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Abstract. Real-world data is never perfect and can often suffer from corruptions
(noise) that may impact interpretations of the data, models created from the data and

decisions made based on the data. Noise can reduce system performance in terms of
classification accuracy, time in building a classifier and the size of the classifier.
Accordingly, most existing learning algorithms have integrated various approaches to

enhance their learning abilities from noisy environments, but the existence of noise
can still introduce serious negative impacts. A more reasonable solution might be to
employ some preprocessing mechanisms to handle noisy instances before a learner is

formed. Unfortunately, rare research has been conducted to systematically explore the
impact of noise, especially from the noise handling point of view. This has made
various noise processing techniques less significant, specifically when dealing with
noise that is introduced in attributes. In this paper, we present a systematic evaluation

on the effect of noise in machine learning. Instead of taking any unified theory of
noise to evaluate the noise impacts, we differentiate noise into two categories: class
noise and attribute noise, and analyze their impacts on the system performance

separately. Because class noise has been widely addressed in existing research efforts,
we concentrate on attribute noise. We investigate the relationship between attribute
noise and classification accuracy, the impact of noise at different attributes, and

possible solutions in handling attribute noise. Our conclusions can be used to guide
interested readers to enhance data quality by designing various noise handling
mechanisms.
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1. Introduction

The goal of inductive learning algorithms is to form generalizations
from a set of training instances such that the classification accuracy on
previously unobserved instances is maximized. This maximum accuracy
is usually determined by two most important factors: (1) the quality of
the training data; and (2) the inductive bias of the learning algorithm.
Given a specific learning algorithm, it’s obvious that its classification
accuracy depends vitally on the quality of the training data. Basically,
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the quality of a large real-world dataset depends on a number of issues
(Wang et al. 1995, 1996), but the source of the data is the crucial factor.
Data entry and acquisition is inherently prone to errors. Many efforts
can be put on this front-end process, with respect to reduction in entry
errors. However, errors in a large dataset are common and severe, and
unless an organization takes extreme measures in an effort to avoid data
errors, the field error rates are typically around 5% or more (Wu 1995;
Orr 1998; Maletic and Marcus 2000).

The problem of learning in noisy environments has been the focus of
much attention in machine learning and most inductive learning algo-
rithms have a mechanism for handling noise. For example, pruning in
decision trees is designed to reduce the chance that the trees are over-
fitting to noise in the training data (Quinlan 1983, 1986a, b). Schaffer
(1992, 1993) has made significant efforts to address the impacts of sparse
data and class noise for overfitting avoidance in decision tree induction.
However, since the classifiers learned from noisy data have less accu-
racy, the pruning may have very limited effect in enhancing the system
performance, especially in the situation that the noise level is relatively
high. As suggested by Gamberger et al. (2000), handling noise from the
data before hypothesis formation has the advantage that noisy examples
do not influence hypothesis construction. Accordingly, for existing
datasets, a logical solution to enhance their quality is to attempt to
cleanse the data in some way. That is, explore the dataset for possible
problems and endeavor to correct the errors. For a real world dataset,
doing this task ‘by hand’ is completely out of the question given the
amount of person hours involved. Some organizations spend millions of
dollars per year to detect data errors (Redman 1996). A manual process
of data cleansing is also laborious, time consuming, and prone to errors.
Useful and powerful tools that automate or greatly assist in the data
cleansing process are necessary and may be the only practical and cost
effective way to achieve a reasonable quality level in an existing dataset.

There have been many approaches for data preprocessing (Wang
et al. 1995, 1996; Redman 1996, 1998; Maletic 2000) and noise handling
(Little and Rubin 1987; John 1995; Zhao 1995; Brodley and Friedl 1999;
Gamberger et al. 1999, 2000; Teng 1999; Allison 2002; Batista and
Monard 2003; Kubica and Moore 2003; Zhu et al. 2003a, 2004) to
enhance the data quality. Among them, the enhancement could be
achieved by adopting some data cleansing procedures, such as elimi-
nating noisy instances, predicting unknown (or missing) attribute val-
ues, or correcting noisy values. These methods are efficient in their own
scenarios, but some important issues are still open, especially when we
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try to view noise in a systematic way and attempt to design generic noise
handling approaches. Actually, existing mechanisms seem to be devel-
oped without a thorough understanding of noise. To design a good data
quality enhancement tool, we believe the following questions should be
answered in advance to avoid developing a ‘blind’ approach, which
cannot guarantee its performance all the time.
1. What’s noise in machine learning? What’s the inherent relationship

between noise and data quality?
2. What are the features of noise, and what’s their impact with the

system performance?
3. What’s a general solution in handling noise (especially attribute

noise)? Why does it work?
In this paper, we provide a systematic evaluation of the impacts of

noise. The rest of the paper is organized as follows. In the next section,
we will explain what’s noise in machine learning and analyze the rela-
tionship between data quality and noise. The design of our experiments
and benchmark datasets are introduced in Section 3. We analyze the
impacts of class noise and various class noise handling techniques in
Section 4. In Section 5, the effects of attribute noise are evaluated and
reported, followed by a systematic analysis in handling attribute noise.
Conclusion and remarks are given in Section 7.

2. Data Quality and Noise

The quality of a dataset can usually be characterized by two informa-
tion sources: (1) attributes, and (2) class labels. The quality of the
attributes indicates how well the attributes characterize instances for
classification purpose; and the quality of the class labels represents
whether the class of each instances is correctly assigned. When
performing classification, we usually select a set of attributes to char-
acterize the target concept (class labels) with the following two
assumptions:
(1) Correlations between attributes and the class. The attributes are

assumed to be (somewhat) correlated to the class. But being cor-
related does not necessarily mean that they have the same corre-
lation levels. It is obvious that some attributes have stronger
correlations with the class than others, and in such scenarios, those
attributes act more importantly in classification.
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(2) Weak interactions among attributes. The attributes are assumed to
have weak interactions (Freitas 2001) with each other, so the
learning algorithms likely ignore these interactions and consider
each attribute independently to induce the classifier. This
assumption becomes an extreme for Naı̈ve Bayes (NB) classifier
(Langley et al. 1992) where all attributes are assumed to be inde-
pendent or conditionally independent (i.e., no interaction at all).
For many other greedy induction algorithms, e.g., ID3 (Quinlan
1986a) and CN2 (Clark and Niblett 1989), weak interactions
among attributes are actually implicitly adopted, because they
usually evaluate one attribute at each time in constructing the
classifier and tend to ignore the attribute interactions. Many re-
search efforts have indicated that even though the interactions
among attributes extensively exist, the results from these classifiers
are surprisingly good, e.g., NB (Domingos and Pazzani 1996) and
C4.5 (Quinlan 1993) likely have good performance with normal
datasets. However, the existence of attribute interactions actually
brings trouble for many classifiers, as shown in Table 1, where a
pedagogical example of a logic XOR (eXclusive OR) function is
used to demonstrate the impacts of the attribute interactions. It’s
obvious that many greedy algorithms (e.g., ID3) are likely to be
fooled by the interaction between attributes A and B, if they
consider only one attribute once a time.

