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In this paper, we propose lazy bagging (LB), which builds bootstrap replicate bags based on the char-
acteristics of test instances. Upon receiving a test instance x;, LB trims bootstrap bags by taking into
consideration x;'s nearest neighbors in the training data. Our hypothesis is that an unlabeled instance's
nearest neighbors provide valuable information to enhance local learning and generate a classifier with
refined decision boundaries emphasizing the test instance's surrounding region. In particular, by taking
full advantage of x,'s nearest neighbors, classifiers are able to reduce classification bias and variance when
classifying x;. As a result, LB, which is built on these classifiers, can significantly reduce classification
error, compared with the traditional bagging (TB) approach. To investigate LB's performance, we first use
carefully designed synthetic data sets to gain insight into why LB works and under which conditions
it can outperform TB. We then test LB against four rival algorithms on a large suite of 35 real-world
benchmark data sets using a variety of statistical tests. Empirical results confirm that LB can statistically
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significantly outperform alternative methods in terms of reducing classification error.
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1. Introduction

The task of supervised classification learning is to form decision
theories or functions that can be used to accurately assign unla-
beled (test) instances into different pre-defined classes. Various ap-
proaches have been proposed to carry out this task. Depending on
how a learner reacts to the test instances, these approaches can be
categorized into two groups, eager learning vs. lazy learning [1].

Being eager, a learning algorithm generalizes a "best™ decision
theory during the training phase, regardless of test instances. This
theory is applied to all test instances later on. Most top-down in-
duction of decision tree (TDIDT) algorithms are eager learning algo-
rithms, for instance C4.5 (Quinlan, 1993). In contrast, lazy learning
[2] waits until the arrival of a test instance and forms a decision
theory that is especially tailored for this instance. Traditional k near-
est neighbor (kNN) classifiers [3] are typical lazy learners. Previous
research has demonstrated that lazy learning can be more accurate
than eager learning because it can customize the decision theory for
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each individual test instance. For example, Friedman et al. [1] pro-
posed a lazy decision tree algorithm which built a decision tree for
each test instance, and their results indicated that lazy decision trees
performed better than traditional C4.5 decision trees on average, and
most importantly, significant improvements could be observed oc-
casionally. Friedman et al. [1] further concluded "building a single
classifier that is good for all predictions may not take advantage of
special characteristics of the given test instance". Based on this con-
clusion, Fern and Brodley [4] proposed a boosting mechanism for
lazy decision trees. In short, while eager learners try to build an op-
timal theory for all test instances, lazy learners endeavor to finding
local optimal solutions for each particular test instance.

For both eager and lazy learning, making accurate decision is of-
ten difficult, due to factors such as the limitations of the learning
algorithms, data errors, and the complexity of the concepts under-
lying the data. It has been discovered that a classifier ensemble can
often outperform a single classifier. A large body of research exists
on classifier ensembles and why ensembling techniques are effec-
tive [5-9]. One of the most popular ensemble approaches is 'Bagging’
[6]. Bagging randomly samples training instances to build multiple
bootstrap bags. A classifier is trained from each bag. All these classi-
fiers compose an ensemble that will carry out the classification task
by conducting voting among its base classifiers.

For all bagging-like approaches (except for Fern and Brodley's
approach [4], which was only applicable to lazy decision trees), the
base classifiers are eager learners. Thus, each base learner seeks to
build a globally optimal theory from a biased bootstrap bag. Because
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Fig. 1. A 20-instance 2-class toy data set with linear "cross" optimal decision boundaries. The horizontal and vertical axes denote the values of the 2 dimensional features.
Each "+" [ "-" represents a training instance belonging to a positive/negative class. (a) Original data set. (b) A bootstrap bag (dash lines denote the classifier's decision
surfaces, dotted areas represent uncertain decision regions, and "4" denotes a test instance). Note that a bootstrap bag may contain duplicate instances. (c) Adding 3NN of

"A" changes the decision surfaces and reduces the uncertainty for classifying "4".

of this, the base learners have high variance, which can reduce clas-
sification accuracy.

Consider a two-class toy data set whose opti-mal decision
boundary! is a linear "cross" as in Fig. 1(a). Assume a learner is
capable of maximizing the regions for each class of instances to
form arbitrarily shaped decision boundaries, by competing with
neighbors from the opposite class. The classifier's decision surface
will then be able to approach the optimal decision boundary (the
dash lines shown in Fig. 1(a)). Now a bagging predictor randomly
samples (with replacement) 20 instances from Fig. 1(a) and builds a
bootstrap replicate bag as shown in Fig. 1(b). Because of the random
sampling process, instances in the bag are biased (compared with
the original training set) and the decision surfaces of the classifier
will change accordingly as illustrated in Fig. 1(b) where dotted areas
indicate uncertain decision regions. At this point, a classifier built
by Fig. 1(b) will experience difficulty in classifying the instance de-
noted by "4". If we could add 3NN of "4" into Fig. 1(b), the decision
surfaces will move towards a higher decision certainty for the local
regions surrounding "4" as in Fig. 1(c). As a result, the classifier built
by Fig. 1(c) can refine its local decision boundaries for the benefit of
the instance "4".

In short, the examples in Fig. 1 illustrate that while increasing bag
independency, bootstrap sampling can introduce bias into each bag
(biased towards selected instances), from which biased classifiers
with high levels of variance will be constructed. Although the voting
procedure may somewhat reduce the variance, it is detrimental to
a bagging predictor's classification accuracy if its base learners have
high variance [10,11].

The above observations motivate our research on lazy bagging
(LB) [29]. The idea is that for each test instance x;,, we add a small
number of its kNN into the bootstrap bags, from which the base
classifiers are trained. By doing so, we expect to decrease the base
classifiers' classification bias and variance, leading to more accurate
classification of xj, than traditional bagging (TB) can offer. We will
study LB's niche and explore conditions under which LB can outper-
form TB.

It is worth noting that the simple toy problem in Fig. 1 turns out
to be difficult for a learner like C4.5, even with a sufficient number
of training instances. In Section 3, we will demonstrate that for the
same problem with 600 training instances, the classification accu-
racy of C4.5 is only 46.95%. A TB predictor's accuracy with 10 base

1 In this paper, optimal decision boundary and optimal decision surface are
interchangeable terms that denote the true underlying hypersurface that partitions
instances into different classes. In contrast, we use decision boundary or decision
surface to denote a classifier's actual hypersurface when classifying instances.

Table 1

Key symbols used in the paper

Symbol  Description

LB Lazy bagging

TB Traditional bagging

kNN A short hand of k nearest neighbors, it also denotes a k nearest neighbor
classifier

K4.5 A lazy learner using a test instance's k nearest neighbors to build a
decision tree

T A shorthand of a data set (training set or test set)

S A shorthand of a small instance subset

N Number of instances in a data set

K Number of nearest neighbors determined by LB

Y A short hand of the whole class space

y A short hand of a class label

Xy A shorthand of the kth instance in the data set

Vi A short hand of the class label of x;

Vi The prediction of the majority classifies of a classifier ensemble on y

B; An instance bag built by pure bootstrap sampling (or TB)

B An instance bag built by LB

L Number of base classifiers of a classifier ensemble

G A short hand of the ith base classifier of a classifier ensemble

iid. independent and identically distributed

classifiers is 75.83%, and the accuracy of LB with 10 base learners
is 95.18%. Increasing TB's base classifier number to 200 increases
TB's accuracy to 79.3%, which is still significantly lower than LB with
merely 10 base classifiers.

The remainder of the paper is structured as follows: Section 2
proposes LB in detail, Section 3 studies the rationale and the niche
of LB, by using the bias-variance theory and the empirical results
drawn from five carefully designed synthetic data sets; Section 4
reports experimental results when comparing LB with four popular
rival methods on a large suite of 35 real-world benchmark data sets
and Section 5 gives concluding remarks and suggests future work.
For ease of presentation, key symbols used in this paper are listed
in Table 1.

