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Abstract  Active learning aims to train an accurate prediction model with minimum cost
by labeling most informative instances. In this paper, we survey existing works on active
learning from an instance-selection perspective and classify them into two categories with a
progressive relationship: (1) active learning merely based on uncertainty of independent and
identically distributed (IID) instances, and (2) active learning by further taking into account
instance correlations. Using the above categorization, we summarize major approaches in
the field, along with their technical strengths/weaknesses, followed by a simple runtime
performance comparison, and discussion about emerging active learning applications and
instance-selection challenges therein. This survey intends to provide a high-level summa-
rization for active learning and motivates interested readers to consider instance-selection
approaches for designing effective active learning solutions.

Keywords Active learning survey - Instance selection - Uncertainty sampling -
Instance correlations
1 Introduction

Electronic data management systems have rapidly emerged in the past decades. All these
systems computerize the data on operations, activities, and performance. For decision-making
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purposes, these systems typically rely on domain experts to manually analyze the database.
Due to the rapid development of storage, sensing, networking, and communication technol-
ogies, recent years have witnessed a gigantic increase in the amount of daily collected data.
As aresult, it becomes rapidly difficult, or impossible, to manually extract useful knowledge
from huge amount of data. The need for automated mining and discovering knowledge from
large-scale data, commonly referred to as Knowledge discovery and data mining (KDD), is
widely recognized. Common approaches in KDD are to either (1) generate patterns with-
out supervision, such as clustering [85,94], or (2) use some previously labeled instances to
assist the pattern discovery process, such as supervised learning [86]. For the latter, labeled
instances can integrate domain knowledge and therefore help generate models mostly suit-
able for prediction. To collect labeled samples,! the labeling process may be subject to little
or no cost, such as the “spam” flag users marking on unwanted email messages. But for many
sophisticated supervised learning tasks, sample annotation requires costly expert efforts,
which raises significant issues for some large-scale or domain-specific problems as follows:

— Fraud Detection [50]. A banking expert needs to manually inspect each credit transaction
to properly label a transaction as either a fraud or a normal transaction. With manual
inspection and labeling, it may take an expert several years to inspect all transaction
records in a month and annotate a small amount of fraud transactions.

— Webpage Classification [51]. When query results are returned by a search engine based
on a specific keyword, we need to identify whether a web page is relevant to the keyword
or not. It has been shown that less than 0.0001 % of all web pages have topic labels.
Therefore, annotating thousands of web pages can be tedious and redundant.

— Protein Structure Prediction [8]. Protein structure prediction is to find a protein’s second-
ary, tertiary, and quaternary structures from the protein’s amino acid sequence. However,
less than 1.2 % of all proteins have known structures. For a specific protein, it takes months
for a crystallographer to identify its structure in wet lab experiments.

In classical supervised learning, training instances must be paired with class labels as
supervised knowledge. This constraint makes the above applications applicable to solve
learning problems on a small fraction of labeled data. Because limited labeled instances can
hardly provide sufficient information to learn models with good generalization capability,
some new learning paradigms have been proposed in the last decade to reduce the label-
ing cost without significantly compromising the model performance. Two most successful
types are: (1) Semi-supervised learning [87,88], which directly utilizes unlabeled instances
by taking into account the geometry of data distributions, such as clusters and manifolds,
to propagate label information to neighboring data; and (2) Active learning [89,90], which
selectively labels instances by interactively selecting most informative instances based on
certain instance-selection criteria. Since we only focus on active learning in this survey,
interested readers can refer to [64] for works related to semi-supervised learning.

In this article, we aim to provide a comprehensive survey on active learning from an
instance-selection perspective, where the goal of active learning is to achieve high prediction
accuracy by using as few labeled instances as possible [45]. Suppose we are given a small
labeled sample set as well as a relatively large unlabeled sample set, and we are allowed to
interactively label a portion of the unlabeled instances during the learning process. Active
learning essentially solves the following problem: how fo select most critical instances from
the unlabeled sample set for labeling such that a model trained on them can achieve the
maximum prediction accuracy, compared to simple solutions such as randomly labeling the
same number of instances

! In this paper, samples and instances are interchangeable terms.
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Generally speaking, including most informative instances to the labeled set can help
improve the model performance with least labeling costs or reduce the computational cost
for the succeeding mining procedures [78]. In practice, the informativeness of a sample can
be assessed by using the uncertainty of the instances based on models trained from the current
labeled sample set. If a sample’s uncertainty is high, it implies that current models do not have
sufficient knowledge in classifying the sample, and, presumably, including this sample into
the training set can thus help improve the underlying models. Following this heuristic, the key
challenge for active learning is to design proper uncertainty metrics to evaluate the utility
of an unlabeled sample [10]. A large number of methods have been proposed to quantify
and assess sample uncertainty in various ways. From an instance-selection perspective, these
methods can be classified into the following two categories, with a progressive relationship.

1. Utility metrics merely based on uncertainty of IID instances: Methods in this cat-
egory treat samples as independent and identically distributed (IID) instances, where
the selection criteria only depend on the uncertainty values computed with respect to
each individual instance’s own information. Accordingly, one possible problem is that
this type of approach may select similar instances in the candidate set, which results in
redundancy in the candidate set. Take the toy data in Fig. 1 as an example, if only consid-
ering the uncertainty of the instances for labeling, we are likely to select a candidate set
only containing the most uncertain instances from an individual sample’s perspective,
whereas these instances may contain redundant knowledge and therefore do not form an
ideal candidate set (as shown in Fig. 1b).

2. Utility metrics further taking into account instance correlations: To take the sample
redundancy into consideration, uncertainty metrics based on instance correlation utilizes
some similarity measures to discriminate differences between instances. By uncovering
inherent relationships between instances, the utility of the instances calculated by this
scheme integrates sample correlations, through which a selected candidate set may not
always contain the “most uncertain” instances. Whereas, together, the selected instances
form an optimal candidate set by balancing the uncertainty and diversity. As shown
in Fig. 1c, by considering sample diversity, the six selected candidate instances help
generate the decision boundary, which is much closer to the true boundary, compared to
Fig. 1b where only uncertainty is considered. From this example, we can see that “tradeoff
between uncertainty and diversity” is an essential problem to address in active learning.
When considering too much “uncertainty”, we may select redundant instances, whereas
when considering too much “diversity”, we may lose many uncertain instances that are
critical for forming the boundary.

Several papers have surveyed active learning with focuses on different active learning
scenarios [44] or on different application domains [39,53]. To the best of our knowledge,
there is no survey focusing on instance correlations and summarizing active learning from
instance-selection perspective. So our paper intends to provide an in-depth study on how
existing active learning methods explore uncertainties and correlations to select instances for
labeling. Our main objective is to (1) summarize and categorize instance-selection methods
and provide a big picture for active learning, and (2) compare and analyze the strengths and
deficiencies of existing approaches, through which interested readers can propose solutions
to further advance the research in the field.

The remainder of the survey is organized as follows. In Sect. 2, we provide an overview
of active learning, including preliminary concepts and a multi-dimensional categorization of
the existing methods from an instance-selection perspective. Section 3 investigates instance-
selection methods merely based on IID instance uncertainty. Section 4 further studies methods
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(b)

Fig.1 A toy example to demonstrate the tradeoff between uncertainty and diversity for sample selection in
active learning. Circles and triangles denote the instances from two classes, respectively; solid circles and
triangles denote labeled instances and the rest denote unlabeled instances. The solid lines denote the true
decision boundaries and the dashed lines denote the decision boundaries learned by the learners based on the
selected instances. a Decision boundary learned from six labeled training instances. b By labeling six most
uncertain instances, the learner refines its decision boundary, which becomes more approximate to the true
decision boundary. ¢ By taking sample diversity into consideration, a method chooses the most informative
candidate instances with low redundancy between them, based on which the learned decision boundary is
significantly improved, compared to the approach which considers uncertainty only

by taking into account instance correlations. In Sect. 5, we analyze the existing instance-
selection methods by comparing their strength and weakness. Section 6 discusses emerging
applications of active learning and instance-selection challenges therein. Finally, we conclude
the survey in Sect. 7.

2 Active learning: preliminary and overview

2.1 Definitions and notations

Given a set of instances ¥ = {el, e, ..., e"}, where each sample x'isin a g- dimen-
sional feature space .# and an / dimensional label space %/, i.e., ¢ € F x % . Depending
on the number of labels an instance contains, an instance can be divided into two types: a
“single-label instance” and a “multi-label instance”.

Definition 1 Single-label Instance: For a single-label instance e', it can be denoted by
e = {x',y'}, where x' = {f{, f5...., f(;}, and f; denotes the kth feature value of ¢', and
y! denotes the class label of x.

Definition 2 Multi-Label Instance: For a multi-label instance, it can be denoted by é =
{x', ¥,y ), where x' = {f]. f5. ..., fq’, }, and f; denotes the kth feature value of ¢,
and y§ denotes the jth class label of e’.

In typical active learning scenarios, users are given an instance set D comprising a hand-
ful of labeled instance subset DX = {(x!, y!), (x2, ¥2)..., (x", y")} and a relatively large
amount of unlabeled instances DY = {(x', ?), (x2,?)..., (x*, ?)}, with D = DE U DY,
With limited labeling information, an accurate model can hardly be learned. To learn an accu-
rate model, we need to label extra instances to get additional information. In an active learning
environment, it is considered costly and time-consuming to label all instances in DY . Alter-
natively, an active labeler utilizes evaluation metrics to measure instance utility and further
selects instances with maximal utility values for labeling. There are two important con-
cepts used in utility metrics: uncertainty metric and correlation. The former is an evaluation
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criterion to measure the uncertainty of each single instance, whereas the latter measures the
“correlations” between instances.