Unfortunately, real-world data does not always comply with the
above two assumptions. Given a dataset, it either contains some attri-
butes that have very little correlation with the class, or there may exist
strong interactions among attributes. In either case, greedy algorithms’
performance decreases. In the worst case, neither of the above
assumptions holds.

Accordingly, the quality of a dataset is determined by two, external
and internal, factors: the internal factor indicates whether attributes and

Table 1. Attribute interaction in a logic XOR function

Attribute A Attribute B Class

True True 0

True False 1

False True 1

False False 0
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the class are well selected and defined to characterize the underlying
theory, and the external factor indicates errors introduced into attributes
and the class labels (systematically or artificially). In Hickey (1996), both
internal and external factors are used to characterize noisy instances,
where noise is anything that obscures the relationship between the
attributes and class. Under this scenario, three types of major physical
sources of noise are defined: (1) insufficiency of the description for
attributes or the class (or both); (2) corruption of attribute values in the
training examples; and (3) erroneous classification of training examples.
However, for real-world datasets, it is difficult to quantitatively char-
acterize the sufficiency of the description for attributes and the class,
therefore, our definition with noise considers only the last two physical
sources. More specifically, when an instance becomes problematic in
terms of a benchmark theory, due to the incorrectness of attributes or the
class, we indicate that the instance contains noise. A similar definition
has been used in Quinlan (1986) where non-systematic errors in either
attribute values or class information are referred to as noise.

Based on the above observations, the physical sources of noise in
machine learning and data mining can be distinguished into two cat-
egories (Wu 1995): (a) attribute noise; and (b) class noise. The former
is represented by errors that are introduced to attribute values.
Examples of those external errors include (1) erroneous attribute
values, (2) missing or don’t know attribute values, (3) incomplete
attributes or don’t care values. There are two possible sources for class
noise:
(1) Contradictory examples. The same examples appear more than

once and are labeled with different classifications.
(2) Misclassifications. Instances are labeled with wrong classes. This

type of errors is common in situations that different classes have
similar symptoms.

Many research efforts have been made to deal with class noise (John
1995; Zhao 1995; Brodley and Friedl 1999; Gamberger et al. 1999;
Gamberger et al. 2000; Zhu et al. 2003a), and have suggested that in
many situations, eliminating instances that contain class noise will im-
prove the classification accuracy. However, handling attribute noise is
more difficult (Teng 1999; Zhu et al. 2004). Quinlan (1986a) concluded
that, ‘For higher noise levels, the performance of the correct decision tree
on corrupted data was found to be inferior to that of an imperfect
decision tree formed from data corrupted to a similar level! The moral
seems to be that it is counter-productive to eliminate noise from the
attribute information in the training set if these same attributes will be
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subject to high noise levels when the induced decision tree is put to use’.
From this conclusion, eliminating instances which contain attribute
noise is not a good idea, because many other attributes of the instance
may still contain valuable information. Accordingly, research on han-
dling attribute noise has not made much progress, except some efforts on
handling missing (or unknown) attribute values (Little and Rubin 1987;
Allison 2002; Batista and Monard 2003), which were popularized by
Cohen and Cohen (1983). Some extensive comparative studies related to
missing attribute-value processing can be found in Quinlan (1989),
Bruha and Franek (1996), Bruha (2002) and Batista andMonard (2003).

An interesting fact from real-world data is that the class information
is usually much cleaner than what we thought; and it is the attributes
that usually need to be cleaned. Take a medical dataset as an example.
The doctors would likely put more attention and more care on the class
label for the following reasons:
(1) In comparison with the unique class label, a dataset usually has

more attributes, some of which can be of little use.
(2) For some attributes, their values are simply not available in many

situations. For example, when we identify genes with similar cel-
lular functions, it’s usual that in a single experiment only a small
portion of proteins have reactions. For proteins having no reac-
tion, their attribute values become unavailable.

The above analysis likely indicates something embarrassing: we paid
much attention on class noise that has already been emphasized; on the
other hand, we generously ignored attribute noise brought by original
carelessness. Are attributes less important than class labels, so we can
ignore noise introduced to them? This paper will view attribute noise
from different perspectives. We will demonstrate that in terms of data
quality and classification accuracy, both attributes and class are
important. By an extensive evaluation of their impacts, we can have a
clear guidance in designing more efficient noise-handling mechanisms,
especially for attribute noise that is introduced by erroneous attribute
values. Instead of taking any unified theory of noise to evaluate the
noise impacts, like Hickey (1996) did, we differentiate noise into two
categories: class noise and attribute noise (based on the physical sources
of noise), and analyze their impacts on the system performance sepa-
rately, because for real-world datasets it is actually difficult (if not
impossible) to work out a unified theory of noise (which combines er-
rors in attributes and the class). In the following sections, we will sys-
tematically analyze the effects of noise handling for efficient learning.
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We focus on attributes noise, because little research has been conducted
in this regard.

3. Experiment Settings and Benchmark Datasets

The results presented in this paper are based on 17 datasets of which 16
were collected from the UCI repository (Blake and Merz 1998) and 1
from the IBM synthetic data generator (IBM Synthetic Data), as shown
in Table 2. Numerous experiments were run on these datasets to assess
the impact of the existence of noise on learning, especially on classifi-
cation accuracy. The majority of experiments use C4.5, a program for
inducing decision trees (Quinlan 1993).

For most of the datasets we used, they don’t actually contain noise,
so we use manual mechanisms to add both class noise and attribute
noise. For class noise, we adopt a pairwise scheme (Zhu et al. 2003a):
given a pair of classes (X, Y) and a noise level x, an instance with its
label X has an x � 100% chance to be corrupted and mislabeled as Y, so

Table 2. Benchmark datasets for our experiments

Dataset Instances Number of

nominal

attributes

Number of

numerical

attributes

Attribute

number

Class number

Adult 48842 8 6 14 2

Car 1728 6 0 6 4

CMC 1473 7 2 9 3

Connect-4 67557 42 0 42 3

Credit-app 690 9 6 15 2

IBM 9000 3 6 9 4

Krvskp 3196 36 0 36 2

LED24 1000 24 0 24 10

Monk3 432 6 0 6 2

Mushroom 8124 22 0 22 2

Nursery 12960 8 0 8 5

Sick 3772 22 7 29 2

Splice 3190 60 0 60 3

Tictactoe 958 9 0 9 2

Vote 435 16 0 16 2

WDBC 569 0 30 30 2

Wine 178 13 0 13 3
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does an instance of class Y. We use this method because in realistic
situations, only certain types of classes are likely to be mislabeled.
Meanwhile, with this scheme, the percentage of the entire training set
that is corrupted will be less than x � 100%, because only some pairs of
classes are considered problematic. In the sections below, we corrupt
only one pair of classes (usually the pair of classes with the highest
proportions of instances). Meanwhile, we only report the value x of
class noise (which is not the actual class noise level in the dataset) in all
tables and figures below.

