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Abstract—Active learning (AL) traditionally relies on some
instance-based utility measures (such as uncertainty) to assess
individual instances and label the ones with the maximum values
for training. In this paper, we argue that such approaches cannot
produce good labeling subsets mainly because instances are evalu-
ated independently without considering their interactions, and in-
dividuals with maximal ability do not necessarily form an optimal
instance subset for learning. Alternatively, we propose to achieve
AL with optimal subset selection (ALOSS), where the key is to
find an instance subset with a maximum utility value. To achieve
the goal, ALOSS simultaneously considers the following: 1) the
importance of individual instances and 2) the disparity between
instances, to build an instance-correlation matrix. As a result, AL
is transformed to a semidefinite programming problem to select
a k-instance subset with a maximum utility value. Experimen-
tal results demonstrate that ALOSS outperforms state-of-the-art
approaches for AL.

Index Terms—Active learning, instance subset selection, ma-
chine learning.

I. INTRODUCTION

CTIVE LEARNING [1] represents a family of ap-
proaches which selectively label training samples to build
classifiers with maximum prediction accuracy (in this paper,
samples and instances are interchangeable terms). Compared
to passive learning, which labels samples in a random manner,
an active learner intends to reduce labeling cost by focusing
on informative (or uncertain) instances without compromising
the accuracy of the classifiers trained from labeled data. Due
to increasing capability for data collection and underlying costs
involved for labeling, active learning (AL) has been popularly
used in many applications, including text classification [2], [3],
information networks [4], facial age classification [7], protein
structure prediction [5], and stream data mining [6].
From a technical perspective, the key of AL is to find
instances mostly needed for labeling, such that the inclusion
of the instances into the labeled set can help improve learn-
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ing models. In practice, the identification of “mostly needed”
samples is done by assessing the utility values of the instances
with respect to some models trained from labeled data. For
example, uncertainty is a common utility measure assessing
a model’s certainty in classifying an unlabeled sample. If an
instance x’s uncertainty is high, it implies that the current
model does not have enough knowledge to classify x, and
presumably, including x into the training set can help improve
the underlying learning model. Following this heuristic, the key
challenge for AL is to design proper utility metrics to select
instances with a maximal capability for labeling.

When assessing instances for labeling, existing AL methods
can be roughly categorized into two groups: 1) individual as-
sessment based and 2) set assessment based. The former treats
unlabeled instances as independent and identically distributed
(II.D.) samples, and each instance’s utility value is calculated
without taking others into consideration, whereas the latter
intends to select an optimal subset with a maximal utility value,
by using sample correlations/distributions to estimate utility
value.

One possible problem with individual-assessment-based ap-
proaches is that they may label similar instances, which, in turn,
results in labeling redundancy. Intuitively, assuming that a hiker
is planning to spend $100 to buy necessary supplies/equipments
for a summer trip. The most important items would be “water”
related because they are essential for surviving. It is, however,
not wise to spend all money on “water’-related items, such
as bottled water, juice, coke, etc., because they complement
each other. Items, such as food, footwear, map, etc., are all
important to ensure a successful and pleasant trip. Take Fig. 1
as another example; when only considering the uncertainty
of the samples for labeling, a labeling set may contain most
uncertain samples, each of which has the maximum uncertainty
value from a single-instance perspective, but samples in the set
may contain redundant knowledge and do not form an ideal
candidate set, as shown in Fig. 1(b). Uncertainty metrics based
on a set assessment, on the other hand, utilizes some similarity
measures to discriminate samples so selected instances may
not be the “most uncertain” ones, whereas together, they form
a good labeling set. As shown in Fig. 1(c), by considering
sample correlations, decision boundaries generated from six
selected candidates are much closer to the genuine boundaries,
compared to the approach in Fig. 1(b). Batch mode AL [10],
[15] represents the typical set-assessment-based methods.

For set-assessment-based AL, existing solutions have pro-
posed to do the following: 1) incorporate a density measure to
reduce information overlap in an optimal subset, such as [8] and
[9], and 2) rely on some search process, such as hill-climbing
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Fig. 1.

Toy example demonstrating AL and labeling redundancy. Circles and triangles each denote one type of samples, with solid circles and triangles denoting

labeled instances and the rest denoting unlabeled samples. The solid line denotes genuine decision boundaries, and dashed lines denote decision boundaries learned
by learners (by using labeled samples). The uncertainty of the sample is calculated as 1/W (x), where W () is the distance of the sample to the current decision
boundary (i.e., samples close to the decision boundaries are the most uncertain ones [3]). (a) Decision boundaries learned from six labeled training samples.
(b) By labeling six most uncertain samples, a learner refines its decision boundaries to approximate to the genuine decision boundaries. (c) By taking sample
redundancy into consideration, a method chooses the most informative candidates with low redundancy among them, through which the learned decision
boundaries are largely improved, compared to approaches considering uncertainty only.

search, to form an instance subset with a maximum modular
score, such as [10]. Although these methods do take sample
correlations into consideration for AL, in practice, they have at
least two disadvantages as follows.

1) For clustering-based methods [8], [9], they normally
separate instances into groups and select the centroid
of each cluster as representative instances for labeling.
Accordingly, AL crucially relies on the clustering re-
sults, whereas most clustering methods can only generate
convex groups, and real-world data can distribute arbi-
trarily. In addition, because instance selection depends
on cluster numbers and sizes and clustering is typically
not a transparent process, these methods are inflexible
for AL.

2) For batch mode AL [10], instance selection is made
by using a search process, e.g., hill-climbing search,
to choose an instance, one at a time, to maximize the
objective function, and iterate k times to greedily include
instance, one at a time, into the selected set to form
a k-instance subset. Therefore, these works, in essence,
still base on single-instance selection without considering
each k-instance subset as a whole for AL.

In this paper, we propose a new paradigm for AL where
instance correlation plays an essential role for selecting unla-
beled samples for labeling. To capture instance correlations,
we combine instance uncertainty and disparity to form a matrix
with each element denoting correlation of instances indexed by
the corresponding row and column. Using correlation matrix,
AL can be regarded as an optimal subset selection problem
to select a k-instance subset out of n samples, such that
the selected subset has the maximum utility value. Compared
to the existing a priori, the contribution of this paper is
threefold:

1) Optimal subset versus the best individual: Individuals
with the best capacity do not necessarily form an op-
timal subset, even if utility measures do take instance
correlations into consideration. Our approach provides a
new paradigm for AL by taking a group of instances as a
whole for consideration.