Definition 3 Uncertainty Metric:. Given an unlabeled sample set DV and a label space %,
uncertainty metric is a function £, mapping from the instance space, DY or DV x % , to areal
number space R where the “sample view” means the uncertainty metrics calculated based
on the sample features, while “sample-label view”” means the uncertainty metric calculated
from both features and labels.

[ DY > R, sample view
| DY x # — R, sample-label view

Ju )]

Most of the previous algorithms evaluate the uncertainty only from the sample view.
More recently, research work has focussed on evaluating the uncertainty from both sample
and sample-label views, which is considered to be more effective. In general, an uncertainty
metric usually borrows information technology and statistical theory, such as “entropy” and
“margin”, to measure instance utility. Different functions used in the selection metrics prefer
different types of instances. For example, an “entropy” function tends to select instances
minimizing the log-loss of the model, whereas a “margin” function intends to choose the
ones reducing the error rate by refining the decision boundary.

In addition to the above discussed “uncertainty” metric, one can also take “diversity” of
the selection into consideration, which can be enabled by evaluating the correlation of the
instances. Take Fig. 1 as an example, by uncovering the correlation between the instances,
the selected labeling set in Fig. 1c helps generate a boundary much closer to the true decision
boundary, compared to Fig. 1b where only uncertainty is considered. Accordingly, properly
estimating correlation among instances is important for selecting most informative instances
in active learning.

Definition 4 Correlation Metric: Given an unlabeled sample set DU and a label space %/,
correlation metric is a function ¢, used to measure the correlation between a pair of instances
x; and xj, where the correlation between any instance pair, g.(x;, x;), can be defined from
three views:

DY x DY > R, feature view
ge 3 ¥ X% — R, label view ?2)
(DY, %) x (DY, %) — R, both views

By uncovering the pairwise correlation in the instance set, two instances with a large
correlation value are considered similar to each other, while the two with a small value are
different. With Eq. 2, we can define the correlation between x; and any other instances in
DY, denoted by g.(x;), which is the mean of the correlation ¢, (x;, x j) forall j #i

qe(xi) = |D1U| > qelxixj) 3)
Xj€ DY /x;

Equation 3 represents the instance density in the unlabeled sample set. The larger the
value ¢ (x;), the higher the density around the instance x; is. Therefore, the most represen-
tative instances in a set have the largest correlations. Intuitively, they are the centrex points
with highest density. On the other hand, the instances with smallest correlation values are
located at the edge of the set and are considered as outliers.

Based on the above “uncertainty metric” and “correlation metric” , the “utility metric” for
active learning is defined as follows.
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Definition 5 Utility Metric: Given an uncertainty metric f,, and/or a correlation metric ¢,
utility metric is a function u used to evaluate the worth of labeling for unlabeled instances in
DY:
Y= ’ fus if ot given g @
fu X qc, if given g,

The definition of f, also explores the utility from two granularity levels: sample and
sample-label pair. When utility metric integrates the correlation metric g, the instance utility
is evaluated from both uncertainty and correlation views. As shown in Eq. 4, if f;, increases,
uncertainty becomes larger, and so does u. However, only taking uncertainty into account
results in a redundancy issue as introduced in Fig. 1, while we assess instance utility based

on correlation that may select diverse instances. To this end, Eq. 4 is a trade-off function
between the two views to assess instance utility.

Definition 6 Query Strategy: By choosing a certain utility metric, a query strategy evalu-
ates the informativeness of unlabeled instances based on the prediction result of the current
model (to calculate uncertainty) and/or data distributions (to calculate correlations), then
selects the most informative instances for labeling.

With a specific query strategy, one can rank instances according to their utility values.
The instances on the top of the queue are the most ambiguous ones for the current model,
whereas the ones at the bottom of the queue are the most certain instances for the model. The
top v (where v is the size of an optimal sampling subset) forms a maximal utility subset to be
included in the training set. Following this approach, general procedures for active learning
process are described in Algorithm 1.

Algorithm 1 General Process of Active Learning

Require: Initial labeled instance set pL , Unlabeled instance set DU, size of the training set m
Ensure: Model ®
1: while training size < m do
® <« learn a model based on DL;
DY « p\ DL;
for each instance x; in the DY do

uj < u(x;, ©);
end for
x* < argmax(u;);

1

® s

DL « DL Jx*;

9. pU ~ pU \ x*;

10:  ® <« update the model based on pL ;
11: end while

In Algorithm 1, a model is trained from the initial small labeled training set D*. After that,
all instances in the unlabeled pool DY are queried by the learner. On the basis of the query
results evaluated by a utility metric, the learner requests to select most potential instances to
be labeled by an oracle (i.e. a labeler). After that, the new labeled instances are directly added
to the training set D’ to update the model. This process repeats until the model achieves the
desired prediction accuracy or the pre-set number of instances are labeled in the training set.
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Table 1 Different setting for query strategies

Query strategies Instance utility Instance view

Uncertainty Correlation Feature Feature-label
IID instance uncertainty 4 Vv
Instance correlation v v Vv i

2.2 Categorization for active learning methods

The theme of active learning is to select the most informative instances for the current
model. Accordingly, “how to select” instances determines how to properly measure each sin-
gle instance. Several query strategies integrating certain concepts in other machine learning
areas, such as information retrieval, are developed to evaluate each instance. A query strategy
is chosen to calculate instance utility based on the model prediction result represented by
output probability distributions over all possible class labels.

After choosing a certain query strategy, building models to evaluate instances is another
issue which needs to be considered. An instance can be queried by a learner or by a com-
mittee of heterogeneous learners. Accordingly, the output probability distributions can be
computed based on a single model prediction result or a collection of prediction results over
all classifier members separately. This corresponds to the second question: “how to evaluate
selected unlabeled instances” issue. To summarize, for instance selection for active learning,
there are two major research issues: 1) “how to select unlabeled instances for labeling” and 2)
“how to evaluate selected unlabeled instances”.

2.2.1 How to select unlabeled instances for labeling

We first address the research issue on how to select unlabeled instances for labeling. Two
major types of query strategies can be categorized in terms of uncertainty and diversity as
shown in Table 1: (1) query strategies based on IID instance uncertainty, and (2) query strate-
gies based on instance correlation, according to the different composition of utility functions.
In addition, the instances are also selected from the view of feature space or from feature-label
spaces. For traditional single-label learning tasks, the algorithms select the most uncertain
sample because the label is unknown, as introduced in Definition 1. In this case, algorithms
select instances based on the evaluation from the feature space. For multi-label learning tasks,
an instance may have more than one labels, as introduced in Definition 2. Suppose that we
are given a portion of the labels for an instance, a method could choose instances based on the
evaluation from the feature and the label spaces and consider the feature-label pairs instead
of features as an uncertainty evaluation object.

Active learning based on IID instance information is commonly applied in single-label
learning tasks, where the utility function is designed based on the input feature space. More-
over, the assumption that the instances in the unlabeled set are treated independently in
this scheme makes an uncertainty evaluation function immediately available to calculate the
instance utility. Accordingly, methods in this category normally rank instances simply based
on the uncertainty metric and choose the ones with the largest uncertainty values for labeling.
We categorize query strategies into three groups based on “how to select”:
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— Uncertainty Sampling emphasizes on labeling the most uncertain instances, by using
diverse uncertainty schemes such as least confidence, margin, and entropy [21].

— Expected Gradient Length focuses on querying instances that cause the maximal change
to the current model [46].

— Variance Reduction favors instances that minimize the square loss of a learner [1].

Active learning based on instance correlations takes instance correlations into consid-
eration, so the utility metric is a combination of an uncertainty function and a correlation
function, whose definition domain can be in sample space or in sample-label space. Based
on the different correlation exploration view, i.e., the “how to select” issue, active learning
can be further divided into four subgroups:

— Exploiting on feature correlation: Usually, a similarity measurement [62] or a correlation
matrix [51] on features is utilized to compare pairwise similarities of instances, so the
informativeness of an instance is weighted by average similarity on its neighbors. The
algorithms rely on clustering algorithms to group instances and select the most represen-
tative instances in each cluster to form an optimal subset with maximum uncertainty. This
strategy integrates the information density-based metric and the traditional uncertainty
measures to evaluate the potential of an instance.

— Exploiting on label correlation : Algorithms in this group are widely used in multi-label
learning tasks [91], where an instance can have more than one label. In general, the labels
have constraints or relations between each other. Therefore, if we are given a portion of
labels for an instance, active learning can automatically infer its additional labels using
the constraints.

— Exploiting on both feature and label correlation: Besides comparison on the feature
similarity, this scheme further explores correlations based on the neighbor’s prediction
information for a specific instance. Therefore, it integrates the result from feature and
label dimensions to assess the correlation. This setting is very suitable for mining tasks
on an instance set with a complicated structure. However, traditional similarity metrics
compute the average similarity over all the pairs of instances, so that the computational
cost is expensive as the size of an instance set grows rapidly. Some variance approaches
[15,34] are developed following the idea that each cluster has a density center. A simpli-
fied version is to compute the similarity between each instance and the center instance
by considering the whole set as a cluster and calculate the average of the cumulative
result [10].