For attribute noise, the error values are introduced into each attri-
bute with a level x � 100% (Zhu et al. 2004). This is consistent with the
assumptions in Section 2, where the interactions among attributes are
assumed to be weak. Consequently, the noise introduced into one
attribute usually has not much correlation with noise from other attri-
butes. To corrupt each attribute (e.g., Ai) with a noise level x � 100%,
the value of Ai is assigned a random value approximately x � 100% of
the time, with each possible value being approximately equally likely to
be selected. For a numerical attribute, we select a random value that is
between the maximal and the minimal. With this scheme, the actual
percentage of noise is always lower than the theoretical noise level, as
sometimes the random assignment would pick the original value
(especially for nominal attributes). Note that, however, even if we ex-
clude the original value from the random assignment, the extent of the
effect of noise is still not uniform across all components. Rather, it is
dependent on the number of possible values in the attribute or class. As
the noise is evenly distributed among all values, this would have a
smaller effect on attributes with a larger number of possible values than
those attributes that have only two possible values (Teng 1999).

The above mechanism implies that we only deal with completely ran-
dom attribute noise (Howell 2002), which means the probability that an
attribute (Ai) has noise is unrelated to any other attribute. For example, if
Whites were more likely to omit reporting income than African Ameri-
cans, we would not have attribute noise that were completely random
because noise with ‘income’ would be correlated with ‘ethnicity’. If noise
among attributes is introduced with correlations, the situation becomes
more complicated, and this is beyond the coverage of this manuscript.

4. Impact of Class Noise

To evaluate the impact of class noise, we have executed our experiments
on the above benchmark datasets, where various levels of class noise
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(and no attribute noise) are added. We then adopt various learning
algorithms to learn from these noisy datasets and evaluate the impact of
class noise on them. We demonstrate one set of representative results in
Figure 1 (from the car dataset), where the x-axis indicates the class noise
level, and the y-axis represents the classification accuracy from different
types of classifiers trained from the noise corrupted and manually
cleaned training set respectively (evaluated with the same test set). As we
can see from Figure 1, when the noise level increases, all classifiers
trained from the noise corrupted training set suffer from decreasing the
classification accuracy dramatically, where the classification accuracies
decline almost linearly with the increase of the noise level. We have used
five classification algorithms, C4.5 (Quinlan 1993), C4.5 rules (Quinlan
1993), HCV (Wu 1995), 1R (Holte 1993) and Prism (Cendrowska 1987)
in our experiments. On the other hand, the classifiers from the manually
cleaned training set (in which instances containing class noise are
removed) will have their classification accuracies improved compre-
hensively. We have executed the same experiments on all other datasets
and found that the above conclusion holds for almost all datasets – the
existence of class noise will decrease classification accuracy, and
removing those noisy instances will improve the classification accuracy.
In other words, cleaning the training data will result in a higher pre-
dictive accuracy with learned classifiers. Even though the use of pruning
and learning ensembles of many existing learning algorithms partially
addresses the impact of class noise, class noise can still drastically affect
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Figure 1. Classification accuracy of various classifiers trained from noise corrupted and
manually cleaned training sets, where ‘K Noise’ indicates the classifier ‘K’ is trained

from a noise corrupted training set and ‘K Clean’ represents the classifier ‘K’ trained
from a cleaned training set. All results are evaluated from the test dataset (Car dataset
from the UCI data repository).
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the classification accuracy, as long as the noise exists in the training
set. In addition to the classification accuracy, the research from
Brodley and Friedl (1999) and Zhu et al. (2003a) suggested that class
noise handling could shrink the size of the decision tree and save the
time in training a classifier comprehensively. Therefore, many research
efforts have been conducted in handling class noise for effective
learning, where one of the most important questions is how to figure
out the noisy instances.

To distinguish ‘noisy’ instances from normal cases, various strategies
have been designed. Among them, the most general techniques are
motivated by the intention of removing outliers in regression analysis
(Weisberg, 1980). An outlier is a case that does not follow the same
model as the rest of the data and appears as though it comes from a
different probability distribution. As such, an outlier does not only in-
clude erroneous data but also surprisingly correct data. In John (1995),
a robust decision tree was presented, and it took the idea of pruning one
step further: training examples that are misclassified by the pruned tree,
are also globally uninformative. Therefore, after pruning a decision tree,
the misclassified training examples should be removed from the training
set and the tree needs to be rebuilt using this reduced set. This process is
repeated until no more training examples are removed. With this
method, the exceptions to the general rules are likely to be removed
without any hesitation; hence, this scheme runs a high risk of removing
both exceptions and noise.

Instead of employing outlier filtering schemes, some researchers be-
lieve that noise can be characterized by various measures. Guyon et al.
(1996) provided an approach that uses an information criterion to
measure an instance’s typicality; and atypical instances are then pre-
sented to a human expert to determine whether they are mislabeled
errors or exceptions. However, they noted that because their method is
an on-line method it suffers from ordering effects. Oka and Yoshida
(1993, 1996) designed a method that learns generalizations and excep-
tions separately by maintaining a record of the correctly and incorrectly
classified inputs in the influence region of each stored example. The
mechanism for distinguishing noise from exceptions is based on a user-
specified parameter, which is used to ensure that each stored example’s
classification rate is sufficiently high. Unfortunately, as concluded in
Brodley and Friedl (1999), this approach has only been tested on arti-
ficial datasets. The method in Srinivasan et al. (1992) uses an infor-
mation theoretic approach to detect exceptions from noise during the
construction of a logical theory. Their motivation is that there is no
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mechanism by which a non-monotonic learning strategy can reliably
distinguish true exceptions from noise. The noise detection algorithm of
Gamberger et al. (2000) is based on the observation that the elimination
of noisy examples, in contrast to the elimination of examples for which
the target theory is correct, reduces the CLCH value of the training set
(CLCH stands for the Complexity of the Least Complex correct
Hypothesis). They call their noise detection algorithm a Saturation
Filter since it employs the CLCH measure to test whether the training
set is saturated, i.e., whether, given a selected hypothesis language, the
dataset contains a sufficient number of examples to induce a stable and
reliable target theory.

In Brodley and Friedl (1996, 1999), general noise elimination ap-
proaches are simplified as a filtering model, where noise classifiers
learned from corrupted datasets are used to filter and clean noisy in-
stances, and the classifiers learned from cleaned datasets are used for
data classification. Based on this filtering model, they proposed a noise
identification approach where noise is characterized as the instances that
are incorrectly classified by a set of trained classifiers. A combination of
the saturation filter (Gamberger et al. 2000) and the filtering operation
(Brodley and Friedl 1996) was reported in Gamberger et al. (1999),
and a Classification Filter (CF) scheme was suggested for noise identi-
fication.