2. Lazy bagging

The framework of LB is shown in Fig. 2. Because of its lazy learning
nature, the learning process is delayed until the arrival of a test
instance. As soon as a test instance x;, needs to be classified, LB
will first try to find the kNN of x, from the training set T, and uses
the discovered kNN, along with the original training set T, to build
bootstrap bags for bagging prediction. Because kNN of x; play a
crucial role for LB to classify x;,, we will propose a f-similar concept
to automatically determine the value of K for each data set T to be
detailed in Section 2.1. Finding x;,'s kNN that are indeed similar to x;,
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Input: (1) 7: A training set with N instances}
(2) x;: A test instance with unknown class label
(3) L: The number of bootstrap bags
(4) B: The B-similar value in determining the number of nearest
neighbors for x; (Section 2.1)
Output: y, : A class label for x;

Procedure LazyBagging()

1. K« Determine the value of K for T'(Section 2.1)

2. Calculate attribute weights (Section 2.2)

3. §« Find x’s K nearest neighbors from T

4. Forifrom1toL
B« Bootstrap sampling N-K instances from T
P < Bootstrap sampling K instances from §
Bi«<BjiuUP
Build a classifier C; by using instances in B% and apply C; to
Xi. Denoting the predicted class label by Ci(xy).
5. EndFor

/e o

6.y, « argmax i: 1 (Y denotes the whole class space and y,

yeY =l Ci(x)=y
is the class label with majority votes.)
7. Return y,

Fig. 2. The generic framework of lazy bagging.

is a key for LB to gain improvements. For this purpose, LB employs the
information-gain ratio (IR) measure to discover kNN to be discussed
in Section 2.2.

In contrast to TB which directly samples N instances from a train-
ing set T, LB will i.d.d. sample K and N — K instances, respectively,
from the kNN subset (S) and the original learning set (T). The first
N — Kinstances sampled from T are to ensure that LB-trimmed bags
function similarly to pure bootstrap bags, such that LB's base classi-
fiers can be as independent as possible. The succeeding K instances
from S are to enforce x;'s kNN to have a better chance to appear in
each bag and thus help LB build base classifiers with less variance
when classifying xj,.

Instead of directly putting all x;'s kNN into each bag, LB applies
bootstrap sampling on x;,'s kNN subset as well. Our preliminary study
indicates that any efforts in putting the same data subset into boot-
strap bags will increase bag dependency, and eventually reduce the
prediction accuracy. It is expected that our procedure will ensure
X's kNN have a better chance to appear in each bootstrap bag, with
no (or low) decrease of the bag independency.

After the construction of each bootstrap bag B}, LB builds a clas-
sifier G; from B;, applies C; to classify x;, and generates a prediction
Ci(xp). LB repeats the same process for L times, and eventually pro-
duces L predictions for x;,, C1(x), Co(Xp), ..., CL(X). After that, the
class y that wins the majority votes among the L base classifiers is
selected as the class label for x;.

The LB framework in Fig. 2 can accommodate any learning algo-
rithms. This is essentially different from a previous boosting method
which was designed for lazy decision trees only [4]. Our motiva-
tion in refining local decision boundaries for better learning shares
some similarity with Triskel, a recent ensembling technique for bi-
ased classifiers [12]. Triskel forces base learners to be biased and
have high precision on instances from a single class. In each itera-
tion, it classifies and separates the "easy" instances and then uses
the ensemble members from the subsequent iterations to handle the
remaining "difficult” instances in a recursive way. By doing so, base
learners are able to "converge" to some local problems and solve the
separation of a local region which may look complex globally, but
simple locally.

2.1. The K value selection

The value of K decides the region surrounding a test instance x,
from which LB can choose instances to improve the certainty of the
base classifiers in classifying xj. As shown in Fig. 2, for either K =0
or K =N, LB will degenerate to TB, and for any other K value, a
compromise between the bag dependency and the classifier certainty
must be made. In this subsection, we derive a sampling-entropy-
based approach to automatically determine the value of K for each
data set.

Definition 1. Given a data set T with N instances, assuming pq,
P2.....pN denote the average sampling probability for instance
X1,X3, ..., XN respectively (Z’r\lepn =1), then the sampling entropy of
an N-instance bag B; built by T is defined by E(B;) = —Z;"len log pn.

Lemma 1. Given a learning set T with N instances, the sampling entropy
of an N-instance bootstrap bag B; built by TB is E(B;) = log N.

Proof. TB uses i.i.d. sampling with replacement. Hence the sampling
probability for each instance is 1/N. For a bootstrap bag B; with N
instances, its sampling entropy is E(B;)=—(N/N) log(1/N)=log N. It is
obvious that a bag built by TB has the largest sampling entropy. O

Lemma 2. Given a learning set T with N instances, the sampling entropy
of an N-instance bootstrap bag B; built by LB with K nearest neighbors is

(N-K2 N-K
———log
N2 N2
@N-K)-K = 2N-K
— N2 og N2 .

EB) =

Proof. Given an instance x;, if it does not belong to the kNN subset
S, then in any of the first N — K sampling steps (from T), x; has
1/N probability to be sampled in each step. For the succeeding K
sampling steps (from S), x;'s sampling probability is 0 because it
does not belong to S. So the average sampling probability for x; is
pi = (N — K)/N2.

On the other hand, if an instance xj belongs to the kNN subset S,
then in any of the first N — K sampling steps, Xj has 1/N probability to
be sampled. In any of the succeeding K steps, x;'s sampling probability
is 1/K. So the average sampling probability for x; is p; = (2N —K)/N2.

Obviously, there are N — K and K instances in T like x; and x;,
respectively. So the sampling entropy of Bg is

. (N-K? N-K
FB =T e
(2N7K)-Kl 2N - K
— N2 0og N2 .

Definition 2. Given a learning set T with N instances, we say a
bag Blf built by LB is f-similar to a same size bag B; built by TB, iff
E(B))/EB)) > p.

Definition 2 uses sampling entropy ratio to assess the statistical
similarity between two approaches to constructing bootstrap bags.
Any two bags built by TB are considered conceptually equivalent,
since their sampling entropies are the same. Because LB changes the
sampling probability for some instances, a bag built by LB will have
less sampling entropy. The higher the p value, the more the bags
built by LB are considered similar to the ones from TB.

Lemma 3. Given a learning set T with N instances and o = K/N as the
ratio between the number of kNN and the total instance number in T,
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to ensure that an N instance bag of LB, B;, is p-similar to a same size
bag B; built by TB, the value of w must satisfy »<logsN1=F.

Proof. According to Definition 2, to ensure that B; is f-similar to B;,
we must have E(B%)/E(Bi) > f. That is,

—((N=K)?/N?)log(N—K)/N*)—(((2N — K) - K)/N?) log((2N—K)/N?)
—log1/N

=p. (1)

Because w = K/N, Inequity (1) can be transferred to

—(1 = »)?1og((1 — w)/N) — 2 — ) - @ - 10g((2 — )/N) -

logN b

Or equivalently,

_ _ (1—(1))2 . _ Q2-m)w
log(((1 — w)/N)) (2 —»)/N)) ) >

log N (3)

Because the number of kNN selected is very small compared to the
total instance number N, w is a small value. We can thus ignore its
high-order values, such as w?. Meanwhile, because N is much larger
than w,we can simplify (1 — w)/N and (2 — w)/N to 1/N and 2/N
respectively. This gives us Inequity in (4).

—log((1/N)1 =2 @/Ny*?*) _

logN B (4)
which is equivalent to
(0]
M >p. (5)

log N

Since loggb = logyb/logya, inequity (5) can be transferred to
N
logy 75 > $ (6)

which is equivalent to 42 < N1-#. Thus finally we get o< 10g4N1—ﬁ.
O

Lemma 3 explicitly specifies the maximal number of kNN for a
data set T, if we require bags from LB to be g-similar to bags from
TB. Given a specific $ value, the maximal K value is proportional to
the total instance number N in the learning set. Because any K values
less than the one determined by Lemma 3 are acceptable, and LB
actually prefers maximizing the number of kNN in bootstrap bags,
LB uses the largest K value determined by Lemma 3.

In all our experiments, we set = 0.99 (which, we believe, is
a pretty tight value) for all data sets. This gives us a range of w €
[0.033, 0.066] for learning sets with 100 to 10 000 training instances.
That is, the number of kNN we selected is 3.3% to 6.6% of the total
instances in the learning set (depending on the actual number of
training instances).

2.2. Attribute weight and distance function

The performance of LB relies on whether the kNN are indeed sim-
ilar to x;, or not. To help an instance x, find similar neighbors, we
need to find the weight of each attribute so that the weighted dis-
tance function can indeed capture instances similar to x. For sim-
plicity, we use IR as a weight measure for each attribute. Interested
users can refer to Quinlan (1993) for more information about IR, or
employ other approaches such as Relief [13] to calculate attribute
weights.