— Exploiting on structure correlation : In this setting, instance correlations are denoted by
a weighted graph, where each node represents an instance and each edge represents the
relation between two nodes. Intuitively, the nodes with close connection in the graph are
likely to have the same label. Following this logics, when one node is annotated, the labels
of its neighbors can be inferred, which consequently reduces labeling cost. To achieve
this goal, collective classification is a key method used for predicting the labels of nodes
in the graph simultaneously.

2.2.2 How to evaluate selected unlabeled instances

Another important issue is how to evaluate instance utility value with the above query strat-
egies. Some algorithms employ a single model, so the instances utility relies on the model
prediction result, where the most “ambiguous” instance is the most uncertain one for the
model. Others use a set of models to form a “query committee” [43]. In this approach, class
label prediction for an instance rests on the majority voting result in the committee. The most
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Fig. 2 Hierarchical structure of the categorization for active learning. The query strategies in the fop solid
rectangles demonstrate “how to select unlabeled instances for labeling”, and the models in the bottom solid
rectangles demonstrate “how to evaluate selected unlabeled instances”. The methods in the dash rectangle
boxes explain the implementations of a query strategy

informative instance is the one with the most disagreement prediction from the classifier
ensemble.

2.2.3 A combined view

By combining the two research issues, i.e., how fo select and how to evaluate, into a single
view, we obtain a hierarchical structure of our categorization for active learning in Fig. 2. It
is worth noting that how to select can be divided into two major categories and seven subcat-
egories (the solid rectangle on the top), while how to evaluate only comprises two categories
(the solid rectangle at the bottom). The two dimensions are coupled in certain machine learn-
ing tasks such as classification, regression, and clustering (middle dashed rectangle). In the
following two sections, we will introduce the two categories of query strategies and their
corresponding evaluation methods from an instance-selection perspective.

3 Active learning based on IID instance uncertainty

Definition 7 Active Learning based on IID instance uncertainty: Given an unlabeled
sample set DY, a labeled training set DL, and an uncertainty function f,(.) for instance
utility evaluation, i.e., u(.) = f,(.), active learning based on IID instance uncertainty aims
to help construct an accurate model by labeling the most informative individual instances in
D to form the training set D*, according to u(.).

3.1 How to select unlabeled instances

According to the above definition, the utility of an instance is calculated based on the given
uncertainty function, by treating each instance independently. The uncertainty metric is
designed based on individual instance importance for an accurate model construction. Many
query strategy formulations in active learning use this scheme, and the existing work can
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Table 2 Major uncertainty measures for uncertainty sampling

Uncertainty measures Considered class label Objective

Least confidence The one with the highest posterior probability Decrease the error rate
Sample margin The first two most probable class labels Decrease the error rate
Entropy Over the whole output prediction distributions Reduce the log-loss

be roughly categorized into three major groups: Uncertainty Sampling, Expected Gradient
Length, and Variance Reduction.

3.1.1 Uncertainty sampling

One of the most common frameworks for measuring instances’ potential is uncertainty sam-
pling [28], where a component learner regards the most uncertain instance as the ones with the
most potential for labeling. This framework often employs probabilistic models to evaluate
the potential of instances, such that the prediction result of a single instance is represented
by a vector, whose elements are the posterior probability with respect to each class label.
Taking a binary classification as an example, the most uncertain instance is the one with 0.5
posterior probabilities with respect to positive and negative class, respectively. According to
the number of posterior probabilities considered, uncertainty sampling can be divided into
three main subsettings. Table 2 summarizes the main query strategies and their aims in the
setting.

A general framework of uncertainty sampling in a multiclass or binary database is the
least confidence (LC), developed by Culotta and McCallum [93], with the objective function
as follows:

X[ ¢ = argmax 1 — Pg(J|x) 5)
X

where y is the most likely class label with the highest posterior probability in the hypothesis.
This method prefers the instances on which the current hypothesis has the least confidence in
deciding their most likely class labels. Based on the basic idea of least confidence, Zhu et al.
[63] developed a statistical model for text classification and word sense disambiguation tasks.
D-Confidence is proposed for the case of imbalanced class distribution. It selects instances
with an improved least confidence criterion, which prefers the instances with low confidence
to the known class. Escudeiro and Jorge [13] takes advantage of current classifiers’ probabil-
ity preserving and ordering properties. Li and Ishwar [31] proposed an Active Learning for
SVM called “Confidence-based Active Learning” which measures the uncertainty value for
each input instance according to its output score from a classifier and selects the instances
with uncertainty value above a pre-defined threshold.

In addition to the least confidence which takes an instance’s most likely class label into con-
sideration, another popular uncertainty sampling scheme, called the margin approach, inte-
grates the second most probable class label. Margin approach is prone to selecting instances
with minimum margin between posterior probabilities of the two most likely class labels [4],
which is represented by

xy; = argmax Pe (¥1]x) — Pe(¥2|x) ©)
X
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where y; and y, are the first and second most probable class labels, respectively. It is easy
to understand that the model intends to discriminate between the first and the second most
probable class labels. The most informative instances are the ones with the smallest margins
between the top two class labels. For large margin machine learning algorithms like Support
Vector Machines, the support vectors separate the hyper-plane and maximize the distance
between each class. This strategy is generally combined with SVM to construct a more dis-
criminative model. Campbell et al. [6] introduced active learning strategy for support vector
selection by building a Support Vector Machine with fewer support vectors. SVM Struct
is a flexible resolution for a sequence labeling task. Cheng et al. [11] applies three margin
metrics for vector selection under the SVM Struct framework. It considers the input—output
combination of a sequence by Conditional Random Field and utilizes dynamic program-
ming to handle the sequence with different lengths. One possible deficiency of the above
uncertainty metrics is that they ignore the output distributions for the remaining class labels.
Entropy metric is an information-retrieval measure that represents the uncertainty over the
whole output prediction distribution. Given a hypothesis ®, the prediction distribution of an
instance x, then the uncertainty can be encoded as follows:

Xy = argmax — »_ Pe (i xx)log Pe (Filxi) )
X .

L

where ¥; denotes posterior probability of the instance x; being a member of the i’ class,
which ranges over all possible labels. For a binary classification task, the most potential
instances are the ones with equal posterior probability with respect to all possible clas-
ses. Based on the basis entropy theory, various variances of Entropy metrics [5] have been
developed in recent decades. As an illustration, N-best sequence entropy metric employs
a probabilistic sequence model in natural language processing [26]. Moreover, "Entropy-
Driven Online Active learning’, which was developed by Weber and Pollack [55] and was
used for interactive calendar management, evaluates the dissimilarity between the schedules
at the granularity of a single feature. Holub and Perona [21] proposes an Entropy-based
active learning algorithm on a heterogeneous classifier ensemble and applies this strategy
to the object category. Entropy metric is extended by accumulating average uncertainty on
each feature, respectively, which provides more information than the simple mean over all
the features. Recently, exploration of efficient entropy metric via dynamic programming
has become a hot topic, and a semi-supervised active learning algorithm is proposed for
conditional random fields [33].

According to the above analysis of the three mechanisms, we assert that Entropy metric
is appropriate when the objective is to minimize the log-loss function, whereas Margin and
Least Confidence metric are more suitable for reducing classification error rate, since they
favor the instances helping to discriminate between specific classes.

3.1.2 Expected gradient length

Another conventional query strategy focuses on querying instance that causes the maximal
change to the current model. Expected Gradient Length [44] involves querying the instance
which could cause the greatest change in the gradient of the objective function if adding it
in the training set. The objective function is defined as

XL = argmax — Y P(yilx; ©)| V(LT ©)| ®)
. Vi
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where VO (L1=<*Y>: ®) denotes the updated gradient of the log-likelihood 9 with respect
to the new instances x added in the labeled set, and ® is the model parameter. Because in
the query process, the genuine label of the instance x is unknown beforehand, we calculate
the summation of log-likelihood over the entire possible label y;. || . || is the Euclidean norm
of each resulting gradient vector and P (y;|x; ®) is the posterior probability of x belonging
to class y; under the model ®. Since d converges at the previous training set, Va(L, ®) is
nearly zero. Therefore, we use (L < x, y; >; ®) instead of (LT=%>; ®) for computation
efficiency, because the instances are treated independently in this setting.

Expected Gradient length is widely used in ranking functions, such as web search [29],
recommendation, text classification [52]. In many machine learning problems, the quality of
a ranking function decides the quantity of labeled instances. Settles et al. [46] adapted this
query strategy to multiple-instance active learning. They design two query selection schemes
for multiple-instance setting with different granularity in the domain where bag labels are
easy to obtain. Long et al. [32] derives a novel metric ‘Expected Loss Optimization’ to rank
unlabeled instances. With the ranking function, a two-stage ELP algorithm is developed by
integrating both query and document selection into active learning. However, the computa-
tional cost is quite expensive for high-dimensional feature space or a large amount of labeling
sets. As a result, the feature space may need to be rescaled in this case.

3.1.3 Variance reduction

Variance Reduction, as its name suggests, intends to minimize the model error rate by select-
ing instances with the minimum variance. Suppose we are given an instance x, a component
learner’s expected error, E7, on x can be decomposed as follows,

ET[(3 — »)*Ix] = Er[(y — Elylx])?]
+(EL[$] — Elylx])? )
+EL[( — ELI3D*

where y and y are a model’s predicted output and a true label for an instance x respectively;
E7[.] denotes an expectation on the labeled set L; E[.]is an expectation over the conditional
probability P(y|x), and E7[.] is an expectation over both.

