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Abstract—Drug discovery is an important process in which
biomedical experts identify new potential treatments for dis-
eases. Currently, this requires much time and manual effort,
so automating any part of the process would be a significant
improvement. Thus, we propose to identify drug candidates via
explainable automated fact-checking. That is, given a hypothe-
sized drug-disease treatment relationship, we aim to generate
explanations for the hypothesis as a means for determining
whether or not the drug could be a potential treatment for the
disease. Our goal in this paper is to develop such an approach
that is well-suited for the biomedical domain.

Direct application of existing fact-checking tools faces several
challenges since most are not developed for use within the
biomedical domain; thus, both the explanation formats and the
evaluation metrics are ill-suited for this domain application. We
propose explanations in the form of knowledge graph patterns,
which directly relate to existing structures used by biomedical
experts, as well as evaluation metrics which rely solely on
existing evidence present in knowledge graphs and make no
domain-specific assumptions. We report experimental results,
which suggest that, for the drug discovery task and potentially
others, our metrics are accurate, and our explanations are
understandable and reasonable to domain experts, as well as
useful.

Index Terms—drug discovery, knowledge discovery, explain-
able fact-checking, link prediction, knowledge graph mining

I. INTRODUCTION

Drug discovery is the process by which biomedical experts
identify new potential treatments for diseases [1]. This process
has two broad steps: (1) identification of candidate drugs and
(2) clinical trials of these candidates to test their viability. The
first step can be solved by evaluating the truth of candidate
facts, which is the common goal of fact-checking and link
prediction systems. In this scenario, each candidate fact is a
hypothesis that some drug is capable of treating the target
disease, and evaluating this fact for a variety of drugs can help
identify which are the strongest drug candidates, i.e., those
whose hypotheses have the highest truth scores.

To this end, the problem of interest is to automate the
drug discovery process by posing it as a fact-checking/link
prediction problem. Our aim is to propose an automated fact-
checking strategy which is well-suited for the biomedical do-
main. In particular, we aim to develop an explainable approach
in which explanations are produced for each hypothesis to
either support or refute it. This allows biomedical experts
to further examine the candidates based on the evidence
produced.
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Fig. 1. An example of a knowledge graph pattern which consists only of edge
and node type labels and serves as both an explanation for the relationship
between the drug and disease, as well as a clinical outcome pathway revealing
to biomedical experts how the drug acts on the disease.

Currently, experts spend a considerable amount of time and
effort on drug candidate identification because there are so
many factors to consider, e.g., how well the drug manages the
disease or some symptom of the disease, what the potential
undesired effects of the drug are, whether or not the drug
been used for other treatments, if the drug would be feasible
for use on specific patients, etc. Automating this process
would provide significant speedups and alleviate the manual
efforts required. In addition, producing explanations can help
domain experts to understand the machine output, as opposed
to blindly accepting it, which would help make this process ac-
cepted and understood in the biomedical domain Most current
fact-checking and link prediction tools were not developed
with the biomedical domain in mind, so several challenges
arise when trying to directly adopt these tools to address drug
discovery. Challenges surrounding the explanations produced
include that they are not in a form which is readily understood
by biomedical experts, and they require unique explanations
to be found for each hypothesis, which does not scale well for
drug discovery where there is a large number of hypotheses
to be considered [2]-[16]. Challenges surrounding the metrics
used for evaluating explanations include that they make as-
sumptions about the domain of interest that are not held in
the biomedical domain, they evaluate how an explanation was
derived, as opposed to evaluating the explanation itself, and
they provide a local evaluation, i.e., specific to the hypothesis,
which does not consider the other data present [12], [13].

In this paper, we address these challenges by proposing
a novel view of explanations along with three metrics for
evaluating said explanations. Our proposed explanations take
the form of knowledge graph patterns, which are subgraphs
consisting only of type labels, i.e., no specific entities. These
patterns are readily understood by biomedical experts as
they are closely related to the concept of clinical outcome
pathways (COPs). A COP is a sequence of biological events



that explain the mechanism of action of a drug [17]. Fig. 1
shows an example of both a knowledge graph pattern and
a COP which presents one possible way that a drug may
act on a disease.! In addition to being understandable by
domain experts, these patterns are general enough to apply to
multiple hypotheses, so we can treat them as rules for inferring
drug-disease relationships, thereby saving time on having to
generate explanations specific to each hypothesis. Moreover,
our proposed metrics do not require the domain to meet any
assumptions and evaluate each explanation in and of itself, as
opposed to how it was generated, by considering the existing
data in knowledge graphs as evidence for or against it, which
provides a global evaluation.

To the best of our knowledge, [3] is the only work to
address fact-checking in the biomedical domain, like we do.
Unfortunately, using their method still faces some of the
key challenges presented. For example, their explanations are
paragraphs, which are slower to understand than our patterns
and must be unique for each hypothesis. In addition, their
metrics for evaluating such explanations provide only a local
evaluation without considering other domain evidence.

Our contributions are as follows:

o We pose drug candidate identification for drug discovery
as a fact-checking problem and propose an explainable,
automated approach as a solution;

o We present knowledge graph patterns as a novel explana-
tion format, along with an algorithm for deriving them;

o We treat these derived explanations as inference rules
which can be applied to future hypotheses beyond those
for which they were derived, thereby saving time on
future explanation tasks;

e« We propose three data-supported scoring metrics for
reliable, domain-specific evaluation of explanations;

o We present experimental results on the biomedical do-
main, specifically addressing drug discovery; our results
suggest that, for the task of drug candidate identifi-
cation and potentially others, our metrics are accurate
and capable of identifying strong explanations, and our
explanations are not only reasonable to domain experts
but are also useful as inference rules for explaining future
hypotheses.

The rest of the paper is organized as follows. In Section II,
we survey related work. We introduce necessary background
in Section III and detail all steps of our approach in Section
IV. In Section V, we present the results of our experiments.
Finally, in Section VI, we offer conclusions of our work and
suggestions for future work.

II. RELATED WORK

A. Explanation Derivation

Producing explanations during automated fact-checking or
link prediction has recently received significant attention, see
[2]-[16]. Arguably the most popular approach to explanation
generation is evaluation of textual sources via deep learning

IThere are many other COPs of varying length and specificity, see [17].

[2]-[9]. Rule-based approaches, which aim to find paths or
subgraphs in knowledge graphs that support hypotheses, are
also popular [10]-[13], as well as a variety of other approaches
for finding supporting paths in knowledge graphs [14]-[16].

