
A Practical Automatic Polyhedral Parallelizer and
Locality Optimizer

Uday Bondhugula1 Albert Hartono1 J. Ramanujam2 P. Sadayappan1

1Dept. of Computer Science and Engineering 2Dept. of Electrical & Computer Engineering & CCT
The Ohio State University Louisiana State University

{bondhugu,hartonoa,saday}@cse.ohio-state.edu jxr@ece.lsu.edu

Abstract
We present the design and implementation of an automatic polyhe-
dral source-to-source transformation framework that can optimize
regular programs (sequences of possibly imperfectly nested loops)
for parallelism and locality simultaneously. Through this work, we
show the practicality of analytical model-driven automatic transfor-
mation in the polyhedral model.Unlike previous polyhedral frame-
works, our approach is an end-to-end fully automatic one driven by
an integer linear optimization framework that takes an explicit view
of finding good ways of tiling for parallelism and locality using
affine transformations. The framework has been implemented into
a tool to automatically generate OpenMP parallel code from C pro-
gram sections. Experimental results from the tool show very high
performance for local and parallel execution on multi-cores, when
compared with state-of-the-art compiler frameworks from the re-
search community as well as the best native production compilers.
The system also enables the easy use of powerful empirical/itera-
tive optimization for general arbitrarily nested loop sequences.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Code generation

General Terms Algorithms, Design, Experimentation, Perfor-
mance

Keywords Automatic parallelization, Locality optimization, Poly-
hedral model, Loop transformations, Affine transformations, Tiling

1. Introduction and Motivation
Current trends in microarchitecture are increasingly towards larger
number of processing elements on a single chip. This has made
parallelism and multi-core processors mainstream. The difficulty
of programming these architectures to effectively tap the potential
of multiple on-chip processing units is a significant challenge.
Among several approaches to addressing this issue, one that is
very promising but simultaneously very challenging is automatic
parallelization. This requires no effort on part of the programmer
in the process of parallelization and optimization and is therefore
very attractive.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00

Many compute-intensive applications often spend most of their
execution time in nested loops. This is particularly common in sci-
entific and engineering applications. The polyhedral model pro-
vides a powerful abstraction to reason about transformations on
such loop nests by viewing a dynamic instance (iteration) of each
statement as an integer point in a well-defined space called the
statement’s polyhedron. With such a representation for each state-
ment and a precise characterization of inter or intra-statement de-
pendences, it is possible to reason about the correctness of complex
loop transformations in a completely mathematical setting relying
on machinery from linear algebra and linear programming. The
transformations finally reflect in the generated code as reordered
execution with improved cache locality and/or loops that have been
parallelized. The polyhedral model is applicable to loop nests in
which the data access functions and loop bounds are affine combi-
nations (linear combination with a constant) of the enclosing loop
variables and parameters. While a precise characterization of data
dependences is feasible for programs with static control structure
and affine references/loop-bounds, codes with non-affine array ac-
cess functions or code with dynamic control can also be handled,
but only with conservative assumptions on some dependences.

The task of program optimization (often for parallelism and lo-
cality) in the polyhedral model may be viewed in terms of three
phases: (1) static dependence analysis of the input program, (2)
transformations in the polyhedral abstraction, and (3) generation of
code for the transformed program. Significant advances were made
in the past decade on dependence analysis [19, 18, 46] and code
generation [31, 25] in the polyhedral model, but the approaches suf-
fered from scalability challenges. Recent advances in dependence
analysis and more importantly in code generation [47, 6, 55, 54]
have solved many of these problems resulting in the polyhedral
techniques being applied to code representative of real applications
like the spec2000fp benchmarks [14, 22]. These advances have also
made the polyhedral model practical in production compiler con-
texts [43] as a flexible and powerful representation to compose and
apply transformations. The key missing step has been the demon-
stration of a scalable and practical approach for automatic trans-
formation for parallelization and locality. Our work addresses this
by developing a compiler, based on the theoretical framework we
previously proposed [9], to enable end-to-end fully automatic par-
allelization and locality optimization.

Tiling [28, 58, 61] is a key transformation in optimizing for par-
allelism and data locality. There has been a considerable amount
of research into these two transformations. Tiling has been stud-
ied from two perspectives – data locality optimization and paral-
lelization. Tiling for locality requires grouping points in an iter-
ation space into smaller blocks (tiles) allowing reuse in multiple
directions when the block fits in a faster memory (registers, L1, or
L2 cache). Tiling for coarse-grained parallelism involves partition-

for (i=0; i<N; i++)
for (j=0; j<N; j++)

S1: A[i , j] = A[i , j]+u1[i]∗v1[j] + u2[i]∗v2[j];

for (k=0; k<N; k++)
for (l=0; l<N; l++)

S2: x[k] = x[k]+A[l,k]∗y[l];
Original code0B@ 1 0 0 0

0 1 0 0
−1 0 1 −1
0 −1 1 −1

1CA
0B@ i

j
N
1

1CA ≥ ~0

Domain of S1

S1

S2

[...]

[...]

Data dependence graph0BBBBB@
1 0 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 1 −1
1 0 0 −1 0 0
0 1 −1 0 0 0

1CCCCCA

2666664
i
j
k
l
N
1

3777775
≥ 0
≥ 0
≥ 0
≥ 0
= 0
= 0

Dependence polyhedron for S1→S2 edge

S1 S2
i j const k l const

c1 0 1 0 1 0 0 parallel
c2 1 0 0 0 1 0 fwd dep
c3 0 0 0 0 0 1 scalar

Statement-wise transformation

for (c1=0; c1<N; c1++)
for (c2=0; c2<N; c2++)

A[c2,c1] = A[c2,c1]+u1[c2]∗v1[c1]+u2[c2]∗v2[c1];
x[c1] = x[c1]+A[c2,c1]∗y[c2];

Transformed code

Figure 1. Polyhedral representation

ing the iteration space into tiles that may be concurrently executed
on different processors with a reduced frequency and volume of
inter-processor communication: a tile is atomically executed on a
processor with communication required only before and after exe-
cution. One of the key aspects of our transformation framework is
to find good ways of performing tiling.

Existing automatic transformation frameworks [37, 36, 35, 24]
have one or more drawbacks or restrictions that limit their effective-
ness. A common significant problem is the lack of a realistic cost
function to choose among the large space of legal transformations
that are suitable for coarse-grained parallel execution, as is used in
practice with manually developed/optimized parallel applications.
Most previously proposed approaches also do not consider locality
and parallelism together. Comprehensive performance evaluation
on parallel targets using a range of test cases has not been done
using a powerful and general model like the polyhedral model.

This paper presents the end-to-end design and implementation
of PLuTo [1], a parallelization and locality optimization tool. Find-
ing good ways to tile for parallelism and locality directly through
an affine transformation framework is the central idea. Our ap-
proach is thus a departure from scheduling-based approaches in
this field [20, 21, 17, 24, 15] as well as partitioning-based ap-
proaches [37, 36, 35] (due to incorporation of more concrete op-
timization criteria), however, is built on the same mathematical
foundations and machinery. We show how tiled code generation for
statement domains of arbitrary dimensionalities under statement-
wise affine transformations is done for local and shared mem-
ory parallel execution. We evaluate the performance of the imple-
mented system on a multicore processor using a number of appli-
cation kernels that are non-trivial for any existing auto-parallelizer.

Model-driven empirical optimization and automatic tuning ap-
proaches (e.g., ATLAS) have been shown to be very effective in
optimizing single-processor execution for some regular kernels like
matrix-matrix multiplication [56, 63]. There is considerable inter-
est in developing effective empirical tuning approaches for arbi-
trary input kernels. Our framework can enable such model-driven
or guided empirical search to be applied to arbitrary affine pro-
grams, in the context of both sequential and parallel execution.
Also, since our transformation system operates entirely in the poly-
hedral abstraction, it is not just limited to C or Fortran code, but
could accept any high-level language from which polyhedral do-
mains can be extracted and analyzed.

The rest of this paper is organized as follows. Section 3 provides
an overview of our theoretical framework for automatic transfor-
mation that we proposed in [9]. Section 4 and Section 5 discuss
some considerations in the design and techniques for generation of
efficient tiled shared memory parallel code from transformations
found. Section 6 describes the implemented system. Section 7 pro-

vides experimental results. Section 8 discusses related work and
conclusions are presented in Section 9.

2. Background and Notation
This section provides background on the polyhedral model. All row
vectors are typeset in bold.

2.1 The Polyhedral model
DEFINITION 1 (Affine Hyperplane). The set X of all vectors x ∈
Zn such that h.~x = k, for k ∈ Z, is an affine hyperplane.

In other words, a hyperplane is a higher dimensional analog of
a (2-d) plane in three-dimensional space. The set of parallel hyper-
plane instances corresponding to different values of k is character-
ized by the vector~h which is normal to the hyperplane. Two vectors
~x1 and ~x2 lie in the same hyperplane if h. ~x1 = h. ~x2.

DEFINITION 2 (Polyhedron). The set of all vectors ~x ∈ Zn such
that A~x +~b ≥ 0, where A is an integer matrix, defines a (convex)
integer polyhedron. A polytope is a bounded polyhedron.