After the calculation of the IR value for each attribute, LB nor-
malizes all the IR values into range [0 1], and uses the Euclidian dis-
tance function in Eq. (7) to calculate the distance between instances,

. A;
where % denotes the total number of attributes, and x;' denotes
the value of the attribute A; for the instance x;. For a categorical

attribute, X0 x'lqi equals 0 iff both x;, and x; have the same value
on A; Otherwise it equals 1:

. 1 R A A
Dis(xy., X)) = ﬁ\/zi:HR/(Ai) . (xkl 7xl:)2_ (7)
3. The rationale and the niche of LB

In order to explore why and when LB are effective in practice,
we will first design five synthetic data sets, whose complexity and
optimal decision boundaries we know exactly. Next, we will borrow
several measures from existing research to study LB on these care-
fully designed benchmark data sets. The first types of measures are
based on the bias-variance theory from the literature [10,14-17];
and the second types of measures are based on Q statistic analysis
[18] for bag and instance level comparisons.

3.1. The synthetic benchmark data sets

Fig. 3 depicts all five synthetic data sets, each of which is a 2-
dimensional 2-class problem with 600 instances (300 instances per
class). For each data set, the left picture in Fig. 3 lists all positive
and negative instances (pink vs. blue), and the right picture shows
the training instances along with the biased points (dark red) in the
data set (the definition of a biased point is given in Section 3.2.1).

In Fig. 3, the first three data sets (Sg 1, Sg » and Sy 5) are generated
such that positive instances are uniformly distributed in the region
between y =sin(x) and y =sin(x) + 6, and negative instances are uni-
formly distributed in the region between y =sin(x) and y =sin(x) — d.
Therefore, all three data sets have the same optimal decision bound-
aries: y = sin(x). The values of ¢ for Sy 1, Sg » and Sy 5 are set to 0.1,
0.2, and 0.5, respectively. Our objective is to investigate how LB re-
sponds to learning data sets with identical optimal decision bound-
aries but different data distributions.

The fourth data set, Nrm, consists of two 2-dimensional normal
distributions, as defined by Eq. (8). The positive class {7 (pink) and
the negative class ¢, (blue) are given by: iy = [uq. 1117 =10,01T,

12 =gz, 1" =11,01", and

Z_020_10 2_0%0_20
=[5 2l=lo 1] ==[3 2]-[c 2]

o 1 1 To1
fX(Mé)—WeXP(*E(X*ﬂ) D) (X*,U))- (8)

o

The optimal (Bayesian) decision boundary of Nrm is found by apply-
ing the likelihood test:

KXo E 202

" [(x — sz)z +y - sz)z])

. 2
KX _ 9 exp (_[(X — )%+ ¢ = )]

9)
26%

Therefore, we can define the optimal decision boundary for Nrm data
set as follows, that is, fx (X|{1) = fx(X|{2):

1

X — 1) + vV = 1y2)?]

72
1 2 2 71

—7[(X_Hx]) +0’—Ny1) ]=4log | —|. (10)
o] 02

Using simple math, we may redefine the optimal decision boundary

in Eq. (10) simply as

IX —Xcl2 =r? (11)
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Fig. 3. Five synthetic benchmark data sets. The horizontal and vertical axes denote the 2-dimensional attribute values for each synthetic data set. The left picture (a) shows
positive (pink) versus negative (blue) instances in each data set; and the right picture (b) shows instances plus biased points (dark red).

where X¢ = [xc ycl = {

“% Myl

2
1Mx2
1

2 2

22
79192 [
92771

Ggﬂxl —0
2
0'2 — 0
(1 — 1x2)% + (y1 — Ityz)2
2_ 2
93791

+4log(gz)].
o1

- U%HyZ and 12 — Given the above conditions, we have X =[—1 0]T and r2 =4.77,

J% _ g% which offers us the optimal decision boundary (the green circle) in
Fig. 3-4(b), with an accuracy of 68.83%.

The optimal decision boundary of the fifth data set, Crs, is ex-

actlya cross which separates uniformly distributed instances into
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four square areas, with the same-class instances occupying the di-
agonal squares.

For all five data sets, the biased points (evaluated by using a
TB predictor with 10 base classifiers) are marked in dark red. The
definition of a biased point is given in Eq. (13).

3.2. The assessment measures
The following measures are used to record LB's performance.

3.2.1. Bias and variance measures

The bias and variance measures have been popularly used in the
literature to analyze the behavior of learning algorithms and ex-
plain the properties of a classifier ensemble. In short, bias estimates
how close the average classifiers produced by a learning algorithm
will be to the genuine concept of the underlying data; and variance
measures how much the classifiers' predictions will vary from each
other. Given a learning set T with N instances and a test set D with M
instances, assuming we apply a learning algorithm on a set of boot-
strap bags By, By, ..., By sampled from T, and build a set of classifiers
C1.GCy, ..., Cp. Given a test instance x, whose true class label is yp,
its prediction from a bagging predictor consisting of L base classi-
fiers is denoted by Equation (12). This prediction (y3,) is also called
a bagging predictor's main prediction:

L
Vi < argmax )" 1. (12)
Y e=1:Cptm)=y

Following the definition in the literature [15,17], we say that an
instance (xp, yn) is "biased" iff the main prediction y;; is different from
yn. The instance is "biased" in the sense that the learning algorithm
has no expertise in identifying it, therefore, its predictions from the
majority classifiers are incorrect. Formally, the bias of the instance
(xn, yn) is denoted by Eq. (13):

. q 0 ifyi=yn
g ={7 i3 2o (13)
The bias definition in Eq. (13) actually denotes a bagging prediction
error, which is assumed to be the minimal error a classifier can pos-
sibly approach. Given a sufficiently large L value, it is expected that
this bias measure can evaluate the classification "offset" produced by
a learning algorithm with respect to the genuine concept of the un-
derlying data [15,17]. Given a data set, the biased instances produced
from different classifiers vary, due to inherent differences among al-
ternative learning algorithms. Therefore, the classifiers' ability varies
in handling different types of learning problems, for instance, a bi-
ased instance for C4.5 might not be a biased one for kNN at all. Fig. 3
lists all biased points for each synthetic data set by using a 5-fold
cross validation. A biased point is evaluated by a TB predictor with
L =10 base classifiers (C4.5).

Similarly, the variance of an instance (xn,yn) is denoted by Eq.
(14), which defines the dispersion of a learning algorithm in mak-
ing predictions. The smaller the variance value, the more the base
classifiers tend to agree on one decision:

L
1
va(T,;cn)g’L:z > (14)
€=1:Co (xn)#YV5;

Both bias and variance definitions depend on the main vote of the
bagging prediction, y};. We therefore introduce an entropy-based
prediction uncertainty (pu) measure, defined by Eq. (15), where |Y|
denotes the total class numbers in T, and py is the normalized his-
togram of L base classifiers’ predictions (the percentage of agreeing
on class y out of L classifiers). Obviously, the higher the certainty of

the classifiers, the lower is the prediction uncertainty value. In the
case that all classifiers agree on one particular class, pu reaches the
minimal value 0.

M
C
pu(T,xn)ch == pylogpy. (15)
y=1

For a test set D with M instance, we can aggregate the bias, variance,
and prediction uncertainty over all M instances, as defined by Eqgs.
(16)-(18):

M
C 1 . C
BI(T, D)Cg = > bi(T, xn)cﬁ (16)
n=1
VAT.D)S = 1 S T, xp) & (17)
(T.D)ck =17 > vaT xn)ch
n=1
g 1 M q
PUT, D) = 52> pu(T, xn) (18)
i=1

Furthermore, to observe the variance and prediction uncertainty of
the base classifiers on biased and unbiased instances, respectively,
we follow the definitions proposed by Kong and Dietterich [15] and
Valentini and Dietterich [17], and calculate biased and unbiased vari-
ance and prediction uncertainty values, as defined by Egs. (19)—(22),
where My, and My denote the number of "biased" and "unbiased" in-
stances in the data set D, respectively:

C 1
VAy(T. D)t = 11 >

G
A VAT, xn)¢: (19)

. §
(xnIbi(T.xm) ¢ =1)

q 1
VAu(T. D)t = e 3

. §
(xnIbi(T.xn) ¢k =0}

VA(T. xn)gg (20)

q 1 C
PU(T. D)t = Wy > PUTxwd (21)
{xn|bi(T.xn)g€ =1
G 1 G
PUL(T.D)¢; = 3= > PUCT. xn)t- (22)

NG
(xn|bi(T.xn) ¢t =0}

In practice, bias, variance and prediction uncertainty values are de-
termined by a number of factors, including the training set T, the
number of bags L, the sampling mechanisms to construct bags, and
the underlying learning algorithm. Because of this, the observations
would be more accurate if we can fix some conditions, and compare
classifiers based on one attribute dimension only. For this purpose,
we fix T, D, L and the learning algorithm in our study, and only com-
pare classifier bias, variance, and prediction uncertainty w.r.t. differ-
ent bootstrap replicate construction approaches (LB vs. TB).