Backward chaining is a standard approach in artificial
intelligence for synthesizing inference rules together to form
proofs [18] and has been used in many applications over
the years, e.g., theorem proving, inference engines, Prolog,
etc. Our approach is a backward chaining style algorithm
which uses inference rules over knowledge graphs to find
explanations for input hypotheses. Reference [13] also adopts a
backward chaining approach; however, they consider a differ-
ent application domain, and their criteria for ideal explanations
are not appropriate for our problem. In particular, their ideal
explanations are (i) small, (ii) require few rules to generate,
and (iii) contain more facts from knowledge graphs than text-
based sources. We use knowledge graphs as our only data
source, so (iii) does not apply. Biomedical experts confirm that
(i) and (ii) are inappropriate because explanations which are
longer and more detailed can often be stronger since they are
able to more specifically describe the biological processes and
relevant entity interactions; thus, our key criterion is simply
that explanations are biomedically accurate and reasonable.

Apart from the variety of derivation methods, the resulting
explanations can take many forms, e.g., text summaries [2],
[3], article clips [4], highlighted words in clips [5]-[9], sets
of inferences rules and facts [10]-[13], and paths/subgraphs
in knowledge graphs [13]-[16]. Our explanations take the
form of knowledge graph patterns, see Section III-C for more
detail. To the best of our knowledge, we are first to consider
knowledge graph patterns, as opposed to specific subgraphs or
paths. Therefore, our explanations are the only ones with the
benefit of being applicable to multiple hypotheses, instead of
being hypothesis-specific.

As far as we know, [3] presents the only explanation
derivation approach for the biomedical domain. While their
goals are similar to ours, their explanations are paragraphs,
which are slower to understand than our patterns and must be
uniquely derived for each hypothesis.

B. Explanation Evaluation

Some of the explanation derivation methods mentioned also
propose metrics for evaluating the explanations they produce
(2], (3], [12]-[16].

There are two existing metrics which are capable of scoring
explanations in the form we use [12], [13], though they were
originally designed for other explanation formats. Reference
[12] scores an explanation by multiplying the weights of all
inference rules used to build it. Unfortunately, this relies upon
the assumption that these rules are independent of each other,
which is not met in many cases, €.g., in the biomedical domain.

Reference [13] uses a heuristic explanation scoring metric
which is based on the number of rules required to generate
the explanation and how they were synthesized. This metric
assumes that each rule can be used for perfectly reliable
inference as using a single rule results in the maximum



explanation confidence of 1. In many cases, inference rules
do not hold all the time, including in the biomedical domain.

Additionally, the metrics of [12], [13] evaluate the pro-
cess of generating an explanation, as opposed to the actual
explanation itself, which has undesired side-effects, e.g., the
same explanation can receive different scores if it can be
derived in different ways. On the other hand, we present
metrics which provide a data-supported evaluation of the
explanation itself and do not make unreasonable, domain-
dependent assumptions.

III. BACKGROUND AND PROBLEM STATEMENT
A. Knowledge Graphs

A knowledge graph G = (£,P,T) is composed of a set
of entities £, a set of predicates P, and a set of triples T C
EXPxE.

Each triple (s,p,0) € T represents the fact that the
predicate, i.e. relationship type, p holds between the subject
s and the object o. For example, (benazepril, treats, chronic
kidney disease) is a triple which states the real-world fact: “the
drug benazepril treats chronic kidney disease.”

B. Horn/Inference Rules

To generate explanations, we utilize sets of inference rules.
In particular, we focus on Horn rules, which are useful for
inference and are commonly used in the literature, see, for
example, [10], [12], [19]-[27]. Horn rules are composed of
atoms, which are (s,p, o) triples, where p € P and s, 0 are
either variables or entities from &.

An example of a Horn rule r is

(z, treats, z) < (z, treats, y) A (y, hasPhenotype, z)

We refer to the left-hand side and the right-hand side of r as
head(r) and body(r), respectively. The presence of body(r)
allows inference of head(r). Thus, this rule represents the
intuition that a drug x is likely to treat a disease z if x treats
some disease y which has the same phenotype as z.

C. Explanations

An explanation E is a Horn rule shown below.
(eo,pye1) a1 Aaz A+ Nay (1)

Here, A = {a1, a9, ..., ay,} is a set of free atoms, i.e., atoms in
which s, o are both variables, called the explanation pattern; p
is the target predicate; eq, e; are two entities (variables), from
atoms in A, which are designated as the endpoints. Altogether
(eo,p,e1) is the target triple. We say that the explanation
pattern A explains the target triple (eg, p, e1).

For example, consider the explanation E below.

(w, treats, z) <
(w, treats, x) A (y, biomarkerFor, x) N\ (y, biomarkerFor, z)
Then, we say that the explanation pattern A =

{(w, treats, x), (y, biomarkerFor, x), (y, biomarkerFor, z) }
explains the target triple (w, treats, z).

D. Problem Statement

We now introduce the formal problem statement for expla-
nation derivation and evaluation of knowledge graph links.

Given (i) a knowledge graph G = (£,P,T), (i) a set of
Horn rules R, and (iii) a hypothesis h = (eg, p,e1), where
p € P and eg,e; € &, our goal is to (i) derive a set O of
possible explanations for &, and (ii) assign a reliable, under-
standable, data-supported score to each explanation E € O,
which represents the extent to which the explanation justifies
the truth of h.

IV. METHODOLOGY

We address each goal of the problem presented above
separately. Deriving explanations is addressed in Section IV-A,
and evaluating explanations is addressed in Section IV-B.

A. Explanation Derivation

Recall from our problem statement in Section III-D that ex-
planation derivation requires three inputs: a knowledge graph
g, a set of Horn rules R, and a hypothesis h = (e, p, e1).
Each serves a specific purpose in the explanation derivation
process: G serves as a reliable source of information in which
we can find groundings for explanations; R allows us to
rewrite current explanations by applying the rules appropri-
ately; h focuses our search and provides the starting point.

The proposed algorithm is based on backward chaining,
which is a standard approach for reasoning in artificial in-
telligence in which one works backwards from the goal to
find a solution. That is, the first explanation we consider is
the hypothesis h itself. After all, if the hypothesis is already
in the KG, then it serves as its own explanation. The backward
chaining proceeds by identifying rules from R in succession
that can be used to infer atoms of the explanation E under
consideration. These rules are used to logically rewrite E in
order to derive other potential explanations. Any explanation
which exists entirely in the knowledge graph G is a successful
explanation and is output.

We provide a detailed explanation of the algorithm in
Section IV-A1l and a step-by-step example in Section IV-A2.

1) Algorithm: We will now detail the main framework of
our explanation derivation approach, shown in Algorithm 1.

