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Traditional active learning assumes that the labeler is capable of providing ground truth label for each
queried instance. In reality, a labeler might not have sufficient knowledge to label a queried instance
but can only guess the label with his/her best knowledge. As a result, the label provided by the labeler,
who is regarded to have uncertain labeling knowledge, might be incorrect. In this paper, we formulate
this problem as a new ‘‘uncertain labeling knowledge’’ based active learning paradigm, and our key is
to characterize the knowledge set of each labeler for active learning. By taking each unlabeled instance’s
information and its likelihood of belonging to the uncertain knowledge set as a whole, we define an
objective function to ensure that each queried instance is the most informative one for labeling and
the labeler should also have sufficient knowledge to label the instance. To ensure label quality, we
propose to use diversity density to characterize a labeler’s uncertain knowledge and further employ an
error-reduction-based mechanism to either accept or decline a labeler’s label on uncertain instances.
Experiments demonstrate the effectiveness of the proposed algorithm for real-world active learning tasks
with uncertain labeling knowledge.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction although the instance itself already contains enough labeling
Obtaining labeling information for training instances, in a
supervised learning task, is a nontrivial process which normally in-
volves expensive costs. Instead of labeling the entire training set or
randomly selecting a subset for labeling, active learning (Cohn
et al., 1994) represents a family of methods which identify some
most informative instances for the oracle1 to label. A large number
of studies have shown that active learning can significantly reduce
the labeling costs in various fields (Settles, 2010). However, most
existing active learning methods rely on a strong assumption that
the oracle has perfect labeling knowledge and can provide correct la-
bels for each queried instances.

In reality, it is possible that an oracle may have insufficient
knowledge in labeling some instances (Raykar et al., 2009;
Rzhetsky et al., 2009). This normally happens in two situations: (1)
the instances to be labeled are not clearly correlated to the underly-
ing labeling concepts, so labelers cannot provide accurate labels
based on the limited information in the instances; and (2) the label-
ers have insufficient knowledge and therefore cannot identify
the differences between some closely correlated instances,
information.
In Fig. 1, we illustrate three examples to demonstrate the label-

ing uncertainty in several image labeling domains, where each row
represents a labeling task and the labeler is required to accurately
label each single image as one of the given concepts. In Fig. 1(A),
the labeling concept is ‘‘mountain’’ vs. ‘‘not mountain’’. While the
images in the left and the middle panels are easy to label without
confusion, the image on the right panel is difficult to label mainly
because the picture itself has limited information for labelers to
provide accurate label. In this situation, the labeler may have good
labeling knowledge, but the limitation of the instance results in the
label uncertainty. In Fig. 1(B), the labeling concept is ‘‘camel’’ vs.
‘‘not camel’’. The image on the left panel can be clearly identified
as a ‘‘camel’’ by a nonexpert, whereas the image on the middle pa-
nel might not be easy to identify without good domain knowledge
(The animal is a Rama and is therefore not a camel). The image on
the right panel is even more difficult because it only shows a por-
tion of the animal, yet very skilled labeler is still able to identify it
as Appace (and therefore is not a camel). In Fig. 1(C), the labeling
task, ‘‘California gull’’ vs. ‘‘not California gull’’, is even more chal-
lenging. Although domain experts may have general knowledge,
such as ‘‘medium-sized gull with head and underparts white but
black ring near the tip and red spot on lower mandible, and yel-
low-green leges’’, it is still very difficult to accurately label the
images in the middle and the right panels, which are Western Gull
(middle) and Herring Gull (right). There is little differences
between the heads and tails and they are also hard to observe.
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Fig. 1. Examples of image labeling with uncertainty.

Table 1
Examples of text annotation with uncertain labeling knowledge. The three sentences
are extracted verbatim from the scientific texts annotated by experts with personal
knowledge (Rzhetsky et al., 2009). Each labeler marks the polarity of a sentence as
Positive (P) or Negative (N) with a Certainty score (0, 1, 2, 3), with a score ‘‘0’’
indicating completely unsure. For the first and the third sentences, the labeler marks
their polarity as ‘‘Positive’’ but with different degrees of uncertainty.

Sentence Annotation

Positive Certainty

Putative transmembrane domains are highlighted with
gray

1 3

No interconversion of the two forms was detected after
purification

0 2

The function of this gene, necessary for surfactin
production, is still unclear

1 0
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The similar labeling uncertainty also common exits in other do-
mains, such as text labeling. In Table 1, we show three real-world
scientific text annotation examples (Rzhetsky et al., 2009), where
the experts are required to mark (i.e., label) to polarity of each sen-
tence as either ‘‘Positive’’ or ‘‘Negative’’, and the labelers are al-
lowed to express their confidence with a certain degree of
Certainty score (0–3). If the labeler has knowledge for labeling an
instance, he/she may provide a label (Positive or Negative) with a
high certainty score. If the labeler does not have the labeling
knowledge, he/she may guess the most possible label, but indicat-
ing a low certainty score (Certainty = 0).

For the above examples, regardless of whether the labeler has
limited knowledge or the instance contains limited information,
the consequence is that the labeler cannot provide accurate labels
for some queried instances. Under such circumstances, for a
queried instance on which the labeler has insufficient labeling
knowledge, the labeler may simply answer ‘‘I don’t know the label’’
and then guesses the most likely label based on the existing knowl-
edge. As a result, the label information provided by the labeler is
essentially uncertain and needs to be carefully verified during
the active learning process.