3.2.2. Bag and instance level measures

The disadvantage of the above bias, variance, and prediction un-
certainty measures is that they could not explicitly tell whether
adding kNN into a bootstrap bag can indeed lead to a better base
classifier, with respect to each single bag. We thus introduce three
measures at bag and instance levels. The first measure counts the
number of times LB wins or loses as a consequence of adding kNN
into the bootstrap bag (compared with a same size bag built by TB).
Given a data set T with N instances, we first sample N — K instances
from T, and denote this subset by P. After that, we sample another
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K instances from T, and aggregate these K instances with P to form
a TB bag B;. Meanwhile, we randomly sample K instances from kNN
subset S, and aggregate these K instances with P to form an LB bag Bl’..
The reason that we use such an approach is to minimize the impact
of the random process in bootstrap sampling and thus to clearly
see whether LB can improve each bag (by adding kNN) or not. We
compare classifiers built by each pair of B; and B;. If the classifier
from B;(denoted by C{) is better than the one from B; (denoted by C;),
we say LB bag wins. If adding kNN leads to a less accurate learner,
we say LB bag loses. The results of this measure are denoted by
"win/lose" in Table 3.

The Q statistic [18] analysis is a tool to assess the consistency
among two or more classifiers. Denoting C; and Cj, as two classifiers,
their Q statistic is defined by

NllNOO _ NOlNlO

= N11N00 + NO1N10° (23)

Qik
N1 and N9 in Eq. (23) denote the number of instances for which
C; and C;, agree on their predictions (both correct or both wrong).
N10 means the number of instances that C; predicts correctly but C,
predicts wrongly. The same logic extends to N10. The value of Qi k
varies between —1 and 1. A pair of classifiers that tend to identify the
same objects correctly will receive positive Q value. For statistically
independent classifiers, their expected Q value is 0. For more than
two classifiers, their Q statistic value can be calculated by averaging
across all pairs of classifiers.

In our experiments, for any bag B; (built by traditional bootstrap
sampling), we calculate the Q statistic value between the classifiers
built by B; and Blf respectively (denoted by C; and le). We then av-
erage the Q statistic values over a certain number of bag pairs (B;
and B]’.,j =1,2,...) and denote the value by Q-value in Table 3. For

example, Q-value (LB vs. TB) means the Q statistic value between
the base classifiers built by LB and TB respectively, and Q-value (TB
vs.TB) means the average Q statistic value between any pair of base
classifiers built by TB bags (Bj and B;, i # j). We expect that this com-
parison will help verify the high consistency of the classifiers built
by B; and B}, and the relatively low consistency of the classifiers built
by any two bags B; and B;, i#]j.

To further study classifiers built by B; and B; at the instance
level, we first calculate two values: (1) the percentage of instances
correctly classifiedby C! but incorrectly classified by C; and (2) the
percentage of instances correctly classified by C l’ but incorrectly clas-
sified by C;. We further calculate the difference between these two
values and denote the result by ESD: LB vs. TB in Table 3, which
stands for exclusive set difference. Meanwhile, we randomly select
two classifiers C; and G, i # j, which are built by traditional boot-
strap bags, and calculate the differences between (1) the percentage
of instances correctly classified by ; but incorrectly classified by C;
and (2) the percentage of instances correctly classified by C; but in-
correctly classified by C;. We denoted this value by ESD: TB vs. TB in
Table 3.

For each benchmark data set, we will also report its variance,
prediction uncertainty, and instance level comparison (ESD) with
respect to biased and unbiased instances.

3.3. Why and when LB works

We carry out the following design in all our experiments. Given a
data set, we employ 5-fold cross validation. In each fold, for a training
set T with N instances, we first sample N — K instances from T, and
denote this subset by P. After that, we sample another K instances
from T, and aggregate these K instances with P to form the first TB
bag B;. Meanwhile, we randomly sample K instances from the kNN
subset S, and aggregate these K instances with P to form the first LB
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Accuracy, bias, variance and prediction uncertainty comparisons on synthetic data
sets (BI: bias, VA: variance, and PU: prediction uncertainty)

Measures So.1 So2 Sos Nrm Crs
Accuracy C4.5 55.13 66.72 90.57 63.25 46.95
LB 71.87 87.62 92.98 64.95 95.18
TB 63.85 84.77 92.12 65.03 75.83
p-Value <0.001 <0.001 0.006 0.578 <0.001
BI LB 0.281 0.124 0.070 0.350 0.048
TB 0.362 0.152 0.079 0.349 0.242
VA LB 0.245 0.141 0.058 0.144 0.161
TB 0.283 0.197 0.079 0.152 0.339
PU LB 0.671 0.364 0.178 0.429 0.517
TB 0.749 0.523 0.242 0.446 0.871
All p-values less than 0.001 are denoted by <0.001.
Table 3
The bag and instance level comparison on synthetic data sets
Measures So1 So0.2 Sos Nrm Crs
Win/lose LByin 8.08 7.60 6.94 4.46 7.58
LBoss 1.46 2.04 2.12 4.58 1.90
Q-value LB vs. TB 0.748 0.790 0.915 0.906 0.773
TB vs. TB 0.245 0.461 0.775 0.750 0.064
ESD LB vs. TB 0.052 0.053 0.019 0.000 0.214
TB vs. TB 0.005 0.009 0.002 0.001 0.009

Win/lose: win/lose comparisons of LB bags compared to TB bags. Q-value: Q-statistic
comparison of learners built by LB and TB bags. ESD: exclusive set difference which
accounts for the differences between (a) the percentage of instances correctly classi-
fied by classifier A but incorrectly classified by classifier B and (b) the percentage of
instances correctly classified by classifier B but incorrectly classified by classifier A.

bag B). The reason we are using such an approach is to minimize
the impact of the random process in bootstrap sampling so that we
can clearly see whether LB can improve each bag by adding kNN.

We build L = 10 base classifiers for TB and LB, respectively, and
report the average accuracy of TB, LB, and a single unprunned C4.5
decision tree on the test set. Meanwhile, we also report t-test results
(p-values) between LB and TB at the 5% critical level to ensure that
our observations are statistically significant. The results on accuracy,
bias, variance and prediction uncertainty are reported in Table 2.
Table 3 reports bag and instance level comparison results. The aver-
age number of win/lose bags (over 10 base classifiers) are report in
Rows 1 and 2. Row 3 lists the results of the average Q statistic value
between classifiers built by B; and B}, and Row 4 represents the re-
sults of the average Q statistic value between classifiers built by B;
and any other randomly selected bag B; (j=1,...10;j # i). Rows 5 to
6 in Table 3 report the comparisons of the exclusive set differences.

In Table 4, variance, prediction uncertainty, and instance level
comparisons are calculated from two instance subsets: biased and
unbiased instances. Instead of calculating the VA, PU and ESD values
over all instances (as reported in Tables 2 and 3), we calculate those
values on the collections of biased and unbiased instances, respec-
tively.

3.3.1. Why LB works

The results from Table 2 indicate that LB is statistically signifi-
cantly better than TB on four data sets (Sg 1, Sg 2, Sg.5 and Crs), and
is statistically equivalent to TB on Nrm. Among four data sets, LB's
absolute accuracy improvement (compared to TB) varies from 0.86%
(So.5) to 19.35% (Crs). Meanwhile, for either TB or LB, their accuracy
improvement (compared to C4.5) is not determined by the accuracy
of the base classifier. Neither low nor high accuracy of the base clas-
sifiers can guarantee the improvement of a classifier ensemble. This
is consistent with observations from Kuncheva and Whitaker [19]:
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Table 4
Variance, prediction uncertainty and exclusive set difference comparisons on syn-
thetic data sets

Measures So.1 So0.2 Soss Nrm Crs
VA LB: VA, 0.202 0.115 0.043 0.126 0.120
TB: VAy 0.251 0.172 0.062 0.133 0.297
LB: VA, 0319 0.275 0.254 0.178 0.261
TB: VA, 0.339 0.331 0.293 0.187 0.394
PU LB: PUy 0.577 0.364 0.136 0.382 0.417
TB: PUy 0.686 0.523 0.200 0.400 0.809
LB: PU, 0.832 0.751 0.701 0.514 0.712
TB: PU, 0.859 0.845 0.765 0.531 0.886
ESD LB vs TBu 0.017 0.039 0.014 —0.011 0.139
TB vs. TBu 0.005 0.001 0.002 0.000 —0.001
LB vs. TBb 0.035 0.014 0.005 0.011 0.079
TB vs. TBb 0.000 0.007 —0.000 0.001 0.010

The results are calculated with respect to biased (subscript b) and unbiased (subscript
u) instances, respectively.

low-accuracy base classifiers do not necessarily mean high diversity
among the classifiers.