Notice that the three inputs for explanation derivation, i.e.,
a knowledge graph G, a set of Horn rules R, and a hypothesis
h = (ep,p,e1), match the first three inputs of Algorithm
1. We add one additional input to ensure termination: a
maximum search depth d. Depending on the set of Horn
rules given as input, it is possible that the rewriting step,
explained below, could always produce new explanations to
consider. In this case, the algorithm terminates only because
the maximum search depth d restricts the number of recursive
rule rewritings allowed. Algorithm 1 produces a single result:
a set of explanations O for the input hypothesis h, where each
explanation £/ € O is of the form described in Section III-C.

Algorithm 1 presents an iterative backward chaining pro-
cess which searches the knowledge graph G for explanations
for the hypothesis h. To suit the needs of our application,



Algorithm 1: Deriving explanations
Input: knowledge graph G = (€, P, T), set of Horn rules R,
hypothesis h = (e, p, 1), max search depth d
Output: set O of explanations for hypothesis h
1: O«
2: h.depth < 0; h.found < false;
3 Q¢+ {h <~ h} // build a queue
4: while Q # () do

5 E + some explanation from Q;

6 if  atom a € FE s.t. a.found = false then

7: O+ 0 UE; /| E is a successful exp.

8 else

9: a < some atom from F s.t. a.found = false;
10: /l first, ground E with a

11 Q «+ QUgroundAtom(E,a,G);

12: // next, rewrite a in E

13: Q + QUrewriteAtom(E, a, R,d);

14: return O,

we have modified the standard iterative backward chaining
algorithm in a few ways. One such modification is to return
all possible explanations within the depth limit d, as opposed
to stopping once a single explanation is found, so as to find
the strongest explanations. To this end, we maintain an output
set O, initially an empty set (line 1), which stores successful
explanations, i.e., explanations which exist in the knowledge
graph G with target triple h.

To track the search progress, we attach two attributes to
each atom a of an explanation E: a.found and a.depth. The
value of a.found is true if we have found a grounding for £
with a in G, i.e., the explanation pattern exists in G; otherwise,
a.found is false. The value of a.depth represents the number
of recursive rewritings required for a to appear in E. For
example, any atoms that appear in E after the first rewriting
have depth 1; any atoms that appear in E by rewriting an
atom of depth 1 have depth 2, and so on. Initially, A.found
and h.depth are set to false and 0, respectively (line 2).

In iterative backward chaining, a queue Q is maintained,
which contains possible explanations to consider. Initially, it
contains solely the input hypothesis h, which serves as the
starting point for the search (line 3). There is a main loop (lines
4-13) in which, for each iteration, a single explanation F is
removed from Q and considered (line 5). If the explanation
pattern of E exists entirely in G, i.e., all atoms have been
marked as found, then it is a successful explanation and is
added to the output set O (lines 6-7).2

Otherwise, it must be processed further. Here, instead of
considering the entire explanation at once, we consider only
one atom which has not yet been found (line 9). The atom
a is first ground in G with the found atoms of E (line 11)

2Before adding E to O, the endpoints of E are replaced with fresh
variables, see the example of Section IV-A2.

to determine if the partial pattern exists in G. If it does, E is
added back to the queue so the other atoms can be processed in
later iterations of the main loop. Since an explanation pattern
exists in G only if its partial patterns exist in G, processing
a single atom at a time eliminates useless patterns early and,
therefore, limits the number of large queries performed on G.

Next, a is rewritten within F by rules from R, and the
rewritings are added to the queue to be considered in later
iterations of the main loop (line 13). Here, we impose the depth
limit d. Before rewriting, the subprocedure rewrite Atom
compares a.depth with the maximum search depth d. If
a.depth is less than d, then rewriting proceeds as normal;
otherwise, no rewritings are performed.

Algorithm 1 processes explanations in this way until the
queue Q is empty and the main loop of lines 4—13 completes.
At that point, all successful explanations of the hypothesis h
within the depth limit d have been added to the output set O,
which is returned as the result of Algorithm 1 (line 14).

2) Example: The following example will outline the expla-
nation derivation process described in Section IV-A1l. Assume
we have the following inputs to Algorithm 1.

G = { (BE, treats, DN), (KF, biomarkerFor, DN),
(KF, biomarkerFor, CKD) }

R = {(u, treats, w) < (u, treats,v) A (v, hasPhenotype, w),
(x, hasPhenotype, y) <
(z, biomarkerFor, x) A (z, biomarkerFor, y) }

h = (BE,treats, CKD)

d= 2

For the sake of clarity, we have abbreviated benazepril with
BE, diabetic nephropathy with DN, kidney failure with KF,
and chronic kidney disease with CKD.

As mentioned, the first explanation F that we consider is
h < h. Our goal is to show that the right-hand side of F is true
so that we can infer the left-hand side. Since h. found = false
to begin with, E is not yet a successful explanation. Therefore,
we attempt to ground h in G, which is not possible since
h ¢ G. Next, we attempt to rewrite h with rules in R that
allow inference of h. Notice that the first rule r; can be used
to infer h under the substitution o = {u/BE,w/CKD}. So,
we rewrite h in F to get a new explanation F’.

h < (BE, treats,v) A (v, hasPhenotype, CKD)

The atoms on the right-hand side both have depth 1 since they
were produced by a single rewriting.

Finding groundings in G for each atom in E’ would com-
plete the inference of h = (BE, treats, CKD), and we would
have a successful explanation. First, let’s consider the atom
a = (v, hasPhenotype, CKD). Note that a cannot be ground in
G, but it can be rewritten by the second rule. Therefore, we
now have the following explanation E”.

h <(BE, treats, v)\
(z, biomarkerFor,v) A (z, biomarkerFor, CKD)



Atoms (z, biomarkerFor,v) and (z, biomarkerFor, CKD) have
depth 2 since they were produced by rewriting an atom of
depth 1, i.e. a.

Now, we consider each atom in E”. First, consider a; =
(BE, treats, v). Notice that a; can be ground in G by the substi-
tution o1 = {v/DN}, so we set a;.found = true. For the sake
of brevity, we will skip the rewriting step and instead consider
the next atom in this explanation: ay = (z, biomarkerFor,v).
Notice that as can be ground in G along with a; by the sub-
stitution oo = {v/DN, z/KF?}, so ay.found = true as well.
Since as.depth = 2, which is the depth limit d, no rewriting
occurs. Finally, we consider a3 = (z, biomarkerFor, CKD),
which can be ground in G along with a; and as by the
substitution o3 = {v/DN, z/KF}, so as3. found = true. Again,
as.depth = 2, so no rewriting occurs.