Polyhedral representation of programs. Given a program, each
dynamic instance of a statement, S, is defined by its iteration vector
~i which contains values for the indices of the loops surrounding
S, from outermost to innermost. Whenever the loop bounds are
linear combinations of outer loop indices and program parameters
(typically, symbolic constants representing problem sizes), the set
of iteration vectors belonging to a statement define a polytope. Let
DS represent the polytope and its dimensionality be mS . Let ~p be
the vector of program parameters.

Polyhedral dependences. Our dependence model is of exact
affine dependences and same as the one used in [20, 36, 14, 45].
Dependences are determined precisely through dataflow analy-
sis [19], but we consider all dependences including anti (write-
after-read), output (write-after-write) and input (read-after-read)
dependences, i.e., input code does not require conversion to single-
assignment form. The Data Dependence Graph (DDG) is a directed
multi-graph with each vertex representing a statement, and an edge,
e ∈ E, from node Si to Sj representing a polyhedral dependence
from a dynamic instance of Si to one of Sj : it is characterized
by a polyhedron, Pe, called the dependence polyhedron that cap-
tures the exact dependence information corresponding to e. The
dependence polyhedron is in the sum of the dimensionalities of the
source and target statement’s polyhedra (with dimensions for pro-
gram parameters as well). Let ~s represent the source iteration and ~t
be the target iteration pertaining to a dependence edge e. It is possi-
ble to express the source iteration as an affine function of the target

iteration, i.e., to find the last conflicting access. This affine func-
tion is also known as the h-transformation, and will be represented
by he for a dependence edge e. Hence, ~s = he(~t). The equalities
corresponding to the h-transformation are a part of the dependence
polyhedron and can be used to reduce its dimensionality. Figure 1
shows the polyhedral representation of a simple code.

Let S1, S2, . . . , Sn be the statements of the program. A one-
dimensional affine transform for statement Sk is defined by:

φsk (~i) =
h
c1 . . . cmSk

i `
~i

´
+ c0, ci ∈ Z (1)

φSk can also be called an affine hyperplane, or a scattering function
when dealing with the code generator. A multi-dimensional affine
transformation for a statement is represented by a matrix with each
row being an affine hyperplane.

DEFINITION 3 (Dependence satisfaction). An affine dependence
with polyhedron Pe is satisfied at a level l iff the following condi-
tion is satisfied:

∀k(1 ≤ k ≤ l − 1) : φk
sj

`
~t
´
− φk

si
(~s) ≥ 0, 〈~s,~t〉 ∈ Pe

and φl
sj

`
~t
´
− φl

si
(~s) ≥ 1, 〈~s,~t〉 ∈ Pe

3. Overview of Automatic Transformation
Approach

In this section, we give an overview of our theoretical framework
for automatic transformation. Complete details on the theory are
available in another report [8].

3.1 Legality of tiling multiple domains with affine
dependences

LEMMA 1. Let φsi be a one-dimensional affine transform for
statement Si. For {φs1 , φs2 , . . . , φsk}, to be a legal (statement-
wise) tiling hyperplane, the following should hold for each edge
e ∈ E:

φsj

`
~t
´
− φsi (~s) ≥ 0, 〈~s,~t〉 ∈ Pe (2)

The above is a generalization of the classic condition proposed by
Irigoin and Triolet [28] (as hT .R ≥ 0) for the legality of tiling
a single domain. The tiling of a statement’s iteration space by a
set of hyperplanes is said to be legal if each tile can be executed
atomically and a valid total ordering of the tiles can be constructed.
This implies that there exist no two tiles such that they both depend
on each other. The above is a generalization to multiple iteration
domains with affine dependences and with possibly different di-
mensionalities coming from possibly imperfectly nested input.

Let {φ1
s1 , φ1

s2 , . . . , φ1
sk
}, {φ2

s1 , φ2
s2 , . . . , φ2

sk
} be two statement-

wise 1-d affine transforms that satisfy (2). Then, {φ1
s1 , φ1

s2 , . . . ,
φ1

sk
}, {φ2

s1 , φ2
s2 , . . . , φ2

sk
} represent rectangularly tilable loops in

the transformed space. A tile can be formed by aggregating a group
of hyperplane instances along φ1

si
and φ2

si
. Due to (2), if such a

tile is executed on a processor, communication would be needed
only before and after its execution. From the point of view of data
locality, if such a tile is executed with the associated data fitting in
a faster memory, reuse is exploited in multiple directions. Hence,
any φj

S1
, φj

S2
, . . . , φj

Sn
that is a solution to (2) represents a com-

mon dimension (for all statements) in the transformed space with
both inter and intra-statement affine dependences in the forward
direction along it.

Partial tiling at any depth. The legality condition as written in
(2) is imposed on all dependences. However, if it is imposed only
on dependences that have not been satisfied up to a certain depth,
the independent φ’s that satisfy the condition represent tiling hy-
perplanes at that depth, i.e., tiling at that level is legal.

3.2 Cost function, bounding approach and minimization
Consider the following affine form δe:

δe(~s,~t) = φsj (~t)− φsi(~s), 〈~s,~t〉 ∈ Pe (3)

The affine form δe(~s,~t) is very significant. This function is the
number of hyperplanes the dependence e traverses along the hy-
perplane normal φ. If φ is used as a space loop to generate tiles
for parallelization, this function is a factor in the communication
volume. On the other hand, if φ is used as a sequential loop, it
gives us a measure of the reuse distance. An upper bound on this
function would mean that the number of hyperplanes that would be
communicated as a result of the dependence at the tile boundaries
would not exceed the bound, the same for cache misses at L1/L2
tile edges, or L1 cache loads for a register tile. Of particular interest
is, if this function can be reduced to a constant amount or zero (free
of a parametric component) by choosing a suitable direction for φ:
if this is possible, then that particular dependence leads to constant
boundary communication or no communication (respectively) for
this hyperplane.

An attempt to minimize the above cost function ends up in an
objective non-linear in loop variables and hyperplane coefficients.
For example, φ(~t) − φ(~s) could be c1i + (c2 − c3)j, under 1 ≤
i ≤ N , 1 ≤ j ≤ N , i ≤ j. Such a form results when a dependence
is not uniform or for an inter-statement dependence. The difficulty
can be overcome by using a bounding function approach that allows
the application of Farkas Lemma [20, 51] and casting the objective
into an ILP formulation. Since the loop variables themselves can be
bounded by affine functions of the parameters, one can always find
an affine form in the program parameters, ~p, that bounds δe(~s,~t)
for every dependence edge e, i.e., there exists v(~p) = u.~p + w,
such that

φsj (~t)− φsi(~s) ≤ v(~p), 〈~s,~t〉 ∈ Pe, ∀e ∈ E

i.e., v(~p) − δe(~s,~t) ≥ 0, 〈~s,~t〉 ∈ Pe, ∀e ∈ E (4)

Such a bounding function approach was first used by Feautrier [20],
but for a different purpose – to find minimum latency schedules.
Now, Farkas Lemma can be applied to (4).

v(~p)− δe(~s,~t) ≡ λe0 +

meX
k=1

λekPk
e , λek ≥ 0

where Pk
e is a face of Pe. Coefficients of each of the iterators

in ~i and parameters in ~p on the LHS and RHS can be gathered
and equated, to obtain linear equalities and inequalities entirely in
coefficients of the affine mappings for all statements, components
of row vector u, and w. The ILP system comprising the tiling
legality constraints from (2) and the bounding constraints can be
at once solved by finding a lexicographic minimal solution with ~u
and w in the leading position. Let u = (u1, u2, . . . uk).

minimize≺ {u1, u2, . . . , uk, w, . . . , c′is, . . . } (5)

Finding the lexicographic minimal solution is within the reach of
the Simplex algorithm and can be handled by the Parametric Integer
Programming (PIP) software [18]. Since the program parameters
are quite large, their coefficients are minimized with the highest
priority. The solution gives a hyperplane for each statement. Note
the trivial zero solution is avoided by making a practical choice that
is described in the next section.

Iteratively finding independent solutions. Solving the ILP for-
mulation in the previous section gives us a single solution to the
coefficients of the best mappings for each statement. We need at
least as many independent solutions (for a statement) as the dimen-
sionality of its domain. Hence, once a solution is found, we aug-
ment the ILP formulation with new constraints that make sure of

linear independence with solutions already found. This is done by
constructing the orthogonal sub-space [40, 34] of the transforma-
tion rows found so far (HS) and forcing a non-zero component in
H⊥

S for the next solution.

H⊥
S = I −HT

S

“
HSHT

S

”−1

HS (6)

Linearly independent (statement-wise) hyperplanes are found
iteratively till all dependences are satisfied. Dependences from pre-
viously found hyperplanes are not removed as independent tiling
hyperplanes are found unless they have to be to allow the next band
of tiling hyperplanes to be found. Maximal sets of fully permutable
loops are found like in the case of [59, 16, 36], however, with a
optimization criterion (5) that goes beyond maximum degrees of
parallelism.