2) A new utility measure for instance characterization: By
considering instance correlations, the proposed measure
combines instance uncertainty and disparity to capture
instance level correlations. As a result, the selected subset

will contain the best individuals with minimum redundant
knowledge.

3) A general framework for AL: In addition to the clear
optimization objective and theoretical basis, the theme of
using instance correlations to form a matrix and employ-
ing semidefinite programming (SDP) to select an optimal
subset can be applied to any utility measure and any
learning algorithms.

The remainder of the paper is organized as follows. Section II
reviews existing work on AL. The problem definition and
system overview are introduced in Section III. The algorithm
details are introduced in Section IV, followed by experiments
in Section V. We conclude the paper in Section VI.

II. RELATED WORK

The key point of AL is to find samples that are mostly critical
to label, so that the inclusion of these instances into the labeled
set will help improve the learning model. In practice, the as-
sessment of each instance’s “degree of importance” for labeling
is undertaken by assessing the uncertainty of the unlabeled
instances based on the model trained from the current labeled
sample set. If an instance’s uncertainty is high, it implies that
the current model does not have knowledge in classifying the
instance, and, presumably, including this sample into the train-
ing set can, therefore, help improve the model. A large number
of methods have been proposed to quantify and assess sample
uncertainty in different ways. Methods also exist to characterize
“ghost” points for imbalance data classification [22] and quan-
tify a subgroup of instances [30] and their inconsistency [17].
When reviewing these approaches from an instance-correlation
perspective, they can be categorized into the following two
categories: 1) AL based on individual assessment and 2) AL
based on set assessment. In a recent survey paper [32], we
have summarized the existing AL methods with or without
considering instance correlations.

A. AL Based on Individual Assessment

Traditionally, AL is regarded as a query process where
utility values of individual instances are calculated and sorted,
according to some predefined criteria, with the objective of
selecting the ones with maximum utility values for labeling.



466

Existing query strategies can be roughly divided into four
categories. The simplest query framework is uncertainty
sampling based on posterior probabilities, including margin
sampling [12], entropy measure [13], and least confidence
measures [14]. Query by committee [1] is another commonly
used scheme, where a committee of classifiers is used to
assess unlabeled samples, by measuring voting disagreements
or divergences. A third category of methods use expected
model change for discriminative probabilistic models, such as
sequence labeling using conditional random fields [13]. In the
fourth group of query strategies, the selection criterion is to
find instances directly reducing model bias and/or variance
[15], [16], such that learners trained from labeled instances are
expected to achieve minimum error rates.

In the situation that an accurate labeler for an AL approach
does not exist, “AL from crowds” [29] or some proactive cost-
sensitive AL [31] approaches exist to identify the most useful
annotator given that the labeling information may be provided
by multiple “imperfect” annotators. For data with shared depen-
dency structure information (such as graph or networked data
where instances are linked through some relationships), AL
methods [4] also exist to label the most informative node such
that the classifier trained from labeled nodes can achieve the
maximum accuracy. Because networked databased AL methods
require instance correlations to be explicitly given, they cannot
be generalized to handle generic data sets with no explicit
relationships between instances. For all work in this area, the
evaluation of the annotators and instances is based on individ-
ual assessment without considering group interaction between
instances and annotators.

In summary, when determining which instance should be
selected and labeled, all existing works in the aforementioned
category treat instances as independent observations and dis-
regard sample correlations. As a result, the selected label set
may contain redundant instances and therefore limit learner
performance, as we showed in Fig. 1.

B. AL Based on Set Assessment

Set-assessment-based methods calculate the utility values
of an instance subset by taking the diversity of the instances
of the subset (i.e., a batch) into consideration. For example,
Wang et al. [26] propose discriminative neighborhood metric
learning to build a correlation matrix from the entire unlabeled
data set and then pick up the median point in each cluster
based on the correlation matrix. Nguyen and Smeulders [27]
utilize a coarse-to-fine adjustment mechanism in AL to avoid
repeatedly selecting the same data in each cluster. In summary,
most of these algorithms use clustering or greedy heuristics to
ensure that selected instances in the subset are both diverse
and uncertain. Brinker [8] and Xu er al. [9] propose AL
approaches for support vector machines, which explicitly con-
sider diversity by using clustering algorithm, and the centroid
of each cluster is used to avoid redundancy in the selected
subset.

To select an instance subset with low redundancy, Hoi et al.
[10] uses hill-climbing search to greedily include instances,
one at a time, into the selected set to form a k-instance sub-
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set. This method, in essence, is still based on single-instance
selection without taking each k-instance subset as a whole
for selection. Instead of employing a greedy search strategy,
Guo and Greiner [15] employed expectation loss and Taylor
approximation to find approximate solutions for instance subset
selection. In order to find an instance subset with a minimum
expected loss value, one has to retrain multiple models, by
varying the selection of subset, to find the best selection. As
a result, this method [15] is computationally expensive in
practice.

In order to address the aforementioned issues, our work
proposes to investigate a new AL strategy by taking an instance
subset as a whole to assess its utility value, without involving
clustering or heuristic search, and find the optimal subset
for AL.

III. PROBLEM DEFINITION AND SYSTEM OVERVIEW
A. Problem Definition

Given is a data set D consisting of IV instances with each
instance x; denoted by x; = {z;1,...,%im; v}, where z;
denotes the jth attribute value of the instance and y; de-
notes x;’s class label. If z; is unlabeled, we denote it by
x; ={®i1,...,Tim; 7} Assume that, at any stage, a labeled
sample is moved from D to a subset D¥, and the remaining
unlabeled instances in D form an unlabeled subset DV, with
D = DL UDY and D N DY = (). The aim of optimal-subset-
based AL is to select and label a batch (i.e., a subset A) of
instances, one batch at a time, from DV, such that, when a user-
requested number of instances are labeled, a classifier trained
from D* has the maximum prediction accuracy in classifying
some previously unseen test instances 7.

