
940 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

Graph Ensemble Boosting for Imbalanced Noisy
Graph Stream Classification

Shirui Pan, Jia Wu, Xingquan Zhu, Senior Member, IEEE, and Chengqi Zhang, Senior Member, IEEE

Abstract—Many applications involve stream data with struc-
tural dependency, graph representations, and continuously
increasing volumes. For these applications, it is very common
that their class distributions are imbalanced with minority (or
positive) samples being only a small portion of the population,
which imposes significant challenges for learning models to
accurately identify minority samples. This problem is further
complicated with the presence of noise, because they are similar
to minority samples and any treatment for the class imbalance
may falsely focus on the noise and result in deterioration of accu-
racy. In this paper, we propose a classification model to tackle
imbalanced graph streams with noise. Our method, graph ensem-
ble boosting, employs an ensemble-based framework to partition
graph stream into chunks each containing a number of noisy
graphs with imbalanced class distributions. For each individual
chunk, we propose a boosting algorithm to combine discrimina-
tive subgraph pattern selection and model learning as a unified
framework for graph classification. To tackle concept drifting in
graph streams, an instance level weighting mechanism is used to
dynamically adjust the instance weight, through which the boost-
ing framework can emphasize on difficult graph samples. The
classifiers built from different graph chunks form an ensemble
for graph stream classification. Experiments on real-life imbal-
anced graph streams demonstrate clear benefits of our boosting
design for handling imbalanced noisy graph stream.

Index Terms—Data streams, graph ensemble boosting
(gEBoost), graphs, imbalanced class distributions, noise.

I. INTRODUCTION

GRAPH classification has drawn increasing interests due
to the large number of applications involving com-

plex structured data with dependency relationships. Examples
include identifying bugs in computer program flows [1], cat-
egorizing scientific publications using co-authorships [2] or
citation-ships [3], and predicting chemical compound activities
in bioassay tests [4]–[6].

Manuscript received June 16, 2013; revised December 29, 2013,
April 30, 2014, and June 30, 2014; accepted July 4, 2014. Date of publi-
cation August 27, 2014; date of current version April 13, 2015. This paper
was recommended by Associate Editor Y. Jin.

S. Pan and C. Zhang are with the Centre for Quantum Computation
and Intelligent Systems, FEIT, University of Technology, Sydney,
Sydney, NSW 2007, Australia (e-mail: shirui.pan@student.uts.edu.au;
chengqi.zhang@uts.edu.au).

J. Wu is with the Centre for Quantum Computation and Intelligent Systems,
FEIT, University of Technology, Sydney, Sydney, NSW 2007, Australia,
and also with the Department of Computer Science, China University of
Geosciences, Wuhan 430074, China (e-mail: jia.wu@student.uts.edu.au).

X. Zhu is with the Department of Computer and Electrical Engineering and
Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
(e-mail: xzhu3@fau.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2341031

The main challenge of graph classification is that graphs
only contain node-edge structure information, and no fea-
ture is readily available for training classifiers. This challenge
motivates many works for graph classification [4], [7]–[12],
which either try to learn global distance/similarity between
two graphs [10], or selecting some local discriminative sub-
graphs [4], [11] and transfer each graph into vector format (by
examining the appearance of subgraph features in the graph,
as shown in Fig. 1).

Existing algorithms [8], [11] have demonstrated good clas-
sification performance for graph data with balanced class
distributions (i.e., the percentages of samples in different
classes are close to each other). In reality, balanced class
distribution is rarely the case and for many applications inter-
esting samples only form a small percentage of the whole
population. For instance, in NCI chemical compound graph
datasets, only about 5% of molecules are active to the anti-
cancer bioassay test, and the remaining 95% are inactive to the
test (http://pubchem.ncbi.nlm.nih.gov). Learning from datasets
with imbalanced class distributions has been widely studied in
past years. Popular techniques include sampling [13], ensem-
ble learning [14], [15], and SVM adapting [16], [17], and a
recent monograph has discussed many methods for imbalanced
data classification [18]. Unfortunately, these learning meth-
ods for imbalanced data are designed and evaluated only for
data with vector representations, without considering complex
structure information of graphs. As a result, they may have
sub-optimal performance when applied to graph data.

When dealing with imbalanced graph data, a simple solu-
tion is to apply existing methods for imbalanced data [13] to
under-sample graphs in the majority class to obtain a relatively
balanced graph dataset, and then apply graph classification
methods [11], [19]. Such a trivial treatment not only ignores
the structure information in the graph datasets, but may be
also subject to the risk of losing valuable information in the
sampled data, and results in poor algorithm performance. This
problem will be further aggravated with the presence of noise
(i.e., mislabeled samples). For graph applications, it is an
inherent complex process to examine and label structured data,
which may result in mislabeled samples (or noise). Because
noise accounts for a small portion of the whole dataset, they
are similar to instances in the minority class. As a result,
solutions which try to emphasize on minority class samples
to improve the performance gain may falsely emphasize on
noise and incur significant performance loss instead.

The second challenge arisen in real-life applications is the
dynamic increase and change of structural information over

2168-2267 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

PAN et al.: GRAPH ENSEMBLE BOOSTING FOR IMBALANCED NOISY GRAPH STREAM CLASSIFICATION 941

Fig. 1. Example demonstrating graphs and subgraphs: the toy graph database
consists of four graphs G1, . . . , G4. Given three subgraph features g1, g2, and
g3, each graph can be represented as a vector by examining the presence of
the subgraph features. For instance, G1 and G2 can be represented as vectors
[1,1,1] and [1,1,0], respectively. The numbers (a:b) following each subgraph
denote the number of times the subgraph appears in positive and negative
classes, respectively.

time, i.e., graph streams [2], [3], [20]. For example, an online
user’s browsing patterns, with respect to all web pages, can
be regarded as a graph. The browsing patterns of all users
will form a graph stream. Each scientific publication and its
references can be represented as a graph [3], so all scientific
papers, collected in chronological order, will form a graph
stream with increasing volumes.