Outer space and inner time: communication and locality opti-
mization unified The best possible solution to (5) is with (u =
0, w = 0), which is a hyperplane that has no dependence compo-
nents along its normal – this is a fully parallel loop requiring no
synchronization if at the outer level (outer parallel), or an inner
parallel one if some dependences were removed previously and so
a synchronization is required after the loop is executed in parallel.
Thus, in each of the steps that we find a new independent hyper-
plane, we end up first finding all synchronization-free hyperplanes
when they exist; these are followed by a set of hyperplanes requir-
ing constant boundary communication (u = 0; w > 0). In the
worst case, we have a hyperplane with u > 0, w ≥ 0 resulting
in long communication from non-constant dependences; such solu-
tions are found last. From the point of view of data locality, since
the same hyperplanes used to scan the tile space scan points in a tile,
cache misses at tile boundaries (that are equivalent to communica-
tion along processor tile boundaries) are minimized. By minimizing
φ(~t) − φ(~s) as we find hyperplanes from outermost to innermost,
we push dependence satisfaction to inner loops, at the same time
ensuring that the new loops have non-negative dependence compo-
nents (to the extent possible) so that they can be tiled for locality
and pipelined parallelism can be extracted if (forward) space de-
pendences exist. If the outer loops are used as space (how many
ever desired, say k), and the rest are used as time, communication
in the processor space is minimal as the outer space loops are the
k best ones. Whenever the loops are tiled, they result in coarse-
grained parallelism as well as better reuse within a tile.

Fusion. Fusion across multiple iteration spaces that are weakly
connected, as in sequences of producer-consumer loops is also en-
abled. Since the hyperplanes do not include coefficients for pro-
gram parameters (1), a solution found corresponds to a fine-grained
interleaving of different statement instances at that level [8].

4. More design considerations
In this section, we discuss a few enhancements to the framework as
well as some practical choices for scalability.

4.1 Handling input dependences
Input dependences need to be considered for optimization in many
cases as reuse can be exploited by minimizing them. Clearly, le-
gality (ordering between dependent RAR iterations) need not be
preserved. We thus do not add legality constraints (2) for such de-
pendences, but consider them for the bounding objective function
(4). Since input dependences can be allowed to have negative com-
ponents in the transformed space, they need to be bounded from
both above and below. For every, PR

e corresponding to a input de-

pendence, we have the constraints:˛̨
φsj

`
~t
´
− φsi (~s)

˛̨
≤ v(~p), 〈~s,~t〉 ∈ PR

e

i.e., φsj

`
~t
´
− φsi (~s) ≤ v(~p), 〈~s,~t〉 ∈ PR

e ,

and φsi (~s)− φsj

`
~t
´

≤ v(~p), 〈~s,~t〉 ∈ PR
e

4.2 Avoiding combinatorial explosion
There are two situations when there is a possibility of combinatorial
explosion (with the number of statements) if reasonable choices are
not made.

1. Avoiding the trivial zero vector solution to the hyperplanes

2. Construction of linearly independent sub-space for each state-
ment’s transformation

Removing the trivial zero solution to (5) on a per-statement basis
leads to a non-convex space, and in this case a union of a large
number of convex spaces each of which has to be tried. Similarly,
while constructing a linearly independent sub-space for each state-
ment, there are several choices for each statement and the number
of choices to be exhaustively tried will be a product of all these [8].
The above difficulties can be solved at once by only looking for
non-negative transformation coefficients. Then, the zero solution
can be avoided with the constraint of

P
ci ≥ 1, 1 ≤ i ≤ mSk ,

for each statement Sk. Doing so mainly excludes transformations
that include loop reversal, and in practice, we do not find this to
be a concern at all. The current implementation of Pluto [1] is with
this choice, and scales very well without loss of good transforma-
tions. Exploring all possible choices if one wishes is still possible
for around up to ten statements while keep the running time within
a few tens of seconds.

5. Tiled code generation for arbitrarily-nested
loops under statement-wise transformations

In this section, we describe how tiled code is generated from trans-
formations found in the previous section. This is a key step in gen-
eration of high performance code.

We first give a brief description of the polyhedral code generator
CLooG [13, 6]. CLooG can scan a union of polyhedra, and option-
ally, under a new global lexicographic ordering specified as through
scattering functions. Scattering functions are specified statement-
wise, and the legality of scanning the polyhedron with these di-
mensions in the specified order should be guaranteed by the spec-
ifier – in our case, an automatic transformation system. The code
generator does not have any information on the dependences and
hence, in the absence of any scattering functions would scan the
union of the statement polyhedra in the global lexicographic or-
der of the original iterators (statement instances are interleaved).
CLooG uses PolyLib [57, 42] (which in turn uses the Chernikova
algorithm [33]) for its core operations, and the code generated is far
more efficient than that by older code generators based on Fourier-
Motzkin variable elimination like Omega Codegen [46] or LooPo’s
internal code generator [25, 24]). Also, code generation time and
memory utilization are much lower [6]. Such a powerful and effi-
cient code generator is essential in conjunction with the transfor-
mation framework we develop, since the statement-wise transfor-
mations found when coupled with tiling lead to complex execution
reordering. This is especially so for imperfectly nested loops and
generation of parallel code, as will be seen in the rest of this paper.

5.1 Tiling the transformed AST vs. Tiling the scattering
functions

Before proceeding further, we differentiate between using the term
‘tiling’ for, (1) modeling and enabling tiling through a transforma-
tion framework (as was described in the previous section), (2) final

generation of tiled code from the hyperplanes found. Both are gen-
erally referred to as tiling. Our approach models tiling in the trans-
formation framework by finding affine transformations that make
rectangular tiling in the transformed space legal. The hyperplanes
found are the new basis for the loops in the transformed space and
have special properties that have been detected when the transfor-
mation is found – e.g. being parallel, sequential or belonging to a
band of loops that can now be rectangularly tiled. Hence, the trans-
formation framework guarantees legality of rectangular tiling in the
new space. The final generation of tiled loops can be done in two
ways broadly, (1) directly through the polyhedral code generator
itself in one pass itself, or (2) as a post-pass on the abstract syntax
tree generated after applying the transformation. Each has its merits
and both can be combined too.

For transformations that possibly lead to imperfectly nested
code, polyhedral tiling is a natural way to get tiled code from the
code generator in one pass guaranteeing legality. Consider the code
in Figure 3(a) for example. If code is generated by just applying the
transformation first, we get code shown in Figure 3(b). Even though
the transformation framework obtained two tiling hyperplanes, the
transformed code in Figure 3(b) has no 2-d perfectly nested kernel.
Doing a simple unroll-jam of the imperfect loop nest is illegal
in this case; hence, straightforward 2-d syntactic tiling violates
dependences. The legality of syntactic tiling or unroll/jam (for
register tiling) of such loops cannot be reasoned about in the target
AST easily since once we obtain the transformed code, we are
outside of the polyhedral model, unless advanced techniques like
re-entrance are used. Even when re-entrance is used to reason about
legality through dependence analysis on the target AST, such an
approach would miss ways of tiling that are possible by reasoning
about the obtained tiling hyperplanes on original domains itself
– we describe an approach to accomplish the latter which is the
subject of Section 5. For example, for the code in Figure 3, 2-d tiled
code can be generated in one pass, both applying the transformation
as well as accomplishing tiling.

5.2 Tiles under a transformation
Our approach to tiling is to specify a modified higher dimensional
domain and specify transformations for what would be the tile
space loops in the transformed space. Consider a very simple ex-
ample: a two-dimensional loop nest with original iterators: i and j.
Let the transformation found be c1 = i, and c2 = i+ j, with c1, c2

constituting a permutable band; hence, they can be blocked leading
to 2-d tiles. We would like to obtain target code that is tiled rectan-
gularly along c1 and c2. The domain supplied to the code generator
is a higher dimensional domain with the tile shape constraints like
that proposed by Ancourt and Irigoin [4]; but the scatterings are
duplicated for the tile space too. ’T’ subscript is used to denote the
corresponding tile space iterator. The tile space and intra tile loop
scattering functions are specified as follows.

Domain Scattering
0 ≤ i ≤ N − 1 c1T = iT

0 ≤ j ≤ N − 1 c2T = iT + jT

0 ≤ i− 32iT ≤ 31 c1 = i

0 ≤ (i + j)− 32(iT + jT) ≤ 31 c2 = i + j

(c1T , c2T , c1, c2) ← scatter(iT , jT , i, j)

c1T and c2T are the tile space loops in the transformed space.
This approach can seamlessly tile across statements of arbitrary di-
mensionalities, irrespective of original nesting structure, as long as
the c′is have dependences (inter-stmt and intra-stmt) in the forward
direction – this is guaranteed and detected by the transformation
framework.

With this, we formally state the algorithm to modify the orig-
inal domain and updating the statement-wise transformations (Al-

Algorithm 1 Tiling for multiple stmts under transformations
INPUT Hyperplanes (statement-wise) belonging to a tilable band of width

k: φi
S , φi+1

S , . . . , φi+k−1
S , expressed as affine functions of corre-

sponding original iterators, ~iS ; Original domains: DS ; Tile sizes:
τi, τi+1, . . . , τi+k−1

1: /* Update the domains */
2: for each statement S do
3: for each φj

S = f j(~iS) + f0 do
4: Increase the domain (DS) dimensionality by creating supernodes

for all original iterators that appear in φj
S

5: Let the supernode iterators be ~iT
6: Add the following two constraints to DS :

τj ∗ f j(~iT S) ≤ f j(~iS) + fj
0 ≤ τj ∗ f j(~iT S) + τj − 1

7: end for
8: end for
9: /* Update the transformation matrices */

10: for each statement S do
11: Add k new rows to the transformation of S at level i
12: Add as many columns as the number of supernodes added toDS in

Step 4
13: for each φj

S = f j(~iS) + fj
0 , j = i, . . . , i + k − 1 do

14: Add a supernode for this hyperplane: φT j
S = f j(~iT S)

15: end for
16: end for
OUTPUT Updated domains (DS) and transformations

gorithm 1). The (higher-dimensional) tile space loops are referred
to as supernodes in the description. For example, in the exam-
ple above, iT, jT were supernodes in the original domain, while
c1T, c2T are supernodes in the transformed space. Note that the
transformation matrix computed for each statement has the same
number of rows.