Motivated by the above observations, in this paper, we formu-
late the problem as an active learning paradigm with uncertain
knowledge. In this new setting, the oracle is no longer perfect
but has uncertain knowledge, such that the instances within the
uncertain knowledge set may be incorrectly labeled. For a queried
instance x, the oracle may correctly label x (if the oracle has suffi-
cient labeling knowledge) or only guess a label for x (if x falls into
the oracle’s uncertain knowledge set). Accordingly, an effective ac-
tive learning framework should clearly address the following two
major issues:

� Uncertain knowledge characterization: The active learning
process should be able to identify the oracle’s uncertain knowl-
edge and carefully avoid querying instances which may fall into
the oracle’s uncertain knowledge set.
� Uncertain label utilization: Because the labels of uncertain
instances are predicted based on the oracle’s existing knowl-
edge, the active learning process should carefully determine
whether to accept the label provided by the oracle to update
and retrain the model for future learning process.

The inherent technical challenges associated to the problem is
threefold:

� Instance selection for labeling: How to select the instance
mostly needed for active learning by considering both the infor-
mativeness of the instance and the labeler’s uncertain
knowledge;
� Uncertain knowledge characterization: How to characterize

the labeler’s uncertain knowledge and avoid select instances
on which the labeler has insufficient knowledge;
� Label confirmation or rejection: How to make the best use of

the labels provided by the labeler, if the he/she is uncertain
about the labels of the instances and provides some guessed
labels based on the existing knowledge.
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To address the above challenges for active learning with uncer-
tain knowledge, we propose to take each unlabeled instance’s
information and its likelihood of belonging to the uncertain knowl-
edge set as a whole, and define an objective function to ensure that
(1) each queried instance submitted to the oracle is the one most
informative for labeling and (2) the oracle should also have suffi-
cient knowledge to label the instance.

Notice that without properly characterizing the labeler’s knowl-
edge, it is hardly possible to determine whether the label has suf-
ficient knowledge to label an instance or not. Accordingly, we use
Diverse Density to characterize the labeler’s uncertain knowledge,
through which we can identify each unlabeled instance’s likelihood
of falling into the labeler’s uncertain knowledge set. To handle an
uncertain instance, on which the labeler does not know the ground
truth label but can only guess, we propose an error-reduction esti-
mation based controlling mechanism to either accept or reject the
label guessed by the labeler, through which the active learning can
maximize the utilization of the labeler’s knowledge as well as con-
trol errors introduced from the labeler’s uncertain knowledge.

The remainder of the paper is organized as follows. Section 2
discusses the related work. In Section 3, we introduce the proposed
active learning paradigm with uncertain knowledge, including
methods for characterizing labeler’s uncertain knowledge and uti-
lization of the labels provide by the labelers for active learning.
Experimental results are reported in Section 4, and we conclude
the paper in Section 5.
2. Related work

Classical active learning strategy is to query instances which are
most uncertain to the learner (s) (or classifiers) trained from la-
beled instances (Lewis and Gale, 1994). Alternatively, one can se-
lect the instance on which a committee of classifiers mostly
disagree (Freund et al., 1997). Another general uncertainty sam-
pling strategy is based on information-theoretic measure which
queries the instance minimizing the posterior entropy (MacKay,
1992; Tong and Koller, 2002). For learners considering data distri-
butions in their decision models, such as Support Vector Machines,
one can choose to label instances which are close to the learner’s
decision boundaries (Tong and Koller, 2002). All these methods
share the same view as the version space reduction (Schohn and
Cohn, 2000; Tong and Koller, 2002). Another set of methods di-
rectly minimize the empirical risk by querying instances to reduce
future classification error as much as possible (Roy and McCallum,
2001). For all these active learning methods, an important assump-
tion is that the oracle always knows the true labels of the queried
instances.

Recently, several works argue the assumption that the oracle
can always behave perfectly is too strong for real-world applica-
tions (Rashidi and Cook, 2011). Some studies focus on the problem
of multiple weak labelers who might provide noisy labels (Donmez
and Carbonell, 2008; Yan et al., 2010, 2012). In order to handle
noisy labelers, solutions exist to learn the qualities of multiple
labelers in tandem with learning values of classifier parameters
(Dekel and Shamir, 2009; Yan et al., 2011), to repeatedly acquire la-
bels over multiple rounds in order to reach a consensus sources/
labelers (Sheng et al., 2008), or to select the optimal labeler from
multiple weak labelers by solving an optimization problem with
a fixed budget constraint (Donmez and Carbonell, 2008).

Although the above existing works have taken into account the
scenarios where oracles in active learning are imperfect, their
problem settings and solutions are subject to a major limitation:
all these methods actually assume that oracles are subject to differ-
ent levels of expertise and inherently disregard whether an oracle
can label an instance or not. In other words, they realize that ora-
cles might be weak and noisy, so their active learning solutions
mainly focus on how to combine oracles’ noisy labels in order to
gain better label quality. There is, however, no mechanism (or solu-
tion) to characterize the oracle’s knowledge. As a result, there is no
treatment to avoid an oracle’s weakness, and their methods would
still require all oracles to label the selected instances, even though
the instances might be out of the labelers’ domain knowledge.