According to definitions in Eqs. (13) and (16), a learner's bias is
determined by the error rate of the bagging predictor built by the
learner. Therefore, the bias in Rows 5 and 6 of Table 2 are just LB and
TB's error rate, respectively. By putting a small amount of nearest
neighbors into the bags built for each test instance, it is clear that
LB can reduce base classifier bias. This is further supported by the
bag-to-bag comparisons in Rows 1 and 2 in Table 3, where adding
kNN most likely leads to a better base classifier except for on the
"Nrm" data set, which we will further address in the next subsection.
The Q statistic values in Table 3 indicate that the classifier pairs
built by bags B; and B; have a high Q statistic value across all data
sets, which means that LB only slightly changes the classifier by
adding kNN into the traditional bootstrap bags. The instance level
comparisons in Rows 5 to 6 in Table 3 further attest that by adding
kNN into the bootstrap bags, a classifier built by B; will make less
mistakes compared with a classifier built by B;. Take the results
of Sp.1 as an example. The value 0.052 in Table 3 indicates that
the classifier C; built by the traditional bootstrap bag B; will have
5.2% more chance of making mistakes, compared to a classifier C;
built by the same size lazy bag B}. Given 120 test instances in Sg 1,
this is equivalent to 6.24 or more instances to be misclassified by
;. Because of the error reduction at the base classifier level, we
can observe the accuracy improvement of LB over TB across most
benchmark test sets. Therefore, our observations suggest that LB can
reduce base classifier bias by simple data manipulation on bootstrap
bags.

Now let us further investigate classifier variance and prediction
uncertainties. It is clear that LB offers significant reduction of vari-
ance and prediction uncertainty in Sy 1, Sp 2, S5 and Crs, which are
the four data sets where LB outperforms TB. Meanwhile, the amount
of variance reduction is likely proportional to LB's accuracy improve-
ment. For example, LB receives the largest variance reduction on Crs,
and its accuracy improvement on Crs is also the largest among the
four data sets. On the other hand, the variance reduction on Nrm
is marginal, and the accuracy of LB on Nrm is not better than TB.
This observation suggests that adding I;'s neighboring instances into
bootstrap bags can reduce base classifiers' variance when classify-
ing I}, and consequently improve LB's accuracy. The larger the vari-
ance reduction, the more the accuracy improvement can possibly
be achieved. This observation is consistent with the existing conclu-
sions drawn from the classifier ensembling [10,11], where large vari-
ance among base classifiers lead to an inferior classifier ensemble,
and reducing base classifier variance is a key to enhance ensemble
prediction accuracy.

The variance, prediction uncertainty and instance level compar-
isons in Table 4, which are based on biased and unbiased instance
subsets, indicate that the improvement of LB over TB can be ob-
served on both biased and unbiased instances. Interestingly, when
comparing the absolute improvement values over biased and unbi-
ased instances, one can observe a slightly larger improvement on un-
biased instances. Take the variance in Crs as an example, where the
absolute improvement value on biased versus unbiased instances is
0.133 versus 0.177. This suggests that the improvement of LB over
TB mainly comes from base classifiers' variance reduction (the en-
hancement of the prediction certainty) on unbiased instances. This
observation not only supports existing conclusions that "variance
hurts on unbiased point x but it helps on biased points" [17,20-22],
but also verifies that a learner's limitation on some data sets can
be improved through the manipulation on the training data. From
TB's perspective, unbiased points are those instances on which base
classifiers have expertise but occasionally make a mistake. Reducing
base classifiers' variance on unbiased instances enhances base clas-
sifiers' prediction consistency and therefore improves the classifier
ensemble. LB's design ensures that it inherits the bagging property
and outperforms TB on unbiased instances. In contrast, since biased
points are instances on which base classifiers have no expertise, re-
ducing base classifiers' variance on those instances does not effec-
tively help improve a TB predictor. LB outperforms TB on biased
instances by using their kNN to focus on a local region surround-
ing each biased instance and enforcing a local learning, which may
reduce the base classifiers’ bias when classifying this instance and
generate correct predictions.

In short, the accuracyimprovement of LB mainly results from the
fact that carefully trimmed bootstrap bags are able to generate a set
of base classifiers with less bias and variance (compared to classifiers
trained from pure bootstrap sampled bags). This is, we believe, the
main reason why LB works.

3.3.2. When LB works

In this subsection, we argue that (1) from data's perspective, LB
mostly works when the majority biased points are surrounded by
same-class instances rather than instances from other classes, and
(2) from learning's perspective, LB mostly works when adding kNN
to the bootstrap bags can lead to better local learning than global
learning.

Figs. 3-1(a)-3-3(a) suggest that although Sy 1, Sg 2 and Sy 5 have
identical optimal decision surface (y = sin(x)), as training instances
move further away from the optimal decision surface, the problem
gets easier to solve. This can be confirmed by the accuracies listed in
Table 2. Therefore, the data set from S 1, Sg 2, to Sg 5 has less biased
instances (the biased points are justified by TB). In addition, we can
observe that from Sy 1, Sg 2, to Sg 5, the majority biased points are
getting closer to the optimal decision surface. This is clearly shown
in Fig. 3-3(b) where all 50 biased points of Sy 5 sit almost right on
the optimal decision surface. For a detailed comparison, we enlarge
the {(0, 0), (1, 1)} areas in Figs. 3-1(b)-3-3(b) and show the actual
points in Figs. 4(a)—(c). The results suggest that from Sp to Sg s,
the majority biased points have a decreasing chance of being sur-
rounded by same-class instances. In other words, from Sp 1 to Sg 5, a
biased instance x;, will have less chance to have neighbors with the
same class label as x;.. For example, in Fig. 3-3(c), since all 50 biased
points are on the optimal decision surface, on average, the kNN of
each biased point x;, will have 50% chance of having a same-class
neighbor. When biased points are moving further away from the op-
timal decision surface, the chance forx; to have same-class neigh-
bors increases (as shown in Fig. 4 (a) for Sp 1 data set where many
biased points are surrounded by same-class neighbors). An extreme
example is shown in the Crs data set (Fig. 5(a)), where almost all
nearest neighbors of each biased point have the same class label as
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Fig. 4. Enlarged {(0,0)(1, 1)} rectangle areas for Figs. 3-1(b)-3-3(b). Pink squares
and blue diamonds denote positive and negative instances, respectively. Dark red
dots denote biased points justified by a bagging predictor (using C4.5). From (a)—(c)
it is clear that the majority biased points get closer to the optimal decision surface.
As a result, the chance decreases for a biased instance x;'s k nearest neighbors to
have the same class label as x;.
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Fig. 5. Applying the Nemenyi test to rival algorithms' mean ranks of reducing
classification error. In the graph, the mean rank of each algorithm is indicated by
a circle. The horizontal bar across each circle indicates the 'critical difference’. The
performance of two algorithms is significantly different if their corresponding mean
ranks differ by at least the critical difference. That is, two algorithms are significantly
different if their horizontal bars are not overlapping.

the biased instance. Considering that the accuracy improvement of
LB over TB gradually decreases from Crs, Sg 1, Sg 2, to Sg 5, we sug-
gest that if the majority biased points are surrounded by same-class
neighbors, LB will mostly outperform TB.

Now let us turn to the data set Nrm, which consists of two 2-
dimensional normal distributions with the green circle in Fig. 3-
4(b) denoting the optimal decision boundary. Table 2 shows that
a single C4.5 tree achieves an average accuracy of 62.77%, which
is reasonably good considering the optimal accuracy (68.83%). TB
and LB, however, do not show much improvement. LB actually has
worse accuracy than TB, and the p-value shows that LB and TB are
statistically equivalent on this particular data set. Thus, for a data set
like Nrm, the merits of LB disappear. From Fig. 3-4(b), we can see that
the kNN of the majority biased points (210 points) are a mix of both
positive and negative instances. The chance for a biased instance
to have same-class neighbors is not better than having neighbors
from other classes. Therefore, the improvement from LB disappears.
This observation complements our previous hypothesis, and we may
further infer that LB is likely to be suboptimal when the neighbors
of the majority biased points consist of instances from other classes,
rather than the class of the biased point themselves.