To handle class noise from large, distributed datasets, a Partitioning
Filter (PF) was reported in Zhu et al. (2003a), where noise classifiers
learned from small subsets are integrated together to identify noisy in-
stances. As concluded from the comparative studies (Zhu et al. 2003b)
and demonstrated in Tables 3–5, where OG indicates the classification
accuracy of the classifier learned from the original noisy training set
(without any noise elimination), CF represents the accuracy from the
Classification Filter, and PF denotes the results from the Partitioning
Filter, PF exhibits a better performance than CF in higher noise-level
environments. In addition to the classification accuracy, PF also
achieves comprehensive time efficiency in comparison with CF, as
shown in Table 6.

5. Impact of Attribute Noise

For attribute noise, the situations are much more complicated than class
noise. In Quinlan (1983, 1986a, b), extensive experiments were executed
to evaluate the problem of learning from noisy environments. It was
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suggested that ‘for higher noise levels, the performance of a correct
decision tree on corrupted test data was found to be inferior to that
of an imperfect decision tree formed from data corrupted to a simi-

Table 3. Experimental comparison between Classification Filter and Partitioning Filter
on classification accuracy (Krvskp, Car, Nursery and WDBC)

Noise

(%)

Krvskp (%) Car (%) Nursery (%) WDBC (%)

OG CF PF OG CF PF OG CF PF OG CF PF

5 96.6 98.5 97.9 91.5 91.8 91.3 95.8 96.9 96.2 92.6 92.2 93.9

15 88.1 97.5 96.3 82.7 88.7 88.6 90.4 96.5 94.3 90.6 91.5 92.4

25 76.7 96.4 95.2 76.8 83.8 86.4 83.5 94.9 93.3 88.3 90.1 91.1

35 68.3 93.1 93.6 67.5 78.1 82.7 77.5 90.4 92.7 82.7 84.7 84.9

40 60.7 83.1 84.8 61.8 69.7 81.8 72.7 83.1 92.3 78.6 79.2 79.7

Table 4. Experimental comparison between Classification Filter and Partitioning Filter
on classification accuracy (Splice, Credit-app, Connect-4 and Tic-tac-toe)

Noise

(%)

Splice (%) Credit-app (%) Connect-4 (%) Tic-tac-toe (%)

OG CF PF OG CF PF OG CF PF OG CF PF

5 89.1 92.6 91.8 81.9 85.3 85.6 73.2 75.8 75.7 83.5 83.9 83.8

15 85.6 92.1 91.4 73.7 84.6 86.7 68.2 74.7 75.1 76.3 79.2 78.8

25 82.1 91.2 89.7 66.7 83.4 85.2 61.6 71.8 72.5 69.1 72.5 73.4

35 77.6 89.1 86.4 61.5 80.5 83.9 55.8 68.8 69.7 61.8 62.6 64.7

40 75.5 87.4 80.9 58.2 79.1 81.4 51.6 66.5 67.9 57.8 61.1 62.7

Table 5. Experimental comparison between Classification Filter and Partitioning Filter
on classification accuracy (Monks-3, IBM-Synthetic, Sick and CMC)

Noise

(%)

Monks-3 (%) IBM-Synthetic
(%)

Sick (%) CMC (%)

OG CF PF OG CF PF OG CF PF OG CF PF

5 96.8 99.2 97.3 88.5 92.7 91.8 97.0 98.1 98.1 49.2 52.2 53.5

15 89.2 98.0 96.9 83.6 91.4 90.9 93.2 97.6 97.9 48.8 52.5 52.8

25 82.7 91.9 90.8 76.4 89.2 90.3 91.4 96.3 95.8 44.9 49.3 49.7

35 67.3 79.2 80.1 63.7 83.6 80.2 83.7 95.5 94.7 42.8 47.1 47.8

40 63.1 71.4 67.5 53.1 63.7 66.3 77.5 88.6 86.9 43.3 46.0 47.6
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lar level! The moral seems to be that it is counter-productive to
eliminate noise from the attribute information in the training set if
these same attributes will be subject to high noise levels when the in-
duced decision tree is put to use’. Intuitively, it seems that this concludes
that instead of bringing more benefits, more troubles would be intro-
duced if we attempt to handle attribute noise. Nevertheless, these
evaluations focused more on learning with the existence of noise, rather
than from the noise handling point of view, meanwhile many issues
about attribute noise remain unclear, and deserve a comprehensive
evaluation.

5.1. Effects of attribute noise with classification accuracy

Our first set of experiments is executed by using a set of cross-evalua-
tions, as shown in Figure 2. Given a dataset D, we first split it into a
training set X, and a test set Y (using a cross-validation mechanism). We
train a classifier C from X, use C to classify instances in Y, and denote
the classification accuracy by CvsC (i.e., Clean training set vs. Clean test
set). We then manually corrupt each attribute with a noise x � 100% and
construct a noisy training set X 0 (from X ). We learn classifier C 0 from
X 0, use C 0 to classify instances in Y and denote the classification
accuracy by DvsC (i.e., Dirty training set vs. Clean test set). In addition,
we also add the corresponding levels (x � 100%) of attribute noise into
test set Y to produce a dirty test set Y 0, and use classifiers C and C 0 to
classify instances in Y 0. We denote the classification accuracies by CvsD
and DvsD respectively (i.e., Clean training set vs. Dirty test set, Dirty
training set vs. Dirty test set). For each dataset, we execute 10-fold cross
validation 10 times, and use the average accuracy as the final result, as
demonstrated in Figure 3, on 16 datasets.

Table 6. Execution time comparison between Classification Filter and Partitioning
Filter (Mushroom dataset)

Methods Execution time at different noise levels (seconds)

0% 10% 20% 30% 40%

CF 18.2 159.3 468.6 868.4 1171.2

PF 5.3 12.8 19.8 22.8 29.6
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From the experimental results in Figure 3, we can draw several
conclusions as follows:
1. The highest classification accuracy (when evaluating at different

noise levels) is always from the classifier trained from the clean
training set in classifying a clean test set, i.e.,CvsC, which implies that
the existence of attribute noise does bring some troubles in term of
classification accuracy, even though we still do not know how attri-
bute noise behaves with different learning algorithms and datasets.
As we can see from Figure 3, when the noise level goes higher, the
decreasing of classification accuracy (CvsD, DvsC or DvsD) can be
observed from all 16 benchmark datasets, no matter whether attri-
bute noise is introduced to the training set or test set, or both.

2. The lowest classification accuracy (when evaluating at different
noise levels) usually comes from the classifier trained from the
corrupted training set in classifying a corrupted test set (DvsD). This
implies that in a noisy environment, adopting some attribute noise
handling mechanisms will likely enhance the classification accuracy,
in comparison with unprocessed noisy datasets.