Another limitation of the existing noisy-labeler-based active
learning methods is that they all require multiple oracles and are
not intended to be used in a single oracle scenario. In their problem
settings, multiple weak/cheap labelers can provide redundant
information which help choose a high quality labeler or label
which mostly agreed by the labelers. In our problem setting, there
is only one oracle who has limitations in labeling some samples.
Meanwhile, the oracle in our problem setting is not assumed to
be a ‘‘cheap’’ labeler, but involves certain labeling costs. So for each
uncertain instance, active learning should avoid repeatedly query-
ing multiple times to refine the label information. As a result, exist-
ing noisy labelers based active learning methods still cannot
handle our problem.

A recent work (Tuia and Muñoz-Marí, 2013) considers the labe-
ler with uncertain knowledge in the remote sensing domains, with
assumption that the labeler will not provide labels for instances
which the labeler does not have the labeling knowledge. This work
is close to our problem setting, but our problem is more general in
the sense that we allow labelers to provide guessed labels, even
though the labeler do not have the labeling knowledge for the in-
stances. In other words, we allow labeler to provide uncertain
labeling information, and our method will directly model the labe-
ler’s knowledge based on his/her labeling outputs.
3. Active learning with uncertain labeling knowledge

In this section, we first formulate the problem definition and
define the objective function, and then propose a method to char-
acterize a labeler’s uncertain knowledge and utilize the uncertain
labels provided by the label. After that, we propose the uncertain
labeling knowledge based active learning framework.
3.1. Problem formulation

Consider a data set with n instances fx1; x2; . . . ; xng, where the
label for the ith instance is denoted by yi. In a generic active learn-
ing setting, the oracle is able to provide ground truth label for
every queried instance, so the objective of the uncertainty sam-
pling based active learning (Freund et al., 1997) is to query the in-
stance with the highest uncertainty value (e.g. entropy).
Accordingly, given the labeled data, we have

arg max
xi2U

Hðyi; �hðLÞÞ ð1Þ

where U denotes the set of unlabeled instances and H represents the
entropy of instance xi with respect to the class labels predicted by a
classifier �hð:Þ trained from labeled set L. For a data set with two
class labels, the most informative instance selected by Eq. (1) is
the one with equal likelihood of belonging to both classes.

In the above setting, the oracle has unbounded knowledge to la-
bel any instances. In real-world scenarios, such as scientific text
annotation (Rzhetsky et al., 2009), the oracle may have limited do-
main knowledge or uncertain knowledge so cannot provide correct
labels for some instances. The set of instances, which the oracle
does not know the ground truth labels, form the oracle’s uncertain
knowledge set. Formally, we define that
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Definition. Uncertain knowledge represents a set of unlabeled
instances which the oracle does not know the ground truth labels;
an Uncertain Instance is an instance which belongs to the uncertain
knowledge set.

Because the oracle does not know the genuine labels of uncer-
tain instances, when sending an uncertain instance to the oracle
to query the label, the oracle will answer ‘‘I don’t know the label’’
and guess the most likely label based on the labeler’s existing
knowledge. On the other hand, when sending an instance which
does not belong to the uncertain knowledge set of the oracle, the
oracle will return the genuine label of the instance. The set of que-
ried instances thus form the knowledge base of the oracle. For-
mally, we define that

Definition. The knowledge base (B) is defined as the union of a set
of instances (Bþ) which have been labeled by the oracle and a set of
instances (B�) which the oracle has confirmed that it does not have
knowledge to label.

Denote by O the oracle of the underlying active learning task,
Bþ can be regarded as the set of knowledge that the oracle has al-
ready acquired from the active learning process and B� represents
the set of uncertain knowledge of the oracle. Therefore, after que-
rying, the new unlabeled data set for the oracle becomes U ¼ U n B.
The expected entropy of an unlabeled instance xi with respect to
sets Bþ and B� is given by

Hðyi; �hðLÞÞ ¼ Pðxi 2 BþÞHðyijxi 2 Bþ; �hðLÞÞ
þ Pðxi 2 B�ÞHðyijxi 2 B�; �hðLÞÞ ð2Þ

It is clear that knowledge base B ¼ Bþ [ B�, and

Pðxi 2 BþÞ þ Pðxi 2 B�Þ ¼ 1 ð3Þ

If the oracle does not know the genuine label of instance xi (i.e., xi

falls into the uncertain knowledge set), xi is regarded as an out-
of-domain instance for both the oracle and the underlying classifier
�hðLÞ, which is trained based on the oracle’s knowledge. In this case,
the entropy which is conditioned on xi 2 B� becomes

Hðyijxi 2 B�; �hðLÞÞ ¼ 0; if xi 2 B� ð4Þ

This is because, if xi 2 B�, the value of yi is completely determined
by xi (i.e., yi � unknown) and, according to the definition of the con-
ditional entropy, the conditional entropy is 0. Combining the ora-
cle’s knowledge set and the instance’s information, the objective
function in Eq. (1) can be rewritten as

arg max
xi2U

Pðxi 2 BþÞHðyijxi 2 Bþ; �hðLÞÞ

¼ arg max
xi2U

ð1� Pðxi 2 B�ÞÞHðyijxi 2 Bþ; �hðLÞÞ ð5Þ

Eq. (5) represents the trade-off between minimizing the probability
of falling into the oracle’s uncertain knowledge set and maximizing
the entropy of the instance. We expect that unifying an instance’s
information and its likelihood of belonging to the oracle’s uncertain
knowledge set will help select right instances for active learning.

