, the current
running server can be used to execute H2 after the completion of H1. In practice, however,
it is not possible to detect or project when a handler will self-suspend. Therefore the Java
RTS AEH and blocking AEH implementations take a precautionary measure by having a
ready server thread, if there is one or more pending handlers for the case when the current

running server blocks.

While the goal of Java RTS AEH is laudable, its implementation reduces the efficacy
of the approach due to the MSSP. The blocking AEH implementation [35] is proposed
primarily to prevent the MSSP while using the least possible number of server threads.
Therefore the blocking AEH implementation employs a set of more restrictive rules than
the Java RT'S AEH implementation, regarding the run-time behaviour of servers, in order
to satisfy Requirement 1, 2, and 3 shown in the previous section. The set of rules is as

follows:

1. A server that lowers its priority to that of the handler, is added to the head of the thread

run queue for its new priority.

2. The current running server thread is allowed to execute another handler after the com-
pletion of the current handler if and only if it is the only server in the AEH subsystem

except the ready server. Otherwise it yields the CPU.
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3. After the completion of the current handler, the running server lowers the priority of
the ready server to that of the second pending handler in the queue if and only if it is
allowed to continue the execution with the first handler in the queue (i.e. the condition

specified in the second rule holds).

This set of rules for blocking AEH collectively prevents the MSSP found in the Java RTS
AEH implementation. The first rule is to enable the current running server not to be
preempted due to priority change by the ready server thread waiting at the priority of
the first handler to which the current server thread will change its priority. The second
rule is to prevent the MSSP between the current running server and preempted servers.
Consider the case where the current running server thread has preempted the previous
running server and therefore there is a preempted server in the thread run queue at a
lower priority than that of the current server. If a handler with a lower priority than that
of the preempted thread is released at this instance, another server will be made ready as
there is no ready server. If the current running server is allowed to execute further, there
will be a MSSP entailed as the preempted server thread becomes to have a higher priority
than the current running server when it changes its priority to that of the first pending
handler in the queue, which is lower than that of the highest pending server thread. In
order to prevent this, the current server thread yields the CPU if there are more than
one server thread, except the ready server, in the AEH subsystem. The last rule is also
designed to prevent the MSSP between the current running server thread and the ready
server thread in conjunction with the first rule. The first rule only prevents the MSSP
between servers with the same priority. Therefore the current running server that has
just finished the execution of a handler lowers the ready server’s priority to that of the
second handler in the pending handler queue. As a result the current running server can
continue the execution as now the priority of the ready server will be equal to or lower
than the current running server. This allows the current running server to continue the
execution while keeping the ready server still ready even after the current server’s priority
change. Based on this set of rules, the AEH UPPAAL automata model for Java RTS has
been extended, which is presented in Section 4.2.1. The extended AEH automata model is
called blocking AEH. The actual implementation of the blocking AEH model is presented

in Section 4.2.2.
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Figure 4.4: Scheduler Automaton for Blocking AEH model

4.2.1 UPPAAL Automata Model for Blocking AEH

Essentially the blocking AEH model extends the Java RTS AEH model presented in Sec-
tion 3.2. The ServerThread automaton used for the blocking AEH model is the same
as that used in the Java RTS AEH model. However the Scheduler automaton used in
the blocking AEH model has been modified to reflect the set of rules for blocking AEH.

Therefore only the Scheduler automaton is discussed in this section.

The Scheduler Automaton

The automaton in Figure 4.4 represents the base scheduler of the RTSJ (i.e. Priority-
Scheduler) for the blocking AEH model. The automaton also has six outgoing transitions
from the initial location, synchronising with the ServerThread automata. Some transi-
tions are identical with ones in the Scheduler automaton for Java RTS AEH shown in
Figure 3.7. Hence we only discuss the different transitions from the previous ones as

follows.

1. The transition from the location WithoutHandler to Initial: The transition refers
to the edge triggered when the handler queue is not empty (!isphqEmpty()) and
the priority of the current server is higher than that of the first handler in the queue
(p-th>phgFirst()). This means that the current server will change its priority to
that of the first handler. When the current server is put in the thread run queue as
the result of the priority change, the server is placed at the head of the queue for
its new priority by using the putPreemptedThread() operation. Although this is
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Table 4.1: Numbers of Server Threads and Blocking AEH

not a preempted thread, the effect of invoking the operation achieves how it should

behave when changing its priority. Other operations done in the edge are the same.

2. The transition from the location Initial to Looping: The current running server
is allowed to continue the execution if and only if the current running server is
the only server in the AEH subsystem except the ready server (i.e. trqlen==1 &&

trgFirst ()<10).

3. The transition from the location Looping to Executing: If the number of pending
handlers is greater than or equal to 2 (phqlen>=2), the ready server’s priority is

set to the priority level of the second handler in the queue.

Formal Analysis of the Blocking AEH model

The blocking AEH model is simulated and verified using the same set of the properties
that are applied for the Java RTS AEH model. The Figure 4.1 shows the verification
results of the least upper and lower bounds of servers required as the number of released
handlers increases. This is identical with the results produced by the Java RTS AEH
model. Therefore the blocking model, as shown in Table 4.1, requires p + 1 server threads

in the worst case, where p represents the number of priority levels in the system. If the

110



number of handlers in the system is equal to or less than p, the least upper bound of
server threads required is p in the blocking AEH model. However the least lower bound
is 2 regardless of the number of released handlers. Recall that blocking is not allowed in
the automata models in order for them to be given a well-defined cycle of execution: of
course if blocking is allowed, it is shown earlier that the same number of server threads is
required as the number of released handlers. In the Java RTS automata model, the best
cases are observed only when released handlers have the same priority level as this does
not require server threads to change their priorities, in which the MSSP cannot be seen
and all other scenarios require more than 2 server threads due to the MSSP. However in
the blocking AEH model the best case also includes the handler releasing sequences where
handlers are released in a priority-descending ordered manner. The blocking AEH model
is also capable of handling the MSSP which inevitably occurs whenever a server changes
its priority. The following subsection explains how the blocking AEH model avoids the
MSSP using the same scenario used to demonstrate the phenomenon. The scenario is also

based on a simulation path of the model using the UPPAAL simulator.

Avoiding the MSSP

The same handler set used to explain the MSSP is employed to demonstrate how the
blocking AEH model avoids the phenomenon while using the least possible number of
servers?. There are three handlers pending in the queue, H3, H2, and H1, in a priority
ordered manner (The higher the number, the higher the priority). Therefore a server is
made ready at the priority 3 (The highest priority level at the time). When the ready
server, S1, gets the CPU, it unregisters itself from the ready server and it takes the first
handler, H3, out from the queue and tries to change its priority to the value of the removed
handler. Here as the priority of the server and the handler is the same, the currently
running server continues occupying the CPU. Before starting to execute the handler, the
server checks the pending handler queue. As there are two pending handlers, H2 and H1,
in the queue, it notifies another server in the pool to be the new ready server. Hence a
server, S2, wakes up and sets its priority to 2, the priority of the first handler in the queue
at the time. After S1 finishes executing H3 and before going back to the start of the loop,
it lowers the ready server’s (S2) priority to that of the second handler in the queue, 1
at the time. As done in the previous round, S1 takes the first handler, H2, and sets its

priority to 2. Unlike previous instance, now there is the ready server. Hence S1 skips the

2The source code also contains the symbolic trace of this scenario.

(BlockingAEHModel _Avoiding-MSSP.xtr)
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calling for another ready server and changes its priority 3 to 2 to reflect the priority of the
current handler at hands. Here S1 is not preempted by the ready server, which is done
in the Java RTS AEH model, as S1 lowered S2’s priority to that of the second handler
which is 1 before it changes its priority. Consequently, the server is allowed to continue
running with H2. After the completion of H2, S1 now cannot change the ready server’s
priority as the second handler in the queue is null. Again it goes back to the start of the
loop and takes the first handler, H1, from the queue. The server sets its priority to 1.
Here S1’s priority becomes the same as that of the ready server. However S1 is put to
the head of the thread run queue and therefore it is allowed to continue the execution.
If it was put to the tail of the thread run queue for its new priority, it would have been
preempted by the ready server, S2, which was entailed by the Java RTS AEH model. In
the blocking AEH model, however, S1 continues the execution with the third handler, H1,
as S1 is not preempted as it is placed at the head of the queue for its new priority. However
the self context-switch introduced here when a thread changes its priority is inevitable.
Furthermore the ready server can still be the ready server (if a handler is released at
these instants, the AEH subsystem does not have to notify another server). This may also
benefit from data locality of the system due to cache affinity [14] by allowing the currently
running server to continue the execution. As a result of this, the blocking AEH model
prevents the MSSP which introduces additional context-switches. This applies to any
monitor execution eligibility control provided by the RTSJ (i.e. PriorityInheritance
and PriorityCeilingEmulation) [5]. As demonstrated using the simple scenario, the
blocking AEH model uses two servers to execute three handlers without the MSSP while
being able to have a ready server for newly released handlers by using a synchronisation

block.

4.2.2 Blocking AEH Implementation

Figure 4.5 shows the interaction between relevant objects in the blocking AEH implemen-
tation using a sequence diagram. In the figure there are two separate sectors, Sector
1 and Sector 2, depicting application-specific and implementation-specific part of the

model, respectively.

Sector 1

This section depicts the application-specific part of the AEH model. The programmer is

responsible for constructing relevant objects as needed. In this sector, the programmer
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constructs the server pool with an integer number, n0fServers. The number is then used
to specify how many servers to be created in the pool when it is initialised. The pool
manages two structural components, pendingHandlerQueue and eventFlag. The servers
in the pool wait on the eventFlag when started and they are notified in turn under
certain conditions. The queue lists and dispatches the pending handlers in a priority-
ordered manner. The serverPool is passed to a handler as a parameter when the handler
is constructed, forcing that the handler is served by one of the servers in the pool. Creating
an AsyncEvent and attaching the constructed handler to the event is done in a normal
way. And then some time later the event may be fired as shown in the figure. When the
pool is constructed, it creates the specified number of servers with an initial priority.
The servers’s initial priority must be equal to or greater than the highest priority of all the
handlers that the pool manages in order to avoid priority inversion. The notified servers

will later adjust their priorities to the appropriate values accordingly.

Sector 2

This section represents the implementation-specific part of the AEH. When an AsyncEvent
is fired, all the attached AsyncEventHandlers are released in a priority-ordered man-
ner and put in the pending handler queue. After the queuing, one of the servers in
the pool is notified when there is no ready server or the priority of the ready server is
lower than the priority of the released handlers. This iteration continues until all the
AsyncEventHandlers attached to the AsyncEvent are released. The notified servers per-
form a set of operations before they actually execute handlers in order for them to reflect
the current state of the AEH subsystem. The set of operations is shown in the lifeline of
the server in Figure 4.5. A notified server first sets itself as the ready server and then
adjusts its priority to the first handler’s priority in the queue. Here normally the server
is preempted if there are servers with higher priorities. Otherwise it continues running
and unregisters itself from the ready server. Note that, if there is the ready server and
its priority is lower than that of the released handler, the priority of the ready server is
increased to that of the released handler. This late binding behaviour is not depicted
in the figure for clarity. The ready server then increases an integer variable, nServers,
which represents the number of active servers in the AEH subsystem. The variable will be
used later to determine whether servers should continue to execute or to release the CPU.
The server now goes in the Do-While loop that constantly takes the first handler from
the queue and executes it when the number of active servers is one and there is at least

one pending handler in the queue. Inside the loop it first adjusts its priority to the first
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handler’s in the queue after invoking the pol1() operation on the queue, which returns
the first handler after removing it. The setPriority() method inside a dashed circle in
the figure is performed in a synchronised block on the server class, that gives the current
server mutually exclusive access to the class. This is one of the possible ways that enable
the blocking AEH model to prevent the multiple server switching phenomenon observed
in the Java RTS AEH. This is due to the fact that in many operating systems including
POSIX, it is generally the case that, if a thread holding a lock lowers its priority, it is
recommended to be placed at the head of the thread run queue at its new priority>. After
adjusting its priority, the server notifies another server if and only if there are pending
handlers and the ready server is null. The server now finally executes the removed handler.
After the completion of the handler, the server is allowed to loop as long as the condition
in the Do-While loop is satisfied. Before the running server goes back to the start of the
loop, it adjusts the ready server’s priority to the priority of the second handler in the
queue. This is done to prevent the ready server’s preemption of the currently running
server and let the running server continue the execution. If the Do-While condition is not
satisfied, it decreases the variable, nServer, and sets its priority back to the initial value.
Lastly the server goes back to the waiting state where it sleeps until it gets notified. The
blocking AEH implementation have its own set of rules to achieve Requirement 1,2, and 3
presented in Section 4.1. It invokes server threads only when necessary and if the current
running server does not block, it is allowed to continue to execute with another handler,

reducing the number of active server threads on average.

4.3 Non-Blocking AEH

The non-blocking AEH model proposed to take advantage of non-blocking handlers to
achieve a more lightweight AEH model. This stems from the fact that if a handler will not
self-suspend, it is not required to have another server ready as a precautionary measure in
the case of the handler’s blocking, reducing the number of active servers on average. The

following set of rules defines the run-time behaviour of the non-blocking AEH model:

1. A server is invoked if and only if there is no running (or ready) server or its priority is

lower than that of the released handler.