At this point, all atoms of FE” have been found,
so E” is a successful explanation for our hypothesis
h. Before outputting E”, we perform the substitution
Ovar = {BE/e1,CKD/es}, which gives: (e1,treats,es) <
(e, treats,v) A (z,biomarkerFor,v) A (z,biomarkerFor,ez).
Now the explanation is a knowledge graph pattern, matching
the definition in Section III-C, which can be potentially reused
for other specific (ey, treats, e2) hypotheses.

For the sake of the exposition, we stop our example here.
However, it is important to recall that since we aim to find the
strongest explanations, Algorithm 1 does not stop after finding
the first explanation. In particular, there are still atoms of both
E’ and E" which can be rewritten to produce new explanations
to consider. The backward chaining process continues until
(1) the depth limit d has been reached for all atoms of all
explanations, or (2) there are no rules which can facilitate
further rewriting.

B. Explanation Evaluation

We now present our metrics for evaluating the explanations
generated by Algorithm 1 on the extent to which they justify
the truth of the hypothesis h.

In recent years, rule mining in knowledge graphs, a relative
of the much older association rule mining, has become a
relatively popular problem [19]-[27]. As a result, several
metrics have been proposed for evaluating rules. Since our
explanations are inference rules, we propose to evaluate them
by two of the strongest, most widely accepted of these
pre-existing metrics, as well as a proposed combination of
those two. To this end, we consider three metrics in total:
confidence, head coverage, and the harmonic mean, or FI1-
score, of confidence and head coverage.

Before formally defining our metrics, we define a few
background terms. Let E be the following explanation.

(eg,p,e1) = a1 Naa A---Nay
We define the set of groundings of E as follows.
groundings(E) = {(ego,e10) | Y o: Ao € G} (2)

Here, A = {a1,...,a,} is the explanation pattern of E. That
is, the set of groundings of E is formed by applying to the

endpoints of E each substitution which places A entirely in
the knowledge graph G. The corresponding support of E is
defined as the number of groundings of E.

support(E) = |groundings(E)| 3)

This support metric was originally adapted from association
rule mining for use in knowledge graph rule mining in [19].

Consider the example explanation F from Section III-C,
duplicated below.

(w, treats, z) <

(w, treats, x) N (y, biomarkerFor, x) A (y, biomarkerFor, z)

Then, in the ROBOKOP knowledge graph® used in our ex-
periments, see Section V, support(E) = 204, which means
that there are 204 pairs of endpoint entities (eg,e;) for the
explanation E such that the entire explanation pattern exists
in the knowledge graph.

1) Confidence: The first metric we propose for evaluating
explanations is confidence, which is a standard rule mining
metric borrowed directly from association rule mining [28].
The confidence of an explanation E is defined as follows.

support(E")

conf(E) = )

support(E)
Here, E is (eg,p,e1) < a1 A---Aay, and E' is (eg,p,e1) <
ag A+ Nan A(eo,p,er1).

This confidence value is the conditional probability that
the hypothesis (eg,p, e1) can be ground in G, given that the
explanation pattern A = {ay,...,a,} of E can be ground in
G. Therefore, it is a representation of how likely (eq, p, e1) is
to be true based on the fact that A is known to be true. As
a result of our considering explanations to be inference rules,
confidence can also be viewed as a ratio of the inferences of
the rule E that are in the knowledge graph G. All in all, it is
effectively a measure of how often the explanation pattern A
is associated with (eg,p,e1) in G and, therefore, how much
we can trust A to explain (e, p, e1).

Consider, again, the explanation from Section III-C. Then,
support(E") = 144 and support(E) = 204, which means that
conf(E) = 0.706. In other words, of all the groundings of A
in G, 70.6% of them appeared with the triple (w, treats, z)
as well. Therefore, we would expect that whenever we see
the explanation pattern A, there is a 70.6% chance that
(w, treats, z) is also true.

2) Head Coverage: The next metric we propose is head
coverage, a standard rule mining metric proposed in [19]. The
head coverage of an explanation E is defined as follows.

support(E")

he(E) = 5)

support(h)

Here, E’ is still (eg,p,e1) < a1 A---Aay A(eo,p,e1) and h

is (€0, p, €1) < (e, p, €1).
This head coverage value both parallels and contrasts the
value of confidence as it is also a conditional probability, but

3http://robokopkg.renci.org/browser/



it is the conditional probability that the explanation pattern
A = {ay,...,an} can be ground in G, given that the
hypothesis (eg, p,e1) can be ground in G. In other words, it
is a representation of how likely A is to be true based on
the fact that (eg, p, e1) is known to be true. Our consideration
of explanations as inference rules allows for head coverage
to be interpreted as the proportion of triples with predicate p
that could be inferred by the rule (eg,p,e1) < A. Therefore,
head coverage serves as a measure of how often (eg,p,eq)
is associated with A in G, and, therefore, how relevant the
explanation pattern A is to the hypothesis (eg, p, e1).

Again, let E be the example explanation E from Sec-
tion III-C. Then, h is (w,treats,z) < (w,treats,z),
support(E') = 144 and support(h) = 16135, which means
that he(E) = 0.009. In other words, of all the groundings of
hin G, 0.9% of them appeared with the explanation pattern
A as well. Therefore, we would expect that A only explains
0.9% of (w, treats, z) triples.

3) Fl-score: Our final metric is a proposed combination of
the two previous standard rule mining metrics. The confidence
metric is a perfect analog to precision, i.e., the ratio of correct
inferences to total inferences. Likewise, the head coverage
metric is a perfect analog to recall, i.e., the ratio of correct
inferences to correct facts. This lends itself very naturally to
the definition of our third metric: the harmonic mean, i.e. F1-
score, of confidence and head coverage.

conf(E) x he(E)
conf(E) + he(E)

The standard Fl-score serves to balance the trade-off be-
tween precision and recall. In our case, we want to balance
the trade-off between the confidence and the head coverage of
our produced explanations to find explanations which are both
highly associated and highly relevant to the input hypotheses.

For our running example, F'1-score(E) = 0.018, which is
the harmonic mean of conf(E) = 0.706 and he(E) = 0.009.
This Fl-score serves as a measure of the average quality of the
explanation, where confidence and head coverage are two key
aspects of explanation quality. It provides a single score which
allows us to compare F to other explanations by balancing the
importance of both confidence and head coverage.

Fl-score(E) =

(6)

V. EXPERIMENTS
A. Implementation and Experimental Settings

We hosted the knowledge graph used in our experiments
as a graph database in Neo4j version 4.2.1.*> We have
implemented the entirety of the explanation derivation algo-
rithm along with all programs used for running experiments
in Python 3.9 and have used the py2neo package to query
the knowledge graph. The experiments were conducted on a
computer with an Intel i7-1165G7 CPU processor running at
2.8 GHz with 12GB of RAM and Windows version 10.