THEOREM 1. The set of scattering supernodes, φT i
S , φT i+1

S , . . . ,
φT i+k−1

S obtained from Algorithm 1 satisfy the tiling legality con-
dition (2)

Since, φj
S , i ≤ j ≤ i + k − 1 satisfy (2) and since the supern-

odes step through an aggregation of parallel hyperplane instances,
dependences continue to be in the forward direction for the scat-
tering supernode dimensions too. This holds true for both intra
and inter-statement dependences. φT j

S1
, φT j

S2
, . . . , φT j

Sn
thus rep-

resent a common supernode dimension in the transformed space
with all affine dependences in its forward direction or null-space.2

Figure 5.2 shows tiles for imperfectly nested 1-d Jacobi. Note
that tiling it requires a relative shift of S2 by one and skewing the
space loops by a factor of two w.r.t time (as opposed to skewing
by a factor of one that is required for the space memory-inefficient
perfectly nested version).

Example: 3-d tiles for LU The transformation obtained for the
LU decomposition code is:

S1 :

"
c1
c2
c3

#
=

"
1 0
0 1
1 0

h
k
j

i
S2 :

"
c1
c2
c3

#
=

"
1 0 0
0 0 1
0 1 0

"
k
i
j

#
Hyperplanes c1, c2 and c3 are identified as belonging to one

tilable band. Hence, 3-d tiles for LU decomposition from the above
transformation are specified as shown in Figure 2. The code is
shown in Figure 9.

Tiling multiple times The same tiling hyperplanes can be used to
tile multiple times (due to Theorem 1), for registers, L1, L2 caches,
and for parallelism, and the legality of the same is guaranteed by the
transformation framework. The scattering functions are duplicated
for each such level as it was done for one level. Such a guarantee is

for (t=0; t<T; t++) {
for (i=2; i<N−1; i++) {

b[i] = 0.333∗(a[i−1] + a[i]
+ a[i +1]);

}
for (j=2; j<N−1; j++){

a[j] = b[j];
}

}
(a) Original code

#define S1(t , i) {b[i]=(0.333∗(a[1+i]+a[i]+a[i−1]);}
#define S2(t , j) {a[j]=b[j];}

for (c1=0;c1<=T−1;c1++) {
S1(c1 ,2);
for (c2=2∗c1+3;c2<=2∗c1+N−2;c2++) {

S1(c1,−2∗c1+c2);
S2(c1,−2∗c1+c2−1);
}
S2(c1,N−2);
}
(b) Transformed (without tiling)

S1

S2
c1

c2

(c) Tiles under a transformation

"
1 0
2 1
0 0

h
t
i

i
+

"
0
0
0

#

"
1 0
2 1
0 0

»
t
j

–
+

"
0
1
1

#

#define S1(t , i) {b[i]=0.333∗(a[1+i]+a[i]+a[i−1]);}
#define S2(t , j) {a[j]=b[j];}
/∗ Generated by CLooG v0.14.1 64 bits in 0.02s . ∗/
for (c1=0;c1<=floord(T−1,256);c1++) {

for (c2=max(0,ceild(512∗c1−253,256));
c2<=min(floord(N+2∗T−3,256),floord(512∗c1+N+509,256));c2++){

if ((c1 <= floord(256∗c2−N+1,512)) && (c2 >= ceild(N−1,256))) {
if ((−N+1)%2 == 0) {

S2(c1,−2∗c1+c2,(256∗c2−N+1)/2,N−2) ;
}
}
}
for (c3=max(max(ceild(256∗c2−N+2,2),256∗c1),0);

c3<=min(min(T−1,256∗c1+255),floord(256∗c2−N+256,2));c3++){
for (c4=256∗c2;c4<=2∗c3+N−2;c4++) {

S1(c1,−2∗c1+c2,c3,−2∗c3+c4) ;
S2(c1,−2∗c1+c2,c3,−2∗c3+c4−1) ;
}
S2(c1,−2∗c1+c2,c3,N−2) ;
}
for (c3=max(max(0,256∗c1),ceild(256∗c2−N+257,2));

c3<=min(min(256∗c1+255,T−1),128∗c2−2);c3++){
for (c4=256∗c2;c4<=256∗c2+255;c4++) {

S1(c1,−2∗c1+c2,c3,−2∗c3+c4) ;
S2(c1,−2∗c1+c2,c3,−2∗c3+c4−1) ;
}
}
for (c3=max(max(128∗c2−1,0),256∗c1);

c3<=min(min(128∗c2+126,256∗c1+255),T−1);c3++){
S1(c1,−2∗c1+c2,c3) ;
for (c4=2∗c3+3;c4<=256∗c2+255;c4++) {

S1(c1,−2∗c1+c2,c3,−2∗c3+c4) ;
S2(c1,−2∗c1+c2,c3,−2∗c3+c4−1) ;
}
}
} (d) Optimized with tiling (tile size 256), cloog −f 3 −l 5
}

S1 S2 S1 S226664
c1
c2
c3
c4
c5

37775 =

26664
1 0 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 0

37775
26664

tT
iT
t
i
1

37775
26664

1 0 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 1
0 0 0 0 1

37775
26664

tT
jT

t
j
1

37775
26664

c1
c2

c3
c4
c5

37775 =

26664
3 1 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 0 0 0

37775
26664

tT
iT
t
i
1

37775
26664

3 1 0 0 0
2 1 0 0 0
0 0 1 0 0
0 0 2 1 1
0 0 0 0 1

37775
26664

tT
jT

t
j
1

37775
(e) Transformation for generation of locally tiled code in (c) (f) Transformation for generation of parallelized + locally tiled code

Figure 3. Tiling imperfectly nested Jacobi

available even when syntactic tiling is to be done as a post-pass on
a perfectly nest band in the target AST.

5.3 Parallel code generation
Once the algorithm in Sec. 5.2 is applied, outer parallel or inner
parallel loops can be readily marked parallel (for example with
openmp pragmas). However, unlike scheduling-based approaches,
since we find tiling hyperplanes and the outer ones are used as
space, there may not be a single loop in the transformed space that
satisfies all dependences (even if the code admits a one dimensional
schedule). Hence, when one or more of the space loops satisfies a
(forward) dependence (also called doacross loops), care has to be
taken while generating parallel code. Hence, for pipelined parallel
codes, our approach to coarse-grained (tiled) shared memory par-
allel code generation is as described in Figure 2.

Once the technique described in the previous section is applied
to generate the tile space scatterings and intra-tiled loops – depen-
dence components are all forward and non-negative for any band
of tile space loops. Hence, the sum φT 1 + φT 2 + · · · + φT p+1

satisfies all affine dependences satisfied by φT 1, φT 2, . . . , φT p+1,

Algorithm 2 Tiled pipelined parallel code generation
INPUT Given that Algorithm 1 has been applied, a set of k (statement-

wise) supernodes in the transformed space belonging to a tilable band:
φT 1

S , φT 2
S , . . . , φT k

S
1: To extract m (< k) degrees of pipelined parallelism:
2: /* Update transformation matrices */
3: for each statement S do
4: Perform the following unimodular transformation on only the scat-

tering supernodes: φT 1→ φT 1 + φT 2 + · · ·+ φT m+1

5: Mark φT 2, φT 3, . . . , φT m+1 as parallel
6: Leave φT 1, φT m+2, . . . , φT k as sequential
7: end for

OUTPUT Updated transformation matrices/scatterings

and gives a legal wavefront (schedule) of tiles. Since the transfor-
mation is only on the tile space, it preserves the shape of the tiles.
Communication still happens along boundaries of φ1, φ2, . . . , φs,
and the same shaped tiles are used to scan a tile, thus preserving the
benefits of the optimization performed by the bounding approach.
Moreover, performing such a unimodular transformation to the tile

Domains

S1 S2

0 ≤ k ≤ N − 1 0 ≤ k ≤ N − 1

k + 1 ≤ j ≤ N − 1 k + 1 ≤ i ≤ N − 1

k + 1 ≤ j ≤ N − 1

0 ≤ k − 32kT ≤ 31 0 ≤ k − 32kT ≤ 31

0 ≤ j − 32jT ≤ 31 0 ≤ i− 32iT ≤ 31

0 ≤ j − 32jT ≤ 31

Scatterings

S1 S2
c1T = kT c1T = kT

c2T = jT c2T = jT

c3T = kT c3T = iT

c1 = k c1 = k

c2 = j c2 = j

c3 = k c3 = i

(c1T , c2T , c3T , c1, c2, c3) (c1T , c2T , c3T , c1, c2, c3)

← scatter(kT , jT , k, j) ← scatter(kT , jT , iT , k, j, i)

Figure 2. Tiled specification for LU

space introduces very less additional code complexity (modulo’s
do not appear in the generated code due to unimodularity).