3.2. Uncertain knowledge characterization

To estimate Pðxi 2 BþÞ in Eq. (5), we employ the diverse density
concept (Maron and Lozano-Pérez, 1998) to build knowledge
model for the oracle. The diverse density was first introduced in
multi-instance learning, where a bag is labeled positive if one or
more instances in the bag are positive and negative only if all in-
stances in the bag are negative. The diverse density defines the
density of the instances, in terms of how many positive bags are
within a region and how far is the region to the negative bags, to
help predict whether an instance is positive or not.
We assume that there exists a concept set C which represents
the oracle’s knowledge. Once C is properly captured, we will use di-
verse density to transform instances from their original feature
space to a new feature space. Then, we build a classifier in the
new feature space to estimate Pðxi 2 BþÞ.

Given an active learning process, we denote the set of instances,
which have been labeled by the oracle, by Bþ ¼ fbþ1 ; . . . ; bþp g. Simi-
larly, the set of instances, which the oracle has confirmed that it
does not know the labels, form B� ¼ fb�1 ; . . . ; b�q g. Then, we define
the diverse density (DD) of C as the probability of C being the target
concept given set (Bþ) and (B�) for the oracle

DDðCÞ ¼ PðCjbþ1 ; . . . ; bþp ; b
�
1 ; . . . ; b�q Þ ð6Þ

The concept C with the maximum diverse density value will be se-
lected as the target. Assume instances in Bþ and B� are condition-
ally independent, given the real target concept. By using Bayes’
rules and rearranging Eq. (6), we have

DDðCÞ¼
PðCÞ

Yp

i¼1

Pðbþi jCÞ
Yq

j¼1

Pðb�j jCÞ

Pðbþ1 ;b
þ
2 ; . . . ;b

þ
p ;b

�
1 ;b

�
2 ; . . . ;b

�
q Þ

¼

Yp

i¼1

Pðbþi Þ
Yq

j¼1

Pðb�j Þ

Pðbþ1 ; . . . ;b
þ
p ;b

�
1 ; . . . ;b

�
q ÞPðCÞ

pþq�1

266664
377775
Yp

i¼1

PðCjbþi Þ
Yq

j¼1

PðCjb�j Þ
" #

ð7Þ

Assuming target concept set C consists of a number of small con-
cepts C ¼ fc1; c2; . . . ; cmg, the conditional probability of each small
concept ck, given an instance bs in the knowledge base B, can be de-
fined as a feature value of bs (Chen et al., 2006). As a result, we can
form a new set of features for bs as follows:

fCðbsÞ ¼ fc1 ðbsÞ; . . . ; fcm ðbsÞ
� �T ¼ Pðc1jbsÞ; . . . ; PðcmjbsÞ½ �T ð8Þ

Indeed, instances in the knowledge base B are the best candidates
for determining the target concept set C. Accordingly, we use all in-
stances in B to approximate C as follows:

C ¼ fbþ1 ; . . . ; bþp ; b
�
1 ; . . . ; b�q g ð9Þ

Therefore, the number of small concepts in C exactly equals to the
sum of the number of instances in Bþ and in B�, i.e., m ¼ pþ q.
Given target concept set as defined in Eq. (9), our next step is to
estimate the conditional probability PðckjbsÞ. Intuitively, because
both ck and bs are individual instances, the conditional probability
PðckjbsÞ is proportional to the Gaussian distance between them, as
Maron and Lozano-Pérez (1998) have suggested in their most-
likely-cause estimator for conditional probability estimation. As a re-
sult, for a single concept ck, its conditional probability with respect
to instance bs is defined as follows:

PðckjbsÞ / d
��
ðck; bsÞ ¼ exp � jck � bsj2

r2

 !
ð10Þ

In Eq. (10), d
��
ð:Þ measures the Gaussian distance between an in-

stance and a concept. If an instance is closer to a concept ck, it will
have a higher probability value of belonging to ck. Given the concept
set C, the conditional probability of all small concepts in C; PðckjbsÞ;
k ¼ 1; . . . ;m, will provide useful information to differentiate an in-
stance’s likelihood of belonging to the uncertain knowledge spot
B� and the acquired knowledge set Bþ. For the given knowledge
base B with m ¼ pþ q instances, we can generate a mapped in-
stance set in the new feature space Rc as follows:

fCðBÞ ¼ ½bþ1 ; b
þ
2 ; . . . ; bþp ; b

�
1 ; b

�
2 ; . . . ; b�q �

¼ ½fCðbþ1 Þ; fCðb
þ
2 Þ; . . . ; fCðbþp Þ; fCðb

�
1 Þ; fCðb

�
2 Þ; . . . ; fCðb�q Þ�
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For each instance in the knowledge base B, we can use a sign func-
tion to define a new class label as follows:

signðbsÞ ¼
1 if bs 2 Bþ

�1 if bs 2 B�
�

ð11Þ

Then

ðBÞ ¼ ½signðbþ1 Þ; . . . ; signðbþp Þ; signðb�1 Þ; . . . ; signðb�q Þ�
T

provides new labeling information for all instances in B. Combining
mapped new feature values fCðBÞ and labels ðBÞ, we can form a well
defined binary classification task. By using any existing learning
algorithms, we will be able to train a learner �hðfCðBÞ; ðBÞÞ and pre-
dict a new instance xi’s likelihood of belonging to the acquired
knowledge Bþ, as defined in Eq. (12).