In stream scenarios, classifying noisy and imbalanced
graphs is a very challenging task. This is because the decision
concepts of the graph data may gradually (or rapidly) change,
i.e., the concept drifting in the stream. In order to tackle the
concept drifting, the subgraph feature selection, and classifi-
cation modules should take the dynamic graph stream as a
whole to achieve maximum benefits. Unfortunately, existing
graph classification methods all work on static datasets with
balanced class distributions. No effective strategy exists to sup-
port classification for imbalanced graph streams. Intuitively, a
trivial solution is to partition graph stream into a number of
stationary subsets (or chunks) and carry out classifier learning
in each individual subset. This simple solution, however, does
not allow graph subsets to collaborate with each other to train
robust models. More effective solution to capture dynamic
changes in graph stream is highly desired.

In summary, when classifying noisy and imbalanced graph
streams, major challenges exist for subgraph feature selection,
noise handling, and concept drift modeling. More specifically
the challenges are as follows.

1) Bias of Learning Models: Low presence of minority
(positive) graphs will make learning models biased to
the majority class and result in inferior performance on
the minority class. In extreme cases (e.g., the minority
samples are extremely rare), the classifier may ignore
minority samples and classify all graphs as negative.

2) Impact of Noise: Most learning algorithms (such as
boosting) are sensitive to noise, because in their designs
if an instance’s predicted label is different from its orig-
inal label, the instance will receive a larger weight and
plays a more important role in the learning process. As
a result, the decision boundaries of the classifies may
be misled by noise and eventually result in deteriorated
accuracy.

3) Concept Drifting: In graph streams, the data volumes
and the decision boundaries of the graph data are
constantly changing, which impose difficulty for finding

effective subgraph features to capture the concept drift-
ing and train classifiers with high accuracy.

To solve the above challenges, we propose, in this paper, a
graph ensemble boosting algorithm (gEboost) for imbalanced
graph stream classification. Our theme is to employ a divide-
and-conquer approach to partition graph stream into chunks. In
each chunk, we formulate the learning task as a margin maxi-
mization problem, and employ a linear programming boosting
algorithm to integrate subgraph feature selection and classifier
learning process as a unified framework. To capture graphs
represented by drifting concepts in graph streams, we employ
a dynamic weighting mechanism, where graphs misclassified
by the existing model will receive a higher weight so the boost-
ing procedure (including subgraph feature selection and model
learning) can emphasize on difficult graphs for learning. In
summary, the key contribution of the paper is threefold.

1) To the best of our knowledge, gEboost is the first algo-
rithm with capability to handle graph streams with both
imbalanced class distribution and noise.

2) While existing graph classification methods consider
subgraph feature selection and model learning as two
separated procedures, we provide an effective design to
integrate subgraph mining (feature selection) and model
learning (margin maximization) into a unified frame-
work, so two procedures can mutually benefit each other
to achieve a maximization goal.

3) We propose an effective weighting strategy to model
dynamic changes of concept drifting graph stream.
Our approach, which tunes the weights of misclassi-
fied graphs to support graph stream classification, can
be easily generalized to stream data with rich structure
information.

The remainder of the paper is structured as follows. We
review the related work in Section II. Problem definitions and
overall framework are discussed in Section III. Section IV
reports the proposed algorithm for learning from noisy and
imbalanced graph data. Our gEBoost algorithm is detailed in
Section V. Experimental results are presented in Section VI,
and we conclude the paper in Section VII.

II. RELATED WORK

A. Graph Classification

As graphs involve node-edge structures whereas most exist-
ing learning algorithms use instance-feature representation
model, the major challenge of graph classification is to transfer
graphs into proper format for learning methods to train classi-
fication models. Existing methods in the area mainly fall into
two categories: 1) global distance-based methods (including
graph kernel [5], [10], [21] and graph embedding [22]) and
2) local subgraph feature-based methods. For global distance-
based methods, graph kernels and graph embedding are used
to calculate distances between a pair of graphs by comparing
their common paths. The calculated distance matrix can be fed
into a learning algorithm, such as k-NN and SVM, for graph
classification.

For local subgraph feature-based methods, the major goal is
to identify local subgraph structures as features [8], [11], [19],

942 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

and transfer graph data into vector space so existing machine
learning methods can be applied for classification [11], [19].

After obtaining the subgraph features, one can also employ
boosting algorithm for graph classification [8], [9], [23].
Saigo et al. [8] proposed a mathematical LP-boost style algo-
rithm and demonstrated that it is effective and converges
very fast. In our early research, we have extended gBoost to
igBoost [6] for imbalanced data, but not for graph streams.

For all existing graph classification methods, they are
designed for balanced graph datasets, and assume that the
underlying graph set is static and there is no treatment to
handle dynamic graph streams.