B. System Overview

In order to train classifiers from D with the maximum
prediction accuracy, a commonly employed principle for AL is
to label samples with high uncertainty. Following this principle,
assume that a matrix M exists to capture each single instance’s
uncertainty as well as the disparity between any two instances
x; and x;; the aforementioned AL goal can be regarded as the
selection of an optimal subset of unlabeled samples A, such that
the summation of instance uncertainty and disparity over A can
reach the maximum (compared to any alternative subsets with
the same size).

Accordingly, we employ an iterative procedure with the
following three major steps.

1) Classifier ensemble construction: Use bootstrap sam-
pling to train a committee of classifiers £ from D%,

2) Building correlation Matrix: Applying E to unla-
beled sample set DV and build a correlation matrix M
to capture instance uncertainty and disparity between
instances.

3) Optimal subset selection: Use correction matrix M to
select an optimal subset A which has the maximum
utility value among all candidate sets with the same size.
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This problem can be formulated as a quadratic integer
programming problem as follows:

max x’ Mx,
X

st. Y mi=k z;€{0,1} (1)

i,x,€X

where x is an n-dimensional column vector and 7 is the
size of unlabeled set DV. The constraint k& defines the
size of the subset for labeling, with x; = 1 denoting that
instance z; is selected for labeling and x; = 0 otherwise.

Assume that the objective function in (1) is properly solved;
the optimal subset A will contain % instances with the max-
imum summation of the uncertainty and disparity, through
which the instance labeling redundancy is reduced. Depending
on the number of instances for labeling, the aforementioned
process repeats until the data set is suitably labeled.

IV. ALOSS: OPTIMAL INSTANCE SUBSET
SELECTION FOR AL

We now discuss technical details on correlation matrix con-
struction and optimal subset selection for AL.

A. Correlation Matrix Construction

An important step of AL with optimal subset selection
(ALOSS) is to construct a correlation matrix M with elements
in M properly capturing each single instance’s uncertainty as
well as correlations between each instance pair. To build a
correlation matrix M € R™ ™, where n denotes the number
of instances in the unlabeled set DY, we separate elements
in M into two parts. More specifically, assuming that f; ;
defines the uncertainty of instance x; and Z; ;, 7 # j defines the
disparity between instances x; and x;, the correlation matrix
M is constructed using

M= {50 %] 2
i, J:

Classifier Weighting Matrix: To calculate instance uncer-
tainty, we build a classifier ensemble F with 7 heterogeneous
members, A, ..., A;, each of which is trained from labeled
sample set DL . Meanwhile, assuming that users intend to use a
specific type of learning algorithm, for example, decision trees,
to the final labeled samples and train a classifier to predict
test instances, we also apply the same learning algorithm to
DL to train a benchmark classifier /2*. In this paper, we call
* a “benchmark” classifier because the AL goal is to ensure
that a same type of classifier, such as decision tree, naive
Bayes (NB), etc., trained from DL will have the maximum
accuracy. Because we use ensemble F with different types of
base learners, the purpose of employing h* is to make sure
that the AL process indeed favors samples with respect to
user-selected learning algorithm. In other words, if users want
to build an NB classifier from the final labeled set D* and
expect this NB classifier to have the maximum accuracy, our

TABLE 1
TOY EXAMPLE DEMONSTRATING THE CORRELATION MATRIX
CONSTRUCTION PROCESS. THE DATA SET CONTAINS FOUR INSTANCES
{x1,22,23,24} AND TWO CLASS LABELS TRUE (T") OR FALSE (F):
(a) PREDICTION FROM A BENCHMARK CLASSIFIER /™ AND PREDICTIONS
FROM THE THREE CLASSIFIERS OF AN ENSEMBLE E = {/i1, hiz, iz} ON
THE DATA SET, (b) H; j VALUES FOR MATRIX H, AND
(c) NORMALIZED MATRIX H = HT x H/n

() (b)

Classifier | ©1 | 22 | 23 | 24 Instance | A1 | hie | N3
h* T F F T 1 0 1 0
hiy F T F T To 0 0 0
fio T T F T T3 1 1 1
iz F T F F T4 1 1 0

(©)

Classifier | /iy | ho | &3
M |2 23
lig 110314
his 11| 1

AL process will use the NB classifier as the “benchmark” to
guide the instance-selection process.

Given classifier ensemble E = {/,...,h,} and a bench-
mark classifier 2%, for each ensemble member /;, we compare
its prediction with the benchmark classifier #* on each unla-
beled sample in DY (which contains n instances) and generate
an n by m matrix H € R™*™ as follows.

1) H;; = 1,if h; and A" have the same prediction on ;.

2) H;; = 0, otherwise.

By using the H matrix, which records agreements between
each ensemble member and the benchmark classifier A", we
calculate a 7w by 7 matrix H € R™™ with H = H' x H/n.
Clearly, each diagonal term #;; denotes the percentage of
same predictions between h; and h*, whereas each off-diagonal
term H; j,i # j denotes the common agreements between
classifiers h; and h;. Table I demonstrates the correlation matrix
construction process using a toy example.

Instance Uncertainty: To calculate uncertainty for each sin-
gle instance x; in DY, we apply each ensemble classifier
hj,j=1,...,mto z; and build a vector u; with each element
u;j,7 = 1,...,m, recording the uncertainty of classifier 2; on
instance z; (in our experiments, we use entropy to measure
hj’s uncertainty on x;). As a result, we can build an n by 7
matrix uBnR™ ™ and calculate weighted instance uncertainty
as follows:

U=uxHxul. (3)

According to (3), each diagonal term in Uf;; contains the
weighted entropy of x; with respect to all ensemble classifiers
in E, which are trained from labeled samples DL,

Instance Disparity: The purpose of calculating the disparity
between each pair of instances z; and z; is to capture the
difference between x; and x; such that an optimal subset can
contain instances with high uncertainty and high disparity (so
there is low redundancy in the labeled samples). To achieve
the goal, we employ two types of distance measures, prediction
distance and feature distance, for disparity assessment.

Prediction distance (P) intends to compare the prediction
dissimilarity of a same set of classifiers on two instances. The
purpose is to assess the behavioral difference between a pair of
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instances (z; versus x ;) with respect to some classifiers. Given
an instance z; and a classifier /,;, assume that the labeling space
has ) labels in total, so x; can be predicted, by A, as any label
1 € [1,))]. Denote AL (z;) as the probability of x; belonging to
class [, as per classifier /,;’s prediction. For a pair of instances
x; and x ;, their prediction difference with respect to a classifier
h, is denoted by

p = (|hk(w:) — hl(z))

When combining prediction distance over all class labels [ €
[1, Y] and all classifiers hi,, x = 1,..., 7, we have

Y (xi) = B (z)]) . )

geeey

L y
Pig= > > |hk(@i) = hl(z)] x Hew ()

k=1,h.eE l=1

where H, , denotes the weight of the classifier h,, as we
discussed in Section I'V-A.