In contrast, obtaining an affine (fine-grained) schedule and then
enabling time tiling would lead to shapes different from above our
approach. The above technique of adding up 1-d transforms resem-
bles that of [37] where (permutable) time partitions are summed
up for maximal dependence dismissal; however, we do this in the
tile space as opposed to for finding a schedule that dismisses all
dependences.

for (i=1; i<N; i++)
for (j=1; j<N; j++)

a[i , j] = a[i−1,j] + a[i , j−1];

(a) Original (sequential) code

for (c1=−1;c1<=floord(N−1,16);c1++)
#pragma omp parallel for shared(c1,a) private (c2,c3,c4)

for (c2=max(ceild(32∗c1−N+1,32),0);
c2<=min(floord(16∗c1+15,16),floord(N−1,32));c2++)

for (c3=max(1,32∗c2);c3<=min(32∗c2+31,N−1); c3++)
for (c4=max(1,32∗c1−32∗c2);

c4<=min(N−1,32∗c1−32∗c2+31); c4++)
S1(c2,c1−c2,c3,c4) ;

/∗ barrier happens only here (in tile space) ∗/

(b) Coarse-grained tile schedule

Figure 4. Shared memory parallel code generation example

Figure 4 shows a simple example with tiling hyperplanes (1,0)
and (0,1). Our scheme allows clean generation of parallel code
without any syntactic treatment. Alternate ways of generating
pipelined parallel code exist that insert special post/notify or wait-
/signal directives to handle dependences in the space loops [36, 24],
but, these require syntactic treatment. Note that not all degrees of
pipelined parallelism need be exploited. In practice, a few degrees
are sufficient; using several could introduce code complexity with
diminishing return.

Dependence

CLooG

Annotated code

framework
transformation

Our affine

affine transforms

Statement−wise

tile
specifier

Polyhedral

Syntactic

Transformer

sequences

scanner/parser
 +

Dependence

tester locality optimization)

(parallelization +

polyhedra

LooPo
Nested loop

with supernodes

and scatterings

Updated domainsgcc/icc
/xlc (OpenMP

 parallelized)

target code
Compilable

Figure 5. The PLuTo source-to-source transformation system

5.4 Intra-tile reordering
Due to the nature of our algorithm, even within a local tile (L1) that
is executed sequentially, the intra-tile loops that are actually parallel
do not end up being outer in the tile (Sec. 3.2): this goes against
vectorization of the transformed source for which we rely on the
native compiler. Also, the polyhedral tiled code is often complex
for a compiler to further analyze and say, permute and vectorize.
Hence, as part of a post-process in the transformation framework,
we move the parallel loop within a tile innermost and make use
of ignore dependence pragmas to explicitly force vectorization.
Similar reordering is possible to improve spatial locality that is
not considered by our cost function due to the latter being fully
dependence-driven. Note that the tile shapes or the schedule in the
tile space is not altered by such post-processing.

6. Implementation
The proposed framework has been implemented into a tool, PLuTo [1].
Figure 5 shows the entire tool-chain. We used the scanner, parser
and dependence tester from the LooPo infrastructure [38], which
is a polyhedral source-to-source transformer including implemen-
tations of various polyhedral analyses and transformations from
the literature. We used PipLib 1.3.3 [41, 18] as the ILP solver and
CLooG 0.14.1 [13] for code generation. The transformation frame-
work takes as input, polyhedral domains and dependence polyhe-
dra from LooPo’s dependence tester, computes transformations and
provides it to Cloog. Compilable OpenMP parallel code is finally
output after some post-processing on the Cloog code.

Syntactic post-processing. We have also integrated an annotation-
driven system of Norris et al. [39] to perform syntactic transforma-
tions on the code generated from Cloog as a post-processing; these
include register tiling followed by unrolling or unroll/jamming. The
choice of loops to perform these transformations on is specified by
the transformation framework, and hence legality is guaranteed.
In this paper, we do not discuss any further on how exactly these
transformations are performed and the corresponding performance
improvement. They are non-trivial to perform for non-rectangular
iteration spaces, for example. The complementary benefits of syn-
tactic post-processing will be reported in future. However, a pre-
view of the potential performance improvement is provided for one
kernel in the experimental evaluation section.

7. Experimental evaluation
In this section, we evaluate the performance of the transformed
codes generated by our system.

Comparison with previous approaches
Several previous papers on automatic parallelization have pre-
sented experimental results. A direct comparison is difficult since
the implementations of those approaches (with the exception of
Griebl’s [24, 38]) is not available; further most previously presented

studies did not use an end-to-end automatic implementation, but
performed some manual code generation based on solutions gen-
erated by a transformation framework, or by selecting a solution
from a large space of solutions characterized.

In assessing the effectiveness of our system, we compare per-
formance of the generated code with that generated by produc-
tion compilers, as well as undertaking a best-effort fair comparison
with previously presented approaches from the research commu-
nity. The comparison with other approaches from the literature is
in some cases infeasible because there is insufficient information
for us to reconstruct a complete transformation (e.g. [2]). For oth-
ers [37, 36, 35], a complete description of the algorithm allows
us to manually construct the transformation; but since we do not
have access to an implementation that can be run to determine the
transformation matrices or generate compilable optimized code, we
have not attempted an exhaustive comparison for all the cases. For
the above reasons, the first kernel chosen (imperfectly-nested 1-d
Jacobi) is a relatively simple one.

The current state-of-the-art with respect to optimizing code has
been semi-automatic approaches that require an expert to manually
guide transformations [22]. As for scheduling-based approaches,
the LooPo system [38] includes implementations of various polyhe-
dral scheduling techniques including Feautrier’s multi-dimensional
time scheduler which can be coupled with Griebl’s space and FCO
time tiling techniques. We thus provide comparison for some num-
ber of cases with the state of the art – (1) Griebl’s approach that
uses Feautrier’s schedules along with Forward-Communication-
Only allocations to enable time tiling [24] that will be referred to
as ’Scheduling-based (time tiling)’ and (2) Lim/Lam’s affine parti-
tioning [37, 36, 35] referred to as ’Affine partitioning (max degree
parallelism, no cost function)’ in the graphs. For both of these pre-
vious approaches, the input code was run through our system and
the transformations were forced to be what those approaches would
have generated. By doing so, these compared alternate approaches
also get all the benefits of CLooG and our tiled code generation
scheme.

Experimental setup. The results were obtained on a quad-core
Intel Core 2 Quad Q6600 CPU clocked at 2.4 GHz (1066 MHz
FSB), with a 32 KB L1 D cache, 8MB of L2 cache (4MB shared
per core pair), and 2 GB of DDR2-667 RAM, running Linux kernel
version 2.6.22 (x86-64). ICC 10.0 was the primary compiler used
to compile the base codes as well as the source-to-source trans-
formed codes; it was run with “-fast -funroll-loops” (-openmp for
parallelized code); the ’-fast’ option turns on -O3, -ipo, -static, -
no-prec-div on x86-64 processors – these options also ensure auto-
vectorization in icc. The OpenMP implementation of icc supports
nested parallelism needed to exploit multiple degrees of pipelined
parallelism when they exist.

Our transformation framework itself runs quite fast – within a
fraction of a second for all benchmarks considered here. Along with
code generation time, the entire source-to-source transformation
does not take more than a few seconds for any of the cases. The
OpenMP “parallel for” directive(s) achieves the distribution of the
blocks of the tile space loop(s) among processor cores. Hence,
execution on each core is a sequence of L2 tiles (or L1 tiles if
L2 tiling is not done). Tile sizes were set automatically using a
very rough model. Equal tile sizes were used along all dimensions,
except when loops were marked for vectorization (Sec.5.4), in
which case the tile size of the loop to be vectorized was increased.
In all cases, the optimized code for our framework was obtained
automatically in a turn-key fashion from the input source code.

Imperfectly nested stencil code. The original code, code opti-
mized by our system without tiling, and optimized tiled code are
shown in Figure 3. The performance of the optimized codes are
shown in Figure 6. Speedups ranging from 4x to 7x are obtained

for single core execution due to locality enhancement. The parallel
speedups are compared with Lim/Lam’s technique (Algorithm A
in [37]) which obtains (2,-1), (3,-1) as the maximally independent
time partitions, and Griebl’s time tiling technique which uses an
FCO allocation of 2t + i along with the schedule 2t for S1, 2t + 1
for S2. Just space tiling in this case does not expose sufficient par-
allelism granularity and an inner space parallelized code has very
poor performance. This is also the case with icc’s auto parallelizer;
hence, we just show the sequential run time for icc in this case.
Analysis of cache misses with each of the schemes is presented in
a more detailed report [10].

for (t=0; t<tmax; t++) {
for (j=0; j<ny; j++)

ey [0][j] = exp(−coeff0∗t1);

for (i=1; i<nx; i++)
for (j=0; j<ny; j++)

ey[i][j] = ey[i][j] −
coeff1∗(hz[i][j]−hz[i−1][j]);

for (i=0; i<nx; i++)
for (j=1; j<ny; j++)

ex[i][j] = ex[i][j]
− coeff1∗(hz[i][j]−hz[i][j−1]);

for (i=0; i<nx; i++)
for (j=0; j<ny; j++)

hz[i][j] = hz[i][j] −
coeff2∗(ex[i][j+1]−ex[i][j]

+ey[i+1][j]−ey[i][j]);
}

24 1 0 0
1 1 0
1 0 0

35
24 1 0 0 0

1 0 1 0
1 1 0 0

35
24 1 0 0 0

1 0 1 0
1 1 0 0

35
24 1 0 0 0

1 0 1 1
1 1 0 1

35
Figure 7. 2-d FDTD (original code) and transformation

Finite Difference Time Domain electromagnetic kernel. The
FDTD (Finite Difference Time Domain) code is as shown in Fig-
ure 7. The arrays ex and ey represent electric fields in x and y
directions, while hz is the magnetic field. The code has four state-
ments - three of them 3-d and one 2-d and are nested imperfectly.
Our transformation framework finds three tiling hyperplanes (all in
one band - fully permutable). The transformation represents a com-
bination of shifting, fusion and time skewing. Parallel performance
results shown are for nx = ny = 2000 and tmax = 500. Results
are shown in Figure 8.