3. If the test set does not contain any attribute noise, adopting cleaning
attribute noise on the training set can always improve the classifi-
cation accuracy remarkably. Comparing curves CvsC and DvsC in
Figure 3, we can find that at all noise levels, the value of CvsC is
always higher (or much higher) than the corresponding value of
DvsC. Actually, this assumption has been implicitly taken by Teng
(1999) in her noise polishing approach. However, for real-word
datasets, this assumption can be too strong, and the fact is we never
know whether a test set is clean or not. Therefore, a more realistic
assumption is that attribute noise may exist in the test set too.

4. In the case that attribute noise exists in the test set, if we can handle
(correct) attribute noise in the test set, the classification accuracy can

Clean 
Training Set X 

Clean  
Test Set Y 

Corrupted 
Training Set X' ' 

Corrupted 
Test Set Y  

CvsC 

DvsD 

CvsD

DvsC  

Figure 2. Cross-evaluations in exploring the effects of attribute noise with classification

accuracy.

XINGQUAN ZHU AND XINDONG WU190



also be improved comprehensively, even if the classifier is trained
from a noise corrupted training set. Comparing curves DvsC and
DvsD in Figure 3, one can find that even though the training set
remains unchanged, cleaning attribute noise from the test set can
always improve the classification accuracy. The reason is that al-
though the training set is corrupted, we can still learn a partially
correct theory. When applying this theory on corrected test instances,
we can still get good results, in comparison with applying this theory
on corrupted test instances. However, handling noise in test instances
seems odd and does not make much sense in many situations, be-
cause learning algorithm cannot simply modify the user’s input to fit
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Figure 3. Experimental results of cross-evaluations in exploring the effects of attribute
noise with classification accuracy: x-axis denotes the attribute noise level and y-axis
represents the classification accuracy, each curve means the result from one method-
ology (as introduced in Figure 2).

CLASS NOISE VS. ATTRIBUTE NOISE 191



it with its own model, even if this model has a 100% accuracy. In the
next subsection, we will discuss that noise handling in a test set can
act as a data recommendation tool to enhance the data quality.
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5. If we accept the restriction that the system can do nothing with
the noise in the test set, cleaning noise from the training set will
still have a reasonable chance to enhance the classification accu-
racy. Comparing curves CvsD and DvsD in Figure 3, with all
16 benchmark datasets, cleaning attribute noise from the training
set has increased the classification accuracy for 12 datasets. For
the other four datasets (Adult, WDBC, Mushroom, and
Vote), adopting data cleaning on the training set will cause more
troubles.
The above conclusions suggest that noise handling from the training

set may provide a good solution in enhancing the classification accu-
racy. Instead of eliminating instances that contain attribute noise, cor-
recting attribute noise seems more promising.

5.2. Experimental evaluations from partially cleaned noisy datasets

Experiments in Section 5.1 assume that we can identify and correct
attribute noise from the training (or test) sets with 100% accuracy. Even
though the results suggest that noise correction could benefit classifi-
cation accuracy remarkably, the above assumption is simply too strong,
because in many situations, we obviously cannot identify and correct all
noisy instances. Accordingly, we execute another set of experiments,
where we add the same level (x � 100%) of noise into both training and
test sets, but we assume that we can only identify and clean a certain
portion (b � 100%), b ¼ ½0:2; 0:8�, of attribute noise. As shown in Figure
4, the corresponding classification accuracies are denoted by PvsP,
PvsD, DvsP, and DvsD respectively. The experimental results are re-
ported in Figures 5–9, which are evaluated from 5 representative
datasets.

In Figures 5–9, we set attribute noise (x � 100%) in original datasets
(training and test sets) to two levels: x ¼ 0:25 and x ¼ 0:4, and ran-
domly correct b � 100% of the attribute noise, b ¼ ½0:2; 0:8�. We then
evaluate the relationship between noise cleaning and the classification
accuracy. In all figures from 5 to 9, (a) and (b) represent the results from
the datasets corrupted with 25 and 40% attribute noise respectively. (We
have performed experiments with other noise levels, and they basically
support all conclusions below). From the results in Figures 5–9, an
obvious conclusion is that even partially correcting attribute noise can
benefit the classification accuracy.
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As shown in Figure 5(a) (Monks-3 dataset), when 25% attribute
noise is added to both training and test sets, the classification accuracy
from DvsD (datasets without any noise handling mechanism) is 79.34%.
If we can clean 20% of the attribute noise from the training set (keeping
the test set as it was), the classification accuracy (PvsD) increases to
81.27%. Moreover, in addition to cleaning from the training set, if we
can clean 20% of attribute noise from the test set, the accuracy (PvsP)
increases to 83.39%. When the percentage of cleaned noise goes higher
and higher, more and more improvement could be achieved.

We also provide the results from an exceptional dataset – Vote,
where handling attribute noise from the training set (only) likely de-
creases the classification accuracy. As shown in Figure 9, one can find
that in the same way as we have concluded from the same dataset in
Section 5.1, if we correct attribute noise from the training set only, it
likely decreases classification performance. However, among all 16
benchmark datasets, only a small portion of them exhibit such an
abnormal characteristic, and most support our conclusion that
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Figure 4. Cross evaluation in exploring the impact of attribute noise from partial

cleaned dataset.
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Figure 5. Experimental results of partial attribute noise cleaning from Monks-3 dataset:
(a) the original datasets are corrupted with 25% attribute noise; (b) the original datasets
are corrupted with 40% attribute noise.
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correcting attribute noise from the training set likely enhances the
classification accuracy.

Another interesting observation from Figures 5–9 is that, in com-
parison with noise handling from the training set, correcting attribute
noise from the test set usually brings more benefits (more accuracy
improvement). Comparing curves PvsD and DvsP, on average, a 2–5%
more improvement could be found from DvsP. It means that more
improvement has been achieved through noise correction in the test set,
even if the classifier is learned from a corrupted training set (without any
noise handling mechanism). However, correcting the test set means that
we need to modify instances in the user’s hand, which seems dangerous
and unreasonable. Because an algorithm can always change the user’s
instances to fit them with its own model from which the system has a
high confidence, this may actually lose valuable information from the
user. One can imagine that a classifier can change all outliers into
instances that the system can classify well. However, these negative
comments do not necessarily mean that we can do nothing in cleaning
the test set. Actually, we can take the attribute noise correction

Figure 6. Experimental results of partial attribute noise cleaning from Car dataset: (a)
the original datasets are corrupted with 25% attribute noise; (b) the original datasets are
corrupted with 40% attribute noise.