Feature distance (F), as its name suggests, intends to cap-
ture the disparity of a pair of instances in the feature space.
Given instance z; = {%;1,...,%im;Yi}, Where x; . denotes
the xth feature value of x;, the feature distance between x; and
2 is calculated as follows:

]:i,j = Z(zzn - xj,fi)2' (6)

k=1

Instance disparity (T): Because prediction distance (P) and
feature distance (F) each denote the difference between in-
stances x; and x; from different perspectives, the final disparity
between x; and x; is the product of the two distances as
follows:

Zij =Pij; x Fij. (N

By using the product of the prediction distance and feature
distance to calculate the disparity between instances, as shown
in (7), our intention is to simultaneously consider instances’
behaviors (prediction distance) and their distance in feature
space (feature distance). Assuming that prediction distance and
feature distance each assess instance distribution from one
dimension, the product therefore assesses the joint distribution
from both dimensions and is a proper way of assessing instance
disparity.

B. Optimal Subset Selection

Given a correlation matrix M with n instances, the purpose
of optimal subset selection, as defined in the objective func-
tion (1), is to select a subset with k instances, such that the
summation of all instances’ uncertainty and their disparities is
the maximum among all alternative subsets with the same size.
This problem is actually a standard 0—1 optimization problem,
which is NP-hard in general. SDP [18], fortunately, provides
an approximate solution to solve similar NP-hard maximiza-
tion problems with polynomial complexity. Accordingly, we
transform the original problem in (1) to a “Max-Cut with size
k” (MC-k) problem [18], [19], whose objective is to partition
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an edge-weighted graph (which contains N vertices) into two
subsets, with one of which containing k vertices, such that
the total weight of edges across the cut (i.e., partitioning) is
maximized. A formal definition of the MC-k problem is given
in (8), where N denotes the number of vertices in the graph and
W;,; is the edge weight between vertices ¢ and j

1 N
G
i€[1,N],j€[1,N],i<j
s.t. Zyl = N — 2k;

Wi x (1 —viy;),
yi € {—1,1}. ()

To transform the original problem, defined in (1), into the MC-
k problem as defined in (8), we transform variable x; in (1) as
follows:

vt

2 5 9

where y; € {—1, 1}. Replacing x; in (1) using its form in (9),
we have

1
max 7 (y + e)" M(y +e),
Yi € {—1, 1}

where y is an n-dimensional vector with values of either 1 or
—1 and e is the same-sized column vector with all values being
1 s. The original cardinality constraint ), z; = k is rewritten
as a quadratic form x* Ix = k, where I is an identity matrix.
To put transformed objective function in (10) and its cardi-
nality constraints into quadratic form, we expand the vector
v = (y1,...,yn) into an extended form y = (yo,¥1,---,Yn)
with yo = 1 and construct a new matrix Q € R(®+1)x(n+1) 49

follows:
0-— (eT./\/le eTM>

st (y+e)l I(y +e) = 4k; (10)

Me M (i

Similarly, we can apply the same extension to the cardinality
constraints and build a new constraint matrix C € R(»+1x(n+1)

as follows:
n el
c- ( ; )

As a result, the original instance-selection problem in (1) is
transformed into an MC-k problem as follows:

(12)

max yT Qy,
y

sty Cy = 4k;

yo=1 i €{-11}VI#0. 13)
Solving MC-k Using SDP Programming: To solve (13), we
denote Y =y x yT, where Y € R(**Dx(n+1) "and have an

SDP form for (13) as follows:

max QeY,
y
st. CeY =4dk;

Yo=1; yi€{-1,1} VI #0. (14)
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In (14), e defines the dot product givenas A e B =}, - A; ; x
B; ;. We integrate the constraints on binary variable y;. Because
y; has only two values 1 and —1, together with the constraint
yo = 1, the diagonal terms in Y are all 1 s. Consequently,
the constraints y; € {—1, 1} can be expressed as Diag(Y') = I,
where I is an (n + 1)-dimensional identity matrix.

Therefore, the SDP relaxation of (13) is denoted by

max QeY,
y
st. CeY =4k;
Diag(Y)=1I1; Y >0 (15)

where Y > 0 defines that symmetric matrix Y is positive
semidefinite (i.e., all its eigenvalues are nonnegative). Follow-
ing SDP problem formulation defined in (15), one can em-
ploy publicly available open source packages to solve (15). In
our experiments, we use semi-definite programming algorithm
[20], which is based on interior point method, to find solutions
for (15).

C. ALOSS: System Framework

The whole process of ALOSS, as listed in Algorithm 1, is an
iterative procedure. In each iteration, a small optimal subset A
with k instances is selected for labeling. The labeled instances
are then used to update models, including ensemble E and
benchmark classifier 2", and help select another optimal subset
A for labeling. The whole iterative process continues until the
number of labeled instances labeledSample reaches the user-
defined value ¢.

Accelerated Process: In Algorithm 1, optimal subset selec-
tion is carried out on M which is a square matrix, and its
size is determined by the size of the unlabeled data set DUV,
For a large-size matrix, finding solutions for SDP is computa-
tionally expensive. Alternatively, one can build a small matrix
by removing samples whose uncertainty values are hopelessly
small. Therefore, the instance subset selection only works on
the remaining samples, which will, in turn, significantly re-
duce ALOSS’s computational complexity. To achieve the goal,
the key issue is to determine a proper threshold value and
separate instances, according to their uncertainty values H,
into two subsets. For this purpose, we employ a histogram
[28]-based automatic thresholding method to divide unlabeled
instances into two groups: low-uncertainty group and high-
uncertainty group, with the goal of separating samples into two
groups such that their combined spread (intragroup variance) is
minimal.