The above understanding motivates that LB mostly works when
adding kNN to the bootstrap bags and can lead to better local learn-
ing than global learning. Being 'better' means that, from a test in-
stance's perspective, the learner is able to focus on the small region
surrounding the test instance and build a base classifier with a re-
fined decision boundary. If a biased instance's kNN are mainly from
the same class, adding them to the bootstrap bags will help a learner
build a classifier for a better classification of the biased instance
(compared with a globally formed classifier without a local focus).
The Crs data set in Fig. 3-5 is a good example to demonstrate that
adding kNN improves local learning. The learning task in Crs is es-
sentially an XOR-like problem. A learner like C4.5 has poor capability
in solving this type of problem, especially when data are symmetric,
because the theme of most tree learning algorithms is to consider
a single attribute one at a time and select the best attribute (along
with the best splitting point on the attribute) for tree growing. For a
data set like Crs, a tree learning algorithm may find no matter which
attribute it chooses and wherever it splits the selected attribute, the
results are almost the same. As a result, the algorithm may randomly
pick up one attribute to split with a random threshold, which con-
sequently generates a classifier with an accuracy close to random
guess (50%). TB gains improvement on this data set through boot-
strap sampling where randomly sampled instances may form a bag
with asymmetric data distributions, which helps a learner to find
better splitting than random selection. LB further improves TB by
using kNN of each instance to help the learner emphasize the part
where one attribute is necessary for best splitting. For example, con-
sidering a negative biased instance x, in the middle of the top left
square (the brown triangle) in Fig. 3-5(a), its kNN (about 21 points)
all have the same class label as x;.. By adding x,'s nearest neighbors
to the bootstrap bag, the learner will thus be able to emphasize the
local region and find a good splitting point (closer to (0.5, 0.5)) for
tree growing, and the biased instance (originally evaluated by TB)
can thus be correctly classified by LB.

The above observations conclude that the niche of LB lies in the
conditions that the majority biased points have a large portion of
their kNN agree with them, because from learning's perspective,
such nearest neighbors can help improve local learning in the em-
phasized region. This, however, does not necessarily mean that LB's
improvement is closely tied to a good kNN classifier, that is, LB can
outperform TB only on those data sets where kNN classifiers perform
superbly. As we have discussed in Section 3.2.1, given one data set,
different learning algorithms have different sets of biased instances,
depending on how well a learning algorithm can learn the concept
in the data set. For LB, as long as the majority biased instances of the
base learner have their neighbors largely agree with them, LB can
gain improvement over TB. This improvement has nothing to do with
whether a kNN can perform well on the whole data set or not. In the
following section, we will demonstrate that LB can outperform TB
on a large portion of data sets where kNN classifiers perform poorly.

4. Experimental comparisons

Empirical tests, observations, analyses and evaluations are pre-
sented in this section.

4.1. Experimental settings

To assess the algorithm performance, we compare LB and several
benchmark methods including TB, C4.5, kNN, and K4.5 which is a hy-
brid lazy learning method combining C4.5 and kNN. We use 10-trial
5-fold cross validation for each data set, employ different methods
on the same training set in each fold, and assess their performance,
based on the average accuracy over 10 trials. For LB and TB, we use
C4.5 unpruned decision trees (Quinlan, 1993) as base classifiers be-
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Table 5
Experimental data sets (# of attributes includes the class label)

Data set # of Classes # of Attributes # of Instances
Audiology 24 70 226
Auto-mpg 3 8 398
Balance 3 5 625
Bupa 2 7 345
Credit 2 16 690
Car 4 7 1728
Ecoli 8 8 336
Glass 6 10 214
Hayes 3 5 132
Horse 2 23 368
Ionosphere 2 35 351
Imageseg 7 20 2310
Krvskp 2 37 3196
Labor 4 17 57
Lympho 4 19 148
Monks-1 2 7 432
Monks-2 2 7 432
Monks-3 2 7 432
Pima 2 9 768
Promoters 2 58 569
Sick 2 30 3772
Sonar 2 61 208
Soybean 19 36 683
Splice 3 61 3190
Statlogpeart 2 14 270
TA 3 6 101
Tictactoe 2 10 958
Tumor 21 18 339
Vehicle 4 19 846
Vote 2 17 435
Vowel 11 14 990
Wine 3 14 178
Wisc. Ca. 2 10 699
Yeast 10 9 1484
Zoo 7 17 101

cause both TB and LB prefer unstable base classifiers. We use 10 base
classifiers for TB and LB. LB's K value is determined by fixing the p
value to 0.99 for all data sets. Meanwhile, we ensure that at least
one nearest neighbor should be added into each bootstrap bag, re-
gardless of the data set size. The way to construct LB bags is exactly
the same as what we have described in Section 3.3.

Two single learners (the C4.5 decision tree and kNN) are used to
offer a baseline in comparing rival algorithms. The k value of a kNN
classifier is exactly the same as LB's K value, which varies depending
on the size of the data set. The accuracy of C4.5 is based on the
pruned decision tree accuracy.

In addition, the design of employing kNN to customize bootstrap
bags lends itself to another lazy learning method with less time com-
plexity (denoted by K4.5 which stands for kNN based C4.5). Given a
test instance xy, find its kNNs from the training set, build a decision
tree from its kNNs, and then apply the tree to classify x;,. Intuitively,
the decision tree built by x;,'s kNNs is superior to a pure kNN clas-
sifier in the sense that it can prevent overfitting the local instances
surrounding x;,. In our experiments, K4.5 uses the same number of
nearest neighbors as LB (which is determined by fixing the p value to
0.99), and the accuracy of K4.5 is based on the pruned C4.5 decision
tree.

Our test-bed consists of 35 real-world benchmark data sets from
the UCI data repository [23] as listed in Table 5. We use 10-trial 5-
fold cross validation for all data sets except for Monks3, on which we
use 1/5 instances as training data and 4/5 data as test data because
all methods' 5-fold accuracies (except kKNN) on Monks3 are 100%.

4.2. Experimental results and statistical tests

Table 6 reports the accuracies of rival algorithms on each bench-
mark data set, where all data sets are ranked based on LB's absolute
average accuracy improvement over TB in a descending order. For each
data set, the best accuracy achieved among all tested algorithms is
bolded, and the second best score is italic. Table 6 also reports the
p-values between LB and TB to evaluate whether the mean accura-
cies of LB and TB are statistically different, and a statistically differ-
ent value (less than the critical value 0.05) is bolded. Take the first
data set TA in Table 6 as an example. Because LB has the highest ac-
curacy among all methods, its accuracy value is bolded. The p-value
(denoted by <0.001) indicates that the accuracies of LB are statisti-
cally significantly higher than that of TB. We then can infer that LB
is statistically significantly better than TB on TA.

We further proceed to compare rival algorithms across multi-
ple data sets. We deploy the following statistical tests: algorithm
correlation, win/lose/tie comparison, and the Friedman test and the
Nemenyi test [24].

4.2.1. Algorithm correlation

If we take each method in Table 6 as a random variable, each
method's accuracies on all data sets form a set of random variable
values. The correlation between any two algorithms can be observed
by calculating the correlation between those two random variables.
In Table 7, each entry denotes the Pearson correlation between the
algorithm of the row compared against the algorithm of the column,
which indicates the degree of correlation between the two methods.
For example, although both LB and K4.5 are based on kNN, the values
in the second row indicate that K4.5 has much stronger correlation
with kNN than LB does.

4.2.2. Win/lose/tie comparison

To statistically compare each pair of algorithms across multiple
data sets, a win/lose/tie record is calculated with regard to their
classification accuracies as reported in Table 8. This record represents
the number of data sets in which one algorithm, respectively, wins,
loses to or ties with the other algorithm. A two-tailed binomial sign
test can be applied to wins versus losses. If its result is less than
the critical level, the wins against losses are statistically significant,
supporting the claim that the winner has a systematic (instead of by
chance) advantage over the loser.