Figure 7. Experimental results of partial attribute noise cleaning from Nursery dataset:
(a) the original datasets are corrupted with 25% attribute noise; (b) the original datasets
are corrupted with 40% attribute noise.
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mechanism as a recommendation system, provide the users with prob-
lematic instances and their attribute values, recommend and suggest the
users that a more reasonable value could be assigned for the suspicious
attribute, under the context of the instance. By doing this, it is the user
who draws the final decision in making any change, and the system just
acts as a recommendation tool. Consequently, the user could be in-
volved in an active manner in enhancing the data quality, and obviously
it’s more efficient than any manual data cleansing scheme.

5.3. Impact of attribute noise from different attributes

As we have investigated above, the impact of attribute noise could be
crucial in the term of the classification accuracy. Other research efforts
have also indicated that the existence of attribute noise could result in a
larger tree size (Teng 1999). Given all these facts, one intuitive argument
might be: if we introduce noise into attributes, does noise of different

Figure 8. Experimental results of partial attribute noise cleaning from Tictactoe dataset:

(a) the original datasets are corrupted with 25% attribute noise; (b) the original datasets
are corrupted with 40% attribute noise.

Figure 9. Experimental results of partial attribute noise cleaning from Vote dataset: (a)
the original datasets are corrupted with 25% attribute noise; (b) the original datasets are
corrupted with 40% attribute noise.
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attributes behave in the same way? If not, what’s the relationship between
the noise of each attribute and the system performance ?

To explore answers for these questions, we execute the following
experiments. Given a dataset D, we split it into a training set X and a
test set Y (using a cross-validation mechanism). We then re-perform the
experiments in Section 5.1, with the following changes:
1. When adding attribute noise, instead of introducing noise to all

attributes, we corrupt only one attribute at each time, and the
remaining attributes are unchanged.

2. Instead of testing all four methodologies (DvsD, DvsC, CvsC and
CvsD), we only evaluate the results from DvsD and DvsC.

We have executed our experiments on all 17 benchmark datasets, and
provide results from four representative datasets, which are Monks-3,
Car, Nursery and Tic-tac-toe. The results are shown in Figures 10–13,
where x-axis represents the noise levels of the attribute, y-axis indicates

Table 7. v2 values between attributes and class (Monks-3 dataset)

v2 Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

Class 0.427 136.999 0.224 2.626 133.171 0.199

Table 8. v2 values between attributes and class (Car dataset)

v2 Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

Class 151.839 115.177 9.623 296.755 44.776 383.260

Table 10. v2 values between attributes and class (Tictactoe dataset)

v2 Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8 Att9

Class 15.38 8.39 16.22 8.83 92.30 8.16 15.04 7.44 15.76

Table 9. v2 values between attributes and class (Nursery dataset)

v2 Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8

Class 954.62 2512.76 79.31 175.46 265.48 61.11 241.51 11084.76
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the corresponding classification accuracy, and each curve in the figures
represents the results evaluated from one attribute. From results in
Figures 10–13, we may find that noise has various impacts with different
attributes. Comparing different attributes with the same noise level, it’s
obvious that some attributes are more sensitive to noise, i.e., intro-
ducing a small portion of noise could decrease the classification accu-
racy significantly, such as attributes 2 and 5 in Figure 10. On the other
hand, introducing noise to some attributes does not have much influ-
ence with the accuracy (even not at all), such as attributes 1, 3 and 6 in
Figure 10.

However, until now, the intrinsic relationship between noise of each
attribute and the classification accuracy is unclear, and we still have no
idea about what types of attributes are sensitive to noise and why they
are more sensitive than others. Therefore, we adopt the v2 test (v2) from
statistics (Everitt 1977) to analyze the correlations between each attri-
bute and the class label. Essentially, the test is a widely used method for

Figure 10. The impact of attribute noise at different attributes vs. the system perfor-
mance from Monks-3 dataset, where AttX means (only) the attribute X is corrupted: (a)
DvsD – Noisy training set vs. Noisy test set; (b) DvsC Noisy training set vs. Clean test

set.

Figure 11. The impact of attribute noise at different attributes vs. the system perfor-
mance from Car dataset, where AttXmeans (only) the attribute X is corrupted: (a) DvsD
– Noisy training set vs. Noisy test set; (b) DvsC Noisy training set vs. Clean test set.
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testing independence and/or correlation between two vectors. It is based
on the comparison of observed frequencies with the corresponding ex-
pected frequencies. The closer the observed frequencies are to the ex-
pected frequencies, the greater is the weight of evidence in favor of
independence. As shown in Equation (1), let f0 be an observed fre-
quency, and f be an expected frequency. The v2 value is defined by
Equation (1):

v2 ¼
X ð f0 � fÞ2

f
: ð1Þ

A v2 value of 0 implies the corresponding two vectors are statistically
independent with each other. If it is higher than a certain threshold
value (e.g., 3.84 at the 95% significance level (Everitt 1977)), we usually
reject the independence assumption between two vectors. In other
words, the higher the v2 value, the higher the correlation between the
corresponding vectors.

Figure 12. The impact of attribute noise at different attributes vs. the system perfor-
mance from Nursery dataset, where AttX means (only) the attribute X is corrupted: (a)

DvsD – Noisy training set vs. Noisy test set; (b) DvsC Noisy training set vs. Clean test
set.

Figure 13. The impact of attribute noise at different attributes vs. the system perfor-

mance from Tictactoe dataset, where AttX means (only) the attribute X is corrupted: (a)
DvsD – Noisy training set vs. Noisy test set; (b) DvsC Noisy training set vs. Clean test
set.
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To execute the v2 test between an attribute (Ai) and the class label
(C), we take each of them as a vector, and calculate how many instances
contain the corresponding values. For any dataset, we execute the v2

test between each attribute and class, and provide the results in Tables
7–10. After we compare the results from Figures 10–13 and the corre-
sponding v2 values in Tables 7–10, some interesting conclusions can be
drawn as follows:
1. The noise of different attributes has different impact with the system

performance. The impact of the attribute noise critically depends on
the dependence between the attribute and class.

2. Given an attribute Ai and class C, the higher the correlation be-
tween Ai and C, the more impact could be found from this attribute
(Ai), if we introduce noise into Ai. As demonstrated in the Car
dataset (Figure 11), where attribute 6 has the highest v2 value with
C, adding noise into attribute 6 has the largest impact (in the term
of the accuracy decrease) in comparison with all other attributes
(when the same noise level is added to each attribute). The same
conclusion could be drawn from all other datasets.

3. If attribute Ai has very small correlation with class (or not at all),
introducing noise into Ai usually has not much impact with the
system performance. As demonstrated in the Monks-3 dataset
(Figure 10), where attributes 1, 3 and 6 have very small v2 values
with the class (according to the assumption of Everitt (1977), all
these three attributes are independent with the class C). Adding
noise into these three attributes have no impact with the system
performances, i.e., no matter how much noise has been intro-
duced into these attributes, it would not affect the classification
accuracy. Also, the same conclusion could be drawn from all
other datasets.