Given an unlabeled instance subset DY with n instances, the
uncertainty of each individual instance is denoted by U/, ;, I =
1,...,n, as given in (3). Assuming that the uncertainty values
of all instances DY are distributed between [Epin, Emax], One
can partition the range into L intervals with equal width, as
defined by (16), and the number of instances whose entropies
belonging to the jth interval is denoted by n;

(Emax - Emin)

w = 7 (16)
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Assume that a threshold 7 exists to separate instances in DV
into two groups Gioyw () versus Guign (7), as follows:

glow(T) = {Z’L‘xl S DU; ui,i § Emin +7- w} (17)
Onign (1) = {;|lz; € DY; Uiy > Erin + 7w}
Denote the percentage of samples in the [th interval by
P, = Zﬁ:l; z,€DY;  Epin+Hlw<i; ; <Emin+(+1)w 1 (18)

n

The respective percentages of samples in the groups Gow (7)
and Gign(7), with respect to a given threshold 7, are then
denoted by

T L-1
wlow(T) = ZP] Whigh(T) = Z Pj- (19)
7=0 Jj=7+1

The weighted means for each of group Gioyw (7) and Ghigh (7).
with respect to the threshold 7, are then defined by

T

N Ut B
Hiow (7) = ;0 o) (20)
L-1 .
G+1-P
n () = : 21
Hh gh (T) 7;1 whigh (T) ( )

Assume that the mean uncertainty level over the whole
unlabeled data set DY is calculated using

™~
—

p=>y (j+1) P (22)

I
=)

J

The weighted intergroup variance, with respect to the given
threshold 7, is then defined by

02 (T) =Wiow (T) * [fiow (T) = 11)° + Whign (T) - [1tnign () — 1]
23

The main objective of the automatic thresholding method
is to exhaustively search for an optimal threshold 7x that
maximizes (23), which will, in turn, separate samples into
two groups, Giow (7#) and Gpigh(7*), with maximum inter-
group variance. The algorithm details for finding an automatic
threshold to partition unlabeled samples DU are shown in
Algorithm 2.

Algorithm 1 ALOSS: Active Learning with Optimal Subset
Selection

Input: (1) an unlabeled sample set D; (2) 7: # of classifiers
to form an ensemble £ (3) ¢: # of samples selected for
labeling; (4) h: a learning algorithm for training final
classifiers; and (5) k: the size of optimal subset
(or batch size).

Output: an labeled sample set D” with ¢ labeled samples.

1: labeledSample < A small random number;

2: D¥ + Randomly label labeledSample instances from D;

3: DY «+ D\ D%
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4: while labeledSample < t do

5: h* < Apply hto D to train a benchmark classifier;

6: E ={hy,..., Az} < Apply bootstrap samplings to D*

and build ensemble E with heterogeneous classifiers;

7: H < Apply E and h* to DY and build instance
uncertainty matrix;

8: DV’ + Refining DY using accelerated search process in
Algorithm 2;

9: T « Calculate disparity matrix for instances in DV';

10: M <+ Build instance-correlation matrix;

11: A < Apply optimal subset selection to M and select a
subset A with £ instances;

12: DF <« DEJA; DY <« DY\ A,

13:  labeledSample < labeledSample + k;

14: end while

Algorithm 2 AP: Accelerated Process using instance selection

Input: (1) weighted uncertainty values for all unlabeled
instances in DY, U; ;,i = 1,...,n; (2) L: # of levels in
separating instance uncertainty values [0, L — 1]
Output: selected instance subset
1: w < determining the step value for separating uncertainty
values as shown in (16).

2: 7% + 0; o(7%) + 0; initializing optimal threshold and
corresponding maximum variance value as 0.

3:for j=0to L — 1do

4: T < j; setting current threshold.

51 Giow(T), Gnign(T) < separating two groups as shown in
(17).

6: 02(T) <+ calculating intergroup variance as shown in
(23)

7. if 0%(7%) < 0?(7) then

8 T < 7; updating threshold value.

9:  o%(7%) < 02(7); updating optimal variance.

10: Ghigh (T%) < Gnign (7); updating optimal subset.

11: end if

12: end for

13: return Gpigp (7).

D. Time Complexity Analysis

The total time complexity of ALOSS includes two major
parts: 1) building instance-correlation matrix M and 2) apply-
ing SDP to M to select a k-instance subset. We assume that
a learning algorithm with quadratic complexity O(?) is used,
where ¢ is the maximum number of labeled instances. In each
iteration, there are one benchmark classifier and 7 ensemble
members that need to be trained. In addition, the calculation of
the disparity matrix needs pairwise instance correlation, which
requires O(n?) time complexity, where n denotes the number
of unlabeled instances. Therefore, in total, the time complexity
for building instance-correlation matrix is

O(M) = (m +1)O(t*) 4+ O(n?). (24)
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TABLE 1I
SIMPLE DESCRIPTION OF THE BENCHMARK DATA

[ ID | Dataset | Instances | Features | Classes |

1 horse 368 23 2
2 | auto-mpg 398 8 3
3 balance 625 5 3
4 pima 768 9 2
S vehicle 846 19 4
6 german 1000 21 2
7 cme 1473 10 3
8 car 1728 7 4
9 segment 2310 19 7
10 | abalone 3196 37 2

Due to the accelerated search process (Algorithm 2), we
can reduce the correlation matrix from M € R™" to M ¢
R>mxan - where « € [0,1] is the percentage of reduction.
The SDP process requires O(SDP) = O(k* + (a - n)?3) [33]
complexity to solve the n x n matrix and selects a k-instance
subset. Because the size of the instance subset k is much
smaller than « - n, we can regard that SDP’s time complexity
is bounded by O((a - n)?).

Because the whole AL process requires the repetitive training
of the classifiers, the while loop between steps 4 and 14 in
Algorithm 1 needs to repeat t/k times, so the total time com-
plexity of ALOSS is given as follows:

O(ALLOS):% [(7+1)0(2)+0(n?) +0((a-n)?)]. (25)

The aforementioned complexity analysis indicates that the
bottleneck time complexity of ALOSS is asymptotically
bounded by the SDP process.