B. Data Imbalance and Noise Handling

Many methods exist for imbalanced data classification,
including sampling [13], ensembling [14], [15], and support
vector machine adapting [16], [17]. Some recent reviews and
monograph on imbalanced data classification are also avail-
able [18], [24], [25]. For all these methods, their scope is
limited to data in vector format. When dealing with imbal-
anced graph data, a simple solution is to use under-sampling
to create a relative balanced graph set, and then apply exist-
ing graph classification methods [11], [19]. This solution has
shown positive results on general data [26], but in graph
domain, it will result in significant performance deterioration,
because it not only ignores the structure information in the
graph datasets, but is also subject to the risk of losing valu-
able information in the sampled data and causes a large
angle between the ideal and learned hyperplane for margin-
based algorithms (i.e., SVM) [17]. This problem will be
further aggravated with the presence of noise (i.e., misla-
beled samples). Because noise accounts for a small portion
of the whole dataset, they are similar to instances in the
minority class. As a result, any solutions trying to empha-
size on samples in minority class to achieve performance gain
may falsely emphasize on noise and suffer severe performance
loss instead.

C. Imbalanced Data Stream Classification

The task of data stream classification [27]–[30] is to
build predictive models for data with dynamic changing
volumes. One important issue for stream classification is
to handle concept drifting, and common approaches are to
employ an ensemble model to accommodate changes over
stream [29], [30] or to actively detect changes [31] and
retrain models accordingly. Some recent works have consid-
ered both stream classification and data imbalance [32]–[35].
Ditzler and Polikar [33] proposed a Learn++ framework with
two variants, Learn++.CDS and Learn++.NIE, for imbalanced
concept drifting data streams. To handle data imbalance,
Learn++.CDS employs SMOTE [36] to synthetically generate
minority class samples based on the vector data. Learn++.NIE,
on the other hand, uses a weighted ensemble approach to
combat concept drifting in the stream. Intuitively, one can
use Learn++ to handle imbalanced graph streams by using
a set of frequent subgraphs to transfer graph stream into vec-
tor format and applying Learn++.CDS to the vector data, or

integrating existing gBoost algorithm [8] as a base graph clas-
sifier into Learn++.NIE. However, all these straightforward
solutions may fail to identify discriminative features for imbal-
anced graphs, and eventually lead to inferior accuracy, as our
experiments will show in Section VI.

D. Graph Stream Classification

Data stream classification has been recently extended to
structural graph data [2], [3], [5], [37]. Aggarwal [2] proposed
to hash graph edges into random numbers and used discrimina-
tive edges as patterns for classification. Li et al. [5], proposed
a fast subtree kernel based algorithm to enable graph stream
classification. As graph stream is dynamically evolving with
different subtree patterns emerging in different chunks, we pro-
posed to project subtree patterns of different chunks onto a set
of common low-dimensional feature spaces by using hashing
algorithm [37]. Graph classification was also studied recently
in a semi-supervised setting [3], with both labeled and unla-
beled graphs being used to find discriminative subgraphs with
minimum redundancy. In comparison, our algorithm considers
both data imbalance and noise, and presents a stream-based
algorithm for graph classification.

III. PROBLEM DEFINITIONS AND OVERALL FRAMEWORK

A. Problem Definitions

Definition 1 (Connected Graph): A graph is denoted by
G = (V, E,L), where V = {v1, . . . , vnv} is the vertices set,
E ⊆ V × V is the edge set, and L is a labeling function
assigning labels to a node or an edge. A connected graph is a
graph such that there is a path between any pair of vertices.

In this paper, we focus on connected graphs and assume
that each graph Gi has a class label yi, yi ∈ Y = {−1,+1},
which may indicate overall property of the graph, such as
the active/negative response of a chemical compound (i.e., a
graph) [4], [5], or the categorization of a publication [3]. In
addition, yi = +1 denotes the minority (positive) class, and
yi = −1 is the majority class (negative). We only focus on
binary-class classification tasks, but our solutions can be easily
extended to multiclass tasks.

Definition 2 (Graph Stream): A graph stream S =
{. . . , Gi, Gi+1, Gi+2, . . .} contains an increasing number of
graphs flowing in a streaming fashion. To process continuous
stream data, we employ a “batch” concept which represents
a graph chunk Dt = {Gt

1, Gt
2 . . . , Gt

n} containing a number
of graphs collected from a consecutive stream region. For
ease of representation, we may drop t from each single graph
Gt

i in graph chunk Dt when there is no ambiguity in the
context.

Definition 3 (Subgraph): Given two graphs G = (V, E,L)

and gi = (V ′, E′,L′), gi is a subgraph of G (i.e., gi ⊆ G) if
there is an injective function f : V ′ → V , such that ∀(a, b) ∈ E′,
we have (f (a), f (b)) ∈ E, L′(a) = L(f (a)), L′(b) = L(f (b)),
L′(a, b) = L(f (a), f (b)). If gi is a subgraph of G (gi ⊆ G), G
is a supergraph of gi (G ⊇ gi).

Definition 4 (Subgraph Features): Let g = {g1, . . . , gm}
denote a set of subgraph patterns discovered from a given

PAN et al.: GRAPH ENSEMBLE BOOSTING FOR IMBALANCED NOISY GRAPH STREAM CLASSIFICATION 943

Fig. 2. Framework for imbalanced noisy graph stream classification. The graph stream is divided into chunks. In each chunk Dt , circles with “+” represent
positive graphs, and circles with “-” are negative graphs. The size of a circle represents sample weight in each chunk. The weight of a positive graph is
initialized as β times larger than negatives, and it will be fine tuned by the concept drifting weights. In each chunk, we combine the discriminative subgraph
feature selection and classifier learning (margin maximization) into a unified framework. This process will return an optimal classifier from each chunk after
the linear boosting algorithm is converged [detailed in Fig. 3 and Section IV]. A classifier ensemble E is built from the most recent k chunks to predict graphs
in a yet-to-come chunk Dt+1.

graph set (In this paper, subgraph patterns and subgraph fea-
tures are equivalent terms). For each graph Gi, we can use a
subgraph feature vector xi = [x g1

i , . . . , x gm
i] to represent Gi in

the feature space, where x gk
i = 1 iff gk is a subgraph of Gi

(i.e., gk ⊆ Gi) and x gk
i = 0 otherwise.