Pðxi 2 BþÞ ¼ �hðfCðBÞ; ðBÞÞ½fCðxiÞ; 1� ð12Þ

In Eq. (12), fCðxiÞ denotes the transformed instance of xi in the new
feature space Rc , and �hð:Þ½fCðxiÞ; 1� denotes the class distribution of
the classifier �hð:Þ in classifying fCðxiÞ into class ‘‘1’’. One can use
any learning algorithm to train �hð:Þ.

3.3. Uncertain label utilization

When querying the oracle for the label of an instance, we may
face the situation that the oracle may not be able to provide
ground truth label for the queried instance, but can only provide
a prediction with a certain degree of uncertainty. Such reality
raises a dilemma that (1) if we discard the labels provided by
the labelers, we might not be able to take the full advantage of
the labelers’ knowledge for active learning; on the other hand,
(2) if we unconditionally accept the labels provided by the
labelers, the incorrectly predicted labels by the labelers may dete-
riorate the active learning performance, because including misla-
beled samples in the training set is considered mostly harmful for
supervised learning.

To ensure the label quality and tackle uncertain answers
from the oracle, we propose to optimize expected future error to
decide whether to accept the label provided by the labeler for
learning.

To verify the prediction from the oracle, we propose the
following strategy: For instance x� which the oracle does
not have knowledge to label (where x� is selected using Eq. (5)),
we decide whether it is intractable to accept the prediction
of x�.

After the oracle confirms that it has no knowledge to label x�, it
is asked to provide a prediction ŷ� on x� based on its existing
knowledge. Then we face the problem to either reject or accept
the label predicted by the oracle. Ideally, if the predicted label is
the same as the ground truth label, the most informative instance
and its predicted label should be consistent with the learner’s prior
belief over the majority (but not all) of unlabeled instances (Roy
and McCallum, 2001). On the other hand, if the oracle predicted la-
bel is different from the ground truth label, the most informative
instance will act as a noisy sample and may result in additional er-
rors for any classifier trained from the labeled set. Accordingly, we
can try to verify if the predicted instance ðx�; ŷ�Þ can result in a low-
er expected error by

DE ¼ EP̂L[ðx� ;y�Þ
� EP̂L

< 0 ð13Þ

where E is the expected error of the learner, which is defined as

Ep ¼
Z

x
‘ðPðyjxÞ; bPðyjxÞÞPðxÞ ð14Þ
In Eq. (14), ‘ is the loss function that measures the difference be-
tween the true distribution PðyjxÞ and the learner’s predictionbPðyjxÞ. We employ two commonly used loss functions, and rewrite
Eq. (14) as

ÊbPL ¼ 1
jLj
X
x2L

X
y2Y

bPLðyjxÞ log bPLðyjxÞ ð15Þ

for Log loss and

ÊbPL ¼ 1
jLj
X
x2L

1�max
y2Y

bPLðyjxÞ� �
ð16Þ

for 0–1 loss. Then we vote this verification by

V ¼
1 if DE < 0
�1 otherwise

�
ð17Þ

In other words, we compare the error of the learner trained from
the original data set and the learner trained from the set which in-
cludes the instance predicted by the oracle. If the latter has a lower
error than the former, we will accept the oracle’s prediction; other-
wise, we will reject the oracle’s prediction.

In order to reduce variance and avoid overfitting, we adopt
bootstrap sampling (Breiman, 1996) to sample several times. For
the original labeled training set, which has size of n, we generate
a new training data set by sampling n times, and the test data
set is made of the remaining instances in the sampling process.
The new classifier is trained based on this new sampling data
set. The same process is repeated t rounds. We will vote for each
sampling round according to Eq. (17) and calculate a final score
as follows:

score ¼ sign
X
i6t

V i ð18Þ

If score > 0 we accept ðx�; ŷ�Þ; otherwise, we will reject ðx�; ŷ�Þ.

3.4. The algorithm

Algorithm 1 shows the detailed process of the proposed active
learning paradigm with uncertain knowledge. The algorithm first
selects the instance x� to optimize the objective function (Lines
4–6), and then queries the label of instance x� from the oracle O.
If the oracle O does not have certain labeling information, the ver-
ification process (Lines 7–17) will be triggered.

More specifically, if the oracle O does not know the label of x�,
the algorithm will collect the prediction ŷ� of the given instance by
the oracle O (Line 8), and then verifies the prediction ŷ� of the gi-
ven instance x� by using error-reduction sampling estimation (Line
9). The instance ðx�; ŷ�Þ is accepted only if it results in expected er-
ror reduction based on current labeled data set L in several sam-
pling sets, as defined by the score in Eq. (18) (Lines 10–12),
otherwise, the algorithm will reject instance ðx�; ŷ�Þ and does not
include it into the training set. Meanwhile, the process on Line
13 will include x� into B�, so the uncertain knowledge modeling
process (Section 3.2) can accurately characterize the oracle’s
knowledge in the next round.