3The RTSJ is not very clear how a schedulable should behave when it holds a lock and changes its
priority at the same time. However, as servers, strictly speaking, are not RT'SJ schedulable objects, they

are allowed to have these semantics.
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2. The currently running server is allowed to execute another handler after the completion
of the current handler if and only if the highest priority among preempted server threads
is lower than that of the first handler in the pending handler queue (i.e. the highest

priority pending handler). Otherwise it yields the CPU.

This set of rules is to allow non-blocking handlers to be used with the dynamic 1:N
mapping while meeting Requirement 1, 2, and 3 in Section 4.1. According to the critical
sequence for the dynamic 1:N mapping model, the only handler releasing sequence that
requires an additional server thread is when a higher priority handler is released while
a lower priority handler is being executed for non-blocking handlers. The first rule is
to utilise this critical sequence for non-blocking handlers. The second rule is to prevent
the MSSP between the current running server and preempted servers. Consider the case
where the current running server thread has preempted the previous running server and
therefore there is a preempted server in the thread run queue at a lower priority than that
of the current server. If a handler with a lower priority than that of the preempted thread
is released at this instance and the current running server is allowed to execute further,
there will be a MSSP entailed as the preempted server thread becomes to have a higher
priority than the current running server when it changes it priority to that of the pending
handler in the queue. In order to prevent this, the current server thread yields the CPU
if the highest priority pending handler is lower than the highest preempted server thread.
Based on this set of rules, the non-blocking AEH UPPAAL automata model is constructed,
which is presented in Section 4.3.1. The actual implementation of the non-blocking AEH
model is presented in Section 4.2.2. Note that, in the non-blocking AEH model, there is
an additional data structure, called priorityStack which keeps track of all the priorities of
the servers currently active (i.e. running with a handler bound to it). A running server
adds its priority to and removes from the top of priorityStack in a LIFO manner. When
the running server is preempted, the preempting server adds its priority to the top and the
preempted server’s priority becomes the second element of the stack. Therefore the first
element, the top, of the stack always represents the highest priority at which the current
server is running. The size of the array is bounded to the number of servers in the pool.
The data structure is designed to implement the first rule for non-blocking AEH. Also
note that priorityStack cannot be used with the blocking AEH model as blocking handlers
do not allow the stack to store priority values in a LIFO manner as blocking happens

randomly.
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Figure 4.6: Scheduler Automaton for Non-Blocking AEH model

4.3.1 UPPAAL Automata Model for Non-Blocking AEH

Again here, the same ServerThread automata have been used for this model. Therefore

only the Scheduler automaton used in the non-blocking AEH model is presented.

The Scheduler Automaton

The automaton in Figure 4.6 represents the base scheduler of the RTSJ (i.e. Priority-

Scheduler) for the blocking AEH. The automaton also has six outgoing transitions from

the initial location, synchronising with the ServerThread automata. Some transitions are

identical with ones in the Scheduler automaton for blocking AEH shown in Figure 4.4.

Hence we only discuss the different transitions from the previous ones as follows.

1. The transition from the location AnEventFired to Initial: In the Non-Blocking

AEH model, a server in the pool is notified only when there is no server executing,

the current server’s priority is lower than that of the released handler, or there is no

ready server, evaluated by invoking NBAEH NotificationEval(). This behaviour is

depicted in the transition.

2. The transition from the location Looping to Initial: When the current server is

looping, it yields the CPU if the priorityStack[0] is equal to or greater than the

priority of the first handler in the queue. This depicts the situation where there is

a preempted server with a priority level which will be equal to or greater than that

of the current server after it changes its priority to that of the first handler in the
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PRIORITY_LEVELS | MAXFC | Max STs (¢) | Min STs (4)

2 2 1

3 3 3 1

4 3 1

5 3 1

3 3 1

4 4 4 1
Non-Blocking AEH 5 4 1
6 4 1

4 4 1

) ) ) 1

6 5 1

6 5 ) 1

6 6 1

Table 4.2: Numbers of Server Threads and Non-Blocking AEH

queue. If the current server does not yield the CPU and continues the execution
with the first handler in the queue, there will be a MSSP as the current server is
to be preempted by a waiting server with a equal or higher priority. Therefore the

current server yields the CPU.

3. The location WithHandler is absent: This is because this model no longer notifies

another server in case of the currently running server’s blocking.

4. The operations put and removePriority(): The two operations are performed each
time a server starts and finishes the execution of a handler, respectively, to enable

the AEH subsystem to keep track of the priority levels being executed.

Formal Analysis of the Non-Blocking AEH model

The blocking AEH model is simulated and verified using the same set of the properties
that are applied for the Java RTS and blocking AEH models. The Table 4.2 shows the
verification results of the least upper and lower bounds of servers required as the number
of active handlers increases. The least upper bound of server threads required in the
non-blocking AEH model is now completely dependent on the number of priority levels

(not on the number of released handlers) and the least lower bound of servers required
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Figure 4.7: Non-Blocking AEH Sequence Diagram

is 1 regardless of how many handlers are released. This is possible as the model assumes
handlers would not block and hence does not require anther server to be ready in the
case of the currently running server’s blocking. The non-blocking model is also capable of

handling the MSSP as discussed earlier?.

4.3.2 Non-Blocking AEH Implementation

Figure 4.7 shows the interaction between relevant objects in the blocking AEH model
using a sequence diagram as before. In the figure there are two separate sectors, Sector
1 and Sector 2, each of which depicts application-specific and implementation-specific
part of the model, respectively. When an event is fired, a server in the pool is notified
only if there are no active servers (i.e. !currentServer) or the priority the active server
is lower than that of the released handler. A notified server sets itself as the current
server and goes in the loop (i.e. loopl[forever]). In the loop the server polls the first
handler in the queue, puts the handler’s priority value in the priorityStack, and adjusts
its priority to that of the removed handler. Then the server executes it without notifying
another server regardless of the presence of pending handlers in the queue. This is due

to the fact that this model is for non-blocking handlers and hence does not need to have

4The source code also contains the symbolic trace that shows how the non-blocking AEH model avoids

the MSSP. (NonBlockingAEHModel_Avoiding_-MSSP.xtr)
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Figure 4.8: jRate AEH Hierarchy and New Handler Classes

another server waiting at the priority of the first handler in the case of the currently
running server’s blocking. After the completion of the handler it removes the handler’s
priority from priorityStack and continues to execute only when there are one or more
pending handlers in the queue and the highest priority from the priorityStack[0] is
lower than the priority of the first handler in the queue. The reason for the currently
running server’s releasing the CPU when the priority of the first handler in the queue is
lower than the highest priority among active servers in the AEH subsystem is again to
avoid the MSSP. Assume that there is a server executing a handler at the priority 5. The
array, therefore, holds the priority 5 at priorityStack[0]. While the execution of the
handler an event, which releases H6, H4, H3, is fired. A server is therefore notified and it
preempts the currently running server. It then takes out the first handler, H6, from the
queue and changes its priority to 6, continuing the execution. After the completion of the
handler, it releases the CPU because the highest priority from the array, which is 5 at the
time, is greater than the priority the first handler in the queue, which is 4. If the current
server was allowed to continue the execution, the server will lower the priority to 4 and it
will be immediately preempted by the waiting server at the priority 5. This preemption
would recur until all the handlers are served. Therefore the current server yields the CPU.
The yielding server sets its priority back to the initial value and goes back to the waiting

state where it sleeps until it gets notified.
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4.4 Performance Evaluation of the New Models

In this section, it is shown that how the two new AEH models perform compared to other
AEH mapping models by carrying out two performance tests. The first test determines
the dispatch latency of the server and handler when a single handler is released. The
second test investigates the performance of the multiple-handler completion latency when
there is more than one handler simultaneously released. However it is expected for the
two new AEH models to incur higher overheads for the first test (a single handler release)
as the algorithms of the server threads in the models are adaptive to the surrounding
environment and hence complex in an attempt to reduce the number of server threads on
average. The use of the models is justified by their efficiency when there are many handlers
released simultaneously in the second test. To perform the tests, we have implemented
the proposed AEH models in jRate running on top of an open-source RTOS, MaRTE OS
[53], which allows us to emulate RT'SJ-compliant applications on the RTOS using a Linux
environment. Figure 4.8 shows the relationships between the existing jRate AEH classes
and handler classes that are served by the new AEH models discussed in the previous
section. The classes outside the existing jRate subsystem hierarchy in the figure represent
the handler classes that use the new models implemented on the platform and the following

briefly discusses each class.

e AsyncEventHandler: The class encapsulates the code that gets executed when an
AsyncEvent occurs. It implements the Schedulable interface and is defined as an

5

abstract class®. This is the parent class of all the classes each of which implement

the respective AEH models.

e BoundAsyncEventHandler: This class implements the AsyncEventHandler class

that has a single server dedicated to it.

e ThreadedAsyncEventHandler: It creates a server at run-time when required like the

RI does (i.e. when a handler is released).

e PooledAsyncEventHandler: This implements the jRate AEH model discussed in

Section 3.1, which uses the Leader/Followers design pattern.

5Earlier version of the RTSJ defines the AsyncEventHandler as abstract and jRate was implemented
according to the earlier version of the RTSJ. However it is changed to be a concrete class in the most
recent RT'SJ, and the ThreadedAsyncEventHandler and the ConcereteAsyncEventHandler in Figure 4.8

implement the concrete version of the AsyncEventHandler.
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e ConcreteAsyncEventHandler: This class behaves the same as the ThreadedAsync-
EventHandler above. This is our own version of the ThreadedAsyncEventHandler
in jRate and the implementation for this class slightly differs from the Threaded-

AsyncEventHandler.

e PooledBlockingAsyncEventHandler: The class implements the handler class that
uses the blocking AEH model and therefore the handlers which are derived from this

class may block.

e PooledNonBlockingAsyncEventHandler: The class implements the handler class
that uses the non-blocking AEH model and therefore the handlers which are derived

from this class may not block.

Some of the AEH algorithms discussed in Section 3.1 have not been implemented for

the following reasons.

1. The algorithms used in the RI and OVM are the simplest ones that just create a
server as needed or allocate a single server per handler. The ThreadedAsyncEvent-
Handler and ConcreteAsyncEventHandler classes take the same approach as the
RI and the BoundAsyncEventHandler class uses the same AEH implementation

technique as OVM does.

2. The algorithm used in Jamaica allocates a server per priority level. This seems to
be using fewer servers. However this is not entirely true in the sense that for the
blocking handlers the algorithm still requires the same number of servers to prevent
priority inversion and therefore it would need a considerable amount of run-time
server creation and destruction overhead, and for the non-blocking handlers it does
not allow servers to execute multiple handlers with different priorities. Consequently
it is not hard to notice that the algorithm is not optimal in terms of serving a set of

handlers using the least possible number of servers.

3. The algorithm used in the proposed blocking AEH model essentially extends and
improves the AEH algorithm used in Java RTS (i.e. preventing the multiple server

switching phenomenon).

Note that, the current RT'SJ neither specifies how two different AEH algorithms should
be combined in the implementation nor allows the programmer to construct his/her own
AEH algorithm. In order to implement more than one AEH algorithm in the same RTSJ

implementation, the characteristics of the different implementation have to be reflected in
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the handler class hierarchy. In the case of the blocking and non-blocking AEH models,
they are constructed in separate classes each of which uses its own AEH algorithm (i.e.
released PooledNonBlockingHandlers are stored in a NonBlockingPriorityQueue and
are executed by NonBlockingServerThreads in a NonBlockingServerPool, while released
PooledBlockingHandlers are stored in a BlockingPriorityQueue and are executed by
BlockingServerThreads in a BlockingServerPool). In the following sub-sections, we
present and analyse the results from the two tests that are performed on the AEH models

discussed above.

4.4.1 AEH Dispatch Latency Test

This test measures the dispatch latency of the various classes of AsyncEventHandler in
Figure 4.8. There are two types of dispatch latency. One is the server dispatch latency
that represents the time taken from an AsyncEvent being fired, marked as A in Figures
4.5 and 4.7, to its potential server being released, marked as B in the figures. The other is
the handler dispatch latency, which is the time taken from an AsyncEvent being fired (A
in the figures) to its associated AsyncEventHandler starting to execute (marked as C in
the figures). This test therefore shows how long it takes for a server in the AEH models to
be invoked (server dispatch latency) after a handler being released and to start to execute

the released handler (handler dispatch latency).

Test Settings

To measure the two dispatch latencies incurred in the models discussed above, we per-

formed a test with an AsyncEvent being fired 1,000 times in a discrete manner to ensure
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Figure 4.10: Multiple-handler Completion Latency Test with 10 to 100 Handlers

that each event firing causes a complete execution cycle, where an event-firing thread may
fire the event only after the previously released handler is completed. The AsyncEvent has
one associated AsyncEventHandler that will be released when the AsyncEvent is fired.
To avoid the interference of the garbage collector while performing the test, the real-time
thread that fires the AsyncEvent and the servers that execute the AsyncEventHandlers

use scoped memory areas as their current memory areas.