“https://neodj.com

SDespite much effort to optimize the queries used in our programs, Neo4j
timed out on queries for explanation patterns with more than roughly 4 atoms.
We eliminated any such explanations from our experiments.

1) Knowledge Graph: In this work, we focus on the
large-scale biomedical knowledge graph: Reasoning Over
Biomedical Objects linked in Knowledge Oriented Pathways
(ROBOKOP) [29].° In particular, we derive explanations for
treats triples to address our goal of drug discovery.

We conduct all of our experiments on a sample of the
ROBOKOP version mentioned above due to memory limita-
tions when performing automatic rule extraction, see Section
V-A2. The sample used contains 307,959 entities of 10
different types; it contains 4,016, 135 triples over 86 different
predicate types. Construction of the sample is detailed in
Sections V-Ala—V-Alb.

a) Subset Extraction: To extract the subset, we followed
the process suggested by [30]. We randomly chose a starting
node and then performed a random walk over ROBOKOP.
To facilitate extraction of an evenly spread out sample, we
randomly jump back to the original start node with probability
0.15 at each step.7 To ensure termination, if we have not
accrued 4 million triples after 100 x n steps, where n is the
number of nodes in the graph, we randomly select another
starting node and repeat the process.

b) Negative Sampling: In our experiments, we attempt
to find supporting explanations for (z,treats,y) triples, i.e.,
explanations with target predicate treats, as well as refuting
explanations, i.e., explanations with target predicate not_treats.
Thus, we require negative triples, e.g., (cocaine, not_treats,
chronic kidney disease), which are not stored in knowledge
graphs. To sample negative edges, we rely upon the popu-
lar assumption that triples not present in the graph can be
considered false for the purposes of negative sampling, i.e.,
the closed world assumption [26], [31]-[34]. Of course, we
recognize that this is not a perfect assumption as knowledge
graphs inherently operate under the open world assumption.
However, we reason that the vast majority of missing triples
actually are false; thus, random selection of missing triples
will result in a negligible amount of false negatives.

To perform negative sampling, we adopt the procedure
used in [34]-[37]. Therefore, we consider each existing triple
(s, treats, o) and randomly sample either a new subject s’ or
a new object o’ of the same entity type m times, forming m
new triples of the form (s’, not_treats, o) or (s, not_treats, o'),
respectively. If any triple produced this way already exists in
ROBOKORP as a true treats triple, then we repeat the process
until this is not the case. Since there is no accepted value
in the literature for the number of negatives to sample [26],
[31]-[40], we randomly sample a single negative triple, i.e.,
m = 1, for each existing treats triple in ROBOKOP, in an
effort to avoid class imbalance.

2) Ruleset: Unfortunately, manual rule design at the scale
required for our experiments is infeasible. Thus, to form the
set of rules used in our experiments, we perform automatic
rule extraction with the state of the art in knowledge graph
rule mining: AMIE [21].

Shttp://robokopkg.renci.org/browser/
"The value commonly used in the literature [30].



We ran AMIE with a maximum of two rule body atoms
since mining longer rules would not terminate after more
than a day. To avoid exponential blowup in the number of
patterns considered during explanation derivation, we limited
the resulting set of rules by imposing a threshold of 25 on
AMIE’s calculated support, i.e., the number of groundings of
the rule. Additionally, for each predicate, we use only the top
ten rules with the highest standard confidence, as reported by
AMIE. These restrictions simply eliminate weak rules which
appear extremely infrequently and are therefore unlikely to
produce explanations. The resulting rule set consists of 561
rules with 67 different predicates as rule heads.

B. Metric Accuracy

1) Experimental Design: In this experiment, we test the
accuracy and reliability of our proposed metrics and, thus,
their viability as valuable metrics for evaluating explanations
of hypotheses in knowledge graphs. In summary, our results
suggest that our proposed metrics are significantly more accu-
rate than existing baseline metrics. Therefore, they are more
reliable metrics for evaluating explanations and, consequently,
for determining the truth of a hypothesis.

We follow the experimental design of [13], [41] as follows.
We form an experimental data set consisting of n groups
of hypotheses. First, we randomly select n ftreats triples
from ROBOKOP; these are true hypotheses. To avoid trivial
explanations, i.e., (eg,p, e1) < (eo, p, €1), we remove these n
triples from ROBOKOP. Then, for each true hypothesis, f;, we
generate m false alternative hypotheses f;/, fi5, - - ., fil, using
the negative sampling process described in Section V-A1b.®
This produces n groups each containing 1 true hypothesis and
m false alternative hypotheses. For example, let (benazepril,
treats, chronic kidney disease) be the true hypothesis. Then,
possible false alternatives could be (benazepril, treats, lung
cancer) and (cocaine, treats, chronic kidney disease).

For each hypothesis (eg, p, 1) in each group of our experi-
mental data set, we use Algorithm 1 to derive a set of positive
explanations O™ for target triple (eg, p, €1), as well as a set of
negative explanations O~ for target triple (eq, not_p,e1). We
keep only the k top-scoring explanations from each set to avoid
having an abundance of weak explanations that overshadow a
few strong explanations. We define the quality of a set of
explanations as the average score of its explanations.

quality(0) = — Z score(E) (7)

Here, score(E) takes the place of the explanation evaluation
metric in use, e.g., conf(E) or he(E). The quality metric al-
lows us to incorporate several explanations into our evaluation
of a single hypothesis, which reduces the impact of potential
outlier explanations, thus giving a more reliable evaluation.

We then assign a truth score to each hypothesis (eg, p, e1)
as follows.

truthScore((eq, p, 1)) = quality(O") — quality(O~) (8)

8Instead of producing not_treats triples via this negative sampling pro-
cess, we keep the predicate freats so that the triples will be false.

The truth score indicates whether we should consider the
hypothesis (eg, p, e1) to be true or false by determining which
explanation set is stronger, i.e., has a higher quality score. A
positive truth score indicates that the positive explanations O
were stronger; a negative truth score indicates the opposite.

We compute the quality and assign a truth score to each
hypothesis using each metric proposed in Section IV-B, as
well as two baseline metrics, see Section V-B2. A reliable
metric for evaluating explanations should assign higher scores
to explanations of true hypotheses than to explanations of false
hypotheses, thus causing the truth score of each true hypothesis
to be higher than those of the false alternatives. To this end,
we evaluate each the explanation metrics on each group G; =
{fi, fits -+, fir.} by computing its accuracy as follows.