The above conclusions indicate that the impact of noise from dif-
ferent attributes varies significantly with the classification accuracy,
determined by the correlation between the corresponding attribute and
class. This implies that when handling attribute noise, it’s not necessary
to deal with all attributes, and we may focus on some noise sensitive
attributes only.

5.4. Attribute noise vs. class noise: which is more harmful?

As we have indicated in the above sections, both attribute noise and class
noise could bring negative impacts with the classification accuracy. We
have also concluded that noise from different attributes varies
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significantly with the system performance. Then, one intuitive question
might be: in comparison with attribute noise and class noise, which is
more harmful? To resolve this question, we execute the following
experiments.

Given dataset D, we split it into a training set X and a test set Y
(using a cross-validation mechanism), and then adopt the following five
mechanisms:
1. We corrupt the class in X only (using the mechanism introduced

in Section 3) to construct a noisy dataset X 0, and use the
classifier learned from X 0 to classify instances in Y. We denote
the accuracy from this approach by the ‘Class’ curve in Figure
14.

2. We corrupt the most noise-sensitive attribute in X only. The most
noise-sensitive attribute means the attribute that has the highest
Chi-square value with the class (as analyzed in Section 5.3). We use
the acquired classifier to classify instances in Y, and denote the
accuracy by the ‘Att_S’ curve in Figure 14.

3. We corrupt the most noise-sensitive attribute in X, and in addition,
the same level of attribute noise is introduced into the same attri-
bute of Y. We denote the accuracy from this approach by the
‘Att_S_Test’ curve in Figure 14.

4. We corrupt all attributes in X, and denote the accuracy from this
approach by ‘Att_A’ in Figure 14.

5. We corrupt all attributes in X, and in addition, the same noise level
is introduced to all attributes of Y. We denote the accuracy from
this approach by ‘Att_A_Test’ in Figure 14.

In Figure 14, if we assume the test set Y does not contain any noise,
then the curves ‘Class’, ‘Att_S’ and ‘Att_A’ will indicate such scenarios.
Comparing all these tree curves, we can find that the values of ‘Class’
are almost always the lowest at any noise level. This indicates that when
the test set does not contain noise, class noise is more harmful than
attribute noise, no matter whether the attribute noise is introduced to a
single attribute or all attributes. When the test set Y does contain certain
levels of noise, we may find that the influence of attribute noise could be
more severe than class noise. As shown in Figure 14(b), when the noise
level is less than 30%, introducing noise to all attributes in the training
and test sets (Att_A_Test) shows more negative impacts than intro-
ducing the same level of class noise. However, when the noise level
goes higher, the impact of class noise becomes worse. In Figure
14(c), we find that the class noise is only worse than ‘Att_S’, which is
actually misled by our class noise corruption mechanism. When
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Figure 14. Experimental comparisons of impacts of attribute noise and class noise with
classification accuracy, where (a), (b), (c) and (d) represent the results evaluated from

four different datasets.

N attributes A1 , A2 , .., AN , and class C

Attributes have high correlations 
with other attributes

Attributes don’t have high 
correlations with other attributes

Calculate correlation directions 
between any two attributes

Attributes could be predicted by 
other attributes

Attributes could not be predicted by 
other attributes

Learn a noise filter to identify 
problematic instances (attributes)

Adopt other mechanisms such as 
clustering, and association analysis

Chi-square test between any two 
attributes Ai and Aj (including class C )

Figure 15. A systematic analysis in handling attribute noise.

XINGQUAN ZHU AND XINDONG WU202



introducing class noise, we adopt a pair-wise mechanism, which cor-
rupts only one pair of classes (usually the pair of classes having the
highest proportion of instances). With the ‘Nursery’ dataset, it has five
classes, and the selected pair of classes contains less than 50% of in-
stances, so even we introduce 50% of class noise, the actually noise level
is just about half of the intended noise level. However, even in this case,
we can still find that class noise is worse than ‘Att_S’, and almost equal
to ‘Att_A’.

The results from Figure 14 suggest that in many situations, class
noise is likely more severe than attribute noise, especially when the test
set does not contain noise or we have a very limited number of class
labels. The answer for why attribute noise looks less harmful than class
noise may come from the following two reasons:
1. In comparison with the unique class label, we usually have multiple

attributes, and the number of attributes could vary from several to
more than a hundred. Consequently, the noise introduced from one
or a limited number of attributes may have a very limited impact
with the system performance.

2. When adopting various learning algorithms, the attributes vary
differently in terms of importance in constructing the classifier.
There is no doubt that the class label is the most important one, and
consequently, the noise introduced to class attribute will have the
largest impact; on the other hand, some attributes may have a very
limit contribution in constructing the classifier (or even not at all),
and the noise introduced into these attributes will have a very
limited impact on the performance of the classifier. Therefore, on
average, attribute noise is less harmful than class noise.

5.5. Discussion on attribute noise handling

After the above systematic and extensive evaluations, we need to answer
the following question: Given instances in a dataset, how can we pos-
sibly identify problematic attributes and handle the noise to enhance the

Attribute
A

Attribute
B

Attribute
A

Attribute
B

Attribute
A

Attribute
B

(a) (b) (c)

Figure 16. Correlation directions between two attributes: (a) one-way correlation from
A to B; (b) one-way correlation from B to A; (c) dual correlation between A and B.
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data quality?’ The question is more oriented from a noise-cleansing
point of view: Given a dataset D, how can we possibly adopt various
techniques to identify noisy instances? Meanwhile, instead of eliminat-
ing them, we will try to predict and assign a ‘correct’ (or less harmful)
value for those problematic attributes. In this paper, we will not provide
any solid solution in handling attribute noise, instead, we provide a
systematic analysis on design different approaches.

In Section 3, we have mentioned that researches on identifying in-
stances with class noise has been widely conducted, where the concept of
‘noise filter’ (Brodley and Friedl 1996) has been introduced. Given a
datasetD, we can split it into N subsets, a classifier (Ck) trained from the
aggregation of any N� 1 subsets is used to identify instances in the
excluded subset. A noisy instance is an example with its class label
different from the classification of the classifier Ck. Based on existing
research efforts, one intuitive solution in identifying and correcting
attribute noise may be taking each attribute as the class label and
applying a ‘noise filter’ on each of them.

Given a dataset D, with an instance Ik in D denoted by N attribute
A1;A2; . . . ;AN and one class label C, we first split D into a training set X
and a test set Y (using cross-validation). To handle attribute noise
contained in attribute A1, we switch class C with attribute A1, and use
attributes A2;A3; . . . ;AN plus C as the attributes (so we still have N
attributes). We train a classifier T 0

1 by using these N attributes (and all
instances in X), and then apply this classifier on Y to predict the value of
attribute A1 of all instances in Y (at the current stage, we consider
nominal attribute values only). By applying the same mechanism on all
attributes A2;A3; . . . ;AN, we can acquire the corresponding classifiers
T 0
2 ;T

0
3 ; . . . ;T

0
N. Given an instance Ik in the test set, if its attribute value

on Ai is different from the classification result of the classifier, e.g T 0
i , it

will imply that the attribute value of Ai of Ik is likely problematic. And
accordingly, we may use the classification result of T 0

i as the ‘corrected’
value for Ai of Ik. A similar mechanism has been conducted by Teng
(1999) in her data polishing scheme.