V. EXPERIMENTS

We implement ALOSS and a number of baseline approaches
using Java and WEKA data mining tools [23] and compar-
atively study their performance on ten benchmark data sets
collected from the University of California, Irvine (UCI) ma-
chine learning data repository [24]. A simple description of the
benchmark data sets is summarized in Table II. To compara-
tively study the algorithm performance, we compare classifiers
trained from sample sets labeled by different methods. If a
classifier trained from a sample set labeled by method A has
a higher accuracy than the classifier trained from a sample set
labeled by method B, we conclude that A has a better AL
performance than B. To make fair comparisons, all methods
are compared based on the same training and test instances
(the initial randomly labeled instances are also the same for
all methods). All experiments are based on ten times tenfold
cross-validation. To build ensemble £ with diverse classifiers,
we employ four learning algorithms, including the following:
1) decision trees; 2) NB; 3) ZeroR (a classifier predicting
samples to the majority class); and 4) multilayer perception,
to build an ensemble with m = 8 classifiers, with each of them
contributing two classifiers.

A. Benchmark Methods

In addition to the proposed ALOSS approach, we also imple-
ment a number of mainstream AL methods [25].
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Fig. 2. Accuracy comparisons with respect to different batch sizes for AL. (a) Horse (two classes). (b) Auto-mpg (three classes). (c) Car (four classes).

Random is a simple approach, which randomly selects user-
requested number of instances for labeling.

Entropy is a query-by-uncertainty AL method, which uses
entropy as the uncertainty measure. Each instance z;’s entropy
is calculated by using class distributions predicted from a
classifier, as defined by (26), where P(y;|x;) is the probability
of x; belonging to class y;

@y = argmax — »_ P(yle;) log P(yile:).
‘ 1

(26)

All unlabeled samples are sorted according to their uncertainty
values. A number of samples ranked on the top of the list form
a batch, which is selected for labeling. The labeling process
repeats until the user-requested number of instances are labeled.

Margin is identical to Entropy except the underlying uncer-
tainty measure. Instead of using entropy, Margin aims to seek
the difference between the two most likely class labels on a
specific instance, as defined by

ry = argmin P(y[2) — P(ysla) @7)

where y; and yo are the first two most probable class labels,
with x being classified by a classifier. Intuitively, an instance
with the least margin value is the one which is mostly ambigu-
ous (i.e., uncertain). Similar to Entropy, Margin also employs a
batch-based iterative process for AL.

SIB is a single-instance batch method which is identical to
Entropy except that, for SIB, the batch size is one, which means
that SIB selects and labels an instance one at a time. The main
purpose of using SIB as a baseline method is to check that if
we try to remove the redundancy during the batch-based AL
process, what is the best performance that the existing method
can possibly achieve? Because SIB has the smallest batch size,
it is the most computationally expensive method.

IW is a most recently developed instance weighting (IW)-
based method [25]. For each unlabeled instance x;, IW gener-
ates a weight value for x; according to its maximum loss value
on a set of benchmark classifiers, as defined in (28), where £()
defines a loss function and f and g each denote a classifier in
a set h. The higher the p,,, the more likely x; is going to be
selected for labeling

(L(f(@),y) = L(g(xe),y)) . (28)

Pz, ma.
€

= X
f.9ehyeY

ALOSS, and ALOSS are variants of the proposed ALOSS
approach, where instance disparity Z only considers prediction
distance (ALOSS,) or feature distance (ALOSSy), respec-
tively, as introduced in Section IV-A.

For fairness of comparison, all baseline algorithms, except
SIB, are designed to work in a “set assessment” mode by
selecting the top k instances with the largest utility values one
at a time. SIB labels one instance each iteration and will repeat
k times to form a k-instance subset.

In the following sections, we first study algorithm perfor-
mance in different parameter settings, including different batch
sizes, different labeling portions, etc., and then report their
performance on all benchmark data sets.

B. Experimental Results With Different Batch Sizes

In Fig. 2, we report the performance of different algorithms
on three data sets, where the z-axis shows the batch size and
the y-axis reports the accuracies of the classifiers trained from
final labeled samples (by using different AL methods). In our
experiments, we use decision trees (using J4.8 implementation)
as the benchmark learner, and AL is used to label 50% of the
samples. For example, for batch size 0.05 (which means 5%
of the samples), an AL algorithm needs to repeat ten times in
order to label 50% of the samples (in our experiments, we vary
the number of labeling iterations from ten to two with step —1
to label 50% of the samples, which correspond to batch sizes,
0.5/10 = 0.05, 0.5/9 = 0.056, ..., 0.5/2 = 0.25).

As the batch size increases, the performance of all methods,
except SIB, deteriorates (the batch size of SIB is fixed to
one so its performance remains stable across all batch sizes).
This is because the labeled samples are fixed to 50%, and
for a smaller batch size, an active learner will have more
iterations to update its instance-selection process. Interestingly,
the results in Fig. 2 also show that, as the batch size increases,
the performance gain of ALOSS, in comparison with other
methods, continuously improves. For example, when using
batch size 0.05, the absolute performance gain of ALOSS,
compared to Margin, is 3.7%, from 86.5% to 90.2%. When
increasing the batch size to 0.25, the performance gain in-
creases to 6.1%, from 80.7% to 86.8%. The same results
can be observed from other data sets in Fig. 2. This asserts
that the optimal subset selection procedure in ALOSS does
play an effective role for avoiding redundancy and selecting
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Fig. 3. Head-to-head comparisons between prediction-distance- and feature-
distance-based instance disparity measures. The z-axis denotes the accuracy of
ALOSSp, and the y-axis denotes the accuracy of ALOSS ¢. A value above the
y = x line indicates that ALOSS ¢ outperforms ALOSS,, and vice versa.

informative samples for labeling. For small batch sizes, the
effect of redundant samples may be marginal because for a
batch only contains several instances the redundancy among the
instances may not be significant, in addition, a learning algo-
rithm may also need the redundant information to build correct
decision logics. For large batch sizes, simply sorting all samples
according to their uncertainty, without considering their cor-
relations, will introduce significant redundancy in the labeled
samples.

To demonstrate algorithm performance in most rigorous
conditions, in the following experiments, we use batch size 0.05
for all experiments.

C. Comparisons Between Different Distance Measures

In Fig. 3, we compare the performance of ALOSS,, and
ALOSS on all benchmark data sets. In our experiments, we fix
the batch size to 0.05, and the initial randomly labeled samples
is set as 0.05. Then, we apply ALOSS,, and ALOSS to label
different percentages of samples, with the labeling percentages
varying from 10% to 50%. Because batch size is 0.05, for
each data set, it will generate nine results, which correspond
to the labeling percentages 10%, 15%, 20%, ..., 50%. From
ten benchmark data sets, we can generate 90 pairs of accuracy
values in total. We report all 90 pairs of accuracies in Fig. 3,
where a value above the y = x line indicates that ALOSS
outperforms ALOSS,, and vice versa.