In Fig. 1, three subgraph g1, g2, and g3 are used to represent
graph G2 as x2 = [1, 1, 0].

Definition 5 (Noisy Graph): Given a graph dataset T =
{(G1, y1), . . . , (Gn, yn)}, a noisy graph (or noise) is a graph
whose label is incorrectly labeled (i.e., a positive graph is
labeled as negative, or vice versa).

1) Graph Stream Classification: Given a graph stream
S = {D1, D2, . . . , Dt, . . .} collected in a number of consec-
utive graph chunks, the aim of the graph stream classification
is to build a prediction model from the most recently observed
k chunks (Dt−k+1, . . . , Dt−1, Dt) to predict graphs in the next
chunk Dt+1 with the best performance. In our setting, the
graph data in each chunk may be highly imbalanced in class
distributions and have noisy class labels.

B. Overall Framework

In this paper, we propose an ensemble classification frame-
work, with a linear boosting procedure in each chunk to
select discriminative subgraph features and train ensemble-
based classifiers. The framework, as shown in Fig. 2, contains
three key components: 1) partitioning graph stream into
chunks; 2) selecting discriminative subgraph features itera-
tively and learning a classification model in each chunk;
and 3) forming an ensemble model by combining classi-
fiers trained from individual chunks. As soon as a graph
chunk Dt is collected, the overall framework proceeds as
follows.

1) Instance Weighting for Data Imbalance and Concept
Drifting: To address data imbalance and concept changes
in the graph stream, we propose to adjust weight val-
ues of graphs in each chunk and use models trained
from the graph chunks to pinpoint “difficult” samples

in stream. To tackle data imbalance, the initial weight
value of each positive graph in the most recent chunk
Dt is much larger than negative graphs. Meanwhile,
to handle concept drifting, each graph Gi’s weight
is adaptively updated to accommodate changes in the
stream.

2) Subgraph Feature Selection and Classifier Learning:
For graph classification, the weighted graphs in each
chunk Dt will help iteratively extract a set of discrimi-
native subgraph features to learn a boosting classifier Ht.
The iterative subgraph feature selection and model learn-
ing process can mutually benefit each other to achieve
maximum performance gain.

3) Updating Ensemble: The newly learned classifier Ht

from chunk Dt is included into the ensemble to predict
graphs in a future chunk Dt+1.

In the following sections, we first propose our boosting algo-
rithm for imbalanced and noisy graph classification in a local
chunk, and then propose solutions to handle graph stream in
Section V.

IV. LEARNING FROM LOCAL CHUNK WITH NOISY AND

IMBALANCED GRAPHS

Given a graph chunk Dt = {(G1, y1), . . . , (Gn, yn)}, which
contains a number of graphs, let F = {g1, . . . , gm} denote the
full set of subgraphs in Dt. We can use F as features to repre-
sent each graph Gi into a vector space as xi = {xg1

i , . . . , xgm
i },

where xgi
i = 1 if gi ∈ Gi, and 0 otherwise. An example is

shown in Fig. 1.
To build weak classifiers for boosting, we can use each

subgraph gj as a decision stump classifier (gj, πj), as follows:

�(Gi; gj, πj) =
{

πj : gj ∈ Gi

−πj : gj /∈ Gi
(1)

where πj ∈ Y = {−1,+1} is a parameter control-
ling the label of the classifier. We use decision stumps
because they are commonly used in boosting classifica-
tion of graph data [8], in addition: 1) it is easy to cast

944 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

Fig. 3. Proposed boosting framework for learning from noisy and imbalanced
graphs in each chunk. The initial weight of each positive graph in Dt is β times
larger than a negative graph (the circle size corresponds to graph weight), and
the weight will be further adjusted to capture “difficult” samples (detailed in
Section V). In each chunk, our algorithm iteratively selects optimal subgraph
features P from Dt , and adds P into a global set S. Afterwards, the algorithm
solves a linear programming problem to get two sets of weights: 1) weights
for training graphs Dt and 2) weights for weak classifiers (subgraph deci-
sion stumps). The loop between feature selection and margin maximization
continues until boosting converges.

the stumps into a linear program framework and 2) it can
help facilitate the derivation of pruning bounds for subgraph
enumeration.

The prediction rule in a local chunk Dt for a graph Gi is a
linear combination of all weak classifiers

Ht(Gi) =
∑

(gj,πj)∈F×Y
wj�(Gi; gj, πj) (2)

where wj is the weight of weak classifier �(Gi; gj, πj). If
Ht(Gi) ≥ 0, it is a positive graph (+1), or negative (-1)
otherwise.

A. Framework of Linear Boosting Algorithm

Our linear boosting algorithm for noisy and imbalanced
graphs is shown in Fig. 3. The framework combines sub-
graph feature selection and graph classification into a boosting
process as follows.

1) Subgraph Feature Selection: Given a chunk Dt, with
each graph in the chunk being carefully weighted, we
need to select a set of subgraph features P to help learn
the graph classification models.

2) Margin Maximization: Based on selected subgraph pat-
terns S = S

⋃
P, we learn a classifier by maximizing

margins between positive and negative examples. The
margin maximization can be formulated as a mathemat-
ical problem, i.e., margin maximization.

3) Weight Updating for Weak Classifiers and Training
Graphs: By solving margin maximization problem, we
can obtain two set of weights: 1) weights for weak clas-
sifiers w = {w1, . . . , w|S|} and 2) weights for training
graphs μ = {μ1, . . . , μn}.