In Eq. (9), the first term on the right-hand side represents noise in a data set. The second
term signifies the bias caused by the component algorithm itself, which is stable for a fixed
algorithm. The last term is the variance of a learner arouse by ignoring sampling diversity.

Through the above analysis, it is easy to understand that the model has nothing to do with
noise and bias; minimizing the variance is the only way to minimize the total expected error.
As aresult, an algorithm searches the best possible instances to minimize the output variance
and the total expected error. Let o2 =E L —E L[&])z], the Variance Reduction query
strategy can be described as follows:

KR = argmin(ogﬁx (10
X

This type of method often takes advantage of a statistical model measuring Fisher Informa-
tion to evaluate the variance, which is a partial derivative of the log-likelihood function with
regard to a model parameter. Minimizing the variance over its parameter estimation is equiv-
alent to maximizing the Fisher Information Function. The advantage of this kind of approach
is that the information matrices representing the variance simulate a model retraining process.
Settles and Craven [45] extended this algorithm to probabilistic sequence models such as
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Conditional Random Fields [18]. However, the biggest challenge is with computational com-
plexity. Each new instance requires a K dimensional square matrix, where K is the number
of parameters in a model. The large number of K makes it intractable. A possible resolution
is applying a reducing dimensionality technology such as Principle Component Analysis to
reduce the parameter space. Hoi et al. [19] formulates batch instances selection into a semi-
definite programming problem with a bound optimization algorithm. Hoi et al. [20] solves the
Semi-Definitive Programming problem by exploring the properties of submodular function.

In addition to Fisher’s information criterion, Vijayakumar et al. [92] took advantage of
projection by making a trade-off between expanding the approximation space and reducing
variance. Saar-Tsechansky and Provost [42] used bagging sampling to measure the variance
in the probability estimates for unlabeled instances. A minimal variance principle is proposed
for instances of stream selections, and a dynamic classifier weight updates the global minimal
variance [65].

Furthermore, the setting for variance reduction has been applied in the dual control prob-
lems, which focus on finding an optimal control law. A lot of solutions are based on the
variance minimization in active learning. These approaches [24,35,56] either add a variance
term or an innovation process, or consider it as a constraint to perform the active law selec-
tion process. However, they always cut the time horizon into several small periods. A new
variance-based algorithm taking the global time horizon into account is proposed by Li et al.
[30] to find an optimal control law for linear-quadratic stochastic controller problems. Based
on this research, it is extended to a discrete time situation in the same problem.

3.2 How to evaluate selected unlabeled instances

Following the above review on “how to select unlabeled instances for labeling”, we further
explore “how to evaluate utility of the selected unlabeled instances”. In general, instances
utility is computed based on the model prediction results. According to the number of models
constructed in a specific issue, we categorize the evaluation approaches into two types: query
by a single model and query by a committee.

3.2.1 Query by a single model

The most straightforward framework is to rely on one single model trained from the training
set. After an unlabeled instance is queried, an output probability distribution is generated
based on the model prediction result. In this case, the model can choose an effective query
strategy to compute the instances importance with respect to the output distributions. By doing
s0, the most informative instances are the most uncertain ones for the underlying model. Sup-
pose we are given a labeled data set DL = {el e, ¢*}, where s denotes the size of the
labeled data set, and ¢! denotes the ith instance in DL. Each instance ¢! = { ff, fzi, ,;, yi }
is represented in a feature space .# consisting of each feature value and its class label y. The
model construction process is to train a model based on the information provided by DL.
There are numerous methods for single model construction, which can be roughly organized
into the following two categories.

Model built based on the whole instance space: This is a basic and simple method for build-
ing models. In this scheme, a model is trained on all labeled instances from both feature values
and class labels viewpoints. Therefore, the prediction function is an approximate mapping
function from the feature space .# to the class label space %, which can be denoted by

p() F—=> ¥ (11)
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Fig.3 Difference between a model built based on the whole instance space, and b model built based on partial
instance space. The red and yellow rectangles denote two independent feature subsets; The green rectangles
denote label domain; the white rectangles represent the features subset is not used in the model (colour figure
online)

Model built based on partial instance space: In this case, input feature space is separated
into two subspaces (% = .#| x .%,), where .% corresponds to a different view of an instance.
Moreover, the two subspaces are conditionally independent. Therefore, each instance ¢’ is
given as a pair of feature subspaces (A’ , é). Assuming that each subspace provides suffi-
cient information for building an accurate model, we can build a model based on information
from either “view”, whose target function p (.) is denoted by,

pQ):Fi—= % (j=1or2) (12)

The above model is also commonly applied in co-training classifications tasks, where
multiple models, each of which is based on a special “view”, are constructed with this
strategy. Figure 3 illustrates the difference between the above two model construction meth-
ods. Compared with a model built based on the whole input space, this strategy treats the
features as conditionally independent, whereas the former treats each feature as an IID. In
addition, this strategy reduces the model construction and label prediction costs compared
to the former.

3.2.2 Query by a committee

Another well-motivated framework is called Query By Committee. This scheme uses a clas-
sifier committee constructed from the training set. When an instance is queried, each member
makes a vote on the class label of the instance. The final predictions are the majority voting
of the committee members. The most informative instance is the one with the most dis-
agreement in the prediction of the classifier ensemble (i.e., committee). The objective of this
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Table 3 Major models for query by committee

Model Sample distribution Aim
Query by bagging Not change Reduce variance
Query by boosting Change

setting is to reduce the hypothesis space with a classifier ensemble forming a committee. In
other words, it tries to search an optimal hypothesis within the version space, which is a set
of models built based on the same training set. Query by Committee seeks a few ambiguous
instances to find a best model with a small set of hypotheses. In order to implement a Query
by Committee (QBC) algorithm, two essential tasks need to be completed: (1) construct a
committee of hypothesis representing the different fields of a version space; and (2) design a
measure to evaluate the disagreements between committee members. The skeleton algorithm
is described in Algorithm 2.

Algorithm 2 Algorithm: Query by Bagging
Require: The selected optimal subset at each time: ¢
The number of classifiers: A
The size of unlabeled instances pool Y . 1%
The initial training set 2L ;
Ensure: the final classifier model 7
1: while do not achieve the budget do
S1,82, ..., 8, < Sampling(2*);
& < h(S1), h(S2), ..., 1(S));
fori=ito y do
u; < utility(x;, €);
end for
¥ < Select an optimal subset with maximal utility values;
DL — DL v,
9: DU « DU\ y;
10: 1 < r(DL);
11: end while

AR A

It is critical for QBC to form a committee with the consistent hypotheses that are very
different from each other. Based on different sampling algorithms, two classical practical
implementations of this approach are Query by Bagging (OBBagging) and Query by Boost-
ing (OBBoosting) [82], which use Bagging and Boosting, respectively. We summarize the
main idea and the differences between two models in Table 3.

From Table 3, one can conclude that the major difference between QBBagging and
OBBoosting is the building of classifier ensemble. Query by Bagging generates the random
instances of the training set using an identical sample distribution, whereas the subinstances
are obtained by an input set with changing distributions replying on the hypothesis space.
Moreover, the main idea of the two variance approaches of Query by Committee is to reduce
the variance of the hypothesis by constructing a set of classifiers on different instances of the
same training set.

Numerous algorithms have been developed based on the above two frameworks. Copa
et al. [12] presented an unbiased uncertainty measure that is a variance of the Entropy metric
under the Query by Bagging framework. It constructs a classifier ensemble on bootstrap
instances with bagging technology, so that each classifier member is trained with different
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parts of the instances in the set, which help achieve the sampling diversity requirement. More-
over, the new approach is tested on image classification tasks with a heterogeneous classifier
ensemble, which results in a high convergence rate. At the same time, it has been shown that
the original Query by Bagging design does not work well on local classifiers such as the kNN
algorithm. This is because the local classifier feature selection is very sensitive to the training
process, whereas the classifier ensembles do not focus on selecting useful feature subsets.
To address this issue, Shi et al. [48] uses bagging to select the features for local classifiers
under an active learning framework.

Conventional Query by Boosting does not have a consistent explicit objective function to
combine base learners and query metric. Moreover, the computational complexity for boost-
ing is relatively high, and one cannot dynamically decide the size of the classifier ensemble.
To this end, Wang et al. [54] introduced a complicated framework unifying the active learning
boosting and semi-supervised learning, building a competitive function integrating the two
algorithms. An incremental committee algorithm is developed under the framework, which
makes it converge at a low cost. Huang et al. [23] extended the binary Gentle AdaBoost algo-
rithm to a multi-class classification with multi-class response encoding scheme. At the same
time, they make use of Query by Committee to query the utility sample. Query by Committee
is commonly coupled with different selection strategies, such as least confidence, margin, and
entropy and so on. Some strategies take the disagreements between the classifier members
into account, while others consider the output class distribution in the classifier ensem-
ble. Zhao et al. [61] developed a new selection scheme by integrating Vote Entropy with
Kullback-Leibler divergence under the Query by Committee framework, which choose
instances in the terms of class distribution and inconsistency between the classifier mem-
bers.