Our query strategy is a traditional pool-based active learning
framework, where the computational complexity of our algorithm
is Oðn2Þ. We use the empirical risk minimization (ERM) strategy for
verifying the guess from the labeler. This is another computation-
ally expensive part that takes Oðm2Þ, where m is the number of
nodes in the labeled data set, for each uncertain answer. In the ac-
tive learning processing, the size m of labeled data is small, with
m� n.
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Algorithm 1. Active Learning with Uncertain Labeling
Knowledge

Require: (1) Unlabeled instances set: U; (2) the oracle O;
(3) A learner �hð:Þ; and (4) The number (or the percentage) of
instances required to be labeled by the oracle (reqLabeled)

Ensure: Labeled instance set L
1: L  Randomly label a tiny potion of instances from U
2: numLabeled jLj; numQueries 0
3: while numLabeled 6 reqLabeled do
4: �hðLÞ  Train a leaner from labeled set L
5: �hðfCðBÞ; ðBÞÞ  Model the oracle O’s knowledge
6: Calculate optimal x� via Eq. (5)
7: if the labeler answers ‘‘I don’t know the label’’ then
8: ŷ�  Predicted by the oracle O
9: Calculate score via Eq. (18)
10: if score > 0
11: L  L [ ðx�; ŷ�Þ
12: end if
13: B�  B� [ xi�

14: else
15: L  L [ ðx�; ŷ�Þ; Bþ  Bþ [ x�

16: numLabeled numLabeledþ 1
17: end if
18: U  U n xi�

19: numQueries numQueriesþ 1
20: end while
4. Experiments

We evaluate the performance of the proposed method based on
a real-world data set and four benchmark data sets. The real-world
text annotation data set (Rzhetsky et al., 2009) was labeled by
annotators with uncertain knowledge. The four benchmark data
sets, including Vertebral Column, Liver Disorders, Ecoli, and Blood
Transfusion, are downloaded from the UCI Machine Learning
Repository (Frank and Asuncion, 2010). For real-world text annota-
tion data set, the labelers’ uncertain knowledge is explicitly given
in each labeled instance (detailed information will be introduced
in Section 4.2). For benchmark data sets, we generate synthetic
oracles to simulate an active learning scenario involving oracles
with uncertain knowledge. To investigate the empirical perfor-
mance of our approach, we compare our method with several base-
line active learning methods. Because there is no existing work
considering the same problem setting for one oracle with uncertain
knowledge, we adopt following algorithms for comparison:

� EIAL: The proposed active learning method which selects
instances by considering the instance’s entropy and the oracle’s
uncertain knowledge, and learns from the uncertain informa-
tion by using error-reduction sampling estimation approach.
� PIAL: An active learning method which selects instances

according to Eq. (5). When handling an uncertain instance with
label predicted by the oracle, PIAL accepts the instances if the
labeler’s certain (which is provided by the oracle or by the clas-
sifier learned from labeled instances) is greater than a threshold
value (we use 0.75 for our benchmark data sets).
� INAL: An active learning method which selects instances by

using Eq. (5). There is no error-reduction-based sampling esti-
mation, so all uncertain instances (and their labels predicted
by the oracle) are ignored.
� TRAL: Traditional active learning approach, which merely

chooses the most informative instances for labeling (i.e., disre-
gard the uncertain knowledge of the oracle).
� RAND: Randomly choose instances for querying. There is no
active learning process involved.

4.1. Experimental settings

We use 10-fold cross-validation in our experiments and report
the average results. For each algorithm, we randomly label a small
data set (3% of train data set) to kick off the active learning process.
Then the instances from the unlabeled data set are selected to
query their class labels from the labelers. In each fold of cross-val-
idation, all methods are compared based on the same oracle, which
has its own knowledge. We use logistic regression to train classifi-
ers from instances labeled by different methods, and compare the
classifiers on the same test set. To evaluate the effectiveness of dif-
ferent algorithms, we mainly compare the accuracies of classifiers
and the labeling costs by using different methods, given a fixed
number of queries (i.e., the budget).

Given the same number of queries, an active learning algorithm
is considered more effective if it can successfully label more in-
stances than other methods (in our experiments, ‘‘successfully la-
bel’’ an instance means that the algorithm can obtain the ground
truth label of the instance. This does not include the label predicted
by the oracle). Accordingly, we define the number of successfully
labeled instances (numLabeled) as the cost in the paper. In addition
to evaluating the efficiency, as querying process, we also use the
oracle’s knowledge set to train a classifier respectively and com-
pare the average accuracy by different methods (According to Def-
initions in Section 3, the oracle’s knowledge set is formed by a set
of labeled instances, so we can use those labeled instances to train
a classifier).

4.2. Results on the real-world data set

Our real-world data set contains publicly available corpus with
1000 sentences from scientific texts annotated by annotators with
explicitly specified uncertain knowledge (Rzhetsky et al., 2009).
The selected sentences are annotated by experts with different
background and personal knowledge. In our experiments, we
choose annotator 3 as the oracle for querying. For each sentence,
the labeler is required to label/mark five dimensions, including Fo-
cus, Evidence, Polarity, Certainty, and Trend, based on the labeler’s
personal knowledge. Among those annotations, the Polarity is de-
scribed as Positive (P) and Negative (N), with a Certainty score
within the range [0, 1, 2, 3] to indicate labeler’s confidence. So 0
is completely uncertain and 3 is absolutely certain for both positive
and negative, respectively. In other words, certainty 3 indicates
that the oracle (expert) can give certain label (P or N) for the que-
ried instance, and Certainty 0–2 indicates that expert is not exactly
sure about the label of the instance but can give a prediction with
reasonable possibility.

In our experiments, the active learning task is to learn a classi-
fier for Polarity prediction (i.e., a binary classification problem). We
preprocess the data set and choose the fragments which have en-
ough length. In addition, we use term frequency and its inverse
document frequency (tf–idf) of the fragments to extract most com-
mon valuable words. As the result of the above process, we obtain
504 instances, each containing 153 features. During the active
learning process, we will use labels and confidence scores provided
by the labeler to model labeler’s knowledge set and choose infor-
mative instances to query for the labels.