The above boosting process will continue until the algorithm
converges. In the following, we first show how to formulate
boosting learning as a mathematical maximization problem,
and then combine subgraph selection and model learning
(margin maximization) into one framework.

B. Objective Function for Imbalanced and Noisy Data

Our boosting algorithm, which considers noisy and imbal-
anced graph stream, is formulated as the following linear
programming optimization problem:

max
w,ρ,ξ∈
N+

ρ − C

⎛
⎝β

n+∑
{i|yi=+1}

δiϕiξi +
n−∑

{i|yi=−1}
δiϕiξi

⎞
⎠

s. t. yi

m∑
j=1

wj · �
(
Gi; gj, πj

)+ ξi ≥ ρ, i = 1, 2 . . . n

m∑
j=1

wj = 1, wj ≥ 0 j = 1, 2 . . . m. (3)

The above objective function aims to maximize the mar-
gin ρ between positive and negative graphs. The first set of
constraints enforce that both positive and negative graphs are
beyond the margin. A misclassified graph Gi (i.e., inside the
margin) will be penalized by ξi. Here, n+ and n− denote
the number of graphs in positive and negative classes (n =
n+ + n−) in chunk Dt. C = 1

vn is a parameter controlling
the magnitude of misclassification in the algorithm. The idea
of margin maximization is similar to gBoost [8] and SVM
formulation. To handle graph streams with imbalanced distri-
butions and noise, we incorporate three key components: δi, β,
and ϕi in the objective function. δi indicates the weight factor
for handling disturbing graph samples in a data stream setting
(In this section, δi is set as a fixed value, and Section V will
show that δi can be dynamically adjusted in graph stream). The
other two key components in our objective function include
the following.

1) Weight Values of Graphs in Different Classes: In each
imbalanced graph chunk, positive graphs are much fewer
than negative graphs. So positive graphs should carry
larger misclassification penalties to prevent them from
being overlooked for learning. In our formulation, the
weights of positive graphs are β times higher than the
weights of negative graphs. The weight adjustment, with
respect to the class distributions, can help alleviate the
class imbalance and prevent learning models from being
biased toward the majority class (which dominates the
graph chunk).

2) Weight Values for Graphs Within the Same Class: To
handle noise, we introduce a membership value ϕi, for
each graph Gi, to indicate how likely Gi is a noisy graph.
By using ϕi to adjust the weight of each graph, we
can reduce the impact of noisy graphs on the learning
process.

To calculate ϕi in (3), we use the density of each graph Gi

to determine its likelihood score of being an noisy graph.
Intuitively, if Gi is located far away from its class center, it is
more likely being mislabeled (so ϕi will have a smaller value).
Therefore, our approach to calculate ϕi is given as follows:

ϕi = 2

1+ eτd(Gi)
. (4)

In (4), d(Gi) denotes the distance of graph Gi to its class
center in the vector space, and τ ∈ [0, 1] is a decay factor
controlling the magnitude of the change of the distance.

PAN et al.: GRAPH ENSEMBLE BOOSTING FOR IMBALANCED NOISY GRAPH STREAM CLASSIFICATION 945

C. Linear Boosting With Graph Data

The objective function in (3) requires a feature set F =
{g1, . . . , gm} being used to represent graph data for learning
and classification. In reality, this feature set is unavailable
unless all possible structures of graphs in Dt are enumerated,
which is NP-complete. Therefore, (3) cannot be solved
directly. Column generation (CG) [38], a classic optimization
technique, provides an alternative solution to solve this prob-
lem. Instead of directly solving the primal problem in (3), CG
works on the dual problem by starting from an empty set of
constraints, and iteratively selects the most violated constraints
until no more violated constraint exists. The final optimal solu-
tion, under the iteratively selected constraints, is equal to the
optimal solution under all constraints.

We can write the dual problem of (3) as follows:1

min
μ,γ

γ

s. t.
∑n

i=1 yiμi · �(Gi; gj, πj) ≤ γ, j = 1, 2 . . . m
0 ≤ μi ≤ βδiϕiC if yi = +1
0 ≤ μi ≤ δiϕiC if yi = −1∑n

i=1 μi = 1.

(5)

According to the duality theory [39], (3) and (5) have the
same solution (objective values) though they have different
predicted variables [w, ρ, ξ in (3) and μ, γ in (5)].

For the dual problem, each constraint
∑n

i=1 yiμi ·
�(Gi; gj, πj) ≤ γ in (5) enforces restriction on a subgraph
pattern (gj, πj) over all graphs in Dt. In other words, the m
constraints are equivalent to the total subgraphs in Dt, which
is practically very large or even infinite. In the primal prob-
lem defined in (3), there are only n constraints (which are
equal to the number of training graphs in Dt). As a result, we
have m >> n. To solve the problem (5) in an effective way,
we can combine subgraph mining and CG techniques as fol-
lows: 1) first discover top-l subgraph patterns that violate the
constraints most in each iteration and 2) solve the sub-problem
based on the selected top-l constraints. After solving (5) based
on selected constraints, we can obtain μ = {μ1, . . . , μn},
which can be regarded as the new weights for training graphs,
so that we can iteratively perform subgraph feature selection in
the next round (see Fig. 3). Such a top-l constraint technique
is known as multiple prices [40] in CG.

To apply multiple prices, we first define the discriminative
score for each subgraph based on the constraints in (5).