Test Results and Analysis

Figure 4.9 illustrates the average dispatch latency of the various models in jRate and
the two new AEH models. The standard deviations for the tested AEH models are also
presented in the measurements of latencies (bars) in Figure 4.9. The BoundAsyncEvent-
Handler class incurs the lowest average dispatch latency for both server and handler
dispatch. The Threaded and ConcreteAsyncEventHandler require the highest average
dispatch latency as they entail the run-time server creation overhead whenever events are
fired. The AEH model used in jRate and the two new AEH models produce the similar
amount of the average dispatch latency that is placed in between the two average dispatch
latency for BoundAsyncEventHandler and ThreadedAsyncEventHandler. In the two new
AEH models however the time difference between the server and the handler dispatch
latency is bigger and this latency represents the time taken for servers to update infor-

mation according to the current state of the AEH subsystem before it actually executes
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Figure 4.11: Multiple-handler Completion Latency Test with 100 to 500 Handlers

the released handler. Therefore the blocking and non-blocking AEH models incur slightly
higher server and handler dispatch latencies than those of the dynamic 1:1 mapping model
in jRate. This represents the fact that a server thread in the two new AEH models is com-
putationally heavier to cater for their advanced algorithms which are to reduce the number
of server threads on average. Although the results from this test do not explicitly show
the benefits of using the new models as they have larger dispatch latency for both server
and handler, they will become apparent in the next test with multiple released handlers as
the handler dispatch latency from A to C in Figure 4.5 and 4.7 will not be recurring while
other models will require the full length of the handler dispatch latency for each released
handler.

4.4.2 Multiple-handler Completion Latency Test

This test measures multiple-handler completion latency, the time taken from various num-
bers of handlers being released to the last handler being completed. Therefore, this test
measures the time taken to complete a certain number of handlers. We performed the
test with the four AEH models, BoundAsyncEventHandler, PooledAsyncEventHandler,

PooledBlockingAsyncEventHandler and PooledNonBlockingAsyncEventHandler.
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Test Settings

Various numbers of handlers, from 10 to 500, are created for each AEH model per measure-
ment and they are attached to a single event. They all have the same runnable object to
make sure that they are assigned the exactly same logic to execute, including the execution
time. When the event is fired, all the associated handlers are released for execution. The
test measures the time taken from the event being fired to the last released handler being
completed. Again, to avoid the interference of the garbage collector while performing the
test, the real-time thread that fires the event and the servers that execute the released

handlers use scoped memory areas as their current memory areas.

Test Results and Analysis

Figures 4.10 and 4.11 show the trends of the completion latencies of various numbers
of released handlers for the tested AEH models. Figure 4.10 presents the trends of the
completion latencies for relatively smaller numbers (10 to 100) of released handlers and
Figure 4.11 demonstrates the trends for larger numbers (from 100 to 500) of released han-
dlers. Obviously, the latencies increase as the number of released handlers increases. The
PooledAsyncEventHandler produces the highest completion latency. This is because each
time a PooledAsyncEventHandler is released, the run-time dynamically bounds a waiting
server to it. This latency is incurred for each release of PooledAsyncEventHandler. The
BoundAsyncEventHandler eliminates the latency by having a dedicated server for each
handler. The trend of the BoundAsyncEventHandler in the figures reflects this fact. The
trends of the multiple-handler completion latencies for the PooledAsyncEventHandler
and the BoundAsyncEventHandler grows linearly until the number of released handlers
reaches approximately 200, after which the trends increase exponentially. This illustrates
that the platform on which the tests are performed can support a maximum of roughly
200 concurrent threads, after which the throughput of the system degrades. It is also
shown that the increasing rate of the BoundAsyncEventHandler is greater than the two
new AEH models. At the start, with 10 handlers, the BoundAsyncEventHandler incurs
the lowest latency. However as the number of handlers increases, it incurs more overhead
to complete than the two new models. Between 10 and 20 handlers, the performance of
the PooledNonBlockingAsyncEventHandler becomes better and the performance gap is
growing afterwards. For the case of the PooledBlockingAsyncEventHandler, it is be-

tween 70 and 80 handlers with the blocking AEH model producing better performance.
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100 | 200 | 300 | 400 | 500

Bound AEH 28.3 | 36.3 | 43.1 | 51.8 | 60.1
jRate AEH 42.6 | 51.2 | 59.2 | 69.3 | 76.2
Blocking AEH 26.4 | 27.0 | 28.2 | 285 | 29.3
Non-blocking AEH | 21.5 | 21.0 | 21.9 | 22.8 | 234

Table 4.3: Per Handler Overhead as the Number of Released Handlers Increases

The two points where the two new models becomes to outperform the BoundAsync-—
EventHandler model are marked with the black-colored circles in Figure 4.10. Figure
4.11 clearly shows that the performance differences become more apparent as the number
of released handlers increases. When the number of handlers reaches 500, the two new
models exhibit more than 50% better performance. This performance gain of the two new
models is achieved by minimising the number of concurrently active servers. Regardless
of the number of released handlers, the PooledBlockingAsyncEventHandler requires 2
servers and PooledNonBlockingAsyncEventHandler needs 1 server, for the scenario of this
test. This is because all the handlers are attached to a single event and therefore when
the event is fired, the associated handlers are released in a priority-decreasing-ordered
manner. According to the notification rule of the two new models for this scenario, only
2 and 1 servers are required, respectively. Table 4.3 shows per-handler-overhead as the
number of released handlers increases (i.e. overall overhead divided by the number of
released handlers). The per-handler-overheads for bound and jRate AEH grow as the
number of released handlers increase. This clearly represents the fact that as the number
of threads in the system increases, the overall performance of the system decreases. When
the number of released handlers reaches 500, the per-handler overheads for them incur
more than 50% higher overheads than that of the case when there is only one released
handler. On the other hand, the blocking and non-blocking AEH models produce similar
per-handler-overhead regardless of the number of released handlers. They require only
38% and 30% of the per-handler-overhead, respectively, compared to the AEH model in
jRate with 500 simultaneously released handlers. Therefore the overall utilisation with
500 simultaneously released handlers is reduced by 30.1% which is derived by combining
the per-handler-latencies of the two new models divided by that of the AEH model in
jRate.
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4.5 Schedulability Analysis for the AEH Models

This section shows how the standard response time equation can be extended to cater
for the blocking and non-blocking models. As discussed in Section 2.3.2, the standard
response time equation for an arbitrary task 4, ¢;, in a fixed-priority system is as the
following [2]:
Ri=Ci+Bi+ »_ [Rﬂ C; (4.3)
j€hep(i)
where R;, C;, B;, and T; represent the worst-case response time, the worst-case compu-
tation time, the worst-case blocking time and the period of t;, respectively. Also hep(i)
represents the set of tasks with a higher or equal priority than/to i. To account for the
extra delay suffered by a task ¢ due to its own self-suspension and the suspension of higher
priority tasks, the blocking (self-suspending) factor denoted as b;(ss) is typically included
in the total blocking time of ¢;, B;. b;(ss) in a fixed-priority system can be determined

using the following equation [45]:

bi(ss) = mss; + Z min(C;, mss;) (4.4)
Jj€hep(i)

where mss; denotes the maximum self-suspension time of ¢;. This is because the worst-case
blocking time occurs if a lower or equal priority task is released when the self-suspension
of a higher or equal priority just finishes. This may result in the whole computation time
of the previous instance of the higher or equal priority task contributing the blocking time
of a lower or equal priority task. Therefore the worst-case blocking time is the minimum

of the computation time and the self-suspension time of a higher or equal priority task.

The context switch overhead can also by accounted for in the schedulability analysis
by including the time spend for the two context switches at the start and completion
of each task as part of the execution time of it [6, 45]. If the task is preempted and
later resumed, the time spent for the two context switches can be accounted for in the
same way; by including the context-switch time in the execution time of the preempting
task. Assuming that cs denotes the context-switch time of the system (i.e. the maximum
amount of time the system spends per context switch) and ¢s includes the time required
to maintain the context of the tasks involved in the context switch as well as the time
spent by the scheduler to service the event interrupt that triggers the context switch and
to carry out the scheduling action at the context switch (e.g. clock handler). If no task

ever self-suspends, the execution time of every task should be increased to C; + 2¢s, for 4
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=n, n-1, ..., 1. Therefore Equation 4.3 becomes:

R;
R, =2cs+C; + B; + Z [T—‘ (2es 4+ Cy) (4.5)
j€hep(i)' "7

The context-switch at the completion can be removed to obtain the response time of ¢;,
that exclude the time taken to context switch away from the CPU, by decreasing the first
2¢s to cs. Also, if tasks self-suspend more than once per release, a task incur two more
context switches each time it self-suspends. Therefore, if each task can self-suspend a
maximum of K; time after its execution starts, 2(K; + 1)cs (or (K; + 1)cs to exclude the

context-switch at the completion) should be added to the execution time C;.

The schedulability analysis presented in Equation 4.3 and 4.5 based on the fact that
each task has it own thread of control for execution. Therefore, the blocking AEH model,
which allocates a single server thread to each handler in the worst case, can be applied
directly to the analysis without modification. For the non-blocking AEH model, Equation
4.5 should be extended to cater for the 1:N mapping model, whose least upper bound
of server threads is equal to the number of priority levels. This is due to the fact that
the second 2cs may not incur if next handlers are executed by a single server thread.
The following equation shows the extended schedulability analysis that provides an upper

bound on context-switch times for the non-blocking AEH model:

R, =2cs+C;+ B; + Z F;Z—‘ (need(j + 1)2cs + Cj) (4.6)
j€hep(i)' 7
where need is a 0/1 function: need(j + 1) = 0 if the priority of ¢;’s previous task in
the task set from the highest to the lowest priority task is equal to that of ¢;. This
represents that if the priority of the previous checked task is equal to that of the currently
being checked task, the server thread used to execute the previous task will still be used to
execute the current task and hence no context switches will be incurred. Otherwise it gives
the result 1. The non-blocking AEH model, therefore, reduces the overhead associated
context-switch as shown in Equation 4.6, even in the worst case. This further accelerates
overall performance of the system as fewer active server threads will reduce the scheduling
overheads significantly — for example, the time taken to execute the clock handler can
vary considerably, depending on the number of ready or blocked threads [6]. Note that
the worst-case blocking time, B; in Equation 4.6 does not include the self-suspension,

b;(ss), as handlers are not allowed to block in this model.
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4.6 Summary

This chapter has proposed and implemented efficient models for asynchronous event han-
dling in the RTSJ. The underlying idea beneath the proposed models is to use as few
servers as possible. This is to achieve the primary intention of the AEH in the RTSJ. The
proposed models are designed to serve handlers with different characteristics, blocking and
non-blocking. To validate the idea, the dynamic 1:N mapping model was discussed and
emphasised for its efficiency and scalability. Based on the dynamic 1:N mapping model, the
notion of critical sequences for blocking and non-blocking handlers is defined to state the
condition under which the least upper bound of server threads is required. Each blocking
handler requires a single server and non-blocking handlers collectively requires the number
of servers as the number of priority levels. Based on this, the equations that calculate the
least upper bound of servers required for both blocking and non-blocking handlers were
derived for a given set of handlers. The blocking and non-blocking AEH implementations
are constructed, based upon the dynamic 1:N mapping model and utilising the critical
sequences. The blocking AEH model allocates a single server to each blocking handler
and the non-blocking AEH implementation only invokes a server to cater for preemption.
The 1:1 mapping model, such as bound asynchronous event handlers in the current RTSJ,
always requires the least upper bound of servers unless handlers are released in a discrete
manner. On the other hand, the blocking AEH model will require the least upper bound
of servers if and only if a critical sequence occurs. The non-blocking AEH model further
reduces the least upper bound of servers by taking advantage of non-blocking handlers.
It requires the same number of servers as that of the priority levels in the system, even
in the critical sequence. All the other handler releasing scenarios for the non-blocking
AEH model require fewer servers than the least upper bound of servers in the critical
sequence. Given the fact that the two implementations do not exhibit big differences in
performance, requiring the least possible number of servers on average would justify the
use of the non-blocking AEH model, as it will make an application more lightweight (if
the application consists of only non-blocking handlers). Non-blocking handlers can also

be served by the blocking AEH model, but not vice versa.

We also have discussed how the proposed models avoid the concurrency-related side ef-
fects such as priority inversion and the multiple server switching phenomenon while keeping
the number of active servers in the AEH subsystem to a minimum. After implementing the

AEH models, we ran a set of performance tests that measured the dispatch and multiple-
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handler completion latency of various AEH models. In the tests, the two new models have
shown promising results that outperforms the other AEH implementations in jRate. The
models have even shown better performance than the BoundAsyncEventHandlers after the
point where there are more than 20 or 80 handlers in the non-blocking and the blocking
models, respectively. Also the performance gap between them becomes bigger and bigger
as the number of handlers increases. This clearly shows that allocating a dedicated server
to each handler leads to a performance degradation even if a dedicated server per handler
exhibit better performance for a smaller number of released handlers. This is somewhat
surprising and interesting results in the sense that dynamically binding servers to han-
dlers at run-time can result in better performance than allocating a dedicated server per
handler. Our test results indicate that current AEH implementations of the RTSJ could
be optimised to use as few servers as possible, incurring less overhead. The blocking and
non-blocking AEH models are prime examples of such an optimised model and on average
requires a smaller number of servers and context-switches. Note that the overheads mea-
sured in Figure 4.9 s not the worst-case observations. They are average overheads from
the observations of 1000 times of a handler release. If a safe result is to be obtained for a
hard real-time system, the worst-case overheads must be incorporated. However general

practice suggests that this is not always done.