To test the proposed EIAL approach, we report the number of
successfully labeled instances and test accuracies between differ-
ent methods in Fig. 2(a) and (b). The results indicate that EIAL per-
forms as well as PIAL and they outperform all others methods. In
addition, EIAL, PIAL, and INAL have the same number of success-
fully labeled instances and they also have the largest number of
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Fig. 2. (a) The accuracy (y-axis) vs. the number of active learning iterations (x-axis). (b) The number of successfully labeled instances (y-axis) vs. the number of active learning
iterations (x-axis). And (c) The number of accepted instances vs. the number of active learning iterations (x-axis).
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Fig. 3. The accuracies of the classifiers (y-axis) trained from the data set L labeled by different methods w.r.t. different number of queries (numQueries).

104 M. Fang, X. Zhu / Pattern Recognition Letters 43 (2014) 98–108
labeled instances because they both choose the instances based on
the same method. Because TRAL and RAND do not have any treat-
ment to handle instances falling into the uncertain knowledge of
the oracle, the number of successfully labeled instances by these
two methods are much smaller than EIAL, PIAL, and INAL.

EIAL and INAL both have the same mechanism to characterize
the uncertain knowledge of the oracle and their major difference
is that EIAL employs an error-reduction-based approach to utilize
uncertain labels predicted by the oracle whereas INAL inherently
ignores the uncertain instances. Our results in Fig. 2(a) and (b)
clearly show that although both methods have the same labeled in-
stances, EIAL’s accuracy is better than INAL, which confirms the
benefits of utilizing uncertain information provided by the oracle
for active learning. Meanwhile, we notice that INAL’s performance
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is better than TRAL. This is because INAL avoids to query instances
which belong to the oracle’s uncertain knowledge. This asserts that
properly modeling oracle’s knowledge is beneficial for active
learning.

Comparing PIAL to EIAL and INAL, PIAL accepts instances when
the oracle’s certainty is greater than a threshold (we set the thresh-
old as certainty 2 for the real-world data set). Fig. 2(c) shows that
while the number of accepted instances by PIAL is greater than
EIAL, EIAL still has a better accuracy than PIAL. This indicates that
simply relying on oracle’s certainty of prediction to include an
uncertain instance into the ladled set is risky (because it may in-
clude incorrectly labeled instances which, in turn, severely deteri-
orates the learner performance (Zhu and Wu, 2004)). By using
error-reduction validation, EIAL can carefully select high quality
uncertain instances predicted by the oracle and avoid including
mislabeled noisy instances into the training set.

4.3. Results on benchmark data sets

In this subsection, we report the algorithm performance on four
UCI benchmark data sets. Because these data sets are not labeled
by the oracle with uncertain knowledge, we generate one synthetic
oracle with limited knowledge sets, for each data set, to simulate
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Fig. 4. The average accuracies of each labelers’ classifiers (y-axis) trained from corres
erroneous labels, for the vertebral column data set.
our active learning with uncertain labeling knowledge scenarios.
In our experiments, we use k-means clustering algorithm to cluster
the data into three subsets and randomly choose one cluster for the
oracle, with the setting that instances in the selected cluster can be
accurately labeled by the oracle. For instances in the remaining
two clusters, they are regarded as the oracle’s uncertain knowl-
edge, which means that the oracle does not have sufficient knowl-
edge to label instances in these two clusters, but can only guess the
label for instances in the remaining two clusters.

To closely simulate real-world environments where oracles
may have incorrect, unknown, and uncertain knowledge, for in-
stances belonging to the oracle’s uncertain knowledge (i.e., the
remaining two clusters in the above analysis), we employ the fol-
lowing three approaches to simulate oracles’ response:

� Incorrect knowledge: We randomly choose 10% instances to
form incorrect knowledge. When an instance in the incorrect
knowledge is sent to the oracle, the oracle will return a random
label with random certainty value.
� Unknown knowledge: We randomly choose 20% instances to

form unknown knowledge. When an instance in the unknown
knowledge is sent to the oracle, the oracle will return an
unknown label with random certainty value.
0 20 40 60 80 100 120 140 160 180
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Queries

Ac
cu

ra
cy

EIAL
PIAL

(b) Err=50%

100 120 140 160 180

of Queries

EIAL
PIAL

=90%

ponding data set L during the process of querying, given different percentage of



106 M. Fang, X. Zhu / Pattern Recognition Letters 43 (2014) 98–108
� Uncertain knowledge: For the remaining 70% of instances
(which form the uncertain knowledge), the oracle will return
a predicted label (along with the highest class probability value)
based on the classifier trained from the labeled instances of the
oracle.

In other words, we assume that the oracle only knows the
ground true labels of the instances in the selected cluster, and
the instances in the remaining two clusters belong to the oracle’s
uncertain knowledge. We then build a classifier f based on the in-
stances in the cluster assigned to the oracle (this is the existing
knowledge of the oracle). For 70% of the instances in the remaining
two clusters, the oracle will predict a label based on the classifier f.
For 20% of the instances in the remaining two clusters, the oracle
can not provide any label information about the querying instance.
For 10% of the remaining instances, the oracle will make a mistake
and provide a random label.