Definition 6 (Discriminative Score): For a subgraph deci-
sion stump (gj, πj), its discriminative score is defined as

(gj, πj) =
n∑

i=1

yiμi · �(Gi; gj, πj). (6)

We can sort subgraph patterns according to their discrimina-
tive scores in a descending order, and select the top-l subgraphs
to form the most violated constraints.

Suppose S(s) is the set of decision stumps (subgraphs) dis-
covered by CG so far at sth iteration. Let γ (s) and μ(s) =
{μ(s)

1 , . . . , μ
(s)
n } be the optimal solution for the sth iteration,

our algorithm will try to solve linear problem in sth iteration

1The derivation from (3) to (5) is illustrated in the Appendix.

Algorithm 1 Boosting for Noisy and Imbalanced Graph
Classification in a Local Chunk
Require:

Dt = {(G1, y1), . . . , (Gn, yn)} : Graph Datasets
Ensure:

Ht(Gi) =∑
(gj,πj)∈S(s−1) w(s−1)

j �(Gi; gj, πj): Classifier;
δi, i = 1, . . . , n: Concept drifting weights;

1: μi =
{

ς+ : yi = +1
ς− : yi = −1

, where ς+
ς− = β,

∑n
i=1 μi = 1;

2: μi ← μiδi, where
∑n

i=1 μi = 1;
3: S(0)← ∅; γ (0)← 0;
4: s← 0;
5: while true do
6: Obtain top-l subgraph decision stumps

P = {(gi, πi)}i=1,...,l; //Algorithm 2;
7: (g�, π�) = max(gj,πj)∈P (gj, πj)

8: if (g�, π�) ≤ γ (s−1) + ε then
9: break;

10: S(s)← S(s−1)
⋃

P;
11: Obtain the membership value ϕi for each graph example

Gi based on S(s) and (4);
12: Solve (7) to get γ (s), μ(s), and Lagrange multipliers

w(s);
13: s← s+ 1;
14: return Ht(Gi) =∑

(gj,πj)∈S(s−1) w(s−1)
j �(Gi; gj, πj);

as follows:

min
γ (s),μ(s)

γ (s)

s. t.
∑n

i=1 yiμ
(s)
i �(Gi; gj, πj) ≤ γ (s),∀(gj, πj) ∈ S(s)

0 ≤ μ
(s)
i ≤ βδiϕiC if yi = +1

0 ≤ μ
(s)
i ≤ δiϕiC if yi = −1∑n

i=1 μ
(s)
i = 1.

(7)

The solutions to (7) and its Lagrange multipliers will result
in μ(s) and w(s) which correspond to: 1) new weights for
graphs (μ(s)) and 2) new weights for decision stump clas-
sifiers (w(s)). By using updated weight values, the algorithm
will continue and proceed to the s+ 1th iteration.

Note that in (7), ϕi changes in each iteration, because the
class centers for positive and negative graphs are calculated
by using current selected subgraphs S(s) (transfer each graph
as a vector based on S(s)). The changing subgraph features
will result in updated class centers, and result in new ϕi value
according to (4).

Our graph boosting framework is illustrated in Algorithm 1.
To handle class imbalance, the weight of each positive
graph μi is set to be β times larger than the weights of neg-
ative graphs (step 1). The weight value is further updated
by δi (step 2), which takes the concept drifting in streams
into consideration (detailed in Section V). After that, the
boosting algorithm iteratively selects top-l subgraphs P =
{(gi, πi)}i=1,...,l in each round (step 6). On step 7, we obtain
the most optimal score (g�, φ�). If the best pattern in the
current round no longer violates the constraint, the iteration
process stops (steps 8 and 9). To speed up the boosting pro-
cess, we relax the stopping condition and terminate the loop as

946 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

Algorithm 2 Subgraph Mining
Require:

Dt = {(G1, y1), . . . , (Gn, yn)} : Graph Datasets;
μ = {μ1, . . . , μn} : Weights for graph example;
l: Number of optimal subgraph patterns;
min_sup: The minimum support for optimal subgraphs;

Ensure:
P = {(gi, πi)}i=1,...,l: The top-l subgraphs;

1: η = 0, P← ∅;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gp ← current visited subgraph in DFS Code Tree;
4: if gp has been examined then
5: continue;
6: Compute score (gp, πp) for subgraph gp according (6);

7: if |P| < l or (gp, πp) > η then
8: P← P

⋃
(gp, πp);

9: if |P| > l then
10: (gq, πq)← arg min(gx,πx)∈P (gx, πx);
11: P← P/(gq, πq);
12: η← min(gx,πx)∈P (gx, πx)

13: if sup(gp) > min_sup & (gp) > η then
14: Depth-first search the subtree rooted from node gp;
15: return P = {(gi, πi)}i=1,...,l;

soon as the change of the optimal value becomes subtle (ε).
On steps 10–12, the linear programming problem in (7) is
solved based on the selected subgraphs using the open source
software CVX (http://cvxr.com/cvx/). After (7) is solved,
we obtain two sets of weights: 1) μ(s) = {μ(s)

1 , . . . , μ
(s)
n },

the weights of training graph for optimal subgraph mining in
the next round and 2) w(s) = {w(s)

1 , . . . , w(s)
|S(s)|}, the weights

for subgraph decision stumps in S(s), which can be obtained
from the Lagrange multipliers of dual problem in (7). Once
the algorithm converges, the final classification model H(Gi)

is returned on step 14.