QBC seems to reduce the number of labeled instances exponentially. The native algorithm
has unreasonable time complexity because of the voting process between hypotheses. Fine
et al. [14] applied QBC for linear separation and random walk, involving converting both
exponential problems to a convex problem. The key technique is to drop the Bayes assump-
tion if the concept classes have symmetry property. They also set the radius threshold of a ball
in a convex body. Many studies have confirmed that QBC can solve linear separation issues
with an assumption that hypotheses are presented explicitly under the feature space but it is
ineffective for the case of high-dimensional feature space. Gilad-Bachrach and Navor [16]
designed a kernel query by committee algorithm, whose running time does not depend on
the input dimension, but on the size of labeled data set.

4 Active learning based on instance correlations

Many studies suggest that active learning based on single instance information tends to select
outliers [41]. Moreover, the selected instances may also have redundancy. These are because
that the uncertainty of a specific instance is calculated based on its own utility with the
instance correlation inherently ignored. In order to address this issue, instance correlations
are further taken into account to avoid information redundancy.

Definition 8 Active learning based on instance correlations: Given a domain D, consist-
ing of an unlabeled data set DV and label space ¢/, an utility function u(.) = f,(.) X q.(.),
where f,(.) is an uncertainty metric function and ¢.(.) is a correlation metric function,
instance correlation-based active learning tries to select most informative sample/sample-
label pairs according to u(.).
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Table 4 Different settings of active learning based on instance correlation

Subsettings

Related areas

Instance view

Feature

Feature-label pair

Exploration on feature
correlation
Exploration on label
correlation
Exploration on feature
and label correlation
Exploration on graph

Clustering correlation
matrix analysis
Multi-label learning
constraint inference
Clustering

Collective classification

J

J
J
v

structure

4.1 How to select unlabeled instances

In instance correlation-based active learning setting, a correlation function is integrated into
a utility function with the assumption that instances are dependent on each other. Compared
with Definition 4, this strategy selects instances from both correlation and uncertainty views
rather than from the uncertainty aspect only. For some multi-label tasks, we are given a
portion of labels of an instance, so a sample-label pair can be considered as an object to
assess its utility instead of using feature values of the instance only. Based on different types
of correlations, we categorize this setting into three subcategories as shown in Table 4 and
summarize the relationship between traditional machine learning and various subsettings in
this strategy.

4.1.1 Exploration on feature correlation

In this scheme, most algorithms exploit feature correlations by using clustering methods.
Many studies have shown that semi-supervising algorithms can facilitate the clustering pro-
cess. In active learning setting, a small labeled training set and a large unlabeled pool provide
a semi-supervised learning environment, which makes it possible to incorporate clustering
algorithms to group instances before an active query starts. A simple clustering partitions
instances based on features information. In the clustering algorithms, a similarity measure
is developed as grouping criteria. Thus, the utility of a single instance is weighted by the
average similarity over all other instances in the unlabeled set, which is described as follows:

B
. ful@) IZUJ' (x, x") (13)
X = argmax f,(x) X { — simi(x, x
gx U —~

where f,(.) is the uncertainty function of a single instance, which is calculated according to
the definitions given in Sect. 3.1, U denotes the size of unlabeled data set, sim (x, .) denotes
the similarity function to evaluate the distance between two instances, and B controls the
importance of density term. The utility of an individual instance is weighted by average
similarity over the unlabeled data set. The most representative instances selected from each
group form an optimal subset with maximum uncertainty.

Traditional similarity metrics compute the average similarity for each instance. For data
set with large volumes, the computational cost can be expensive. Some alternative approaches
[15,34] have been developed based on the idea that each cluster can be considered as a dense
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Fig. 4 Relationships between the algorithms used in exploration on feature correlation and evaluation
granularity

region in the input space. Chen and Subramani [10] implemented a simplified version of
the information density function by computing the similarity between the instances and the
mean point. This function requires less computation than Eq. (13) under assumption that
there is only one cluster in the data set. Depending on different corpus used in real-world
applications, the first term of Eq. (13) can be replaced by other uncertain sampling schemes,
such as least confidence, margin and so on. In addition to the exploration on features corre-
lation using clustering algorithms, Sun [51] utilizes a feature correlation matrix to measure
the property difference between pairwise examples.

Furthermore, the above approaches for feature correlation fall into two cases based on
“how to evaluate selected unlabeled instances”. Traditional algorithms represent instances
using an feature vector, so that similarity function evaluates instance correlation in terms of
feature values. In fact, correlation exploration on feature value is insufficient. Take text clas-
sification as an example, conventionally, the similarity comparison on pairwise documents
is measured by accumulating the occurrence rate of each term/word. This approach can only
group documents with many identical words, while semantic relations like acronyms and
synonyms are ignored. To this end, the content (or semantic)-based similarity measure has
been proposed. Huang et al. [22] utilized Wikipedia to design a concept-based representa-
tion for a text document, and evaluated the content correlation of pairwise documents at the
granularity of Wikipedia concepts to find instance-level constraints. Nguyen and Smeulders
[37] proposed a representative active learning algorithm considering the prior distribution of
the instance set. However, one weakness of this method is that it is only effective in linear
logistic regression, which means all the clusters are modeled with the same parameters. To
address this issue, Yan et al. [58] introduced a new framework for semi-automatic annotation
of home video under the active learning strategy. In their design, an off-line model is built on
a small labeled data set. The initial model is adjusted with the local information of a specific
home video obtained online. In this paper, they used four semantic concepts to present the
labeling process.

The relationships between the algorithms used in this strategy and evaluation granularity
are summarized in Fig. 4.

In the previous work, various similarity measures are designed for feature correlation
exploration. There are three commonly used similarity functions.

A) Cosine Similarity Cosine similarity is a measure which calculates similarity between
two vectors by finding the cosine of the angle between them. The formula is defined as
follows:

- =
X - Xy

— T =
2 1> x|

Simeos (x, x%) = (14)

where X is a fixed-length feature vector of the instances x, representing the inner dot product
of two vectors, and || - || is the vector norm.
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Cosine similarity is widely used in sequence instance classification, especially in sequence
classification tasks. For instance, an improved k-Nearest Neighbor Algorithm-based Cosine
Similarity is applied for text classification [29]. A multi-criteria-based active learning for
name entity recognition exploits the utility of an instance from three criteria, including for-
mativeness, representativeness, and diversity [47]. Meanwhile, it employs two criteria com-
binations to select instances. Cosine similarity is also used to measure similarity between
words in the representativeness strategy.

Cosine similarity is very effective for instances with low-dimensional features, which
avoids unnecessary computation. It evaluates the similarity on the original input space with-
out subspace transition or matrix connection. Nguyen and Li [38] proposed a cosine similarity
metric for face verification. Unlike comparing two face based on the traditional Euclidean
distance metric on a transformed subspace, they used cosine similarity on the original input
space. This similarity metric also plays an important role on text-independent speaker verifi-
cation. Classical variable score normalization techniques define speaker subspace and channel
factors separately, and estimate them jointly. To reduce computing complexity, Shum et al.
[49] proposed a new score normalization scheme with cosine similarity, effectively reducing
the additional computation at each adaptation update process.

B) KL Divergence Similarity Kullback—Leibler divergence is a non-symmetric measure
capturing difference between two instances. The utility of each instance is weighted by the
summation of the difference over the rest instances in the unlabeled pool. The exponential
KL divergence similarity function is defined as

J

sim (v, x') = exp [ =31 D P(f1%)log
Jj=1

P(fi1 %)
v P(fil%n) + (1 — ) P(f})

5)

The smoothing parameters y; and y, control the divergence speed and encoded distribu-
tion in the denominator, respectively. X,, is a J-dimensional feature space, P( f i | %) denotes
posterior probability of containing a feature f;. P(f;) is simply a marginal probability of
feature f; over all instances in the pool.

KL divergence has been applied to active learning to evaluate different class output dis-
tribution between the classifiers in the ensemble, such as named entity recognition [2] and
information extraction [25]. Because KL divergence has a non-negative value, the larger the
value, the more different the pair is, and a zero KL divergence value indicates two identical
distributions. When taking a peaked distribution as a benchmark of certainty, KL divergence
is very similar to cost-testing [36].

Due to the non-symmetric property of the measure, the similarity between pairwise
instances should be computed twice, implying a high computational cost. In order to improve
the computational complexity, Zhao et al. [60] developed an active learning model based on
this strategy for telecom client credit risk prediction.

C) Gaussian Similarity Another exponential similarity measure used to estimate infor-
mation density is called Gaussian Similarity, which is an exponential Euclidean distance
aggregating all the distances on each feature. The formula is represented as

J

SiMGauss (x, x) = eXp | — Z
j=1

< )2
(x 2xu ) (16)
o

where o2 is the variance in the Gaussian distribution. Different variance can be set for dif-
ferent feature, but there is a challenge for setting appropriate parameters. Moreover, it has
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been suggested that a model with several parameters does not improve the effort of represent-
ing the similarity. A semi-supervised learning using Gaussian fields and harmonic functions
integrates this query scheme to select most informative instances [64]. Zhu et al. [57] further
introduces a combination of active learning and semi-supervised learning under the above
framework. Moreover, in [27], graph kernel functions based on the inverted square Euclidean
distance and Gaussian similarity, respectively, are evaluated in the context of rating prediction
problems. The experimental results show that Gaussian functions outperforms other kernel
functions in most cases.