Data polishing (Teng 1999) is attractive and efficient in handling
many datasets, but its performance from many other datasets could be
problematic, especially when we take a closer look with the mechanism
itself. To identify and correct noise from an attribute, e.g., Ai, the
mechanism switches Ai with the class, and uses all other attributes plus
the class to train a classier which is used to predict the ‘correct’ value of
Ai. Unfortunately, this procedure may seriously break the assumptions
of classification which were stated in Section 2:
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(a) The attributes should somewhat correlate to the class.
(b) The attributes are conditionally independent with each other.

By switching the class with Ai, we may find that neither of the
assumptions above could be guaranteed from the newly constructed
dataset. If that’s the case, how can we possibly trust that classifier T 0

i

can make right predictions? When we construct a dataset for classifi-
cation purpose, the above two assumptions play an important role with
the classification accuracy. Accordingly, violating these assumptions by
switching the class with Ai, we may find that there may not many
attributes that correlate with the newly constructed class (Ai), if not at
all. In such a scenario, it’s actually not a classification problem, then
how can we possibly adopt classification mechanisms to handle it?

Accordingly, we need a systematic analysis in guiding attribute noise
handling. As shown in Figure 14, given a dataset D which has N
attributes, our objective is to separate all attributes into two categories:
Attributes which could be predicted by other attributes, and attributes
which could not be predicted by other attributes. For attributes which
belong to the first category, we may adopt a noise filtering mechanism to
figure out problematic instances (or attributes), and for attributes which
could not be predicted by other attributes, the classification mechanism
may not work (or cannot work out good results), and we may need to
consider other possible solutions such as clustering (Davé 1991), k
nearest neighborhood (Huang and Lee 2001), or association analysis
(Ragel and Cremilleus 1999), which have been suggested for missing
values prediction and outliers detection. Interested readers may refer to
a noise handling biography (H€oppner 2003) for more noise handling
references in this regard.

To facilitate our objective in Figure 15, we first execute a v2 test
between any two attributes (including the class label). Those attributes,
which have low correlations with all other attributes, are first selected,
because having low correlations with others implies that they cannot be
predicted by using any learning theory with a high accuracy. For those
remaining attributes, just because they have high correlations with
others, does not necessarily mean that they could be predicted, because
correlations could happen in just one way, i.e., given A we can predict B
does not imply that given B we can predict A too. So we need to figure
out the correlation directions between attributes. Given two attributes A
and B, we can possibly classify their correlation directions into three
categories: One-way correlation from A to B, one-way correlation from
B to A, and dual correlations between A and B, as shown in Figure 16.
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To classify the correlation direction between A and B, we adopt the
Information Gain (Hunt et al. 1966) measure, also known as mutual
information between A and B, given by Equation (2).

GainBðAÞ ¼ IðA;BÞ ¼
X

a

X

b

Pða; bÞ log Pða; bÞ
PðaÞPðbÞ ; ð2Þ

where a and b indicate the attribute values of attributes A and B
respectively. The information gain can be regarded as a measure of the
strength of a 2-way interaction between A and B. The larger the value
GainBðAÞ, the more confident the one-way correlation from A to B will
hold. The same conclusion could be drawn from GainAðBÞ (it is likely
that GainBðAÞ 6¼ GainAðBÞ in most cases). Consequently, a threshold
mechanism will indicate the correlation direction between any two
attributes. After we determine the correction directions between any two
attributes, an attribute that has no correction direction towards it will
be removed and taken as one of the attributes which could not be
predicted by classification mechanisms. All other remaining attributes
would be taken as the predictable attributes (worse or better) by
employing noise filtering approaches.

To figure out whether an attribute could be predicted by other attri-
butes or not, the data polishing mechanism (Teng 1999) adopted an
accuracy-oriented mechanism. It first switches attribute Ai and class
attribute C, and constructs a classifier Ti. If the accuracy of Ti is rela-
tively high, it will conclude that Ai is predictable by other attributes.
Basically, this mechanism works in may situations, because if Ai has
higher correlations with other attributes, Ti likely has a higher accuracy.
However, all these evaluations are based on the performance of the
adopted learning algorithm, where various features, such as high noise
levels and different learning theories, could impact the accuracy of Ti.
With the analysis above, we have adopted a statistical tool to indicate
whether an attribute is predictable or not in advance. Consequently, it
provides some benchmarks in guiding attribute noise handling, and it is
more reliable than polishing like mechanisms.

6. Conclusions

The focus of this paper was to evaluate the impact of noise on learning, by
measuring two types of noise, class noise and attribute noise, from 17
datasets. We demonstrated that the impacts of noise are severe in
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many circumstances. In addition to investigating the role of noise in
learning, we have put much emphasis on how to handle different types of
noise. Meanwhile, the paper has paid more attention to attribute noise
than class noise, because the later has been extensively addressed in the
literature. The conclusions from our experiments can be summarized as
follows:
1. Eliminating instances containing class noise will likely enhance the

classification accuracy.
2. In comparison with class noise, the attribute noise is usually less

harmful, but could still bring severe problems to learning algo-
rithms.

3. When handling attribute noise, noise correction will likely enhance
the accuracy of learned classifiers.

4. In comparison with noise handling from the training set, clean-
ing noise from the test set usually brings more benefits (in terms
of classification accuracy), even if the classifier is learned from a
noise corrupted training set (without any noise handling mecha-
nisms).

5. In the case that noise handling from a test set is forbidden, cleaning
attribute noise from a training set will still likely enhance the clas-
sification accuracy comprehensively, no matter whether the test set
contains noise or not.

6. In most situations, the noise from different attributes behaves
differently with the system performance. The higher the correla-
tion between an attribute and the class, the more negative impact
the attribute noise may bring. Accordingly, it is not necessary for
a noise handling mechanism to take care of every attribute,
and handing noise on noise-sensitive attributes would be more
important.

7. To identify and correct attribute noise, we can adopt some learning
algorithms to learn a noise filter. However, analyzing correlations
among attributes in advance is necessary in this case, and it could
tell whether a specific attribute is predictable by using other attri-
butes and the class, because an attribute with low correlations with
others simply cannot be predicted by any learning theory.

8. More experiments should be conducted on identifying and cor-
recting those attributes that have low correlations with others.

With these conclusions, instead of adopting some ‘blind’ noise han-
dling mechanisms, interested readers can design their own noise
handling approaches to enhance data quality from their own perspec-
tives.
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