1
accuracy(G;) = - Z [truthScore(f;) > truthScore(f;})]
i
©))

Here, [P] = 1 if P is true; otherwise, [P] = 0. This accuracy
score indicates the proportion of false alternative hypotheses
with lower truth scores than the true hypothesis. Thus, this
measures how accurate the scoring metric is for group G;.

2) Baselines: We compare our proposed metrics with two
baseline explanation evaluation metrics, from references [12],
[13]. These baseline metrics were designed to evaluate the
explanation formats considered in their respective works,
which are, in particular, different than ours. However, they can
be easily modified to evaluate our novel explanation format:
knowledge graph patterns.

Let E be the explanation (eg,p,e1) < a1 Aag A -+ A ap.
The baseline metrics are defined as follows.

o ProbLog [12]:

ProbLog-score(E) = H probability(r)
reR

(10)

Here, R is the set of rules used to produce E and
probability(r) is the probability associated with rule 7.

o ExFaKT [13]:
ExFaKT-score(E

1 1
=5 11
) |A| ;4 a.depth an

Here, A = {a1,as,...,a,} is the explanation pattern of
FE, and a.depth is the same as the value a.depth used in
Algorithm 1, see IV-A1 for details. !0

3) Experimental Details: For our experimental data set,
we generated 250 hypothesis groups with 5 false alternatives
each.!! For each hypothesis (eq,p,e1) in this set, we derived
positive explanations via Algorithm 1 using the ROBOKOP
sample G detailed in Section V-Al, the rule set R detailed in

9To match the notion of rule probability from [12], we use the standard
confidence, from rule mining with AMIE [21], as probability(r).

10The equation published in [13] incorporates a value called
trust(a.source). Since knowledge graphs are our only source, we simplify
the equation, substituting the appropriate value for trust(a.source), i.e., 1.

' We chose 5 because the datasets used in [13], [41], whose experimental
design we follow, had an average of 3-5 false alternatives per true hypothesis.



TABLE I
A COMPARISON OF THE ACCURACIES OF THE PROPOSED METRICS VERSUS
THE BASELINE METRICS ON APPROPRIATELY SCORING THE TRUE
HYPOTHESIS ABOVE THE FALSE ALTERNATIVE HYPOTHESES IN EACH
HYPOTHESIS GROUP. THE ROW LABEL SPECIFIES THE PROPOSED METRIC,
THE COLUMN LABEL SPECIFIES THE BASELINE METRIC AND THE VALUE
INDICATES THE PERCENTAGE OF 143 HYPOTHESIS GROUPS WHERE THE
ACCURACY OF THE PROPOSED METRIC WAS HIGHER THAN (STRICTLY
HIGHER THAN) THE ACCURACY OF THE BASELINE METRIC.

| ProbLog-score | ExFaKT-score

Confidence | 89.51% (18.18%) | 91.61% (37.06%)
Head Coverage | 84.62% (19.58%) | 89.51% (32.17%)
Fl-score | 90.21% (18.88%) | 92.31% (37.06%)

Section V-A2, the hypothesis h = (eg,p, e1), and maximum
search depth d = 3 as inputs; we derived negative explanations
by using the hypothesis h = (e, not_p, e;) instead.'?

We eliminated any groups for which Algorithm 1 could not
produce an explanation for the true hypothesis and at least one
false alternative hypothesis as the accuracy of these groups
could not be computed; we were left with 143 groups. In
addition, we excluded any false alternatives which had no
explanations from our accuracy computations.

4) Results: We first report our results considering only the
top 5 positive and top 5 negative explanations for each hy-
pothesis, as in [13]. To compare the performance of our three
proposed metrics to the two baseline metrics, we computed
the percentage of the 143 groups where our proposed metrics
achieved accuracy scores higher than and strictly higher than
the baseline metrics, see Table I. We observe that our proposed
metrics achieve accuracy at least as high as the baseline
metrics a vast majority of the time, indicating that the scores
assigned by our metrics to the true hypotheses are at least
as accurate as the scores assigned by the baseline metrics.
Moreover, there is a substantial number of groups where our
proposed metrics strictly outperform the baseline metrics.

Next, we considered the accuracy of each metric while
varying the top k value used when computing scores to
determine how this might impact performance, i.e., we con-
sider more than just the top 5 positive and top 5 negative
explanations. Fig. 2 shows the average accuracy of each metric
for £ € {1,5,10,20,30,40,50}. We first notice that our
proposed metrics achieve significantly higher accuracy than
the baselines metrics in most cases. In fact, head coverage is
the only proposed metric which does not consistently achieve
higher average accuracy than the baselines; ProbLog-score has
higher average accuracy than head coverage for £ > 16.
Additionally, we notice that confidence and Fl-score have
comparable average accuracy for all k values despite the fact
that the Fl-score is intended to offer a good balance between
confidence and head coverage. We conclude that our proposed
metrics, especially confidence and Fl-score, provide more
reliable, accurate scoring no matter how many explanations
are allowed for each hypothesis.

12Maximum search depth 3 allowed us to extract most, if not all, of the
explanations that Neo4j could handle in light of footnote 5.
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Fig. 2. The average accuracy of each metric on 143 hypothesis groups when
scoring each hypothesis according to the top k positive explanations and the
top k negative explanations derived by Algorithm 1. The X-axis indicates k,
the number of explanations included when scoring each hypothesis, and the
Y-axis indicates the average accuracy.

C. Explanation Reasonableness

1) Experimental Design: In this experiment, we aim to
show that our novel explanation format is productive by
showing that the explanations derived by our approach are
both understandable and reasonable according to biomedical
experts. In summary, the biomedical expert analysis indicates
that our derived explanations provide reasonable justification
for drug-disease treatment relationships. This suggests that
our explanation derivation approach is capable of extracting
meaningful knowledge graph patterns that summarize key
relationships and interactions between biomedical entities.

To explore the quality of our explanations, we had a
biomedical expert on our team analyze several explanations
output by Algorithm 1. We sorted all the explanations with
target predicate treats generated in the experiment discussed
in Section V-B according to each of our proposed metrics and
presented the 5 top-scoring explanations for each metric to our
domain expert. We instructed them to consider how reasonable
each explanation pattern is as justification that the hypothesis
(eo, treats,eq) is true, i.e., how well it explains the target
triple (e, treats, e1). They were asked to rate each explanation
pattern according to the following scale: (1) “reasonable,” (2)
“reasonable in some cases” (i.e., depending on other unknown
factors), (3) “neutral,” and (4) “unreasonable.” In addition, we
asked the domain expert to provide a short description of their
reasoning as a qualitative analysis.