4.1.2 Exploration on label correlation

For multi-label and multi-task problems, the output space contains multiple class related
labels, which means that outputs are subject to some inherent correlations, such as agree-
ment, inheritance, exclusive and so on. These correlations provide valuable information for
reducing prediction cost. To this end, many studies have leveraged output constraints to
improve the learning process [7-9], where the label correlation is used for model parameter
estimation or inference on unlabeled instances. Zhang [59] introduces a cross-task infor-
mation metric for multi-task active learning, whose utility is measured by all the relevant
tasks reachable through task output constraints. This framework combines uncertainty sam-
pling metric with inconsistency of prediction on coupled tasks. The main procedures of the
algorithm are as follows.

(1) Choose a reward function for a single task: Given an unlabeled sample x, a utility func-
tion Ul is used to compute its importance for improving model performance, which can
be denoted by

UL(Y, x) = " p(Y = y[)R(P, Y =y, x) (17)
y

where p represents the posterior probability of sample x belonging class y, R() is a
regard function. This formula accumulates the reward on each possible label y.

(2) Specify the constraint set between task outputs By constructing the propagation rules,
the algorithm computes the set of propagated outcomes for each possible label. The set
of propagated outcomes Propc(Y; = y;) is defined as the inferred outcome labels from
task ¥; = y; based on constraint.

PTOPC(YiZyi)Z{Yijjlyi:yi—ngZyj} (18)
Based on the propagated outcomes, the reward function R(Y; = y;, x) is defined as
follows:
R(Y; = yi, x) = > R(Bj. Yj=j.x) (19)
Yj =Yj€ Prope (Y; = y;)
Y. e UL®x)

J

(3) Compute cross-task value of information for a sample-task pair: With Eq. (19), the
cross-task utility for a sample-task pair is defined as follows.

UI(Y;, x) = D pi(Yi = yilx) > R(p;,Yj=yj,x)  (20)
Yi Yj=yj €Propc(Y; = y;)
Yj € UL(x)

With the above three steps, the algorithm selects the most informative sample-label pair
which maximizes the UI value.
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Qi et al. [40] proposed a two dimensional active learning algorithm for multi-label prob-
lems, which explores the uncertainty of sample and label correlation concurrently. The novel
method requests the annotation on the sample-label pair, once added into the training set,
is expected to minimize generalization error. In their paper, they derived a Multi-labeled
Bayesian Error Bound for the sample-pair selection.

Given a sample x and its labeled and unlabeled parts U (x) and L(x). Once y; is acti-
vated to ask for labeling, the Bayesian classification error €(y|ys; yr (x), x) for an unlabeled
yi € U(x) is bounded as:

1 m
eIy YL, %) = 2 D AH Gilyee), ©) = MIGis yslyeeo, )} 1)

i=1

where

H(i; yslyeo, ) = D A=Pi =1,y =rlyreo, OlogP (i =1, ys = rlyL))
t,re{0,1}

(22)

which denotes the entropy of the sample-label pair and MI(X;Y) = H(X) — H(X]|Y),
denoting the mutual information between y; and y; given unlabeled part U (x). Accord-
ingly, the algorithm selects the most informative sample-label pairs, which are expected to
reduce the Bayesian classification error over the unlabeled pool to the greatest extent. Before
selecting a sample-label pair (x;, ys), the expected Bayesian classification error is denoted by

1
e’(P) = ] > eOlyLw»x) (23)

xeP

After the pair is selected, the expected error is calculated as follows

a 1
€!(P) = 157 1 €0y x0) + > €OlyLw.x) (24)
xXeEP—x;
Therefore, the goal of the algorithm is to select a best (x}, y) which maximizes the error
reduction Ae(P), that is
XX, y¥) = ar max Ae(P
( s ys) gxseP,yseU(xx) (F)

= argBlGiI} —Ae(P) (25)

where Ae(P) = e?(P) — ¢2(P). Applying Egs. (22-25), we have

(7, y))=arg  max  MI(yi; Ys1YL(x).x5) (26)
xs€P,yseU (xy)

Consequently, the method selects the sample-label pair for labeling according to Eq. (26),
by maximizing the mutual information at each loop.

4.1.3 Exploration on feature and label correlation

Some algorithms exploit both feature and label correlations simultaneously. In addition to
comparison on the feature similarity, this scheme further explores the neighbor’s prediction
information for a specific instance. Godec et al. [17] designs a hidden multi-class repre-
sentation to capture intra-class variability for object detection for an image, i.e., a binary
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classification task discriminating foreground from background. In their design, they applied
a classifier-based bootstrapping with online multi-class classifier and generated virtual clas-
ses, which are separated into negative and positive classes. Based on these label correlations,
each modality decides whether to generate a new virtual class. Then we utilize clustering to
find a context background, which explores sample correlation from the view of features. The
main process is as follows: In the first step, it trains an initial classifier to discriminate object
from background, and then applies it to the current scene. For each sample, misclassified by
the model or close to the decision boundary, a new virtual class is added to the multi-class
models. In this model, Gradient Boost algorithm is used to combine a number of selector f,,,,
to a strong one

M
F(x) =" fu(®) 27)
m=1
Each selector f;, is formed by a number of classifiers { f;;.1(x), ..., fu.n(x)}, and is

represented by its best classifier which minimizes the generalization error. For each fi, ; (x),
online histogram is used to evaluate their confidence on prediction. For example, one can
use symmetric multiple logistic transformation in Eq. 27, Where p; can be calculated in the
online histogram. Since the model is built on the context of scene, it can also handle changing
context.

I J
£i) =logp;(x) — 5 > logpi(x) (28)
k=1

4.1.4 Exploration on structural correlation

A graph is a good data structure to present instance correlation in a data set. Given a graph
G = (V, E), each node V; denotes an instance x;, which is denoted by a vector as introduced
in Definition 1. Each edge E;; =< V;, V; > describes some relationship between two nodes
Vi and V;. Take web page link as an example, the web page is likely to have similar topics
with its link pages; therefore, each web page is denoted by a node, and the link relation-
ship between the web pages is denoted by the edge. Consequently, we can explore instances
correlation from the graph structure. When the label of a node is annotated, the labels of its
neighbors can also be inferred, which reduces labeling cost.

In this graph structure setting, collective classification is a key method used for predicting
labels of nodes in the graph simultaneously. Generally, the label y; of a node x; depends on
its own features as well as the labels y; and features of other nodes x;.

Various collective classification methods have been proposed with regard to the struc-
tural correlations. Bilgic et al. [3] proposed a novel active learning for network instances.
They constructed a local collective classification model on a complex object, which is a vec-
tor including its local features x; and an aggregation of features and labels of its neighbors
aggr(N;). The collective classifier CC is used to learn P (y;|x;, aggr(N;)), and a content-only
classifier CO based on local node information is used to learn P (y;|x;). After clustering the
nodes, the algorithm calculates the disagreement score of each cluster C;, which is defined as

Disagreement(CC, CO, C;, D"y = > LD(CC.CO,V;, D") (29)
V[EC‘/QDU

where LD(CC, CO, V;, D) is the entropy value of node V;’s labels over the output spaces.
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Fig. 5 Active inference using Reflect and Correct Method. We iteratively label the nodes with a collective
model. To predict node mis-classification, we build a classifier on the features containing node content and
its neighbor information, and then predict possible mis-classified instances with the classifier, tagging their
mis-classified label as True. After that, they are corrected with RAC strategy

After computing the disagreement score of each cluster, one ranks them according to their
disagreement score and select the first k clusters with the largest score, and randomly sample
an item in each cluster for labeling.

Notice that when a given collective classification misclassify a node, an island of nodes is
likely to be misclassified. To address this issue, Bilgic and Getoor [66] added a “reflect and
correct” scheme under a collective classification model based on their previous work. They
developed an active inference for collective classification, with general process illustrating
in Fig. 5.

The method constructs a traditional collective model on the graph, and then make predic-
tions on the test instances. To find out whether a node is misclassified or not, it constructs a
feature table that is a possible indicator for judging whether a node is misclassified and builds
a classifier on the features to predict the possible misclassified ones. After that, it acquires a
label for the central node among the potentially misclassified ones. The process repeats until
the system’s requirements are satisfied. This iterative process is called reflect and correct
process.

4.2 How to evaluate selected unlabeled instances

After exploiting instances correlation from four different views, we utilize the same frame-
work introduced in Sect. 3.2 to study the evaluation of selected unlabeled instances.
Indeed, there are some extra model construction methods for instance correlation-based
active learning algorithms. For Query by Single model, the application has been expanded
into multi-label tasks. Suppose given a labeled data set D, each instance ¢’ is an multi-label
instance as denoted in Definition 4, which is denoted as x’ = {f{, fzi, R f(;, yi, R y,"n} s
and label constraints rules €. However, an instance may have incomplete label information,
that is, only a portion of labels #'%. With such incomplete information, an accurate model
still can be built by taking advantage of label constraints. To this end, a new model based
on feature information and label constraints is developed for multi-label prediction tasks.
A model can be constructed according to feature information .# and known label informa-
tion Z~, because the unknown labels %'V can be inferred with constraint rules ¢, which
effectively reduces the labeling cost. Therefore, the target function is represented as follows:

p() (7, ") = gV (30)

While for the Query by Committee model, algorithms exploring graph structure corre-
lations have a different committee construction method. They build two classifiers to form
a classifier committee, including a collective classifier and a context-only classifier. The
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Table 5 Summary of all reviewed instance-selection methods in terms of two dimensions: “how to select”
and “how to evaluate”

How to select How to evaluate
One model Committee
1ID Instance Uncertainty sampling Least confidence [31,63] [68]
uncertainty [UNG] [28] [UNGLC]
Margin [UNGMA] [6,11] [18]
Entropy [UNGEN] [5,26,33,87] [12,21,61]
Expected gradient [29,46] [32]
length [EGL]
Variance reduction [VAR] [18,19,24,45] [30,35,42,56,65]
Instance Exploiting feature Cosine similarity [29,38,47] [49]
correlation correlation [EFC] [EFCCS]
KL divergence [2,25] [36,60]
[EFCKL]
Gaussian similarity [27,57,64]
[EFCGS]
Exploiting label correlation [ELC] [7-9] [40,59]

Exploiting feature and label correlation [EFLC] [17]
Exploiting structure correlation [ESC] [3]

former predicts an instance class label according to its own feature information, as well as
its neighbor’s feature and labels information; whereas the latter is built based on its own
information. Query by Committee favors the instance maximizing the disagreement between
the two classifiers. Compared with the committee used in the active learning based on IID
information, the committee member consists of different kinds of classifiers rather than the
same types of classifiers.