D. Subgraph Mining

In order to mine the top-l subgraphs (step 6 of Algorithm 1),
we need to enumerate the entire set of subgraph patterns, with
respect to a given threshold, from the training graphs Dt. In
our boosting algorithm, we employ a depth-first-search (DFS)-
based algorithm gSpan [41] to enumerate subgraphs. The key
idea of gSpan is that each subgraph has a unique DFS Code,
which is defined by the lexicographic order of the time the
subgraph is discovered during the search process. By employ-
ing a depth first search strategy on the DFS code tree (where
each node is a subgraph), gSpan can enumerate all frequent
subgraphs efficiently. To speed up the enumeration, we utilize
a branch-and-bound pruning rule [8] to prune the search space.

Theorem 1: Given a subgraph feature gj, let
(gj)

+ = 2
∑
{i|yi=+1,gj∈Gi} μ

(t)
i −

∑n
i=1 yiμi

(gj)

− = 2
∑
{i|yi=−1,gj∈Gi} μ

(t)
i +

∑n
i=1 yiμi

(gj) = max (
(gj)

+ ,
(gj)

−).

(8)

If gj ⊆ g′, the discriminative score (g′, π ′) ≤ (gj).

Because a subgraph decision stump may have a positive or
a negative label Y = {+1,−1}, we calculate its maximum
score based on each possible value, and select the maximum
one as the upperbound.

According to Theorem 1, once a subgraph gj is generated,
all its super-graphs are upperbounded by (gj). Therefore, this
theorem can help reduce the search space.

Our branch-and-bound subgraph mining algorithm is listed
in Algorithm 2. The minimum value η and subgraph set P are
initialized on step 1. We prune the duplicated subgraph fea-
tures on steps 4 and 5, and compute the discriminative score
(gp, πp) for gp on step 6. If (gp, πp) is larger than η or the

current set P has less than l subgraph patterns, we add (gp, πp)

to the feature set P (steps 7 and 8). If the size of P exceeds the
predefined size l, the subgraph with the minimum discrimina-
tive score is removed (steps 9–11). We use two metrics, the
minimum support for subgraph gp and a branch-and-bound
pruning rule, similar to the rule in [8], to prune search space
on steps 13 and 14. The optimal set P is returned on step 15.
It is worth noting that our algorithm is efficient in the sense
that even if there is no minimum support threshold min_sup
for subgraph mining, the algorithm can still function properly
by only relying on the pruning rule.

V. GEBOOST ALGORITHM

In this section, we discuss the proposed ensemble frame-
work, which combines classifiers trained from local chunks (as
described in Section IV) to handle graph stream with dynamic
changing volumes and concepts, i.e., concept drifting.

In graph stream settings, the correct classification of graphs
with imbalanced class distributions are challenged by several
key factors. First, noise presenting in the stream will dete-
riorate existing learned model and reduce the classification
accuracy. Second, graph data may constantly evolve (i.e., con-
cept drifting) which will introduce misclassifications because
existing models do not have the knowledge of emerging new
concepts. Third, even within the observed concepts, there are
always some “difficult” samples which can not be correctly
classified by current models. Accordingly, we define disturb-
ing graph samples by using models trained from historical data
as follows.

Definition 7 (Disturbing Graph Samples): Given a classi-
fier trained from historical graph data, disturbing graph sam-
ples (or instances) are the ones which are incorrectly classified
by the given classifier.

Distributing graph samples may be introduced by noise,
concept drifting, or genuinely difficult samples on which exist-
ing imperfect model fail to handle. Because the existing model
is incapable of classifying them, they need to be emphasized
during the stream learning process. In our system, we use an
instance based weighting method to capture disturbing graph
samples, and further include the instance weight into the local
classifier learning process [the objective function (3) and step 2
of algorithm 1].

A. Instance Weighting

The idea of our weighting scheme is as follows: as soon as
a new graph chunk Dt is collected for processing, we use an

PAN et al.: GRAPH ENSEMBLE BOOSTING FOR IMBALANCED NOISY GRAPH STREAM CLASSIFICATION 947

Fig. 4. Conceptual view of graph weighting scheme. Given a new chunk of
graphs with positive and negative graphs (circle sizes indicate the weights), the
current classifier may make incorrect prediction on three kinds of disturbing
graph samples: 1) for a noisy graph Gi (green circles), its weight will be
first increased inversely proportional to the accuracy of the current ensemble
classifier (measured by δi), and be further decreased according to Gi’s distance
to the class centers (correspond to ϕi); 2) for emerging new concept graphs
(purple circles), if the current ensemble makes an incorrect prediction, their
weights will be increased by δi because the current model needs emphasis
on these samples with new concepts; and 3) for graphs sharing the same
concepts as previous chunk (black circles), their weights will also increase
(by δi) because they are difficult instances and the current classifier can not
correctly classify them. The weight updating scheme will help differentiate
different types of disturbing graphs for the training effective graph stream
classifier.

ensemble of classifiers E = {Ht−k,Ht−k+1, . . . ,Ht−1} trained
from historical chunks to predict labeled graphs in Dt. If a
graph is misclassified by E, we increase the graph’s weight
because it is a difficult sample for the current model E. If
a graph is correctly classified by E, we decrease its weight
because model E already has sufficient knowledge to correctly
classify this graph. This weighting mechanism is similar to
Adaboost [42] and our semi-supervised graph stream clas-
sification method [3]. By doing so, we can tune instance
weights to capture disturbing samples (including concept drift-
ing underneath the stream), so gEBoost can emphasize on
difficult samples and select a set of informative features to
build better models. Our weighting scheme is illustrated in
Fig. 4.

B. gEBoost Algorithm

Algorithm 3 lists detailed procedures of gEBoost framework
which combines instance weighting and graph boosting for
graph stream classification.