In order to apply schedulability analysis to the blocking and non-blocking AEH models,
the standard worst-case response time analysis for fixed-priority systems was discussed.
The blocking AEH model can directly be applied to the standard schedulability analysis
without modification. On the other hand, the schedulability analysis has been extended
to cater for the non-blocking AEH model. The extended analysis in Equation 4.6 showed
how the non-blocking model reduces its overheads associated with context-switches. 2cs
is incurred for every higher priority task in Equation 4.5, while 2¢s is incurred for every

higher or equal priority level in Equation 4.6.

The impact on the application programmers are minimal. They first have to decide
which handler class to extend when designing a new asynchronous event handler. This will
dictate which implementation approach the JVM will use. They also have to ensure that
their handlers conform to what ever restrictions are required when using that approach

(e.g. their handlers do not block).
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Chapter 5

Applying Fixed-Priority
Preemptive Scheduling with
Preemption Threshold to AEH
in the RTSJ

As shown in the previous chapter, the least upper bound of servers is entirely dependent
upon two factors, the number of blocking handlers and the number of priority levels. If
either of these numbers are reduced, the least upper bound of server threads can also be
decreased. The number of blocking handlers in the system cannot be controlled at the
implementation level as it is application-dependent. However the number of effective pri-
ority levels can be reduced by using fixed-priority preemptive scheduling with preemption
threshold (FPPT) [9, 13, 52, 65] without jeopardising the schedulability of the existing
task set. Therefore, periodic and non-blocking task sets can successfully be scheduled
with FPPT as the least upper bound of server threads for non-blocking handlers depends
on the number of priority levels. FPPT is primarily introduced to feasibly schedule a
task set which is not schedulable either by fixed-priority preemptive scheduling (FPP) or
fixed-priority non-preemptive scheduling (FPNP). In [65], the schedulability of a task set
under two different scheduling policies, FPP and FPPT, is compared in a quantitative
manner by using the notion of breakdown wutilisation for randomly generated tasks. Period

and utilisation of a task in the task set is chosen using a uniform distribution function.
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The breakdown utilisation of a task set is defined as the associated utilisation of a task set
at which a deadline is first missed when the computation time of each task in the task set
is scaled by a factor. It is shown that FPPT improves 3-6% in schedulability compared
to FPP, depending on the number of tasks (i.e. as the number of tasks increases, the
improvement tends to decrease). FPPT is an extension of FPP in which each task has a
supplementary priority called a preemption threshold (or dispatch priority), in addition to
its regular priority. This essentially results in a task having dual priorities. The regular
priority of a task is used when the task is queued, but when the task gets the CPU its
active priority is raised to its preemption threshold. The task keeps the raised priority
until the end of its execution at which point the priority is lowered to its regular priority
level. Therefore FPPT allows a task to prevent the preemptions from tasks with higher
regular priorities up to its preemption threshold, meaning that a ready task can preempt
the running task if and only if the ready task has a regular priority higher than the pre-
emption threshold of the running task. As a result, FPPT reduces overheads due to fewer
preemptions and context-switches by effectivly reducing the number of priority levels in

the system, along with improved schedulability.

In this chapter, FPPT is applied to the non-blocking AEH model to further reduce
the least upper bound of server threads even at the critical sequence for non-blocking
handlers. In Section 5.1, schedulability analysis for FPPT is presented, which differs
from that for FPP or FPNP. The schedulability analysis for FPPT is based on its own
critical instance which is built on top of the notion of level-m; busy interval. Section 5.2
explains various preemption threshold assignment algorithms, based on a task set with
predefined regular priority. Section 5.3 presents and discusses the non-blocking AEH
implementation extended to support the notion of preemption threshold. Following this,
Section 5.4 discusses the impact of the extended non-blocking AEH implementation on

the schedulability analysis and on the RTSJ. Lastly, Section 5.5 summarises this chapter.

5.1 Schedulability Analysis for FPPT

FPPT is based on a notion of level-m; busy interval [43]. Assuming that T; denotes a set
of tasks with equal or higher priority than ¢;, a level-w; busy interval (¢o,t] begins at an
instant ¢g when (1) all jobs in T; released before the instant have completed and (2) a
job in T is released. The interval ends at the instant t after ¢, when all the jobs in T}

released since to are complete. Therefore in the interval (to,t], the CPU is busy all the
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time executing jobs with priorities m; or higher, all the jobs executed in the busy interval
are released in the interval, and at the end of the interval there is no pending jobs to be
executed afterwards. The reason why all jobs of a task in the first level-m; busy interval
must be checked to determine the worst case response time of the task is that the first job
t; 1 may no longer have the largest response time among all jobs in the task due to non-
preemption introduced in FPPT. This is because the critical instant for FPP no longer
holds for FPPT due to the non-preemption. A critical instant of T; is the time at which
the release of the task will produce the largest response time [44, 45]. In a fixed-priority
uniprocessor system where every task completes before the next release, a critical instance
of a task occurs when it is released at the same time with every higher priority task. The

critical instant for FPPT is defined in [65] such that

1. A job of each task with a higher or equal regular priority arrives at the same time

(i.e. the FPP critical instant), and

2. A task A may be blocked by another task B with a lower regular priority, and a
higher or equal preemption threshold than the regular priority of A. That is, the
task B contributing the maximum blocking time has just started before the first

critical instant in the level-m; busy interval.

In addition to the FPPT critical instant, the following two properties are also shown to

be true such that [65]:

e Property 1: There does not exist a universal critical instant for the whole task set

in FPPT except when FPPT degrades to FPP.
e Property 2: FPPT is robust under the FPPT critical instant.

Property 1 represent the fact that the worst case scenario for each task in FPPT may not
occur at the same time except when it degrades to FPP. In other words, under the worst
case scenario for a task, it is not necessary to check whether all other tasks exhibit their
worst case scenarios because their worst case scenarios may not exist at the same time.
Property 2 can be rephrased such that if a task set S is schedulable by FPPT, then task
set S’ such that S’ C S is also schedulable.

Based on the critical instant and the level-w; busy interval of FPPT, the following
formulae 5.1 to 5.5 [52] are defined for the correct schedulability analysis for FPPT. A
task’s regular priority and preemption threshold are denoted by a pair of numbers (7;, v;),

where 7; denotes the regular priority and ; indicates the preemption threshold of ¢;. By
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default, m; = ¢. For a task set with n periodic tasks, the regular priority assignment is
denoted as m = {m,,mp_1,...,m1} and the preemption threshold assignment is expressed
as ¥ = {Vn,Yn—-1,--,71}- The preemption threshold 7, of task t; is therefore between 4
and n inclusively by definition. The greater the number, the higher the priority.

B, = max (} (5.1)
T <7 <Yk
Wi
Wi=Bi+ Y. [TW C, (5.2)
j€hep(i) ' 7
Sik
jehep(i)
F; S;
Fip=58x,+Ci+ Z ([Tk—‘ - <1+ { T’FJ))Q’ (5.4)
Vi, 7> J J
Ri=  max (F;—(—-1T) (5.5)

Formula 5.1 computes the blocking time of ¢;, B;, from tasks with a lower regular priority,
and an equal or a higher preemption threshold. The blocking time is the maximum
execution time of such tasks, Cy. Formula 5.2 computes the length of the in-phase level-7;
busy interval, W;, iteratively starting from W} = Zjehep(i) Cj + B; until VVZ-H'1 = w!
for some [ > 1, where hep(i) represents the set of tasks with an equal or higher priority
to/than t; and T; denotes the period of ¢;. The solution Wll is the length of the level-m;
busy interval. Formula 5.3 computes the starting time of t; , S;r, where t;; denotes
the kth job of ¢; in the level-m; busy interval. Before ¢;j can start to run, all jobs of
tasks with a higher or equal priority ready over [0, S; ;] must finish before S, i, therefore
the first £ jobs of t; in addition to the blocking task with a lower regular priority. This
formula is also solved iteratively, starting from S}, = (k—1)C; +2_jchep(iy Cj + Bi, where
hep(i) represents the set of tasks with an equal or higher priority to/than ¢;. Formula 5.4
computes the finishing time of ¢; i, F; . After ¢; ;, starts to execute, its priority increases
to its preemption threshold, and therefore ¢; can only be preempted by a task ¢; ready over
(Sik, Fix) where m; > ;. Hence F;; is equal to its starting time plus its computation
time and all the computation times of tasks with higher regular priorities than ~; with

jobs ready over (S; k, Fi ). At time S; x, no jobs of task ¢; with m; > ~; is ready, therefore

Sik
Tk

the number of jobs of task ¢; ready before S; 1 is equal to [ —‘ . The iteration starts from

F})k = S, + C;. Formula 5.5 computes the worst case response time of ¢;, R;, within the

in-phase level-m; busy interval. A task set {t;|1 < i < n} is schedulable by FPPT if and
only if Vi, R; < D;, where D; represents the deadline of ¢;.
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Figure 5.1: Preemption Threshold Assignment Algorithms in FPPT

5.2  Preemption Threshold Assignment

The schedulability analysis in Section 5.1 assumes a preemption threshold assignment
already exists. In practice however, normally, regular priorities are solely defined by
using a priority assignment algorithm for FPP (e.g. rate, deadline monotonic assign-
ments, etc). In this section, various preemption threshold assignment algorithms are
presented, based on a task set with predefined regular priority. In [9], it is formally
proved that there may be none or more valid assignments for a task set to be schedu-
lable by FTTP and all the valid assignments are delimited by two special assignments,
the minimal assignment YVmin = {Vming, Ymings - Ymin, ; and the maximal assignment
Ymaz = {VYmaw1s Ymazss s Ymaz, } WHere Ymin, < Ymaz;, for 1 < i < n. In other words,
for any valid assignment v = {71,72, ..., ¥n}, it must satisfy that v; € [Vmaw;, Ymin,], for
1 < ¢ < n, which is denoted as Vmin <X 7 X Vmaz- Note that some assignment delimited
by Ymin and Vimqe, may not be valid. Therefore FPPT degrades to FPP when the preemp-
tion threshold of each task is equal to its regular priority (i.e. Ymin = {¥Yi|Vmin, = mi}).
Similarly, when all preemption thresholds are the same as the highest regular priority in
a task set, FPPT upgrades to FPNP (i.e. Ymaz = {Vi|Vmaz; = ™}). When a task set
with predefined regular priority is not schedulable by FPPT, neither 7,,;, nor v,,q. exists.

There are six available preemption threshold assignments @ to ® in the literature as

shown in Figure 5.1. When a task set with predefined regular priority is schedulable by
FPPT, its vmin can be calculated by starting from either FPP or FPNP, indicated as
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algorithms @ [65] and @ [9] respectively. If Ymin OF Ymaz is known, the other can be cal-
culated, which is indicated by algorithms @ [66] and ® [9] respectively. The algorithm ®
[9] computes Vpmqz, starting from FPP, by sequentially combine @ and @ as no algorithm
that computes vmq. by starting directly from FPP exists. However the algorithm ® [9]
computes Ymqe by starting directly from FPNP. The validity of the algorithms @ to ® is
formally proved in [9].

In order to minimise the number of priority levels for a task set, the maximal assignment
Ymae should be used as any valid assignment v < Vnaz- A task will boost its priority to
preemption threshold as soon as it gets the CPU and will not be preempted by a task with
a higher regular priority task, effectively reducing the number of running priority levels
by preventing preemptions. When all preemption thresholds are the same as the highest
regular priority in a task set, FPPT upgrades to FPNP (i.e. Ymar = {Vi|Vmaz, = 7n}),
effectively having only one running priority level. Therefore we are interested in finding
Ymaz- Lhe algorithms @ and ® generate the same maximal assignment ;.. for a given
task set if v,u4. exists. Note that the two algorithms do not need to start with a valid
assignment (i.e. the given task set may not be schedulable with the current fixed-priority
assignment). Listing 5.1 shows the pseudo-code [9] for the algorithm & which is the se-

quential combination of algorithms @ and ®@.