5 Algorithm performance comparison

In this section, we first summarize all the reviewed instance-selection methods in Table 5, with
respect to the two dimensions: “how to select” and “how to evaluate”. Then, we select some
representative methods from the two major categories: active learning based on IID instance
uncertainty and active learning based on instance correlations, to conduct an experimental
study and compare their performance, as well as analyze their strengths and weakness.

5.1 Performance analysis

Most papers have shown that active learning gains improvements compared to passive learn-
ing. In the literature, since algorithms are tested and evaluated in different experimental
settings, it is difficult to make a fair comparison across various active learning methods.
In this subsection, we focus on the computational time complexity of some representative
algorithms in each category introduced above. To simplify the representation, the algorithms
used in the section are represented by the abbreviation in Table 5. Because the time com-
plexity for various algorithms relies on the component learner used in a method, which
has a different computation complexity, we cannot make fair comparisons. In this paper,
we evaluate the time complexity of different algorithms based on the time cost for a query
process over the unlabeled data set. We simply summarize the above query strategies in
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Fig. 6 Query strategy comparison on representative algorithms from the instance correlation and time com-
plexity perspectives. The x-axis denotes the time complexity and the y-axis denotes the instance correlations

Table 5 from the dimensions of time complexity and instance correlation, as shown in Fig.
6. From Fig. 6, the time complexity and correlation values of the algorithms taking instance
correlation into account are much higher than the ones based on IID information, which
suggests algorithms taking correlation into consideration require more time to explore cor-
relation information. For active learning based on IID information, we can easily conclude
that Uncertainty Sampling strategies have the lowest time complexity, whereas Variance
Reduction and Expected Gradient length algorithms have a higher time cost among the four
strategies. The observations suggest that simple query strategy costs less time than complex
strategies. For instance, Fisher algorithms need a K dimensional matrix in the calculation,
whereas uncertainty sampling just uses the output distribution to evaluate instances uncer-
tainty. The more details considered in the algorithm, the higher time complexity it requires.
For Expected Gradient length scheme, its application on binary classification has the compa-
rable performance with Uncertainty Sampling. However, for the multi-class prediction and
sequence mining tasks, the time complexity becomes higher as the number of class labels
or the length of sequence grows. The performance of Query By Committee is superior to
EGL and VR, but is inferior to UNG, the main time cost depend on the component learner
it chooses.

When taking instance correlation into consideration, the algorithms exploiting both fea-
ture and output information have almost the same time complexity as the ones exploiting
correlation based on graph structure. The algorithms mining feature information with cluster-
ing algorithms have second highest time complexity. The above observations are consistent
with our expectation. The more information explored, the more time the algorithm needs. For
feature based algorithms, the method with KL divergence has a relative higher time cost than
the other two similarity metrics. This is because KL divergence is an asymmetric metric,
which costs more in computation cost. For output relation exploited algorithms, the time
complexity relies on the number of class labels, which is much less than the number of data
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sets. Therefore, these kinds of algorithms have lower time complexity than the algorithms
based feature information.

5.2 Lessons learned
5.2.1 Lessons from IID-based active learning

IID-based active learning employs an uncertainty evaluation measure to calculate instance
utility values by treating instances as IID samples. All unlabeled instances are ranked based
on their uncertainty values, and the subset with the largest uncertainty values are selected for
labeling.

IID based approaches are commonly used in single-label learning tasks. The three repre-
sentative subgroups are suitable for different types of applications.

— Uncertainty sampling [13,21,93] is often straightforward for probabilistic learning mod-
els. For example, least confidence has been popular with statistical sequence model in
information extraction [45,93]. In addition, entropy, a general uncertainty sampling mea-
sure, is appropriate to minimize the log-loss of the objective function [31,63]. The other
two uncertainty sampling measures, least confidence & margin, are more suitable for
reducing model error [4-6,33,55], because they favor instances helping to discriminate
specific classes.

— Expected Gradient Length is widely used in applications involving ranking functions
[29,52], such as information retrieval and text classification. Moreover, Expected Gra-
dient Length strategy can be applied to discriminative probabilistic models by using
gradient-based optimization, where the “change” of the model is evaluated by the length
of the training gradient [32,46].

— Variance Reduction can avoid model retraining process by taking advantage of Fisher
Information Function: the information matrices simulate retraining process with an
approximation of output variance [18-20,45]. The setting for variance reduction has
been applied in the dual control problems as well. These approaches [24,35,56] either
add a variance term or an innovation process, or consider it as a constraint to perform the
active law selection process.

When taking individual instance uncertainty value into consideration, the selected instance
subset may contain redundant knowledge and therefore cannot form an ideal candidate set.
In addition, for Expected Gradient Length and Variance Reduction based methods, there are
some practical disadvantages in terms of computational complexity. For high-dimensional
feature space or large data sets, Expected Gradient Length is computationally expensive and
its performance can deteriorate significantly if features are not appropriately scaled. In other
words, the instance utility value calculated by expected gradient length can be over-estimated
simply as a result of either one or multiple feature values or the corresponding parameter esti-
mation is quite large, both resulting in a gradient of high magnitude. Meanwhile, the biggest
challenge of Variance Reduction is its computational complexity. Each new instance requires
a K x K matrix inversion for output variance estimation, where K is the number of model
parameters, resulting in a time complexity of O(UK Hw denoting the size of unlabeled
instances). Therefore, for complex models involving a large number of parameters (K ), the
computational complexity of variance reduction-based approaches can be very large. As a
result, Expected Gradient Length and Variance Reduction are empirically much slower than
simple uncertainty measuring strategy like Uncertainty sampling.
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5.2.2 Lessons from instance correlation-based active learning

Comparing with /ID-Based Active Learning, instance correlation-based active learning
explores relationship between instances to calculate utility values of unlabeled samples.
An utility metric is a combination of both an uncertainty function and a correlation func-
tion. Therefore, the selected candidate set balances the instance uncertainty and diversity for
active learning. According to the different correlation exploration views, existing solutions
in this category are further be categorized into four groups: Exploiting on feature correla-
tion, Exploiting on label correlation, Exploiting on both feature and label correlation and
Exploiting on structure correlation.

Different from IID-based active learning which is mainly used for single-label learn-
ing tasks, instance correlation-based active learning has been used for single-label [10,34],
multiple-label tasks [59], and for data with complex structures [17].

— Exploiting on feature correlation is the most common way to calculate instance cor-
relations through feature-based similarity measurements. Among all types of similarity
measures, Cosine Similarity is adequate for sequence classification tasks, such as text
classification [29] and name entity recognition [47]. Meanwhile, Cosine similarity is
very effective for instances with high-dimensional features, such as face recognition
and text classification [38,49], because it evaluates the similarity on the original input
space without subspace transition or matrix connection. KL Divergence Similarity is very
unique and useful for evaluating the similarity between class distributions generated from
different classifiers [2,36]. Gaussian Similarity works well in semi-supervised learning
frameworks [57,64] and graph kennel function [27].

— Exploration on Label Correlation aims at solving multi-label learning and multi-task
learning problems by exploring the output constraints to improve the learning process
[7-9], as well as to reduce the prediction cost.

— Exploiting on both feature and label correlation mainly handles data set with multiple
labels by considering feature and label correlations at the same time. For example, one
can capture multi-class correlation to represent intra-class variability for visual object
detection and tracking [17].

— Exploiting on structure correlation denotes instance correlation using a graph representa-
tion, assuming that an instance’ neighbors share the same labels as the instance. Collective
classification is a key method employed for predicting the labels of nodes in the graph
simultaneously. This setting is applicable to networked data [3] and for active inference
problems [66].

While instance correlation-based active learning is effective to reduce redundancy in the
selected candidate set, the computational cost for instance correlation calculation is expen-
sive, especially for data sets with a large number of instances. For non-symmetric similarity
measures, such as KL Divergence Similarity, the computation cost is twice high as the sym-
metric measures. The parameter settings, especially for Gaussian Similarity, can also be a
big challenge. In addition, a common assumption in Exploiting on structure correlation is
that an instance’s neighbor nodes share the same labels as the instance. In reality, collecting
enough labeled nodes are difficult (or impossible), so that prediction results mainly depend
on the network structures, which may reduce the prediction accuracy. Meanwhile, clustering
is often the first step for collective classification, where the quality of the clustering results
can bring big impact to the final results and result in sampling redundancy in the selected
candidate set.
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6 Emerging applications: challenges and trends

The methods reviewed in the previous sections are all in the standard active learning setting,
in the senses that both labeled and unlabeled data sets are available before training, sam-
ples are assumed to be IID in the feature space, and labels are assumed to be provided by
domain experts. However, in many emerging applications, these conditions can hardly be
satisfied. Many challenges are posed for active learning in various complicated scenarios.
The instance-selection methods for active learning in these complicated scenarios are urgent
to explore. In the following, we summarize a number of emerging active learning scenarios.
For each scenario, we will analyze their challenges and discuss the research trends.