We deem any explanation rated (1) or (2) to be accurate
and define the precision of each metric as the proportion of
accurate explanations out of the 5 shown to the domain expert.

2) Results: Table V-C2 shows the precision of each of
our proposed metrics, which indicates the proportion of ex-
planations deemed accurate by our biomedical expert. This
table indicates that each of our proposed metrics is capable of
assigning high scores to explanations which are biomedically
reasonable. In fact, for each metric, no more than one of the
5 top-scoring explanations was deemed inaccurate, and no
explanations were given a rating of (4) “unreasonable.”

We next present a few explanations along with their ratings
according to our biomedical expert and explore the qualitative



TABLE I
THE PRECISION OF EACH METRIC, I.E., THE PROPORTION OF THE 5
TOP-SCORING EXPLANATIONS WHICH WERE DEEMED ACCURATE BY OUR
BIOMEDICAL EXPERT.

Metric ‘ Precision

Confidence 80%
Head Coverage 100%
F1-score 80%

feedback received. Fig. 3 shows three example explanations
for target triple (eq, treats, e1 ), discussed below.

First, the explanation shown in Fig. 3a received a rating
of (1) “reasonable.” Because diseases e; and e, share the
common causative gene e, it is reasonable to deduce that drug
eg, which treats disease ey, would also treat disease e¢;. This
follows from the general understanding that similar diseases
have similar treatments, especially diseases which have similar
mechanistic causes, meaning that similar biological processes
and interactions cause the disease. Thus, this explanation
pattern shows a strong relationship between drug ey and
disease e, based on biological interactions, and is therefore a
reasonable explanation for the hypothesis (e, treats, e1).

Next, the explanation shown in Fig. 3b received a rating
of (2) “reasonable in some cases.” This explanation is very
similar in structure to that of Fig. 3a with the only difference
being the type of relationship that gene e3 has with diseases e;
and es, i.e., geneAssociatedWithCondition instead of causes.
Thus, it also follows from the intuition that similar diseases
have similar treatments. However, this explanation received a
lower rating since the geneAssociatedWithCondition relation-
ship is not as specific as the causes relationship, i.e., it gives
no indication of the type of association. A gene association is
certainly useful for determining whether diseases are similar or
not, but a gene causation is stronger evidence that the diseases
will have similar mechanistic behavior. In other words, since
causation is a stronger, more specific relationship, it is a better
indicator that diseases e; and ey will behave similarly in their
interactions with other entities, in particular, drug eg.

Finally, the explanation shown in Fig. 3c received a rating
of (3) “neutral.” This explanation is weaker than the previous
ones largely due to the fact that the explanation pattern reveals
a much weaker connection between drug ey and disease e;. In
general, patterns with highly specific relationships are able to
reveal more about the actual biological behavior of the entities
involved. Thus, these patterns give a more clear indication
of how the entities will interact. This is not the case for
relationships like affects, which are useful, but ambiguous in
that they give no clarification on the type of affect or how
the affect happens. Thus, while this pattern does identify a
connection between drug ey and disease e, it is not strong
enough or specific enough to explain (eg, treats, e1).

D. Pattern Usefulness

1) Experimental Design: In this experiment, we consider
the potential of using the explanation derivation process as

a means to generate new inference rules which can provide
explanations for hypotheses other than those for which the ex-
planations were originally derived. The explanations produced
by other works cannot be generalized to new hypotheses, as
ours can, so we compare to no baselines in this experiment.
In summary, our results illustrate that, by using knowledge
graph patterns as explanations, we are able to explain many
hypotheses with the same explanation, which highlights that
our explanations need not be derived anew for each hypothesis.
In fact, our results suggest that a relatively small set of preva-
lent explanation patterns are actually capable of explaining
most true hypotheses.

To explore this potential use of explanations, we consider
each explanation derived for the true hypotheses in the ex-
periment discussed in Section V-B to be an inference rule;
in that experiment, we derived 614 unique explanations for
target predicate freats and 579 unique explanations for target
predicate not_treats. For each such explanation E, we calcu-
late the prevalence of F as the proportion of true hypotheses
from the experimental data set of Section V-B whose set of
explanations O output by Algorithm 1 included E.

_[{fieT:EcO}
T

Here, T is the set of true hypotheses from the experimental

data set of Section V-B, and O is the set of explanations output

by Algorithm 1 for input hypothesis f;.

We construct a new rule set R¥ comprised of the top k& most
prevalent explanations for target predicate treats and the top k
most prevalent explanations for target predicate not_treats. We
use a new experimental data set which is distinct from that of
Section V-B, and consists of n true hypotheses, i.e., random
treats triples from ROBOKOP, along with n false hypotheses,
i.e, one for each true triple generated by the negative sampling
process described in V-A1b.!> We, again, remove these triples
from ROBOKOP to avoid trivial explanations and then derive
explanations for each hypothesis via Algorithm 1.

Since our rule set is built based on explanations for true
hypotheses in Section V-B, our goal is to explain as many true
hypotheses as possible while not explaining false hypotheses,
i.e., explanations for true hypotheses should only be applicable
to true hypotheses. Thus, to evaluate the performance, we
compute precision and recall, where precision is defined as the
proportion of hypotheses with at least one explanation which
are true hypotheses, and recall is defined as the proportion of
true hypotheses with at least one explanation.

2) Experimental Details: Our experimental data set con-
sisted of 100 true hypotheses and 100 false hypotheses, and we
conducted this experiment for k € {1,2,3,4,5,6,7,8,9,10}.
For each k, we derived positive explanations for each hypoth-
esis in our experimental data set via Algorithm 1 using the
ROBOKOP sample G detailed in Section V-Al, the rule set
R, hypothesis h = (eg,p, e1), and maximum search depth
d = 1; we derived negative explanations by using hypothesis

prevalence(E) (12)

13 Again, instead of producing not_treats triples via this negative sampling
process, we keep the predicate freats so that the triples will be false.
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Fig. 3. Examples of explanations which received varying ratings according to our biomedical expert. Each edge with label p connecting nodes = and y
represents the triple (z, p, y). For each explanation, the black triples represent the explanation pattern, and the gray, dashed edge represents the target predicate,
which connects the endpoints eg and e;. Based on the analysis of our biomedical expert, the explanations in (a) and (b) are reasonable since they indicate that
diseases ey and e2 are similar, and thus they are likely to have a common treatment, i.e., the drug eg. However, the explanation in (a) is stronger since the
causes relationship between gene e3 and diseases e; and ez is stronger and more specific than the corresponding geneAssociatedWithCondition relationship
in (b). The explanation in (c) is weaker due to the ambiguity of the affects relationship, i.e., there is no qualifier indicating the type of affect. Thus, there is
not enough information to infer a strong relationship between drug ep and disease ej.

h = (eg, not_p, e1) instead. We chose d = 1 since this ensures
that each explanation is derived from a single rewriting of
the input hypothesis by one of the input rules, i.e., each
explanation is just one of the input rules. Thus, we can analyze
the extent to which our previously derived explanations can
directly serve as explanations for new hypotheses.