The algorithms @ and @ are depicted on lines 1 to 11 and 12 to 21, respectively. @ first
sets the initial values for the regular priorities and preemption thresholds by assuming the
preemption threshold of each task is the same as its priority (presented on lines 1 to 4).
Then a for loop starts to calculate the minimal preemption threshold for each task from
the lowest regular priority task to the highest regular priority one, which corresponds to
lines 5 to 11. For any task, whenever it cannot meet its deadline with the current regular
priority and preemption threshold (WCRT(7;, ;) computes R; using Formulas 5.1 to 5.5),
the algorithm increases the preemption threshold by one. If the increased preemption
threshold is higher than the highest regular priority m,, it returns false, meaning that
there is no valid assignment that can make the task schedulable. Otherwise the algorithm
repeats the increment and checks if the current task can meet its deadline, depicted on lines
6 to 10. Based on the result s, from @, @ starts to calculate the maximal preemption
threshold for each task from the highest regular priority task to the lowest regular priority
one, which corresponds to lines 12 to 21. The algorithm increases the preemption threshold

~; by one, while it is lower than the highest regular priority. The worst case response time
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1| for(i =1 to n) {

2 T = 1,

3 Yi = T,

4y

s| for(i =1 to n) {

6 while (WCRT(7; ,v:) > D;) {
7 vi = vi + 1;

8 if(vi > )

9 return false;
10 }

11| }

12| for(i = n to 1) {

13 while(v; < m,) {

14 Yi =%+ L

15 k = v

16 if (WCRT(7r, &) > Di) {
17 Yi = vi — 1;
18 break ;

19 }

20 }

21| }

Listing 5.1: Maximal Assignment Algorithm from FPP

of the potentially affected task t; is recalculated, where k is equal to the new preemption
threshold ~;. If ¢; misses its deadline where 7, = ~;, then the increasing the preemption
threshold of ~; is invalid. Then -; is reduced to its immediately previous value and the next
task is considered. If t; is schedulable, the algorithm repeats the increment and checks
the worst case response time of the next potentially affected task. The time complexity
of the algorithm ® is O(n? - r), where n represents the number of tasks and 7 stands for

the cost of function WCRT(7;,7;) in the worst case.

5.3 Applying FPPT to AEH

In [66], it is proposed that each preemption threshold be allocated a single server, realising
a static 1:N mapping model. Assume that there are 7 handlers with 3 preemption threshold
levels. They therefore collectively requires 3 server threads. Servers will have static
priorities, high, middle, low, and are bound to their corresponding preemtion threshold
group. Consequently handlers in a preemption threshold group can only be executed by
the dedicated server to the group. While it executes n handlers with p servers, where
n and p represent the number of handlers and priority levels, respectively, it entails the

following issues:
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e Issue 1: Most of handler releasing scenarios will require the least upper bound of
servers as now servers are statically allocated to their corresponding preemption

thresholds. This is also a drawback of the static 1:N mapping model.

e Issue 2: It removes the effect of normal priorities as a lower regular priority handler
will be executed first if it has a higher preemption threshold than a handler with a
higher regular priority, but lower than the preemption threshold, which is released
earlier than the lower regular priority handler. This is particularly important as this
breaks the primary assumption of FPPT that is queuing released tasks according to

their priorities, and executing them based on their preemption thresholds.

e Issue 3: As aresult of the above, it forces a handler to produce its worst-case response

time under FPPT.

The non-blocking AEH implementation [35] has been extended to solve all the issues above
by taking a more dynamic approach. The extension of the non-blocking AEH implemen-
tation to support FPPT is trivial. Servers in the implementation now have to assume that
each handler has 2 levels of priority, regular priority and preemption threshold. The RTSJ
conveniently provides a facility to realise this, the ImportanceParameters class which is
an additional scheduling metric that is primarily meant to be used by some priority-based
scheduling algorithms during overload conditions to differentiate execution order among
threads of the same priority. Note that the base priority scheduler in the RTSJ does not
use the importance value in the ImportanceParameters class. Assuming that each non-
blocking handler is given a valid priority and importance, released non-blocking handlers
are queued based on their priorities and executed according to their importance, effectively
scheduling them with preemption threshold. Therefore the implementation hides the use
of importance from the base priority scheduler as servers will update their priorities to
the importance value of the highest pending handler. As a result, servers are scheduled
strictly in a priority-based manner, not an importance-based, from the scheduler’s per-
spective. This enables RTSJ priority inversion control policies to perform correctly with

servers in the non-blocking AEH implementation without any modification.

The non-blocking AEH implementation essentially uses the dynamic 1:N mapping and
hence Issue 1 is not found in the implementation as it invokes a server when absolutely
necessary, reducing the number of servers on average. Issue 2 and 3 are resolved by
queuing released handlers based their regular priorities and executing according to their

preemption threshold, preserving the primary assumption of FPPT.
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5.4 Evaluation

The overall goal of applying the notion of preemption threshold to AEH in the RTSJ is to
reduce the overheads of asynchronous event handling without jeopardising the schedula-
bility of the system. The main overheads associated with schedulable objects are: context-
switch time, thread control blocks (TCB) and stack size. Clearly, reducing the least upper
bound of server threads will reduce the least upper bound of TCB needed. In this sec-
tion, we evaluate whether FPPT reduces the number and magnitude of context-switches
and stack size. This is achieved through extending the standard schedulability analysis
with respect to the number of context-switches incurred and deriving an equation that
calculates the least upper bound of stack usage in the worst case. Here we also present
an example task set to demonstrate the benefits of applying the notion of preemption

threshold to AEH.

5.4.1 The Impact of Fewer Context-Switches

The resulting preemption threshold assignment is entirely dependent on the given task
set. As discussed in Section 5.2, there may be none or more valid preemption threshold
assignments for a task set to be schedulable by FTTP and all the valid assignments are
delimited by the minimal and maximal assignments, Vimin < ¥ < Vmaz- Lherefore the
maximal preemption threshold assignment algorithm presented in Listing 5.1 will produce
Ymin 10 the worst case and ,q. in the best case, for a given task set. Equation 4.6 in
Section 4.5 that provides an upper bound on context-switch times for the non-blocking

AEH model is presented. For the sake of convenience, the equation is copied here!.

R; =2¢cs+C;+ B; + Z [?—‘ (need(j + 1)2¢cs + Cj) (5.6)
@'’

j€hep
If the resulting preemption threshold assignment « is in the range Ymin < 7 < (Ymaz #
FPNP = {Vi|Vmaz; = ™n}), the above schedulability analysis can directly be applied. If
the resulting assignment ~ is equal to V,nqrz = FPNP, there is only one priority level.

Therefore the function need will always return 0, effectively removing need(j + 1)2¢s and

1Note that FPPT uses the schedulability analysis based on the FPPT’s own critical instant and the
level-m; busy interval, presented in Section 5.1, which differs from the above standard response time
analysis based on the FPP’s critical instant. However, it is the same with respect to the least upper
bound of context switches by considering a preemption threshold as a regular priority, which is in the
interest of this section, while the actual response times may or may not differ. The standard response

time equation is still used here to help the comparison at a glance.
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the schedulability analysis becomes:

Ri=2s+Ci+Bi+ Y ﬁw C; (5.7)
d€hep(i)’

This also depicts that only one server thread is required even in the worst case if the

resulting preemption threshold assignment is Va0 = {Vé|Ymaz;, = mn}. This further accel-

erates overall performance of the system as fewer active servers will reduce the scheduling

overheads significantly — for example, the time taken to execute the clock handler can vary

considerably, depending on the number of ready or blocked threads [6].

5.4.2 The Impact of Fewer Servers on Stack Size

By limiting the number of active servers in the system, the amount of stack used is also be
reduced. Each thread has a separate stack to store the state of its Java method invocations
[63]. The state of a Java method invocation includes its local variables, the parameters
with which it was invoked, its return value (if any), and intermediate calculations. The
Java stack is composed of stack frames. A stack frame contains the state of one Java
method invocation. When a thread invokes a method, the Java virtual machine pushes
a new frame onto that thread’s stack. When the method completes, the virtual machine
pops and discards the frame for that method. For the dynamic and static 1:1 mapping

model the least upper bound of stack usage in the worst case, LSU, is as the following:

1
LSU =) SU; (5.8)

i=n
where SU; represents the maximum of stack usage of thread ¢;. For the static 1:N map-
ping model, assuming that a single server thread is allocated for each priority level, LSU

becomes:
1

LSU =) mawic,(SU;) (5.9)

p=n
where p represents a priority level from the highest to the lowest and maxz;e,(SU;) depicts
the maximum stack size of all the tasks in the priority level p. By incorporating the
notion of preemption threshold with the non-blocking AEH model, the least upper bound
of stack usage can further be reduced, depending on the resulting preemption threshold
assignment. If the resulting preemption threshold assignment + is in the range Vin < v <
(Ymaz # FPNP = {Vi|Vmaz, = 7n}), Equation 5.9, can directly be applied, which differs
from Equation 5.8 for the 1:1 mapping models. If the resulting assignment v is equal to

Ymaz = FPNP, there is only one priority level. Therefore there is only one server thread,
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Figure 5.2: Categories of Task Sets w.r.t FPPT
effectively removing Z;:n and the equation becomes:

This depicts that the non-blocking AEH model with the notion of preemption threshold
further reduces the least upper bound of stack usage of the system by reusing the stacks
of fewer active server threads. If the stack used for context-switches and interrupts is
considered, more improvements can be made on the least upper bound of stack usage;
stacks are also used to handle context-switches and to service interrupts [13]. Fewer
servers will result in fewer context-switches and interrupts will use the stack of currently

active servers?.

5.4.3 The Impact on the Number of Preemptions

In Figure 5.2, task sets are categorised based on the results of the application of FPPT.
If a given task set is already schedulable by FPP, the minimal preemption threshold as-
signment algorithm @ will always produce the preemption threshold assignment of the
task set where vVin = {Vi|Vmin, = i} and therefore the maximal preemption threshold
assignment algorithm @ can directly be applied to the task set without applying vVmin
beforehand. In such cases, Vmar = {Vi|Vimaz, = 7} is the worst case assignment and

Ymaz = {Vi|Ymaz, = Tn} is the best case assignment, with respect to reducing the number

2This based on the assumption that interrupts do not have their own stack. This typically requires

underlying hardware support.
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of active priority levels. If a given task set is unschedulable by FPP, the minimal preemp-
tion threshold assignment algorithm @ will produce the preemption threshold assignment
of the task set where Ypmin = {Vi|Vmin, = ™} in the best case. In the worst case, there may
be no valid preemption threshold assignment to which the maximal preemption threshold
assignment algorithm @ cannot be applied as it must start with the valid preemption
threshold assignment. If v,,;, says the given task set is schedulable with FPP, 7,4, can
be applied. Consider the following task set where each task has a computation time and a
deadline equal to its period (computation time, period). There are 8 tasks such that tg =
(1, 10), t7 = (1, 15), tg = (4, 40), t5 = (10, 60), t4 = (20, 80), t5 = (15, 100), t = (10, 200),
t; = (16, 240), it is not schedulable by FPP as w; = 293, greater than its deadline 240.
However the task set becomes schedulable by using FPPT with the preemption threshold
assignment Y, = {8,7,6,5,4,4,4,2} that is generated by the algorithm @. The worst
case response time of each task is 1, 2, 6, 18, 77, 94, 176, and 235 respectively. The
preemption threshold of each task can be maximised using the algorithm @, starting from
Ymins Ymaz = {8,8,8,7,6,6,7,6}. The worst case response time of each task becomes 11,
19, 29, 40, 60, 96, 170, and 172 respectively. Therefore FPPT is not only making the task
set unschedulable by FPP schedulable, but also 7,,;, enabling the task set with 8 tasks to
be feasibly scheduled with 6 servers and ~,,,, with 3 servers, even at the critical sequence.
The overall stack usage is also reduced. For v,,in, it is the sum of the least upper bound
of stack size of 6 servers while 7,4, requires the sum of the least upper bound of stack
size of 3 servers. In [65], the numbers of preemptions for two different scheduling policy,
FPP and FPPT, is compared in a quantitative manner for randomly generated task sets
using a uniform distribution function. The average percentage reduction in the number of
preemptions for FPPT as compared to FPP is roughly between 5-31%. This also means
that the same range of average percentage reduction in the number of server threads can
be achieved. There is a higher percentage of the reduction in preemptions for small num-
ber of tasks, but it tapers down to less than 5% as the number of tasks increases. Also,
for any given number of tasks, the number of reductions in preemptions is larger for larger
values of the period range. These results are valid to the work presented in this chapter
as it is based on FPPT. This does not undermine the main contribution of this chapter
because FPPT is primarily introduced to schedule a task set unschedulable under FPP,
and to apply FPPT to AEH in order to reduce the number of server threads required
based on the preemption thresholds.
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5.5 Summary

In this chapter, FPPT is discussed to reduce the number of effective priority levels for
a given task set. Each task is given two priorities, a regular priority and a preemption
threshold. The regular priority of a task is used to queue when released, and when a task
gets the CPU its priority is raised to its preemption threshold. The task keeps the raised
priority until the end of its execution at which point the priority is lowered to its regular
value. Therefore FPPT allows a task to prevent preemption of tasks with higher regular
priorities up to its preemption threshold, further reducing the number of effective priority
levels. For any valid assignment v = {y1,7y2, ..., ¥n }, it must satisfy that v; € [Ymaz:, Ymin;)s
for 1 < i < n, which is denoted as Ymin < ¥ < Vimaz- Lherefore, in order to minimise the
number of priority levels for a task set, the maximal assignment 7,4, should be used as
each task in a task set where the maximal assignment is applied has the highest possible
preemption threshold, increasing the possibility of priority overlapping between tasks. The
non-blocking AEH implementation has been extended to support FPPT to reduce the least
upper bound of server threads at the critical instance which solely depends on the number
of priority levels. By applying FPPT on a given task set, the least upper bound of server
threads can be decreased to one, when v = {Vi|y; = m,,}, at best and it is the same as
the existing priority levels, when v = {Vi|y; = m;}, at worst. By doing so, the primary
goal of AEH in the RTSJ is better achieved, enabling AEH to be truly lightweight. As a
side effect of decreasing the number of servers, the number of context-switches is reduced.