Among all 90 observations, ALOSS,, outperforms ALOSS ;
on 55 cases, which asserts that, instead of considering feature
values to assess instance correlations, like existing correlation-
based AL algorithms do [27], using behaviors of instances with
respect to different classifiers is an effective way of assessing
instance correlations. Interestingly, for classifiers with rela-
tively high accuracies, ALOSS ; appears to have a better chance
of outperforming ALOSS,, (notice that, when the accuracies of
the classifiers are less than 70%, ALOSS; only outperforms
ALOSS,, once out of 18 tests). This is mainly because ALOSS ¢
relies on Euclidean distance, which is essentially a nearest
neighborhood approach, to assess sample correlations. If the
accuracies of the classifiers on the data sets are relatively low, it
means that the decision concepts of the data sets are relatively
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complex, so using feature-based distance function is ineffective
to differentiate samples from different classes. Imaging a two-
class data set (positive and negative) with completely random
instances and class labels, the best classification accuracy we
can achieve for the data set is 50% (because instances and their
class labels are completely random). Under such circumstances,
Euclidean distance function is not able to assess the genuine
disparity between instances. This is because, even if ALOSS
shows that instance pair (x;,z;) has a larger disparity value
than (z;, zy), x4, by no means, is a better selection than x;,
(because everything is random, so all instances are supposed
to have the same disparity to x;). On the other hand, for the
same random data set, the prediction-distance-based disparity
calculated by ALOSS,, will conclude that (z;, z;) has the same
disparity value as (x;,xy) because classifiers have random
predictions for all instances (x;, x, and xy,).



FU et al.: ACTIVE LEARNING WITH OPTIMAL INSTANCE SUBSET SELECTION

473

——Entropy ——SIB ——ALOSS, ——ALOSS |

‘—-—Entropy —-SIB —«—ALOSSp

~ ALOSS | [ —Entropy ——SIB ——ALOSS, = ALOSS

0.67

0.84 N

-

0.82
0.8 /

7t

0.95
0.93
0.91

0.97

Accuracy
(=3
(=23

s

Accuracy

0.76

=7/

0.89

Accuracy

—

il

0.87
0.85

0.83

0.74 /

\/\/ 0.57 .~

0.72

0.7 y 0‘5501 0.2 0.3 0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ’ ’ h )
Percentage

(a)

Fig. 5.
classes). (c) Segment (seven classes).

Percentage

0.81 5 3 3 -
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Percentage

(©)

0.5 0.6 0.7 0.8

(b)

Accuracy comparisons with respect to different portions of labeled samples (the batch size is fixed to 0.05). (a) Pima (two classes). (b) Auto-mpg (three

TABLE III
DETAILED ALGORITHM PERFORMANCE COMPARISONS (DECISION TREES ARE USED AS THE BENCHMARK LEARNER,
AND THE LABELING PERCENTAGE Is 15%

Dataset Random Margin Entropy SIB W ALOSS, ALOSS
horse 82.85i1_20 83.12:|:1,09 82.98j:1,7() 83.02:|:1,28 82.95:|:1,76 83.17:|:1,69 83.78;&1,31
auto—mpg 67.7312_16 67'7‘5i2.96 67.9711,12 68.5211,68 67.0412,62 68.2112,13 69.7711,87
balance 62.131+1.19 63.2042.9 62.9141.08 63.9411 94 63.3641.2 63.9411 23 64.32.L5 24
pima 69«5‘5i1.48 70'11i1.88 70-2411.68 70.9611,34 70.8911,96 70.7511,94 71.8811,91
vehicle 67.98i1,12 69.03:5:1,93 68.89;};1,14 69.56i1,98 68.05:|:1,43 69.17:|:1,45 70.59:(:2,12
german 68.54i1,13 67.21i1,73 68.76i1,38 69‘64i1,71 68.56i1,56 70.09i2,05 70.13i1,57
cme 57~23i1.16 58.90:5:1,78 57-98ﬂ:2.06 58.98i1,76 59.01:|:2,19 59.23i1,32 60.12j:2,17
car 83.35+1.03 84.76+1.75 84.68+1.25 85.07+1.73 83.58+2 87 85.454+1.25 86.78+2.15
segment 82.29:|:3,08 82.75:&2,12 83.84:|:2,17 85.06:‘:1‘25 84.98i1,25 83.78:|:1,69 84.57:|:1,95
analone 80.78;[:1,56 82.85j:1,2 81.67i1,34 82.56i1,76 80.21i3,21 83.23i1,35 84-72i2.18
Average 72.2441 .60 72.9641.03 72.9941 .51 74.6341.60 72.86+2.00 73.7241.66 75311204

TABLE 1V

DETAILED ALGORITHM PERFORMANCE COMPARISONS (DECISION TREES ARE USED AS THE BENCHMARK LEARNER,
AND THE LABELING PERCENTAGE Is 30%

Dataset Random Margin Entropy SIB W ALOSS, ALOSS
horse 83.31:{:1.08 83.96:|:1'13 84.07:|:1,29 84.31:|:1,38 84.11:|:1,43 84‘53:|:2,43 85-47:I:1476
auto-mpg 68.364+1.81 71.08+1.60 69.97+1.05 70.8841.34 69.0441 68 71.8542 08 72,0611 .45
balance 63.5411.2 64.73+2.39 64.8511.60 65.094+1.07 65.1841.38 65.2542.06 66.2511 46
pima 70.9141.10 71.1541.76 70.9641.25 71.6841.60 71.7241.01 71.974+1.56 72.78.11 .38
vehicle 69.06+1.15 70.87+1.25 70.084+1.95 71.5142.06 71.0642.9 71.374+1.12 725615 56
german 69.6441 .01 69.75+1.02 68.984+1.60 69.6241.71 70.2949 03 71.7941.45 72.8911.06
cme 58.01i1,09 60~07i1.98 59.80i2,31 61~52i1.83 62.43i2,32 61.04i2,24 62.26i2,12
car 85~35i1.85 86.12i1,22 85-93i1.85 86.72i1,74 85.58i2,87 87.05i2,12 88.78i2,15
segment 85.2411_03 85.62i2,29 86.0211,05 86.73i1,60 85.2312,83 86.27i1,56 87.98j:1,05
analone 81.78i1.43 83.65i1,47 82.56i1,82 83.71i1,91 82.13i2,21 85.34i1,72 86.12i1,65
Average 73.52:|:1,27 74-7:|:1.61 74-32:|:1.58 75«17:|:1.62 74.67:|:1,99 75‘64:|:1,83 76.82:}:1,75