4.2.3. Friedman test and Nemenyi test

To compare all algorithms in one go, we follow Demsar's proposal
[24]. For each data set, we first rank competing algorithms. The one
that attains the best classification accuracy is ranked 1, the second
best ranked 2, so on and so forth. An algorithm's mean rank is ob-
tained by averaging its ranks across all data sets. Compared with the
arithmetic mean of classification accuracy, the mean rank can reduce
the susceptibility to outliers that, for instance, allows a classifier's
excellent performance on one data set to compensate for its overall
bad performance. Next, we use the Friedman test [25] to compare
these mean ranks to decide whether to reject the null hypothesis,
which states that all the algorithms are equivalent and so their ranks
should be equal. Finally, if the Friedman test rejects its null hypothe-
sis, we can proceed with a post hoc test, the Nemenyi multiple com-
parison test [26], which is applied to these mean ranks and indicates
whose performances have statistically significant differences (here
we use the 0.10 critical level). According to Table 6, the mean ranks
of K4.5 kNN, C4.5, TB and LB are 3.3143, 3.7429, 3.5714, 2.6286, and
1.7429, respectively. Consequently, the null hypothesis of the Fried-
man test can be rejected, that is, there exists significant difference
among the rival algorithms. Furthermore, the Nemenyi test's re-
sults can reveal exactly which schemes are significantly different, as
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Table 6
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Classification accuracy (and standard deviation) comparison of different methods on 35 data sets from UCI data repository (data sets are ranked based on LB's absolute

average accuracy improvement over TB in a descending order)

Data set K4.5 (%) kNN (%) C4.5 (%) TB (%) LB (%) LB-TB (%) p-Value
TA 47.87 + 321 49.67 + 427 52.05 + 3.24 5429 + 3.42 60.57 £ 2.78 6.28 <0.001
Z00 93.76 + 1.78 93.06 + 2.41 91.64 + 1.52 9238 +1.25 97.09 + 1.22 471 <0.001
Sonar 79.74 + 2.35 73.18 £ 6.75 73.08 + 3.63 75.91 + 2.21 80.05 + 1.78 414 0.001
Vowel 84.44 + 1.87 4051 + 2.02 79.19 + 157 86.37 + 0.99 9019 + 1.12 3.82 <0.001
Autompg 80.64 + 1.62 67.58 + 1.44 78.08 + 1.31 77.67 £ 1.72 8148 + 1.46 3.81 <0.001
Promoters 83.02 + 1.98 77.36 + 2.96 7481 + 3.85 81.89 + 2.91 85.26 + 1.99 3.37 0.018
Tictactoe 91.96 + 0.79 76.30 + 1.89 8453 + 1.22 92.09 + 1.32 95.38 + 0.92 3.29 <0.001
Audiology 73.25 + 1.90 5442 + 2.47 76.15 + 2.04 78.54 + 2.71 81.75 + 1.98 321 0.034
Labor 88.60 + 2.27 84.45 + 257 78.95 + 3.88 84.04 + 425 86.64 + 3.51 2.60 0.042
Balance 82.54 + 0.69 89.28 + 0.98 65.74 + 0.85 74.66 + 0.72 77.23 + 1.04 2.57 <0.001
Hayes 70.38 + 2.53 64.36 + 2.68 7132 + 3.1 73.50 + 2.37 75.76 + 1.18 226 0.005
Tumor 41.83 + 1.02 4618 + 1.87 40.17 + 1.90 39.00 + 1.92 4121 + 145 2.12 0.340
Lympho 82.84 + 2.87 8310 + 238 77.24 £ 259 78.67 + 1.89 80.41 + 2.02 1.74 0.031
Glass 71.92 + 1.65 64.95 + 1.87 66.92 + 2.65 72.62 + 1.88 7431 + 1.62 1.69 0.022
Ionosphere 88.69 + 1.07 84.18 + 0.89 89.12 + 1.18 91.34 + 0.83 92.97 + 0.74 1.63 0.014
Vehicle 72.26 + 1.29 65.06 + 1.03 71.56 + 2.05 73.41 + 0.98 74.94 + 1.02 153 0.044
Wine 95.00 + 0.84 96.06 + 0.93 92.09 + 1.28 94.47 + 0.87 95.62 + 0.89 115 0.087
Pima 71.85 + 1.09 75.00 + 1.05 73.65 + 1.21 7517 + 0.81 76.23 + 0.68 1.06 0.095
Bupa 61.80 + 2.94 63.47 + 221 64.20 + 2.90 69.17 + 1.88 70.23 + 2.04 1.06 0.302
Monks3 97.89 + 0.87 91.49 + 2.24 97.15 + 1.21 98.22 + 0.69 99.24 + 0.44 1.02 0.005
Horse 76.49 + 137 81.61 + 1.26 85.22 + 0.67 84.10 + 0.94 84.96 + 0.63 0.86 0.360
Monks1 91.85 + 4.01 87.51 + 1.74 95.02 + 3.12 98.59 + 0.96 99.42 + 0.72 0.83 0.029
ImageSeg. 96.02 + 0.34 87.24 + 037 96.45 + 0.24 96.94 + 0.47 97.74 + 0.49 0.80 0.043
WBreastc 95.32 + 0.29 90.99 + 0.77 94,51 + 048 94.81 + 0.60 95.59 + 0.51 0.78 0.250
Car 90.03 + 0.50 78.67 + 0.64 91.37 + 0.86 92.58 + 0.80 93.21 + 0.48 0.63 0.053
Splice 93.12 + 0.66 91.66 + 0.82 93.76 + 0.56 94.10 + 0.43 94.64 + 0.52 0.54 0.036
Kr vs. kp 99.19 + 0.11 89.64 + 0.15 99,29 + 0.12 99.36 + 0.08 99.69 + 0.08 0.33 0.026
Sick 98.52 + 0.12 9497 + 0.14 98.68 + 0.16 98.81 + 0.12 99,02 + 0.13 021 0.046
Soybean 90.23 + 0.87 7026 + 1.14 90.13 + 0.77 91.59 + 1.01 91.47 + 0.87 —0.12 0.250
Vote 96.02 + 0.41 92.04 + 0.55 96.16 + 0.31 9591 + 0.48 95.79 + 033 —0.12 0.270
Credit 84.10 + 0.97 86.09 = 0.95 85.55 + 0.98 85.38 + 0.88 85.19 + 0.82 ~0.19 0.440
Yeast 54.12 + 0.93 58.28 + 0.86 55.59 + 1.17 58.84 + 0.92 58.47 + 0.66 -037 0.059
Ecoli 81.43 + 0.96 86.01 + 1.07 82.56 + 1.17 83.72 + 1.06 83.30 + 1.11 —0.42 0.279
Statlogyeart 79.72 + 2.14 8148 + 1.95 75.89 + 1.58 78.34 +£ 233 77.77 £ 0.70 —0.57 0.212
Monks2 55.76 + 2.25 67.12 + 0.38 6713 + 0.92 4932 +2.14 4474 £ 1.77 —458 <0.001

For each data set, the best accuracy achieved among all observed methods is bolded, and the second best score is italic. The p-value indicating a statistical difference (less
than the critical value 0.05) is bolded. All p-values less than 0.001 are denoted by < 0.001.

Table 8

Rival algorithms' win/lose/tie records with regard to their classification accuracies

across 35 data sets

Table 7

Rival algorithms' Pearson correlation over 35 data sets
Pearson correlation K4.5 kNN C4.5 TB LB
K4.5 1 0.777 0.938 0.968 0.958
kNN 0.777 1 0.759 0.722 0.681
C4.5 0.938 0.759 1 0.957 0.925
TB 0.968 0.722 0.957 1 0.991
LB 0.958 0.681 0.925 0.991 1

Win/loose/tie K4.5 kNN c4.5 LB
K4.5 -

kNN 13/22/0 =

c45 18/17/0 22/13/0

TB 22/13/0 25/10/0 29/6/0 -

LB 28/7/0 27/8/0 31/4/0 28/7/0 =

Note that the values are meaningful in a relative way rather than in an absolute
way. Such a comparative view indicates whether one method is more correlated
with another method considering all alternative methods. (The Spearman rank order
correlation also show similar relationships.)

illustrated in Fig. 5. The mean rank of each scheme is indicated by a
circle. The horizontal bar across each circle indicates the critical dif-
ference. The performance of two methods is significantly different
if their corresponding mean ranks differ by at least the critical dif-
ference. That is, two methods are significantly different if their hor-
izontal bars are not overlapping. For example, it is observed that LB
is ranked best and is significantly better than alternative methods.

4.3. Experimental result analysis

When comparing K4.5, kNN and C4.5 without considering LB and
TB, one can easily conclude that they perform comparably and follow
a ranking order: K4.5 (3.31), C4.5 (3.57), and kNN (3.74). Because of

Each entry indicates that the algorithm of the row compares against the algorithm
of the column. A statistically significant record is indicated in bold.

the heavy overlapping of their horizontal bars in the Nemenyi test
(Fig. 5), the differences between these methods are not statistically
significant, although K4.5 performs relatively better than C4.5 and
kNN (overall K4.5 wins kNN and C4.5 on 22 and 17 data sets, respec-
tively). This asserts that in practice, a lazy learner can indeed out-
perform eager learners (like C4.5), even though the former is based
on a pure kNN classifier and the model was formed from a small
portion of the training data (notice that K4.5 only forms a decision
tree from a small number of instances surrounding a test instance).