This saves of both space (overall stack usage) and time (context-switch).
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Chapter 6

Refactoring AEH in the RTSJ

The AEH facilities in the RTSJ are criticised as lacking in configurability [38, 46, 69] as
they do not provide any means for programmers to have fine control over the AEH fa-
cilities, such as the mapping between real-time server threads and handlers, and the size
of the pool. As examined in Section 2.3, the current RT'SJ does not provide any imple-
mentation guidelines on how asynchronous event handlers and their server threads can be
implemented to guarantee the timing requirements of released handlers. Furthermore the
current RT'SJ implementations examined in Chapter 3 do not furnish programmers with
well-defined documentation for their respective AEH approaches. As a result, program-
mers must rely on the underlying AEH algorithm of a RTSJ implementation for their
applications and cannot project how their handlers would behave at run-time. On top
of this, there are needs for the AEH subsystem to be manipulated in order to obtain a
certain properties, such as efficiency. For example, if handlers with different character-
istics (blocking or non-blocking, and periodic or non-periodic as presented in Chapter 4
and 5) are executed in different manners using specifically tailored AEH algorithms, more
efficiency can be achieved. For these reasons, it needs the refactoring of its application
programming interface (API) to give programmers more configurability. This chapter,
therefore, proposes a set of AEH related classes and an interface to enable flexible config-
urability over AEH components. We have implemented the refactored configurable AEH
API using the new specifications on an existing RTSJ implementation and this chapter
shows that it allows more configurability for programmers than the current AEH API in
the RTSJ does. Consequently the programmers are able to specifically tailor the AEH

subsystem to fit their applications’ particular needs.
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Figure 6.1: An AEH Sequence Diagram for a Simple Scenario

In Section 6.1, we give an analysis of the current AEH facilities in the RT'SJ to show that
only limited configurability and flexibility are provided, which prevents AEH from being
adaptable for various event handling strategies. In Section 6.2 we present our refactored
AEH API that provides a framework for the implementation of various event handling
models. The API is backward compatible with the current RTSJ in that application
will execute unchanged in the new system. In Section 6.3, we present a case study of
using the new AEH API framework to support an application-defined implementation of
asynchronous event handlers, illustrating that a simple refactoring of the RTSJ support
would allow much more flexibility and configurability towards AEH. Finally, Section 6.5

summaries this chapter.

6.1 The Configurability of AEH in the RTSJ

In order to understand fully the AEH model, it is necessary to consider how both events
and event handlers are supported in the RTSJ. Figure 6.1 shows a sequence diagram for
a simple application that uses AsyncEventHandler and AsyncEvent objects. Note that
the sequence diagram illustrates the static 1:1 AEH mapping algorithm which is primarily
used for bound asynchronous event handlers. There are two separate sections, A and B,
each of which depicts the application and the implementation-specific part of the system,
respectively. The application creates an event and a handler. They are bound together by
using the addHandler method. When the event is fired (indicated by a call to the fire

method), the internal hook method, internalHook, which informs associated handlers of
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the occurrence of the event, is invoked. Note that the name of the internal hook method
varies depending on the implementation as no requirements of the naming is specified in
the RT'SJ. The method may notify a server thread or may create one depending on the
AEH model currently in use. Then the server thread starts to execute the released handler
by calling the handleAsyncEvent method, which holds the application logic written by
the programmer, repeatedly while the fireCount of the released handler is greater than
0. Therefore the run method of the server thread is written so that it invokes the run
method of the handler. The RTSJ does not provide any means for programmers to have
fine control over Section B. Therefore the section is entirely implementation-dependent
and the programmer has no control over this section. Furthermore, any implementation
configurability is necessarily implementation-dependent. Any program that make use of

such flexibility will therefore be non-portable.

Whilst the goals of asynchronous event handling in the RTSJ are laudable, their re-
alisation in the current version of the specification, therefore, suffer from the following

limitations due to the above issue:

e A single model for all types of events handlers — all asynchronous event must be
handled in the same implementation-dependent way; the AsyncEventHandler class
provides the concrete implementation of an AEH algorithm that mandates the way
of handling events and it is not possible for an application to indicate a different im-
plementation strategy for various handlers with different characteristics in a portable

way such as interrupt handlers or non-blocking handlers.

e Lack of implementation configurability — the AsyncEventHandler class provides no
facilities for the programmer to configure its AEH and therefore the application is
unable to finely tune its AEH components such as the thread pool or the AEH
mapping algorithm [35].

The above problems in the RTSJ severely limit the configurability and the flexibility of
the AEH implementation and consequently the RT'SJ’s model has been criticised as lacking
in this area [35, 46, 69]. In the following section, a refactoring of the RTSJ support is

presented to allow the above limitations to be removed.
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Figure 6.2: The AEH API in the RTSJ

6.2 Refactoring the AEH APl in the RTSJ

As discussed, the RT'SJ does not provide facilities that enable the application to configure
its AEH components and to regulate the run-time behaviour of its server threads. Also the
RTSJ implementations presented in Chapter 3 neither provides adequate documentation
for their respective run-time behaviour of AEH nor furnishes it with a certain level of
configurability. In Chapter 2 the overall design of the RTS AEH facilities were discussed.
The core design of the AEH API is presented in Figure 6.2 and is based on two premises:

1. that all handlers should be schedulable objects, and

2. that the application need not be concerned with how handlers are executed to meet

their timing requirements.

In this section we remove these premises and refactor the current AEH API to extract
out the notion of a handleable object and define the interface between the firing of an event
and the release of a handler. By doing so, we maintain compatibility with the current API
(from the programmer’s perspective) and allow greater configurability and flexibility. The
refactored AEH API hierarchy is shown in Figure 6.3. The Handleable interface cap-
tures the properties of any object that wishes to handle an asynchronous event. It also
extends the Runnable interface like Schedulable does, as it should be implemented by
any class whose instances are intended to be executed by a thread. It declares two ad-
ditional methods, fired, and handleAsyncEvent. The former method is declared here
to explicitly define the relationship between the AsyncEvent and the Handleable class.
The latter method was defined in the AsyncEventHandler class and is moved to the
Handleable interface. Note that the AsyncEvent class of the RTSJ would now be asso-

ciated with the Handleable interface for the parameter of its methods to be passed in,
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Figure 6.3: The Refactored Configurable AEH for the RTSJ
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instead of the AsyncEventHandler class. The abstract class Handler defines protected
accessor methods for fireCount, which were defined in the AsyncEventHandler class in
the current RTSJ. The fired, run, and handleAsyncEvent methods still remain as ab-
stract. The SchedulableHandler class extends the Handler class and implements the
Schedulable interface. This class is still abstract but now provides the default imple-
mentations for methods inherited from the Schedulable interface, that are related to the
feasibility analysis and the accessor methods for scheduling, memory, release, and process-
ing group parameters. Note that the run method is inherited in both the Handleable
and Schedulable interfaces as they both implement the Runnable interface and it still
remains abstract. Now the AsyncEventHandler class extends the SchedulableHandler
class, providing the implementation-specific AEH algorithm. As the RTSJ defines the run
method in the AsyncEventHandler class as final and therefore it is final here too. The
BoundAsyncEventHandler class extends the AsyncEventHandler class as defined in the
current RTSJ. The fired method in the BoundAsyncEventHandler class is declared as

final to shield its internal algorithm from being modified.

In the RTSJ, the interaction between the AsyncEventHandler class and the AsyncEvent
class is not clearly defined and hence is implementation-specific in an inconsistent way

across different implementations. The RTSJ merely states that [5]:

When an asynchronous event occurs, its attached handlers (that is, handlers that
have been added to the event by the execution of the addHandler method) are
released for execution. Every occurrence of an event increments fireCount in each

attached handler.

Especially the phrase ‘released for execution’ is not clear enough, which possibly results in
different interpretation. In OVM, for example, the internal hook method that is invoked
when an event is fired is called releaseHandler where its dedicated server thread is noti-
fied (recall that OVM uses a static 1:1 mapping). The server thread in OVM then calls the
run method of the handler, which in turn invokes the handleAsyncEvent method repeat-
edly while fireCount is greater than zero. In jRate, on the other hand, the fire method
directly invokes the run method, which in turn calls the handleAsyncEvent method. The
mapping algorithm is performed in the releaseHandler method for OVM and in the
handleAsyncEvent method for jRate as a result of this uncertainty. Therefore, here the
interaction between the Handleable interface (or the AsyncEventHandler class) and the

AsyncEvent is explicitly defined to precisely describe their corrective behaviour, such that:
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public void run() {
while (fireCount > 0) {

fireCount ——;

try {
handleAsyncEvent ();

} catch (...) {

}

e When an instance of AsyncEvent occurs (indicated by the fire method being called), the
fired method of instances of the class that have implemented the Handleable interface
and have been added to the instance of AsyncEvent by the execution of addHandler

are explicitly invoked.

e The AEH algorithm that governs the execution of handleable objects shall be provided

in the fired method.

e When used as part of the internal mechanism, the run method's detailed semantics
should follow the below idiom to guarantee that the outstanding fire count should be

handled and cleared properly:

The proposed API structure and the formal definition of the relationship between the
Handleable interface and the AsyncEvent class allows the application to indicate a differ-
ent hierarchical implementation strategy for various handlers with different characteristics.
This can be achieved by extending the refactored AEH API in several ways that fit the

application’s particular needs. For example:

e It can provide its own implementation in support of asynchronous event handling.
This is done by creating a new application-defined class that extends the Schedul-
ableHandler class as illustrated as the Level1lUserDefinedHandler class in Figure
6.4. By overriding the fired method, it is now possible to manually create and
tune the AEH components, allowing the configuration of the number of servers to
be created, the allocation of handlers to servers, and the notification of servers. This

comprehensive configurability of AEH offers the following advantages [69]:

1. handlers in separate servers can be organised so that they do not need to be
synchronised,
2. handlers with tight deadlines can be kept separate from handlers with long

execution time,
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3. handlers which do not block can be separated from handlers that block,

4. heap and no-heap handlers can be bound to separate servers.

This allows an application to take into account application-specific knowledge about

the program for example non-blocking handlers that are presented in Section 4.3.

e It can provide non-schedulable handlers by extending the Handler class as illustrated
as the Level2UserDefinedHandler class in Figure 6.4. An example application
requirement might be to execute an interrupt handler. Here, the fired method may
invoke the run method directly rather than by a server thread without entailing
unnecessary operations which take place in the standard AsyncEventHandler such

as queuing and waiting to be scheduled in competition with other activities [17].

e It can provide its own version of the Handler class should the need arise. The
Level3UserDefinedHandler class in Figure 6.4 illustrates this possibility. Handle-
ables at this level can similarly be implemented as Leve3UserDefinedHandler.

Here, however, the notion of fireCount can also be bypassed.

e Instances of the class that extends the AsyncEventHandler class and overrides the
handleAsyncEvent method will be handled by the default AEH algorithm defined in

the AsyncEventHandler class unless the programmer overrides the fired method.

Note that as the level of hierarchy is increased (from Levell to Level3), the extended
handleables become lighter and more generalised in the sense that a handleable at Levell

requires fewer methods to implement than one at Level2 or Level3.

6.3 Using the Refactored AEH API

We have implemented the refactored configurable AEH in jRate running on top of an open-
source RTOS, MarTE OS [53], which allows us to emulate RTSJ-compliant applications
on the RTOS using a Linux environment. Using this newly implemented configurable
AEH API, various event handling models can be programmed at the application-level.
Figure 6.5 shows the simplest AEH model, that extends the SchedulableHandler class
and is therefore a Level1UserDefinedHandler. The AEH model is used in the RI [60] and
creates a server every time a handler is released. All the activities done in the sequence
diagram now belong with the application-specific part of the system unlike the previous

sequence diagram in Figure 6.1, that uses the current AEH API of the RTSJ. The fired

153



L new

[ | ;asyncEvent
now »| -schedulableHandler
addHandler(schedulableHandler) .
»
fire() N
fired()
[
start() o
>
loop
fireCount>0)]
[fireCount>0] L wng
<
@Jhaﬂdla&sy cEvent() |

Figure 6.5: Dynamic-server-creation AEH Model

method, that is called when the associated asyncEvent is fired, creates and starts a server

thread as followings:

public void fired () {
RealtimeThread server = new RealtimeThread (
this.getSchedulingParameters()){
public void run() {
this.run();
}
}).start ();

Note that the server thread here only reflects the handler’s priority for the sake of simplicity
and defines its run method such that it invokes the handler’s run method upon creation.
Other timing and memory-related parameters can also be reflected on the characteristics
of the server thread. The run method of the handler which is called by the server thread
is now written so that the server thread invokes the handleAsyncEvent method or the
run method of the handler’s logic, that may have been associated with the handler when
constructed, repeatedly while fireCount of the handler is greater than 0. The code inside
the run method of the handler should include the following, which complies with the idiom

suggested earlier:

do{
if (this.logic != null)
this.logic.run();
else

this.handleAsyncEvent ();
}while (this.getAndDecrementPendingFireCount() > 1);

The above code fragment is executed while fireCount is greater than 0 and calls the

run method of the logic that is a runnable object that has been associated with the
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handler as a parameter when the schedulable handler is constructed or the overridden
handleAsyncEvent method, based on the existence of the associated logic object. The
server thread will be destroyed upon completion as shown in the figure. The efficient AEH
models presented in Chapter 4 and 5 also have been implemented on top of the refactored
AEH API as a LevellUserDefinedHandler class. The porting is trivial as the only re-
quired modification is for them to extend the SchedulableHandler class and change the

name of the internal hook method to fired.