LU decomposition. Three tiling hyperplanes are found – all be-
longing to a single band of permutable loops. The first statement,
though lower-dimensional, is naturally sunk into a a 3-dimensional
fully permutable space. Thus, there are two degrees of pipelined
parallelism. Icc is unable to auto-parallelize this. Performance
results on the quad core machine are shown in Figure 10(b).
Scheduling-based parallelization performs poorly mainly due to
code complexity arising out of a non-unimodular transformation,
that also inhibits vectorization.

Matrix vector transpose. The MVT kernel is a sequence of two
matrix vector transposes as shown in Figure 11. It is found within
an outer convergence loop with the Biconjugate gradient algorithm.
The only inter-statement dependence is a non-uniform read/input
on matrix A. The cost function bounding (4) leads to minimization
of this dependence distance by fusion of the first MV with the per-
muted version of the second MV (note that φ(~t)−φ(~s) for this de-
pendence becomes 0 for both c1 and c2). This however leads to loss
of synchronization-free parallelism, since, in the fused form, each
loop satisfies a dependence. However, since these dependences are
in the forward direction, the parallel code is generated correspond-
ing to one degree of pipelined parallelism. Existing techniques do

8x

7x

6x

5x

4x

3x

2x

1x

4M2M1M500k

Im
p
ro

v
e
m

e
n
t
o
v
e
r

n
a
ti
v
e
 c

o
m

p
ile

r

N (space extent)

pluto
Affine partitioning (max degree parallelism)

Scheduling-based (time tiling)
icc -fast

(a) Single core: T = 104

 0

 2

 4

 6

 8

 10

 4 3 2 1

G
F

L
o

P
s

Number of cores

pluto
Affine partitioning (max degree parallelism)

Scheduling-based (time tiling)
icc -parallel -fast

(b) Multi-core parallel: N = 106, T = 105

Figure 6. Imperfectly nested Jacobi stencil

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4000 2000 1000 500 250 125

G
F

L
O

P
s

N (problem size)

pluto
icc -fast / Scheduling-based (space tiling)

Scheduling-based (time tiling)

(a) Single core: T=500

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 3 2 1

G
F

L
o

P
s

Number of cores

pluto (1-d pipelined parallel)
pluto 2-d pipelined parallel

Scheduling-based (time tiling)
icc -parallel -fast / scheduling-based space tiling

(b) Parallel: nx = ny = 2000, tmax = 500

Figure 8. 2-d FDTD

not consider input dependences. Hence, other approaches only ex-
tract synchronization-free parallelism from each of the MVs sepa-
rately with a barrier between the two, giving up reuse on array A.
Figure 12 shows the results for a problem size N = 8000. Fusion
of ij with ij does not exploit reuse on matrix A, whereas the code
generated by our tool performs the best – it fuses ij with ji, tiles it
and extracts a degree of pipelined parallelism. For this case, results
are also shown with further syntactic transformations performed on
the Pluto code.

3-D Gauss-Seidel successive over relaxation. The Gauss-Seidel
computation allows tiling of all three dimensions after skewing.
The transformation obtained by our tool skews the two space di-
mensions by a factor of one and two, respectively, w.r.t time. Two
degrees of pipelined parallelism can be extracted subsequently, and
all three dimensions can be tiled. Figure 13 shows the performance
improvement achieved with 2-d pipelined parallel space as well
as 1-d: the latter is better in practice mainly due to simpler code.
Again, icc is does not parallelize this. The absolute GFLoPs perfor-
mance here is on the lower side when compared to other codes due
to a unique dependence structure that prevents auto-vectorization.

for (i=0; i<N; i++)
for (j=0; j<N; j++)

x1[i] = x1[i] + a[i , j]∗y1[j];

for (i=0; i<N; i++)
for (j=0; j<N; j++)

x2[i] = x2[i] + a[j , i]∗y2[j];

(a) Original

for (c1=0;c1<=N−1;c1++)
for (c2=0;c2<=N−1;c2++)

x1[c1] = x1[c1]+a[c1,c2]∗y1[c2];
x2[c2] = x2[c2]+a[c1,c2]∗y2[c1];

(b) Transformed

S1 S2»
c1
c2

–
=

»
1 0
0 1

– »
i
j

– »
0 1
1 0

– »
i
j

–
Figure 11. Matrix vector transpose

7.1 Analysis.
All experiments show very high speedups with our approach, both
for single thread and multicore parallel execution. The performance
improvement is very significant over production compilers as well
as state-of-the-art from the research community. Speedup ranging
from 2x to 5x are obtained over previous automatic transformation

for (k=0; k<N; k++)
for (j=k+1; j<N; j++)

a[k][j] = a[k][j]/ a[k][k];

for (i=k+1; i<N; i++) {
for (j=k+1; j<N; j++) {

a[i][j] = a[i][j] − a[i][k]∗a[k][j];

(a) Original code

S1 2666664
c1
c2

c3
c4
c5
c6

3777775 =

2666664
1 1 0 0
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0

3777775
264kT

jT
k
j

375
S22666664

c1
c2

c3
c4
c5
c6

3777775 =

2666664
1 0 1 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

3777775

2666664
kT
iT
jT
k
i
j

3777775
c2 is marked omp parallel

(b) 1-d pipelined parallel

#define S1(zT0,zT1,k, j) {a[k][j]=a[k][j]/ a[k][k];}
#define S2(zT0,zT1,zT2,k, i , j) {a[i][j]=a[i][j]−a[i][k]∗a[k][j];}

/∗ Generated by CLooG v0.14.1 64 bits in 0.02s . ∗/
for (c1=−1;c1<=floord(2∗N−3,32);c1++)

lb = max(max(ceild(16∗c1−15,32),ceild(32∗c1−N+2,32)),0);
ub = min(floord(32∗c1+31,32), floord (N−1,32));

#pragma omp parallel for shared(c1, lb ,ub,a) private (c2,c3,c4,c5,c6, i , j ,k, l ,m,n)
for (c2=lb;c2<=ub;c2++)

for (c3=max(ceild(16∗c1−16∗c2−465,496),ceild(16∗c1−16∗c2−15,16));c3<=floord(N−1,32);c3++)
if (c1 == c2+c3) {

for (c4=max(0,32∗c3);c4<=min(min(32∗c3+30,N−2),32∗c2+30);c4++)
for (c5=max(32∗c2,c4+1);c5<=min(N−1,32∗c2+31);c5++)

S1(c1−c2,c2,c4,c5) ;
for (c6=c4+1;c6<=min(32∗c3+31,N−1);c6++)

S2(c1−c2,c1−c2,c2,c4,c6,c5) ;
}
for (c4=max(0,32∗c1−32∗c2);c4<=min(min(32∗c1−32∗c2+31,32∗c3−1),32∗c2+30);c4++)

for (c5=max(32∗c2,c4+1);c5<=min(N−1,32∗c2+31);c5++)
for (c6=32∗c3;c6<=min(32∗c3+31,N−1);c6++)

S2(c1−c2,c3,c2,c4,c6,c5) ;

if ((−c1 == −c2−c3) && (c1 <= min(floord(32∗c2+N−33,32),floord(64∗c2−1,32)))) {
for (c5=max(32∗c1−32∗c2+32,32∗c2);c5<=min(32∗c2+31,N−1);c5++)

S1(c1−c2,c2,32∗c1−32∗c2+31,c5);
}

(c) LU (1−d pipelined parallel + L1 tiled) (tile size 32) cloog −f 4 −l 7

Figure 9. LU decomposition

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

8K4K2K1K 500 250

G
F

L
O

P
s

Problem size

pluto
Scheduling-based (time tiling)

icc -parallel -fast

(a) Single core (L1 and L2 tiled)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 3 2 1

G
F

L
O

P
s

Number of cores

pluto (2-d pipeline parallel)
pluto 1-d pipeline parallel

Scheduling-based (time tiling)
icc -parallel -fast

(b) On a quad core: N=8000

Figure 10. LU performance

approaches in most cases, while an order of 10x improvement
is obtained over the best native production compilers. Linear to
super-linear speedups are seen for almost all compute-intensive
kernels considered here due to optimization for locality as well as
parallelism. To the best of our knowledge, such speedup’s have not
been reported by any automatic compiler framework as general as
ours.

Hand-parallelization of many of the examples we considered
here is extremely tedious and not feasible in some cases, especially
when time skewed code has to be pipelined parallelized or imper-
fectly nested loops are involved; this coupled by the fact that the
code has to be tiled for at least for one level of local cache, and a 2-d

pipelined parallel schedule of 3-d tiles is to be obtained makes man-
ual optimization very complex. The performance of the optimized
stencil codes through our system is already comparable to hand op-
timized versions reported in [29]. Also, for many of the codes, a
simple parallelization strategy of exploiting inner parallelism and
leaving the outer loop sequential (i.e., no time tiling) hardly yields
any parallel speedup (Figure 8(b), Figure 6(b)) – scheduling-based
approaches that do not perform time tiling, or production compil-
ers’ auto-parallelizers perform such transformations.