D. Results With Different Percentages of Labeled Samples

In Figs. 3 and 4, we report the algorithm performance with
respect to different percentages of labeled samples, which vary
from 10% to 80% (as indexed by the z-axis). The y-axis in
the figures shows the accuracies of the classifiers trained from
the corresponding labeled samples. For each benchmark data
set, we use two types of benchmark learners, decision trees and
NB, and report their accuracies in Fig. 4. Meanwhile, in Fig. 3,
we compare the performances of different algorithms by using
two-class, three-class, and seven-class benchmark data sets.
Therefore, we can observe algorithm performance with respect
to an increasing number of class labels. For all experiments, we
fix the batch size to 0.05, and the initial randomly labeled subset
is 0.05. Detailed results of each method on all benchmark data
sets are reported in the next section (Fig. 5).

The results in Figs. 3 and 4 show that the Entropy method,
without considering sampling redundancy, is the least effective

algorithm mainly because the instance uncertainty is calculated
based on each sample’s own information, and the correlation
between samples is ignored. By employing optimal subset
selection, we observe that ALOSS constantly outperforms SIB.
Because the batch size for SIB is set as one and a smaller
batch often results in a better labeling quality, SIB represents
the performance upper bound of individual-assessment-based
active methods. By combing instance uncertainty and instance
disparity together to select optimal subsets for AL, ALOSS is
shown to outperform the upper bound to a large extent.

E. Detailed Comparisons for All Methods

In Tables III-V, we report detailed comparisons of all
methods on the ten benchmark data sets. The detailed re-
sults reported in the tables are based on different percent-
ages of labeled instances, varying between 15% (Table III),
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TABLE V
DETAILED ALGORITHM PERFORMANCE COMPARISONS (DECISION TREES ARE USED AS THE BENCHMARK LEARNER,
AND THE LABELING PERCENTAGE IS 50%

Dataset Random Margin Entropy SIB W ALOSS, ALOSS
horse 84.37+1.51 84.7541.07 84.8711.45 85.1241.47 84.98.1 5 56 85.3441 .60 86.1811 .06
auto—mpg 74.08:‘:1,98 75'17:|:1.69 75~01:t2.08 75~92:t1.69 74.05:|:1,2 76.07:|:1,12 77.09:|:2,29
balance 65.92i1,03 65.75:|:2,35 65.89:&1448 66.34i1,19 66.94:|:1,39 66.89:|:2436 67.21:|:1,96
pima 72.96i1,10 72.92:|:1,29 73.05i1,12 73.99i2,01 73.07:|:1,19 73.87:|:1,23 74.92:|:1,23
vehicle 70.98i1,13 72.01i2.8 71.4511,34 72~8911.65 72.09i2.1 73~56i1.18 74-78i3.56
german 70.78i1,01 70.9611,04 71~08:t1.56 71~78j:1.67 71.0912_53 72.67i1,95 73-27i1.65
cme 59.03:5:1,75 61.09:|:2,()8 60.45:5:1,34 61.86:5:1,12 62.03:|:1,23 62.34:|:1A71 6354:]:2.56
car 86.97+1.03 88.154+1.74 87.37+2.16 88.36+1.02 87.09413.21 88.96+1.46 90.1312 .06
segment 86.24:&1,25 86.02:|:2,8g 87.12i1.12 87~89:t1.67 87.23:|:2_13 88.31:|:1,72 89.98:|:1,34
analone 83,78:&1‘23 84.87:|:2‘12 84.65;‘:1‘51 85.71:}:1‘65 84.23:|:1,22 86.12:|:1‘34 88.12:|:1‘89
Average 75.5141.30 76.17+1.01 76.094+1 51 76.9811 .60 76.2811.87 774141 57 78.521 2 05
30% (Table 1V), and 50% (Table V). In all tables, the batch REFERENCES

size is fixed to 0.05.

Among all methods, ALOSS achieves the best performance
gain; ALOSS,, and SIB are the second tier. The IW-based ap-
proach, however, marginally outperforms random sample selec-
tion. As we have discussed in (28), the IW in IW is essentially
an individual-assessment-based measure, where the importance
(i.e., the weight value) of each instance is calculated according
to its loss value with respect to some classifiers. Without taking
the instance correlation into consideration, IW only aims to
label individual instances with the objective of minimizing the
total loss of the system. Our experiments assert that instance
correlations play an important role for AL methods to select
informative and less redundant instances for labeling.

Intuitively, SIB intends to avoid sample labeling redundancy
by selecting an instance one at a time for labeling. Such a hill-
climbing instance labeling approach, however, is still inferior to
ALQOSS, although SIB indeed outperforms most other methods
(despite the high computational costs of SIB). Indeed, although
SIB intends to minimize redundancy in the sample selection
process, it has no mechanism to ensure that samples selected in
a consecutive number of iterations can form an optimal subset.
This is similar to most hill-climbing search methods which
constantly move toward each local optimal but may be even-
tually stuck to the local optimal and fail to find global optimal
solutions. ALOSS inherently avoids the problem through the
selection of an optimal subset by taking sample correlations
into consideration.

VI. CONCLUSION

In this paper, we have proposed a new AL paradigm using
optimal subset selection (ALOSS). Instead of treating each
unlabeled instances as .ID. objects and assessing their util-
ity values without considering sample correlations, ALOSS
regards sample correlation as a key aspect for selecting the
most important instance subset for labeling. To achieve the
goal, ALOSS uses instance uncertainty and instance disparity
to build an instance-correlation matrix, so the AL problem
is transformed into an SDP problem which selects a subset
with an optimal utility value. The employment of the correla-
tion matrix and the corresponding optimization goal lay solid
theoretical foundations to explain why ALOSS outperforms
its peers. Experimental comparisons have demonstrated that
ALOSS outperforms state-of-the-art active learners.
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