In the same way as the above dynamic-server-creation model, Level2 and Level3User-—
DefinedHandler can be constructed by the programmer. Now the handlers at these two
levels are not a schedulable any more (i.e. they no longer have parameters related to
the schedulable object such as SchedulingParameters) and therefore, this could be a
good place to design an interrupt handler that is going to be executed directly by the
calling thread or the run-time system. The fired method therefore will call the run
method directly without creating or notifying a server thread, which will in turn invoke

the handleAsyncEvent method.

6.4 Evaluation

The refactored AEH API presented in Section 6.2 newly introduces an interface and two
abstract classes to the current AEH API in the RTSJ. This is in order to give handlers
different characteristics and allow the application to have full control over its AEH com-
ponents, including the AEH mapping algorithm which governs the run-time behaviour of
handlers. In this section, we discuss relevant issues when refactoring the current AEH
API to the form of the AEH API presented in Section 6.2. The issues are backward com-
patibility, safety, and API overhead. They are discussed in terms of the Java Language

Specification [48] and then are manually tested to confirm their resulting behaviour.

6.4.1 Backward Compatibility

For source compatibility, the source code must be compiled before running. For the binary
compatibility, on the other hand, no recompilation of the source code is needed. The
refactored AEH API preserves backward source compatibility with applications written in

accordance with the current RTSJ. This can be easily validated by the following facts:

e Instances of the current AsyncEventHandler class still remain as instances of the
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AsyncEventHandler class in the refactored AEH APIL

e The current AEH API in the RT'SJ hides the methods, which govern the run-time
behaviour of handlers, from the application. As a consequence, all the possible meth-
ods to be overridden or used by the application, or to be inherited from the current

AsyncEventHadler class remain the same and are also available in the refactored

AEH APL

However, binary compatibility is essentially not supported due to changes made to the
AsyncEvent class. According to the Java Language Specification [48], changing the name
of a method, the type of a formal parameter to a method or constructor, or adding a
parameter to or deleting a parameter from a method or constructor declaration creates a
method or constructor with a new signature, and has the combined effect of deleting the
method or constructor with the old signature and adding a method or constructor with
the new signature. If any pre-exsiting binary references a deleted method or constructor
from a class, this will break binary compatibility; a NoSuchMethodError is thrown when
such a reference from a pre-existing binary is linked. In order for the refactored AEH API
to preserve binary compatibility with pre-existing binaries, a overloaded version of each
method, that are directly related to AsyncEventHandler in the AsyncEvent class, should

be declared, for example for the addHandler method, as follows:

// the new addHandler() method
public void addHandler(Handleable handler) {

// the existing addHandler() method in the current RTSJ
// that calls the new addHandler(Handleable handler) method
// after typecasting the parameter handler to handleable
public void addHandler(AsyncEventHandler handler) {
if(handler instanceof Handleable) {
Handleable handleable = handler;
addHandler (handleable);

Therefore the AsyncEvent class will have two addHandler method with different sig-
natures. The application written in accordance with the current API will be linked
to the addHandler (AsyncEventHandler handler) method, which in turn calls the new
addHandler (Handleable handler) method after typecasting the passed-in parameter,

handler, to a handleable. Note that, handlers in the refactored AEH API will always
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Figure 6.6: Encapsulation of the AEH Algorithm

be an instance of Handleable. By doing this, therefore, the refactored AEH API can also

preserve backward binary compatibility.

6.4.2 Safety

Declaring the run method as final is sufficient for the current RTSJ to shield the AEH
algorithm from being modified. For the refactored AEH API it is not sufficient as now the
internal hook method which determines the AEH mapping algorithm is open to be over-
ridden. However it is not possible to declare the fired method in the AsyncEventHandler
class as final because the method must be overridden to offer a default AEH algorithm
for the BoundAsyncEventHandler class (i.e. a static 1:1 mapping). The fired method
in the BoundAsyncEventHandler class, however, can be declared as final, restricting the
fired and run methods of the subclasses not to be modified. Nevertheless, the fired
method in the AsyncEventHandler class can be overridden by the programmer. Pro-
grammers must not do so if it is intended to use the default AEH algorithm provided
by the underlying AEH implementation. One solution for shielding the AEH algorithm
from being modified in the refactored AEH API is to move the BoundAsyncEventHandler
class to extend the SchedulableHandler class directly, not via the AsyncEventHandler
class, as showin in Figure 6.6. This enables the fired method in the two subclasses of the
SchedulableHandler class to be declared as final, preventing the method from being ac-
cidentally altered. Note that, as shown in Figure 6.6, the run method needs to be declared

in the BoundAsyncEventHandler class as well. Either way, the AsyncEventHandler and
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BoundAsyncEventHandler classes can provide the default implementation of its AEH as

the current RTSJ specifies.

If the BoundAsyncEventHandler class extends the SchedulableHandler class directly,
not via the AsyncEventHandler class, to declare the fired method as final shielding the
AEH algorithm from being altered, it, however, may affect both source and binary back-
ward compatibility. This is because the BoundAsyncEventHandler class is no longer an
instance of the AsyncEventHandler class. According to the Java Language Specification
[48], if a change to the direct superclass or the set of direct superinterfaces results in any
class or interface no longer being a superclass or superinterface, respectively, then link-
time errors may result if pre-existing binaries are loaded with the binary of the modified
class. Such changes are not recommended for widely distributed classes. Consequently,

there is a trade-off, depending on the position of the BoundAsyncEventHandler class.

6.4.3 API Overhead

Although the refactored AEH API introduces an interface and two abstract classes addi-
tionally to the current AEH API in the RTSJ, there are no extra overheads imposed by
the use of the refactored AEH API. This is due to the fact that there are no additional
constructors, methods, or variables which are newly defined in the refactored AEH API
and are not found in the current AEH API. Essentially, all the constructors, methods, and
instance variables defined in the AsyncEventHandler class of the current AEH API are
moved and put to the Handleable interface, and the Handler and SchedulableHandler
classes, accordingly. The fired method is the only one that newly added to the refac-
tored AEH API. However, the method is declared in the Handleable interface and hence
does not provide its implementation (i.e. without a method body). Furthermore, strictly
speaking, the method already exists in the current AEH API with different names as a
internal structure and is simply made open to the programmer to provide an application-
specific implementation in the refactored AEH API. Therefore there is no added overhead
imposed by the use of the refactored AEH API compared to the current one. This is

validated based on the following facts derived from the Java Language Specification [48]:

e Whenever a new class instance is created, memory space is allocated for it with room
for all the instance variables declared in the class type and all the instance variables
declared in each superclass of the class type, including all the instance variables that

may be hidden. Unless there is sufficient space available to allocate memory for
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the object, all the instance variables in the new object, including those declared in
superclasses, are initialised to their default values. As a consequence, when a class
instance is created, instances of its superclasses are only initialised!, not created.
Therefore, for example, instances of the AsyncEventHandler class in the refactored
AEH API have the same overhead as those of the AsyncEventHandler class in the
current AEH API do, in terms of memory, as there are no additional instance or

static variables and methods in the refactored AEH API.

e Before a reference to the newly created object is returned as the result of a class
instance creation, associated constructors (i.e. its own constructor and its super-
class’s constructor) are processed to initialise the new object. As the refactored
AEH API does not define any additional constructor, the only overhead in terms
of time is to implicitly invoke the two more default constructors with empty body,
which are provided automatically by the RT-JVM compiler as there are two super
classes, Handler and SchedulableHandler. Note that before a class is initialised,
its direct superclass must be initialised, but interfaces implemented by the class need
not be initialised. Similarly, the superinterfaces of an interface need not be initialised
before the interface is initialised. Therefore the time overhead imposed by the use
of the refactored AEH API is trivial and hence negligible. This fact is borne out by

repeating the experiment in Chapter 4.4.

6.5 Summary

This chapter has considered the rationale for refactoring asynchronous event handling in
the Real-Time Specification for Java. As the RT'SJ does not provide any configurable facil-
ities for AEH, all the implementations examined in this thesis neither furnish programmers
with well-defined documentation nor offer comprehensive configurability over their AEH
models. This fails to instill confidence in programmers that their event handlers will be
executed predictably. To address the above issue, a configurable AEH API for the RTSJ
is proposed and discussed with respect to its benefits for programmers. The refactored
AEH API has been implemented and various AEH models have also been programmed
at the application level. As an usage example of the refactored AEH API, this chapter
presented a simple AEH implementation model that uses the dynamic 1:1 mapping model

with run-time server creation. The refactored AEH API lifts the limitations of the current

n Java, initialisation of a class consists of executing its static initialisers and the initialisers for static

fields declared in the class.
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AEH version of the RT'SJ, by giving programmers configurability, as follows:

e Multiple models for all types of events handlers — it provides different levels of asyn-
chronous event handling hierarchy, Levell, Level2, and Level3UserDefinedHandler.
This allows asynchronous event to be handled in an application-dependent way at
the different levels; it is now possible for an application to indicate a hierarchical
implementation strategy for interrupt handlers (Level2) or non-blocking handlers

(Levell).

e Comprehensive implementation configurability — the application is now enabled to set
the size of the thread pool or to request different handlers be serviced by different
pools [35] and this flexible configurability generally provides the following advan-

tages.
1. application programmers to provide their own AEH model,
2. the AEH components to be controlled, and
3. run-time behaviour of the components to be regulated.
e A variety of views of the notion of sporadic handlers — although the issue has not
been directly addressed in this thesis, the fired method defined in the Handleable

interface is where any arrival time constraints are implemented. As this is now under

programmer control, user-defined models are possible.

e Backward compatibility — an application written in accordance with the current RTSJ

can also be executed unchanged in the new system.

e No additional APl overhead — the refactored AEH API does not have additional API
overhead in terms of both time and memory than the current AEH API in the RTSJ
do.

The above properties of the new AEH for the RTSJ are significantly beneficial in terms
of applications’ extensibility and scalability, which can be achieved by specifically tailoring

the application to fit its particular needs.
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Chapter 7

Conclusions and Future Work

The aim of this chapter is to summarise the work of this thesis and its contributions, as
well as to provide insight into further work that could be pursued. The primary goals of
the thesis are to augment the current AEH in the RT'SJ in order for it to be more efficient
and more flexible so that its primary goal, the lightweightness, can be better achieved. In

particular, two major aspects of work have been proposed as follows.

e Providing a well-defined guideline to achieve the primary goal of AEH in the RTSJ, the

lightweightness, and

e Facilitating comprehensive configurability over AEH components so that the AEH sub-

system can specifically be tailored to fit the application’s particular needs.

The following subsections give a summary of the major contributions of the thesis
and directions for further work in the light of this thesis. Note that, evaluation has been

performed on a per chapter basis.

7.1 Summary of Contributions

A summary of the achievements obtained by the described research work and major con-
tributions of this thesis are given below. These achievements are assessed based on the
four objectives specified in Chapter 1 as follows:

The current version of the RTSJ does not facilitate either a lightweight concurrency mecha-
nism or comprehensive configurability over its AEH. The efficiency and flexibility of AEH in

the RTSJ can be better achieved if the implementation

Proposition I: is aware of whether asynchronous event handlers are
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e Blocking or Non-blocking, and

e Periodic (Hard) or Non-periodic (Soft).

to be able to reduce overhead both in time and space, and still meet the application’s

timing requirements.

Proposition |l: facilitates comprehensive configurability over its AEH facilities as the lack of
the property inhibits the scalability of the RTSJ implementation from scaling to systems
of hundreds of events. The problem is exacerbated by the presence of asynchronous

event handlers with different characteristics presented in Proposition I.

The demonstration of this research propositions follows from delivering the five major

objectives set out in Chapter 1 of the thesis as shown below:

Objective 1 Investigating and implementing AEH mapping algorithms that use the min-

imum number of server threads,

Objective 2 Drawing the distinction between blocking and non-blocking handlers to fur-

ther reduce the required number of server threads,

Objective 3 Separating non-aperiodic and aperiodic handlers thereby allowing the use
of preemption threshold technique for hard (or periodic) handlers: this technique
lets the AEH subsystem further reduces the number of server threads for execution

of released handlers even in the worst case.

Objective 4 Refactoring of the current AEH API in the RTSJ, which results in giving

programmers full configurability over AEH subsystem,

In Chapter 2, asynchronous event handling facilities in high-level programming lan-
guages, middleware, and distributed systems are investigated and examined in terms of
helping the application’s predictable and efficient behaviour in the context of the con-
current programming models, thread-based and event-based. Either directly or indirectly
they support a notion of threads and a level of asynchrony to facilitate concurrent pro-
gramming. Regardless of their internal and external structures they can be classified into
two classes with respect to the mapping between the executionees and the executioners.
One is the single server approach and the other is the dynamic or static 1:1 mapping.
Some of the investigated languages or middleware systems are able to support the both
form. However there is no framework that provides asynchronous event handling with a
fewer number of server threads than the number of handlers concurrently active. Asyn-

chronous event handling in the RTSJ was discussed in terms of its basic API model and
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implementation. The RTSJ allows considerable freedom in the implementation of asyn-
chronous event handling. We have also considered various models for asynchronous event
handling from the single server approach to the simple thread per handler model, found in
the literature. The chapter is concluded by identifying the outstanding issues associated

with AEH in the RTSJ, efficiency and flexibility.