6.1 Active learning on streaming data platform

In many real-world applications, a large number of unlabeled instances arrive in a streaming
manner, making it difficult (or even impossible) to maintain all the data as a candidate pool,
such as email spam detection, malicious/ normal webpage classification [97]. This type of
application face two issues. First, it generates diverse and massive data volumes in a short
period of time, making it impractical for domain experts manually examining every datum.
Second, the data stream evolve over time; therefore, the traditional training methods on a
static data set may fail. A natural solution to tackle the two issues is to employ active learning
by selecting a small amount of informative data for labeling to help build a model. However,
traditional active learning does not fit for the dynamically changing candidate pool. Thus,
the challenges of active learning on streaming data platform is threefold: (1) In the stream-
ing data platform, the data volumes come continually, the candidate pool is dynamically
changing, which also leads to the data distribution and decision boundary is evolving con-
secutively, whereas traditional active learning can deal with only static data sets. (2) Because
of increasing data stream, storing all the data is very costly and impossible, whereas tradi-
tional active learning use a candidate pool to store all the data in a data set. (3) In the data
stream framework, because of the drifting/ evolving data volumes, building a model based on
all the labeled data may not be reasonable, while traditional active learning rely on a model
build from all the previously labeled data.

To tackle these challenges, several algorithms have been proposed recently [67,83,84,95,
96]. A Minimal Variance principle [65] is introduced to guide instance selection from data
stream, coupled with a dynamic weight updating rule for data stream with drifting/evolving
concepts. Following the same principle, Chu et al. [67] considered unbiased property in the
sampling process in data streams, design optimal instrumental distributions in the context of
online active learning. Zhang et al. [68] presents a weighted ensemble classifiers and clusters
model to mine concept drifting data streams. Most existing work on streaming data plat-
form rely on building accurate ensemble models [83]. They share the same basic idea: using
divided-and-conquer techniques to handle large volumes of data stream with concept drift-
ing. Specifically, the data stream is partitioned into several small chunks, with each ensemble
member model constructed from one chunk. The member models are eventually combined
in different ways for prediction.

6.2 Active learning with complex data presentations
The massive data set collections of networked data in various domain applications (e.g.,

social network, information network, and document citation) drive the research of flexible
and accurate graph-based prediction models. Vertices classification in a graph is an important
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topic in graph-based models. A simple graph is designed based on a relation measure (e.g.,
distance or similarity), where each node denotes a data element, and the edge denotes the
relation between the corresponding pair of nodes. Given a graph with unlabeled vertices and
a subset of labeled vertices, a model infers the unlabeled nodes memberships, on the strength
of labeled training set and graph structure. A common assumption which a model depends on
for vertices classification is that similar data should be assigned the same class label. Thus,
unlabeled vertices are given the label of its nearest labeled neighbor in a simple way. How-
ever, in most cases, gathering sufficient labeled vertices are very expensive, so prediction
results depend mainly on network structure, which may reduce performance. To address this
issue, active learning focus on reducing labeling cost by selecting an optimal utility vertices
in a graph for the purpose of constructing a superior model.

In general, existing vertices selection criteria falls into two categories. The first type of
approaches is to find an optimal solution for a designed objective function. For instance, [70]
proposes a function which seeks an optimal labeling vertices V © that disconnect most regions
of the graph by cutting minimal edges. However, there is no general algorithms for mini-
mizing the function, and the method may perform worse than random algorithms in some
experiments [70]. To address this issue, Cesa-Bianchi et al. [69] employs active learning
algorithm to find the minimization of the objective function on a spanning trees. Unfortu-
nately, there is no experiments showing its effectiveness on a general graph. They conduct
experiments with random spanning tree (RST) and breadth-first spanning tree (BST). RST
may hide the cluster structure of graph, while, BST are likely affected by parameters like
starting node.

Another kind of algorithms selects vertices corresponding to the disagreement between
classifiers. In their designs, they employ clustering algorithm to group vertices based on graph
topology. Then, they make predictions on each cluster by using a classifier community, and
select samples with the most disagreement in each cluster to form an optimal subset. Bilgic
et al. [3] effectively exploits the prediction difference between a classifier and a collective
classifier, where the former is built with vertices information, while the latter also takes edges
between vertices and neighbor’s information into consideration. However, a fixed number of
clusters are likely to destroy the actual data class distribution.

6.3 Active learning with crowdsourcing labelers

Traditional active learning asks an omniscient expert to provide ground truths to the queried
instances, so that labeled instances can help build an accurate model. By doing so, the expert
is assumed to be accurate (never wrong), indefatigable (always answers the queries), unique
(only one oracle), and insensitive to costs(inexpensive/free annotation cost). However, label-
ing an optimal utility subset is still costly and expensive in many cases. To reduce labeling
cost, crowdsourcing labelers, which are composed of some cheap and noisy labelers, have
now been considered for active learning. Unfortunately, a direct application of crowdsourcing
labelers on traditional active learning is problematic for two reasons. (1) Since only a small
subset of critical instances are selected for labeling, the labeling quality in active learning is
more sensitive to the model’s performance. (2) Since active learning is consisted of multiple
learning iterations, the errors induced in each round will be passed onto the following rounds
and will be amplified. Thus, asking crowdsourcing labelers to directly provide noisy class
labels may not be appropriate in active learning. The tradeoff between the labeling noise and
labeling cost is a big challenge for active learning with crowdsourcing labelers.

To address the above challenges, existing work on active learning with crowdsourcing
labelers mainly follow two directions. One research direction utilizes relabeling strategy to
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obviate the effect of noise. Follow this idea, Sheng et al. [71] proposed a crowdsourcing res-
olution in supervised learning scenarios. Based on Sheng et al.’s work [71], Zhao et al. [72]
applied crowdsourcing labelers in active learning framework by incremental relabeling only
the most import instances. Fu et al. [79] proposed a new active learning paradigm, in which
a nonexpert labeler is only asked whether a pair of instances belong to the same class. To
instantiate the proposed paradigm, it adopts the MinCut algorithm as the base classifier and
repeatedly updates the unlabeled edge weights on the max-flow paths in the graph. Finally,
an unlabeled subset of nodes with the highest prediction confidence are added into labeled
nodes.

Besides relabeling strategy, taking labeling cost into consideration is the other research
direction. Integrating a cost budget into instance-selection metrics, it guarantees that the
selected optimal subset subject to budget constraint, where budget is the total time cost avail-
able on annotation. Vijayanarasimhan et al. [81] formulates a budgeted selection task as a
continuous optimization problem where the optimal selected subset maximizes the improve-
ment to the classifier’s objective, with a labeling cost budget constraint. Proactive learning
[80] focuses on selecting an optimal oracle as well as an optimal instance at the same time
using a decision theoretic approach.

6.4 Active learning for domain adaptations

It is desirable that a model built based on plenty labeled instances in one domain should
perform reasonably well on data from different but similar domains [77]. For example, a
classifier trained to classify “indoor” versus “outdoor” images should be beneficial for train-
ing classifier to classify “building” versus “natural scenery” images. A model on the source
domain straightly applies in the target domain may result in a serious accuracy reduction.
Therefore, we need to additionally label some instances in the target domain, so as to help
leverage the original model apply in the target domain without performance compromise,
which is known as domain adaptation. However, labeling a large amount of instances in the
target domain is a costly and expensive process. So a promising resolution is seeking to
minimize the amount of new annotation effort required to achieve good performance in the
target domain. To reduce labeling cost, active learning can be employed to select instances
to annotate form the target domain of interest.

Active learning in a domain adaptation setting has received little attention so far, where
existing work mainly follows either pool-based or online active learning settings for domain
adaption. In the pool-based active learning setting, Chan and Ng [73] proposes to combine
active learning with domain adaptation for word sense disambiguation system. Shi et al. [75]
employs an initial pool of labeled target domain to help train a in-domain model. In the online
active learning setting, Saha et al. [74] presents a novel approach that use a domain-separator
hypothesis in the active query process, and further leverage inter-domain information. Mean-
while, Zhu et al. [76] proposed a transfer active learning approach which actively selects (and
labels) samples from auxiliary domains to improve the learning for a target domain. Both
approaches in [74,76] can be used in pool-based or online active learning settings.

7 Conclusions
With the goal of labeling the most informative instances to achieve high prediction accura-

cies with minimum cost, active learning is a continuously growing area in machine learning
research. In previous work, the emphasis has been on the design of new query strategies for

@ Springer



Instance selection for active learning 279

instance-selection criteria. In this paper, we categorized existing query strategies in active
learning into two groups: (1) Active learning based on IID instance uncertainty, and (2)
Active learning based on instance correlations. We surveyed the two types of query strat-
egies, analyzed and compared the time complexity of some representative methods, and
briefly discussed some potential issues in the existing designs. A number of emerging active
learning scenarios and new approaches are also discussed in this paper. Our survey, which
mainly emphasizes on instance selection, provides a high-level summarization for interested
readers to take instance correlations into consideration for designing effective active learning
solutions.
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