4.3.1. Classification accuracies
Figs. 3(a)–(d) report the learning curves of the classifiers trained

from instance sets labeled by different active learning approaches.
The results demonstrate that EIAL has the best performance among
all methods, which assert that information from uncertain data can
help improve the classification accuracy. Comparing PIAL with
other methods (except RAND), PIAL appears to be more unstable.
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Fig. 5. The number of successfully labeled instances (y-axis) trained from correspo
One possible reason is that although PIAL can utilize uncertain in-
stances through a simple strategy, simply accepting labels of the
labeled uncertain instances predicted by the labeler may result in
class errors and deteriorate the classification accuracy (Zhu and
Wu, 2004). In Fig. 4, it shows that PIAL is affected by the percentage
of erroneous labels. The more the erroneous labels the worse per-
formance. However EIAL is still better in all the cases. This is be-
cause verifying strategy keeps the good quality of labeling. As a
result, its performance varies significantly depending on the
amount of noisy data included in the labeled data set.

Among all methods, RAND has the worst performance and TRAL
shows slightly better results than RAND. Indeed, while TRAL fol-
lows the active learning principle to query the most informative in-
stances, it may query instances which the oracle can not provide a
ground truth label. As a result, its performance is inferior to EIAL,
PIAL, and INAL. While it is true that the oracle may predict incor-
rect labels for uncertain instances, the error-reduction sampling
estimation approach, employed by the EIAL, can effectively avoid
including incorrectly predicted instances. It indicates that although
an oracle may have uncertain labeling knowledge, the error reduc-
tion sampling can help refine uncertain instances to improve the
active learning. In comparison, PIAL accepts instances by using
the certainty values provided by the oracle. It may result in more
noisy instances to be included in the training set and deteriorate
the classifier performance.
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nding data set L labeled by different methods during the process of querying.



0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Number of Queries

# 
of

 A
cc

ep
te

d 
U

nc
er

ta
in

 In
st

an
ce

s

EIAL
PIAL

(a) Vertebral Column

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Number of Queries

# 
of

 A
cc

ep
te

d 
U

nc
er

ta
in

 In
st

an
ce

s

EIAL
PIAL

(b) Ecoli

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Number of Queries

# 
of

 A
cc

ep
te

d 
U

nc
er

ta
in

 In
st

an
ce

s

EIAL
PIAL

(c) Breast Cancer

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

Number of Queries

# 
of

 A
cc

ep
te

d 
U

nc
er

ta
in

 In
st

an
ce

s

EIAL
PIAL

(d) Breast Cancer

Fig. 6. The accepted of uncertain instances (y-axis) verified by error estimation from corresponding data set Lo during the process of querying.
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Figs. 5(a)–(d) report the number of successfully labeled in-
stances by using different methods, which show that EIAL, PIAL,
and MIAL have the most successful labeled instances. TRAL and
RAND do not consider the uncertain knowledge of oracle, so they
may query instance which the oracle may do not know the labels
and, in turn, reduce the number of successfully labeled instances.

Figs. 6(a)–(d) report the number of accepted uncertain in-
stances by EIAL and PIAL, which demonstrate that although the
number of accepted instances by PIAL is larger than EIAL, EIAL still
has a better performance as shown in Fig. 3. For each querying, our
EIAL has the verification process which can refuse the wrongly la-
beled instance. However, PIAL tends to accept instance that will be
wrongly labeled. This observation indicates that error-reduction
sampling estimation can help select better quality instances than
PIAL.

4.3.2. Evaluation of the uncertain label utilization
In order to evaluate the effectiveness of the proposed uncertain

label utilization approach which is used to decide whether to ac-
cept (or reject) the uncertain instances predicted by the oracle,
we report the average error rate during the reject/accept process.
Because we do know the ground truth labels of all instances, we
can validate the error rate of reject/accept process by comparing
with the ground true labels. Two types of mistakes during the re-
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ject/accept process include (1) the algorithm accepts a wrongly
predicted label by the oracle, and (2) the algorithm rejects cor-
rectly predicted label by the oracle.

In our experiments, we collect all verified instances and divide
them into three segments (groups) with respect to the querying
time periods: early stage, middle stage, and late stage. They all
have the same interval and we compute the error rate based on
the same intervals. Fig. 7 presents the results for each benchmark
data sets. The results shows that the verification error rapidly de-
clines from early stage to late stage. This is mainly because that
as the size of labeled data set increases, it provides more informa-
tion about the data distributions which helps reduce variance and
overfitting and can produce better classifier for verification. The er-
ror rates of four data sets are below 10% which indicates that our
verification can maintain low error rates.

5. Conclusion

In this paper, we formulated a new active learning paradigm
where the oracle, or the labeler used for labeling, may be incapable
of labeling some query instances. When querying for the label of an
instance, for which the oracle does not know the true label, the
oracle can only provide a guessed label which could be wrong. So
the active learning goal, in our new setting, is to carefully select
most informative instances which the oracle is highly capable of
labeling. To achieve the goal, the major challenge is to (1) properly
characterize the uncertain knowledge of the oracle as well as (2)
carefully utilize the instance labels predicted by the oracle to im-
prove the active learning. In the paper, we used diverse density
to model the oracle’s uncertain knowledge, and combined the en-
tropy of each unlabeled instance and its likelihood of belonging to
the uncertain knowledge to select instances for labeling. Mean-
while, because instance labels predicted by the oracle could be
wrong, we proposed to use error-reduction sampling estimation
to either accept or reject the oracle’s prediction on the uncertain
instances. Experiments and comparisons demonstrate that the pro-
posed design can result in a much higher success rate in obtaining
ground truth label for each queried instance. Results also demon-
strate that the quality of labeled instance set is better than other
baseline approaches.
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