As mentioned before, tile sizes were not optimized through any
search or a concrete model. In addition, studying the interplay of
the transformed codes with prefetching is important. Using cost

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4 3 2 1

G
F

L
O

P
s

Number of cores

pluto (+ syntactic post-processing)
pluto (1-d pipelined parallel, fused (ij/ji))

Scheduling-based, Lim-Lam
fused (ij/ij), i parallel

gcc -O3 (4.1.2)

Figure 12. MVT performance on a quad core: N=8000

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 4 3 2 1

G
F

L
O

P
s

Number of cores

pluto (1-d pipeline parallel)
pluto (2-d pipeline parallel)

icc -parallel -fast

Figure 13. 3-D Gauss Seidel on a quad core: Nx = Ny = 2000;
T=1000

models for effective tile size determination with some amount of
empirical search, in a manner decoupled with the pure model-
driven scheme presented here, we expect to move performance
closer to the machine peak. Integration of these techniques is in
progress. For simpler codes like matrix-matrix multiplication, this
latter phase of optimization, though very simple and straightfor-
ward when compared to the rest of our system, brings most of the
benefits. We are also integrating complementary syntactic transfor-
mations on the generated code: note that this latter phase fully relies
on the transformation framework for correctness and systematic ap-
plication. Additional experimental results and comments about the
optimized codes and transformations are available in an extended
report [10].

8. Related work
Iteration space tiling [28, 58, 48, 61] is a standard approach for
aggregating a set of loop iterations into tiles, with each tile be-
ing executed atomically. It is well known that it can improve reg-
ister reuse, improve locality and minimize communication. Re-
searchers have considered the problem of selecting tile shape and
size to minimize communication, improve locality or minimize fin-
ish time [5, 11, 26, 27, 48, 50, 60]. However, these studies were
restricted to very simple codes – like single perfectly nested loop
nests with uniform dependences and/or sometimes loop nests of

a particular depth. To the best of our knowledge, these works have
not been extended to more general cases and the cost functions pro-
posed therein not been implemented to allow a direct comparison
for those restricted cases. Our work is in the direction of a prac-
tical cost function that works for the general case (any polyhedral
program or one that can be approximated into it) as opposed to a
more sophisticated function for restrictive input. With such a func-
tion, we are able to keep the problem linear, and since sparse ILP
formulations that result here are solved very quickly, we are at a
sweet-spot between cost-function sophistication and scalability to
real-world programs. Refinements to the function that still keep it
linear are discussed in Section 3.10 of [8]. Note that our function
does not capture tile size optimization, but our results show that
decoupling optimization of tile shapes and sizes is a practical and
very effective approach; all the performance improvement shown
were with tile sizes that were selected with rough thumb rules au-
tomatically.

Ahmed et al. [2] proposed a framework for data locality op-
timization of imperfectly nested loops for sequential execution. It
was among the first attempts to tile imperfectly nested loops. Based
on the description of the heuristic approach to minimizing reuse
distances [2], it would appear that it is not scalable [53]. Some
specialized works [52, 62] also exist on tiling a restricted class of
imperfectly nested loops for locality.

Loop parallelization has been studied extensively. The reader is
referred to the survey of Boulet et al. [12] for a detailed summary
of earlier parallelization algorithms – these restricted the input
loop forms and/or were based on weaker dependence abstractions
than exact polyhedral dependences [3, 17, 16, 59]. Automatic
parallelization efforts in the polyhedral model broadly fall into
two classes: (1) scheduling/allocation-based, and (2) partitioning-
based. The works of Feautrier [20, 21], Darte and Vivien [17]
and Griebl [24] (to some extent) fall into the former class, while
Lim/Lam’s approach [37, 36, 35] falls into the second class. We
now compare our approach with previous approaches from both
classes.

Pure scheduling-based approaches are geared towards find-
ing minimum latency schedules or maximum fine-grained paral-
lelism, as opposed to tileability for coarse-grained parallelization
with minimized communication and improved locality. Clearly, on
most modern parallel architectures, at least one level of coarse-
grained parallelism is desired as communication/synchronization
costs matter, and so is improving locality. Several works are based
on such schedules [7, 24, 14, 45, 44].

Griebl [24] presents an integrated framework for optimizing
locality and parallelism with space and time tiling, by treating
tiling as a post-processing step after a schedule is found. When
schedules are used, the inner parallel (space) loops can be readily
tiled. In addition, if coarser granularity of parallelism is desired,
Griebl’s FCO approach finds an allocation that satisfies the forward
communication-only constraint: this enables time tiling. As shown
elsewhere [8] from a theoretical standpoint and as demonstrated
here through experiments, using schedules as one of the loops is
not best suited for communication and locality optimization as well
as target code complexity.

Lim and Lam [37, 36] proposed a framework that identifies
outer parallel loops (communication-free space partitions) and per-
mutable loops (time partitions) to maximize the degree of paral-
lelism and minimize the order of synchronization. They employ
the same machinery for blocking [35]. Several (infinitely many)
solutions equivalent in terms of the criterion they optimize for re-
sult from their algorithm, and these significantly differ in perfor-
mance. No metric is provided to differentiate between these solu-
tions as maximally independent solutions are sought, without using
any cost function. As shown through this work, without a cost func-

tion, solutions obtained even for simple input may be unsatisfactory
with respect to communication cost, locality, and target code com-
plexity.

Our approach is closer to the latter class of partitioning-based
approaches. However, to the best of our knowledge, it is the first
to explicitly model tiling in a polyhedral transformation frame-
work, thereby enabling the effective extraction of coarse-grained
parallelism along with data locality optimization. At the same time,
codes which cannot be tiled or only partially tiled are all handled,
and traditional transformations are captured.

In addition to model-based approaches, semi-automatic and
search-based transformation frameworks in the polyhedral model
also exist [30, 14, 22, 45, 44]. Cohen et al. [14] and Girbal et al. [22]
proposed and developed a powerful framework (URUK/WRAP-IT)
to compose and apply sequences of transformations in a semi-
automatic fashion. Transformations are applied automatically, but
specified manually by an expert. A limitation of the recent iterative
polyhedral compilation approaches [45, 44] is that the constructed
search space does not include tiling and its integration poses a non-
trivial challenge. Though our system now is fully model-driven,
empirical iterative optimization would be beneficial on comple-
mentary aspects, such as determination of optimal tile sizes and
unroll factors, and in other cases when interactions with the under-
lying hardware and native compiler cannot be well-captured.

Code generation under multiple affine mappings was first ad-
dressed by Kelly et al. [31]. Significant advances relying on new
algorithms and mathematical machinery were made by Quilleré et
al. [47] and recently by Bastoul et al. [6], resulting in a power-
ful open-source code generator, CLooG [13]. Our tiled code gen-
eration scheme uses Ancourt and Irigoin’s [4] classic approach to
specify domains with fixed tile sizes and shape information, but
combines it with CLooG’s support for scattering functions to allow
generation of tiled code for multiple domains under the computed
transformations. Goumas et al. [23] reported an alternate tiled code
generation scheme to Ancourt and Irigoin’s [4]) to address the in-
efficiency involved in using Fourier-Motzkin elimination – how-
ever, this is no longer an issue as the state-of-the-art uses efficient
algorithms [47, 6] based on PolyLib [57, 42] and its implementa-
tion of the Chernikova algorithm [33]. Techniques for parametric
tiled code generation [49, 32] were recently proposed for single
statement domains for which rectangular tiling is valid. These tech-
niques complement our system very well and we intend to explore
the possibility of integrating them.

9. Conclusions
We have presented the design and implementation of a fully au-
tomatic polyhedral source-to-source program optimizer that can
simultaneously optimize sequences of arbitrarily nested loops for
parallelism and locality. Through this work, we have shown the
practicality and promise of automatic transformation in the poly-
hedral model, beyond what is possible by current production com-
pilers. We have implemented our framework in a tool to generate
OpenMP parallel code from C program sections automatically. Ex-
perimental results show significantly higher performance for sin-
gle core and parallel execution on multi-cores, when compared
with production compilers as well as state-of-the-art research ap-
proaches. Our system also leaves a lot of flexibility for future op-
timization, mainly iterative and empirical and/or through more so-
phisticated cost models, and promise to achieve performance close
to or exceed manually developed codes.

The transformation system presented here is not just applicable
to C/Fortran code, but to any input language from which polyhedra
can be extracted and analyzed. Since our entire transformation
framework works in the polyhedral abstraction, only the polyhedra
extractor and dependence tester need to be adapted to accept a

different language. It could be applied for example to very high-
level languages or domain-specific languages to generate high-
performance parallel code.

10. Availability
A beta release of the Pluto system including all codes used for
experimental evaluation in this paper are available at [1].

Acknowledgments
We would like to thank Cédric Bastoul (Paris-Sud XI University,
Orsay, France) very much for CLooG. We wish to acknowledge
Martin Griebl and team (FMI, Universität Passau, Germany) for the
LooPo infrastructure. We thank the reviewers of the submission for
detailed comments. In addition, we thank Alain Darte for useful
feedback that has helped us improve the presentation. This work
was supported in part by the U.S. National Science Foundation
through grants 0121676, 0121706, 0403342, 0508245, 0509442,
0509467, and 0541409.