The results in Table 6, along with the statistical tests presented
in Table 7, Table 8 and Fig. 5 indicate that overall, LB receives the
best performance among all five methods. Compared to three single
learner methods K4.5, kNN and C4.5, LB wins in 28, 27 and 31 data
sets, respectively. The Nemenyi test in Fig. 5 also demonstrates that
the rank of LB is much better than that of K4.5, kNN and C4.5. These
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Fig. 6. Number of times each instance is misclassified by TB and LB, respectively (10-trial 5-fold cross validation). The horizontal axis denotes the instance ID and the
vertical axis shows the misclassification frequency: (a) TB results on Monks2 (b) LB results on Monks2

results support the claim that LB is statistically significantly better
than these three methods. Meanwhile, the win/lose/tie records show
that TB can also outperform K4.5, kNN and C4.5 more often than not.
This suggests that an ensemble learning model is indeed more accu-
rate than a single learner, regardless of whether the base classifiers
are trained by eager learning or lazy learning paradigm.

The results in Table 6 indicate that LB can outperform TB on 12
data sets with more than 2% absolute accuracy improvement, and
the largest improvement is 6.28% in TA (the teaching assistant data
set). Overall, LB outperforms TB on 28 data sets, of which the results
on 21 data sets are statistically significant. On the other hand, TB
outperforms LB on 7 data sets, of which only 1 data set (Monks2)
is statistically significant. LB's wins (28) versus losses (7) compared
with TB is also statistically significant. In addition, the Nemenyi test
results in Fig. 5 also agree that LB is statistically significantly better
than TB.

Because LB relies on the kNN selected for each test instance to
customize bootstrap bags, we must further investigate the relation-
ship between LB's performance and the quality of the selected kNN,
and clearly answer whether LB's performance crucially relies on a su-
perb kNN classifier. This part of the study is carried out based on the
algorithm correlation and the win/lose/tie comparison in Tables 7
and 8 respectively. The second row inTable 7 indicates that although
LB was built based on kNN, it actually has very little correlation with
kNN. We believe that this is mainly because LB is essentially an en-
semble learning framework. Even if the kNN were poorly selected,
the ensemble nature will essentially smooth the impact and reduce
the correlation between LB and kNN (one can further investigate the
last row in Table 7 and confirm that LB has the highest correlation
with TB, mainly because of their ensemble nature). At individual data
set level and from the perspective of the win/lose/tie comparison,
we would also like to study whether a superior kNN classifier can
help LB outperform TB, or vice versa; in other words, whether LB can
outperform TB more often in data sets where kNN wins C4.5/TB than
in data sets where kNN loses to C4.5/TB. The results in Table 6 indi-
cate that out of the 22 data sets where kNN loses to C4.5, LB wins TB
in 19 data sets (a probability of 19/22 = 0.864). On the other hand,
out of the 13 data sets where kNN wins C4.5, LB wins TB in 9 data
sets (a probability of 9/13 = 0.692). In addition, out of the 25 data
sets where kNN loses to TB, LB wins TB in 22 data sets (a probability
of 22/25=0.88), and out of the 10 data sets where kNN wins TB, LB
wins TB in 6 data sets (a probability of 6/10 = 0.6). Considering that
all these values (0.864, 0.692, 0.88 and 0.6) are fairly close to each
other, we argue that there is no clear correlation between kNN and
LB for any particular data set. Either a superior or an inferior kNN
classifier may help LB outperform TB.

Now, let us turn to Monks2 on which LB is worse than TB. There
are 432 (142 positive and 290 negative) instances, each of which has

6 multivariate attributes and one class label. The genuine concept
is: Class = Positive iff exactly two attributes have value 1; otherwise,
Class = Negative. Obviously, this is an XOR-like problem except that
each attribute is multi-valued instead of binary. Both kNN and top-
down-induction-of decision-tree type learners, unfortunately, can-
not effectively solve this type of problem (as we have explained in
Section 3.3.2). kNN and C4.5 solve this problem by simply classifying
all instances as the negative class, which is equivalent to an accuracy
of 290/432 = 67.13% (the results in Table 6 confirm that kNN and
C4.5's accuracies are very close to this value). According to the defi-
nition given in Eq. (13), all positive instances are biased instances. To
explain why LB fails in this data set, let us consider biased and unbi-
ased instances separately. Assume for any instance xj, in the data set,
its nearest neighbors have only one attribute value different from
Xy Following this assumption and Monks2's genuine concept, one
can imagine that for any positive instance (biased instances), over
60%2 of its kNN are from the opposite (negative) class. According to
our reasoning in Section 3.3.2, LB is ineffective because adding kNN
instances to each bag is not helpful in improving local learning. For
unbiased instances, because C4.5 essentially cannot solve this type
of problem, adding kNN will only make the matter worse.

To verify the above understanding, we record the number of times
each instance is misclassified in the 10-trial 5-fold cross validation
by using TB and LB respectively. We report the histogram of all 432
instances in Fig. 6 where the horizontal axis denotes the instance
ID and the vertical axis represents the misclassification frequency.
Because we run each algorithm to classify each instance 10 times,
the maximal number of times each instance can be misclassified is
10. To make the results straightforward, we have all the 142 positive
instances listed from ID 0 to 141, and all the 290 negative instances
listed from ID 142 to 431.

As shown in Fig. 6, where (a) and (b) represent the results from
TB and LB, respectively, almost all positive instances (pink) are mis-
classified by both TB and LB, and about 129 (30%) negative instances
(blue) were never misclassified by either TB or LB. Because C4.5 is
incapable of capturing the underlying concept for Monks2, trimming
bootstrap bags provides no help in improving local learning for pos-
itive instances. It also makes the classification worse for negative
(unbiased) instances since if the learner is incapable of learning the
concept, the decision to classify all instances as negative is already
optimal. Comparing Figs. 6(a) and (b), we can find a clear increase of
the number of times the negative instances are misclassified, which
is the consequence of the newly added kNN.

2 This value is calculated by a simplified assumption that each attribute has 3
attribute values {1, 2, 3} and an instance's nearest neighbors only have one attribute
value different from the instance.
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Notice that the issue raised by Monks2 is extreme in the sense
that the learner is incapable of capturing the underlying concept. For
data sets where learners may experience difficulties but would not
completely fail, the advantage of LB over TB is obvious.

5. Conclusions and future work

In this paper, we have proposed a generic lazy bagging (LB) de-
sign, which customizes bootstrap bags according to each test in-
stance. The strength of LB stems from its capability to reduce its base
learners' classification bias and variance for each specific test in-
stance. As a result, the bagging predictor built by LB can achieve bet-
ter performance than the traditional bagging approach (TB). Because
LB crucially relies on the selection of k nearest neighbors (kNN) for
each test instance, we have further proposed a sampling-entropy-
based approach that can automatically determine the k value for
each data set, according to a user specified p value that is indepen-
dent of data sets. Following the sampling entropy, LB trims each
bootstrap bag by using k nearest neighbors and ensures that all bags
can be as independent as possible (w.r.t. the g value). Meanwhile,
LB endeavors to take care of each test instance's speciality. Our em-
pirical study on carefully designed synthetic data sets has revealed
why LB can be effective and when one may expect LB to outperform
TB. Our experimental results on 35 real-world benchmark data sets
have demonstrated that LB is statistically significantly better than al-
ternative algorithms K4.5, kNN, C4.5 and TB in terms of minimizing
classification error. We have also observed that LB is less powerful
only when its base learners are incapable of capturing the underly-
ing concepts.

Because of their lazy nature, lazy learning algorithms have a sub-
optimal feature: low classification efficiency. Our future work will
focus on how to speed up LB. One direction is to employ incremental
classifiers as base learners, for example, na“ve-Bayes (NB) classifiers.
It is trivial to map an existing NB and a new training instance to a
new NB that is identical to the NB that would have been learned from
the original data augmented by the new instance. In the case of LB,
one can train an NB from each original bag during the training time.
Upon receiving a test instance and adding its kNN into each bag, one
can simply update each NB by these k new training instances. It will
be much more efficient than retraining a classifier from scratch in
order to incorporate these neighbors. Another direction is to adopt an
anytime classification scheme [27,28]. For example, one may specify
an order for bag processing. To classify a test instance, one can follow
this order of bags to train each classifier in sequence and obtain
its prediction until classification time runs out. This is an anytime
algorithm in the sense that the classification can stop anywhere in
the ordered sequence of bags. In this way, LB can adapt to available
classification time resources and obtain classification as accurate as
time allows.
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