3) Results: Fig. 4 shows the precision and recall of this
experiment when varying k£ from 1 to 10, where the top k
most prevalent explanations for treats and for not_treats were
used as the input rule set for Algorithm 1. We notice first that
the precision is above 90% for all k£ values. This indicates
that these rules are especially reliable at explaining only true
hypotheses and not false hypotheses. Next, we notice that only
6 rules are required to achieve a recall of 50%. In other words,
our rules are able to explain over half of the true hypotheses
despite the fact that these are not the hypotheses for which
they were originally derived. Therefore, the explanations we
derived and used as rules must occur frequently amongst treats
triples, and only a small set of them may be required to
explain most true hypotheses. Overall, this reveals that the
explanations are not too specific to the original hypotheses for
which they were derived; they are still valuable and applicable
in new settings for new hypotheses. Moreover, these explana-
tions are capable of explaining many true hypotheses while
explaining only very few false hypotheses. Thus, we propose
our explanation derivation approach as a potentially useful way
to mine new, prevalent inference rules on knowledge graphs.

4) Limitations: In an effort to understand why our rules
are not able to explain more true hypotheses, we analyze
the density of ROBOKOP and observe that it is certainly not
uniform; some areas are very dense while others are sparse. In
particular, we note that sparse areas of the knowledge graph are
much more difficult for tasks such as explanation derivation
simply due to the lack of available data. We consider node
degree to be a proxy for density and, for each true hypothesis
in our experimental data set, we compute the minimum pair
node degree, i.e., the minimum degree of its subject and
object. We then classify each true hypothesis as (1) recovered:
at least one explanation was found, or (2) unrecovered: no
explanations were found. For this classification we consider
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Fig. 4. The precision and recall achieved when explaining 100 new true
hypotheses and 100 new false hypotheses by treating the top k most preva-
lent explanations, derived in the experiment of Section V-B, as the set of
inference rules input to Algorithm 1. Precision indicates the proportion of
explained hypotheses which are true, and recall indicates the proportion of
true hypotheses which were explained. The X-axis indicates k, the number of
explanations used as rules; the Y-axis indicates the percent recall and percent
precision.

the case k& = 10, i.e.,, the 10 most prevalent explanations
for treats and for not_treats comprised the rule set input to
Algorithm 1. We present Fig. 5, which shows a boxplot of the
distribution of the minimum pair node degrees for each of the
two sets.'* We notice that both the spread and center of the
two sets are very different, and, in particular, the minimum
pair node degrees of covered hypotheses tend to be much
higher than those of the uncovered hypotheses. This indicates
that many of the uncovered hypotheses come from sparse
sections of the knowledge graph, and, thus, it is significantly
more difficult to find explanations for these hypotheses. To
further confirm this analysis, we have conducted a Welch’s
t-test [42] between the two groups resulting in a p-value of
0.00001, which is significantly less than the standard cutoff
of 0.05. This confirms that the node degrees are statistically
significantly different between the two groups. Overall, this
evidence suggests that graph sparsity is a key reason why many
true hypotheses were unrecovered.

4We have omitted outliers from Fig. 5 to ensure that the boxplots are
readable.
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Fig. 5. A comparison of the distributions of the minimum pair node degree
of recovered versus unrecovered hypotheses. Recovered hypotheses are those
for which at least one explanation was found, and unrecovered hypotheses
are those for which no explanations were found, when using the top 10 most
prevalent explanations for treats and for not_treats as the rule set input to
Algorithm 1. The X-axis indicates the minimum pair node degree; the Y-axis
indicates the group (recovered or unrecovered).

E. Discussion

We now summarize the key takeaways of our experimental
results. We saw that not only are our proposed explanation
evaluation metrics capable of achieving higher accuracy than
existing metrics, see Section V-B, but they are also capable
of identifying strong, biomedically reasonable explanations,
see Section V-C. Therefore, we conclude that our metrics are
more reliable overall than existing metrics and we propose
them as potential universal metrics to fill the gap identified in
[43]. Moreover, in Section V-C, we also saw that explanations
in the form of knowledge graph patterns, and, in particular,
those explanations derived by Algorithm 1 in our experiments,
are both understandable and reasonable to biomedical experts.
Finally, in Section V-D, we saw that our explanation derivation
process is capable of producing valuable explanations which
can serve as useful inference rules for future explanation
tasks. Thus, treating explanations as knowledge graph patterns
means that they need not be derived anew for each hypothesis;
time can be saved by simply applying previous, reliable
explanations to new hypotheses.

VI. CONCLUSION AND FUTURE WORK

In this work, we present drug discovery as an impactful
application of the explainable fact-checking problem and de-
sign an approach suitable for the biomedical domain. To this
end, we present a novel view of explanations as knowledge
graph patterns, which enables us to consider a new strat-
egy for explanation evaluation that incorporates the existing
data as evidence. Our proposed explanations and metrics are
understandable and, thus, useful for biomedical experts. For
our application to drug discovery and potentially other tasks,
our experimental results indicate that our proposed metrics
are accurate and can reliably identify strong explanations.
Moreover, they indicate that our derived explanations are
reasonable to domain experts and useful for explaining hy-
potheses beyond those for which they were derived; thus, time
deriving these explanations can be saved for future hypotheses.
Overall, the success of our experiments suggests that our
proposed explanation derivation and evaluation is a viable
approach for drug candidate identification for drug discovery,
and potentially other tasks.

We identify the following extensions as possible future
work. Performing a similar analysis with other relationship
types would enable us to identify other useful connections
between drugs, genes, diseases, etc., as well as provide a way
to analyze the difference in explainability between different
relationship types. Comparing directly with other explanation
formats would provide more evidence that our knowledge
graph patterns are a productive, useful view of explanations.
Additionally, our next step is to directly incorporate entity
types into our explanations as biomedical experts have in-
dicated that this will improve the quality and reliability.
Moreover, we plan to develop metrics which further refine
those proposed in this work in an effort to incorporate the
specific entities involved in each pattern, e.g., incorporation
of triple weights and node promiscuity.
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