References
[1] PLuTo: A polyhedral automatic parallelizer and locality optimizer for

multicores. http://pluto-compiler.sourceforge.net.

[2] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing transformations
for locality enhancement of imperfectly-nested loops. Intl. J. of
Parallel Programming, 29(5), Oct. 2001.

[3] R. Allen and K. Kennedy. Automatic translation of Fortran programs
to vector form. ACM Trans. on Programming Languages and Systems,
9(4):491–542, 1987.

[4] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In ACM
SIGPLAN PPoPP’91, pages 39–50, 1991.

[5] R. Andonov, S. Balev, S. Rajopadhye, and N. Yanev. Optimal semi-
oblique tiling. IEEE Trans. Par. & Dist. Sys., 14(9):944–960, 2003.

[6] C. Bastoul. Code generation in the polyhedral model is easier than you
think. In IEEE Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT’04), pages 7–16, Sept. 2004.

[7] C. Bastoul and P. Feautrier. Improving data locality by chunking. In
Intl. Conf. on Compiler Construction (ETAPS CC), pages 320–335,
Warsaw, Apr. 2003.

[8] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Affine transformations for
communication minimal parallelization and locality optimization
of arbitrarily-nested loop sequences. Technical Report OSU-CISRC-
5/07-TR43, The Ohio State University, May 2007.

[9] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization
in the polyhedral model. In Intl. Conf. on Compiler Construction
(ETAPS CC), Apr. 2008.

[10] U. Bondhugula, J. Ramanujam, and P. Sadayappan. Pluto: A
practical and fully automatic polyhedral parallelizer and locality
optimizer. Technical Report OSU-CISRC-10/07-TR70, The Ohio
State University, Oct. 2007.

[11] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling?
Integration, the VLSI Journal, 17(1):33–51, 1994.

[12] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop parallelization
algorithms: From parallelism extraction to code generation. Parallel
Computing, 24(3–4):421–444, 1998.

[13] CLooG: The Chunky Loop Generator. http://www.cloog.org.

[14] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and
N. Vasilache. Facilitating the search for compositions of program
transformations. In ACM Intl. Conf. on Supercomputing, pages 151–
160, June 2005.

[15] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic
Parallelization. Birkhauser Boston, 2000.

[16] A. Darte, G.-A. Silber, and F. Vivien. Combining retiming and
scheduling techniques for loop parallelization and loop tiling. Parallel
Processing Letters, 7(4):379–392, 1997.

[17] A. Darte and F. Vivien. Optimal fine and medium grain parallelism
detection in polyhedral reduced dependence graphs. Intl. J. Parallel
Programming, 25(6):447–496, Dec. 1997.

[18] P. Feautrier. Parametric integer programming. RAIRO Recherche
Opérationnelle, 22(3):243–268, 1988.

[19] P. Feautrier. Dataflow analysis of scalar and array references. Intl. J.
of Parallel Programming, 20(1):23–53, Feb. 1991.

[20] P. Feautrier. Some efficient solutions to the affine scheduling problem:
I. one-dimensional time. Intl. J. of Parallel Programming, 21(5):313–
348, 1992.

[21] P. Feautrier. Some efficient solutions to the affine scheduling problem.
part II. multidimensional time. Intl. J. of Parallel Programming,
21(6):389–420, 1992.

[22] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations.
Intl. J. of Parallel Programming, 34(3):261–317, June 2006.

[23] G. Goumas, M. Athanasaki, and N. Koziris. Code Generation
Methods for Tiling Transformations. J. of Information Science and
Engineering, 18(5):667–691, Sep. 2002.

[24] M. Griebl. Automatic Parallelization of Loop Programs for
Distributed Memory Architectures. University of Passau, 2004.
Habilitation thesis.

[25] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the
polytope model. In IEEE PACT, pages 106–111, 1998.

[26] E. Hodzic and W. Shang. On time optimal supernode shape. IEEE
Trans. Par. & Dist. Sys., 13(12):1220–1233, 2002.

[27] K. Hogstedt, L. Carter, and J. Ferrante. Selecting tile shape for
minimal execution time. In SPAA, pages 201–211, 1999.

[28] F. Irigoin and R. Triolet. Supernode partitioning. In ACM SIGPLAN
PoPL, pages 319–329, 1988.

[29] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yellick.
Implicit and explicit optimization for stencil computations. In
ACM SIGPLAN workshop on Memory Systems Perofmance and
Correctness, 2006.

[30] W. Kelly and W. Pugh. A unifying framework for iteration reordering
transformations. Technical Report CS-TR-3430, Dept. of Computer
Science, University of Maryland, College Park, 1995.

[31] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple
mappings. In Intl. Symp. on the frontiers of massively parallel
computation, pages 332–341, Feb. 1995.

[32] D. Kim, L. Renganarayanan, M. Strout, and S. Rajopadhye. Multi-
level tiling: ’m’ for the price of one. In Supercomputing, 2007.

[33] H. LeVerge. A note on chernikova’s algorithm. Technical Report
Research report 635, IRISA, Feb. 1992.

[34] W. Li and K. Pingali. A singular loop transformation framework
based on non-singular matrices. Intl. J. of Parallel Programming,
22(2):183–205, 1994.

[35] A. Lim, S. Liao, and M. Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In ACM SIGPLAN
PPoPP, pages 103–112, 2001.

[36] A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning
algorithm to maximize parallelism and minimize communication. In
ACM Intl. Conf. on Supercomputing, pages 228–237, 1999.

[37] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with affine partitions. Parallel Computing, 24(3-
4):445–475, 1998.

[38] The LooPo Project - Loop parallelization in the polytope model.

http://www.fmi.uni-passau.de/loopo.

[39] B. Norris, A. Hartono, and W. Gropp. Annotations for performance
and productivity. 2007. Preprint ANL/MCS-P1392-0107.

[40] R. Penrose. A generalized inverse for matrices. Proceedings of the
Cambridge Philosophical Society, 51:406–413, 1955.

[41] PIP: The Parametric Integer Programming Library. http://www.piplib.org.

[42] PolyLib - A library of polyhedral functions.
http://icps.u-strasbg.fr/polylib/.

[43] S. Pop, A. Cohen, C. Bastoul, S. Girbal, P. Jouvelot, G.-A. Silber,
and N. Vasilache. GRAPHITE: Loop optimizations based on the
polyhedral model for GCC. In Proc. of the 4th GCC Developper’s
summit, Ottawa, Canada, June 2006.

[44] L.-N. Pouchet, C. Bastoul, J. Cavazos, and A. Cohen. Iterative
optimization in the polyhedral model: Part II, multidimensional time.
In PLDI’08, Tucson, Arizona, June 2008.

[45] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative
optimization in the polyhedral model: Part I, one-dimensional time.
In ACM CGO, Mar. 2007.

[46] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. Communications of the ACM,
8:102–114, Aug. 1992.

[47] F. Quilleré, S. V. Rajopadhye, and D. Wilde. Generation of efficient
nested loops from polyhedra. Intl. J. of Parallel Programming,
28(5):469–498, 2000.

[48] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration
spaces for multicomputers. JPDC, 16(2):108–230, 1992.

[49] L. Renganarayana, D. Kim, S. Rajopadhye, and M. M. Strout.
Parameterized tiled loops for free. In PLDI, pages 405–414, 2007.

[50] R. Schreiber and J. Dongarra. Automatic blocking of nested loops.
Technical report, University of Tennessee, Knoxville, TN, Aug. 1990.

[51] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, 1986.

[52] Y. Song and Z. Li. New tiling techniques to improve cache temporal
locality. In PLDI, pages 215–228, 1999.

[53] N. Vasilache. Scalable Program Optimization Techniques in the
Polyhedral Model. PhD thesis, Université de Paris-Sud, INRIA,
Futurs, Sept. 2007.

[54] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation
in the real world. In Intl. Conf. on Compiler Construction (ETAPS
CC), pages 185–201, Mar. 2006.

[55] N. Vasilache, C. Bastoul, S. Girbal, and A. Cohen. Violated
dependence analysis. In ACM ICS, June 2006.

[56] R. Whaley, A. Petitet, and J. Dongarra. Automated Empirical
Optimizations of Software and the ATLAS Project. Parallel
Computing, 2000.

[57] D. K. Wilde. A library for doing polyhedral operations. Technical
Report RR-2157, IRISA, 1993.

[58] M. Wolf and M. S. Lam. A data locality optimizing algorithm. In
ACM SIGPLAN PLDI ’91, pages 30–44, 1991.

[59] M. Wolf and M. S. Lam. A loop transformation theory and an
algorithm to maximize parallelism. IEEE Trans. Parallel Distrib.
Syst., 2(4):452–471, 1991.

[60] J. Xue. Communication-minimal tiling of uniform dependence loops.
JPDC, 42(1):42–59, 1997.

[61] J. Xue. Loop tiling for parallelism. Kluwer Academic Publishers,
Norwell, MA, USA, 2000.

[62] Q. Yi, K. Kennedy, and V. Adve. Transforming complex loop nests
for locality. J. of Supercomputing, 27(3):219–264, 2004.

[63] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. A.
Padua, K. Pingali, P. Stodghill, and P. Wu. A comparison of empirical
and model-driven optimization. In PLDI’03, pages 63–76, 2003.