In Chapter 3, we examined various asynchronous event handling algorithms in some
popular RTSJ implementations with respect to efficiency and flexibility. The followings

summarise their respective approach:

e RI - Dynamic 1:1 mapping

OVM - Static 1:1 mapping

Jamaica - Static 1:N mapping

jRate - Dynamic 1:1 mapping using the Leader/Followers design pattern

Java RTS - Dynamic 1:N mapping using a thread pool

The only AEH implementation which offers both synchronisation and space decoupling
is provided in Java RTS by using a thread pool. Java RTS AEH is also the only imple-
mentation that tries to reduce the overall number of server threads required on average
without causing priority-inversion. To evaluate asynchronous event handling implementa-
tion of the two RT'SJ implementations, jRate and Java RTS, UPPA AL has been extensively
used. The two AEH automata models for each implementation have been designed, sim-
ulated and verified. They have shown to be consistent with the RTSJ and the properties
including reachability, safety and liveness have been verified successfully. The verifier in
UPPAAL has generated some measurements for resource usage and overheads using the
AEH automata models. The verification results show that the jRate AEH model uses the
same number of server threads as the number of simultaneously released handlers increase
regardless of the sequence of event firings. The Java RT'S AEH model, on the other hand,
require a smaller number of server threads on average although the same number of server

threads are required in the worst case.
The results from the simulation and the verification demonstrates that the AEH model

used in Java RTS is relatively efficient by allowing server threads to execute multiple han-

dlers under certain event-firing sequences. However, there are occasions when the Java
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RTS AEH model constantly causes unnecessary server-switching, multiple-server switch-
ing phenomenon (MSSP), incurring more context-switches on average. The MSSP was
classified as a concurrency-related issue (such as priority inversion) and takes place when-
ever the current running server changes its priority to that of the handler, which it will
next execute, due to queue replacement policy in that most real-time OSs and middleware
put a thread that has changed its priority at the tail of the relevant queue for its new
priority. Changing priorities of server threads is comprehensively used in the Java RTS
AEH implementation in order for the current running server to reflect the priority of the

handler that it currently executes.

In Chapter 4, more efficient models for asynchronous event handling were proposed and
implemented. The underlying idea beneath the proposed models is to use as few servers as
possible. This is to achieve the primary intention of AEH in the RTSJ. they are designed
to serve handlers with different characteristics, blocking and non-blocking. To validate the
idea, the dynamic 1:N mapping model was discussed and emhpasised for its efficiency and
scalability. Based on the dynamic 1:N mapping model, the notion of critical sequences
for blocking and non-blocking handlers is defined to state the condition under which the
least upper bound of server threads is required. Each blocking handler requires a single
server and non-blocking handlers collectively requires the number of servers as the number
of priority levels. Based on this, the equations that calculate the least upper bound of
servers required for both blocking and non-blocking handlers were derived for a given set
of handlers. The blocking and non-blocking AEH implementations are constructed, based

upon the dynamic 1:N mapping model and utilise the critical sequences.

The blocking AEH model allocates a single server to each blocking handler and the
non-blocking AEH implementation only invokes a server to cater for preemption. The 1:1
mapping model, such as bound asynchronous event handlers in the current RTSJ, always
requires the least upper bound of servers unless handlers are released in a discrete manner.
On the other hand, the blocking AEH model will require the least upper bound of servers
if and only if a critical sequence occurs. The non-blocking AEH model further reduces the
least upper bound of servers by taking advantage of non-blocking handlers. It requires
the same number of servers as that of the priority levels in the system, even in the critical
sequence. All the other handler releasing scenarios for the non-blocking AEH model require
fewer servers than the least upper bound of servers in the critical sequence. The proposed

models have also demonstrated its capability to avoid the MSSP. The performance test
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results indicate that current AEH implementations of the RT'SJ could be optimised to use
as few servers as possible, incurring less overhead. The blocking and non-blocking AEH
models are prime examples of such an optimised model and on average requires the smallest
number of servers and context-switches, based on their corresponding critical sequences.
Also the AEH algorithms used in the blocking and non-blocking implementations are
language-independent. This is because the algorithms do not use Java-specific facilities.
They can be applied to any programming languages that supports the notion of thread
and basic thread management facilities such as priority change and mutex. However it
must be noted that, the queuing policy of the priority change of a thread depends on the
underlying operating system and hence it is critical to understand the exact behaviour of
priority change to properly adapt the AEH algorithms to another programming language,
built on top of a different OS. Therefore, the chapters from 2 to 4, collectively achieve

Objective 1 and 2. The explicit contributions of these chapters are as follows:

e A better understanding of the facilities that affect the mapping between event han-

dlers and server threads.
e Identification of a new real-time concurrency-related problem, the MSSP.

e An evaluation of the number of server threads required based on the releasing se-

quence and handler’s characteristics.
e A definition of critical sequences for blocking and non-blocking handlers.

e Two new asynchronous event handling algorithms that utilise the definition of critical

sequences and also avoids the MSSP.

In Chapter 5, fixed-priority preemptive scheduling with preemption threshold (FPPT)
is discussed to reduce the number of effective priority levels for a given task set. Each
task is given two priorities, a regular priority and a preemption threshold. The regular
priority of a task is used to queue when released, and when a task gets the CPU its pri-
ority is raised to its preemption threshold. The task keeps the raised priority until the
end of its execution at which point the priority is lowered to its regular value. Therefore
FPPT allows a task to prevent preemption of tasks with higher regular priorities up to
its preemption threshold, further reducing the number of effective priority levels. For any
valid assignment v = {v1,¥a, ..., Vn }, it must satisfy that v; € [Ymaz,, Ymin,], for 1 <i <mn,
which is denoted as Vmin <X ¥ < Vmaz- Therefore, in order to minimise the number of

effective priority levels for a task set, the maximal assignment ,,,, should be used as

165



each task in a task set where the maximal assignment is applied has the highest possi-
ble preemption threshold, increasing the possibility of priority overlapping between tasks.
The non-blocking AEH implementation has been extended to support FPPT to reduce the
least upper bound of servers required at the critical instance which utterly depends on the
number of priority levels. Therefore the objective 3 is delivered by better achieving the
primary goal of AEH in the RTSJ, and therefore enabling AEH to be truly lightweight.
Note that by the use of server techniques for soft (or aperiodic) handlers via the notion of
ProcessingGroupParameters, the impact of such handlers on the overall schedulability of
the application can be bound [71]. The explicit contribution is the application of FPPT to
a new area of asynchronous event handling, which enables further reduction of the number
of server threads, by limiting the number of effective priority levels in the system without

jeopardising the current schedulability.

In Chapter 6 we presented the refactored AEH API for the RT'SJ. As the RT'SJ does not
provide any configurable facilities for AEH, Most of the implementations examined in this
thesis neither furnish programmers with well-defined documentation nor offer comprehen-
sive configurability over their AEH models. This fails to instill confidence in programmers
that their event handlers will be executed predictably. To address the above issue, the
configurable AEH API for the RTSJ was proposed and discussed with respect to its ben-
efits for programmers. The refactored AEH API has been implemented and various AEH
models have also been programmed at the application level. The refactored AEH APT lifts
the limitations of the current AEH version of the RTSJ, by giving programmers compre-
hensive configurability. Therefore Objective 4 is delivered by introducing the new AEH
API which can be specifically tailored to fit the application’s particular needs. The explicit

contribution is the development of a new framework for configurable AEH in the RTSJ.

Accomplishing these aims can offer a more efficient and flexible way to constructing
AEH subsystem in the real-time Java environment. These achievements can facilitate the
development of scalable applications that can specifically be tailored to fit the application’s
particular needs. This further enables the primary goal of AEH in the RT'SJ to be achieved

by providing the lightweight concurrency mechanism.
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7.2 Possible Directions for Future Research

The results presented in this thesis can be used as building blocks for constructing a thread
pool framework that can be used with AEH in the RTSJ. A number of areas in which
further work could be conducted to construct an efficient and configurable thread pool

framework are suggested in the section.

The way of adopting FPPT to AEH in the RTSJ, presented in Chapter 5, is to shield
the scheduler from the extra information (i.e. preemption threshold of a handler), in order
for existing mechanisms, such as priority inversion control and priority-based scheduling,
to work correctly without modifying the behaviour of the scheduler. However this ap-
proach prevents the use of FPPT with normal real-time threads in the RTSJ. This is
mainly because server threads will be executed in competition with real-time threads that
do not use the notion of preemption threshold. As a result, real-time threads cannot
preempt server threads with a lower regular priority, but with higher or equal preemp-
tion threshold. This will undermine the existing schedulability analysis of the non-server
real-time threads in the system. Therefore the non-blocking AEH implementation can
only be used with systems that are composed of only non-blocking asynchronous event
handlers. Blocking handlers can also be used based on the assumption that the blocking
AEH implementation also supports the notion of preemption threshold. In order to use
the notion with normal real-time threads, it is imperative to modify the scheduler so that
it is aware of preemption threshold to schedule real-time threads, both server and non-
server, according to their importance parameters. This is due to the fact that the base
scheduler (i.e. PriorityScheduler) in the RTSJ does not use the importance value in the
ImportanceParameters subclass of PriorityParameters. If such a scheduler is provided,
it is possible to schedule server threads using FPPT without affecting the schedulability

of non-server real-time threads in the system.

The priority assignment algorithms for FPPT presented in Chapter 5 allow the over-
lapping of the preemption thresholds. This means that a lower priority task may have a
higher preemption threshold than that of a higher priority task. This fact also contributes
to Issue 2 and 3 in Section 5.3 for the static 1:N mapping. If the overlapping possibility is
removed, it is possible to assign a single server thread per priority level without having the
associated issues, while preserving the advantages of the static 1:N mapping model such as

ease of implementation. In order to achieve this, a new preemption threshold assignment,
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that does not allow the overlapping, should be derived.

Currently, semantics for the base scheduler essentially assume a uniprocessor execution
environment. While implementations of the RTSJ are not precluded from supporting
multiprocessor execution environments, no explicit consideration for such environments
has been given in the specification [5]. As multiprocessor systems, particularly symmetric
multiprocessor (SMP), are becoming prevalent, addressing issues related to such systems
to be used with AEH in the RTSJ would be timely. As the current RTSJ provides no
mechanism that would allow the programmer to tie happenings and their handlers to
particular processors, it is not clear for the implementer to map the released handler and
the available processors. In [68], a possible direction for the RTSJ towards multiprocessor
systems is proposed, via supporting the notion of CPU affinity for schedulable objects. Its
dispatching model assumes each schedulable object has its own execution engine. This,
however, no longer holds for 1:N mapping models proposed in this thesis, where one or
more handlers share an execution engine (i.e. server thread). Therefore the extensibility
of the proposed AEH models in the thesis should be validated in order to be used in

multiprocessor systems.

7.3 Final Words

In this thesis, we have investigated how to provide an efficient and flexible framework for

asynchronous event handling in the real-time specification for Java.

In order to strengthen the efficiency of AEH, the number of server threads must be
minimised. This inevitably requires an adequate mapping model that maps server threads
to released handlers with efficiency. In the literature, it is however unclear how to achieve
this efficiency. Most of real-time systems that require this mapping between executioners
and executionees use a simple model (e.g. a dynamic 1:1 mapping, such as the Leader/-
Followers design pattern). This does not achieve the efficiency as the same number of
server threads will be required as the number of simultaneously released handlers. We
first defined the notion of critical sequences for blocking and non-blocking event handlers.
The blocking and non-blocking AEH models presented in this thesis utilise the notion
to achieve the efficiency by using as few server threads as possible, depending on the
releasing sequence of handlers. We also proved that the same number of server threads

is required as the number of priority levels in the system for non-blocking handlers even
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in the worst-case. To further accelerate the efficiency using this fact, the fixed-priority
preemptive scheduling with preemption threshold is applied to AEH in the RTSJ. This ul-
timately enables the AEH subsystem to use a smaller number of server threads (than that

of existing priority levels) for executing a larger number of handlers even in the worst-case.

The current RT'SJ does not provide any configurable facilities in order for programmers
to finely tune their applications with respect to AEH. This severely limits the flexibility
of AEH in the RTSJ. We refactored the current AEH API to provide programmers with
comprehensive configurability over their AEH models. The refactored AEH API is shown
that it is backward-compatible and its additional overhead compared to the current AEH
APIT is negligible. It offers many advantages for programmers such as multiple models
for various handlers with different characteristics, implementation configurability and a
variety of views of the notion of sporadic handlers. As a result, the refactored AEH API
provides significant benefits in terms of application’s extensibility and scalability, which

can be achieved by specifically tailoring the application to fit its particular needs.
The results obtained in this thesis are therefore sufficient to make us believe that

the first step is steadily taken towards providing an efficient and flexible framework for

asynchronous event handling in the real-time specification for Java.
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