The “while” loop in Algorithm 3 represents a stream pro-
cessing cycle which repeats as graph data continuously arrive.
For the first graph chunk D1, gEBoost simply builds a linear
boost classifier using Algorithm 1 without considering con-
cept drifting (δi = 1), and adds classifier Ht to initialize the
ensemble E (lines 5–9).

For each of the succeeding chunks Dt, t = 2, 3, . . ., gEBoost
uses ensemble E and its error rate err to tune the weight of
each graph in Dt (line 10), where E(Gi) returns the class
label of Gi predicted by E. If a graph Gi’s label is dif-
ferent from the one predicted by the ensemble classifier E,
gEBoost increases the weight of Gi by

√
(1− err)/err, other-

wise gEBoost decreases the weight of Gi by
√

err/(1− err)
(line 11). On lines 12–14, gEBoost normalizes the weight val-
ues for all graphs in Dt, and builds a boosting classifier from
Dt and {δi}1,...,n to update the ensemble E.

Algorithm 3 gEBoost
Require:

S = {D1, D2, . . .}: Graph Stream
k: The maximum capacity of the ensemble

1: Initialize E = ∅, t = 0;
2: while S! = ∅ do

// Training Phase:
3: Dt ← A new graph chunk;
4: S ← S/Dt; t = t + 1;
5: if (t == 1) then
6: δi = 1, i = 1, . . . , n;
7: Ht ← classifier built from Dt and {δi}i=1,...,n;

//Algorithm 1;
8: E← E

⋃Ht

9: else

10: err←
∑

Gi∈Dl
t
(E(Gi)!=yi)

|Dl
t| ;

11: δi =
{

δi
√

(1− err)/err : E(Gi)! = yi, Gi ∈ Dt

δi
√

err/(1− err) : E(Gi) = yi, Gi ∈ Dt
;

12: δi = δi∑
Gi∈Dt δi

;

13: Ht ← classifier built from Dt and {δi}i=1,...,n;
//Algorithm 1;

14: E← E
⋃Ht

15: if |E| > k then
16: E← E/Ht−k

// Testing Phase:
17: Dt+1 ← A new graph chunk;
18: αi ← μpI(Hi(Gp) == yp), Gp ∈ Dt;
19: H(Gp|E) = arg max

∑t
i=t−k−1 αiHi(Gp)

During the classification phase (lines 20 and 21), gEBoost
first calculates the weighted accuracy αi on the most recent
chunk Dt (I(x) returns 1 if x is true, otherwise 0), and then
uses weighted voting to assemble all classifiers in E to predict
graphs in a new graph chunk Dt+1.

VI. EXPERIMENTS

We report our experiments on real-world graph streams to
validate: 1) the effectiveness of the proposed algorithm for
handling noisy and imbalanced graphs and 2) the efficiency
and effectiveness of gEBoost for graph stream classification.
The source code, benchmark data, and detailed results can be
downloaded from our online report [43].

A. Experiment Settings

Three graph streams collected from real-world applications
are used in our experiments.

1) DBLP Graph Stream: The DBLP dataset2 consists of
computer science bibliography. Each record in DBLP corre-
sponds to one publication including paper ID, title, abstract,
authors, year of publication, venue, and references of the paper
etc. [44]. To build a graph stream, we select a list of con-
ferences (as shown in Table I) and use papers published in
these conferences (in chronological order) to form a graph

2http://arnetminer.org/citation

948 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

TABLE I
DBLP GRAPH STREAM USED IN EXPERIMENTS

Fig. 5. Graph representation for a paper (P.100) in DBLP. The rectangles are
paper ID nodes and circles are keyword nodes. Paper P.100 cites (connects)
paper P.101 and P.102, and P.100 has keywords Data, Stream, and Mining in
its title. Paper P.101 has keyword Query in its title, and P.102’s title includes
keywords Large and Batch. For each paper, the keywords in the title are linked
to each other.

stream. We form a minority class by using publications in
computer vision (CV) as positive class (+1), and use papers
in both database and data mining (DBDM) and artificial intel-
ligence and machine learning (AIML) as negative class (-1).
The graph stream is inherently imbalanced, with about 16.3%
positive graphs over stream. DBDM+AIML and CV overlap
in many aspects, such as machine learning and visual infor-
mation retrieval, and research focuses and topics may vary in
different years. All these changes make DBLP stream an ideal
test ground for concept drifting graph stream classification. For
example, there are an increasing number of papers to address
social network research problems for both DBDM and CV
fields (i.e., community discovery for DBDM and social tag-
ging in CV) which introduces gradual concept drifting in the
stream.

In our experiments, each paper is represented as a graph
with each node denoting a Paper ID or a keyword and each
edge representing the citation relationship between papers or
keyword relations in the title. In addition: 1) each paper ID is
a node; 2) if a paper P.A cites another paper P.B, there is an
edge between P.A and P.B; 3) each keyword in the title is also
a node; 4) each paper ID node is connected to the keyword
nodes of the paper; and 5) for each paper, its keyword nodes
are fully connected with each other. An example of DBLP
graph data is shown in Fig. 5.

The original DBLP dataset contains a significant number
of papers without references. In our experiments, we remove
those papers, and choose 1000 most frequent words appearing
in the title (after removing the stop words) as keywords to
construct graphs. The last column in Table I lists the number
of graphs in each category.

2) NCI Chemical Compound Stream: The NCI cancer
screening datasets are commonly used as graph classification
benchmark. We download two NCI datasets from PubChem.3

Each NCI dataset belongs to a bioassay task for anticancer

3http://pubchem.ncbi.nlm.nih.gov

TABLE II
NCI CANCER SCREEN DATASETS USED IN THE EXPERIMENTS

activity prediction, where each chemical compound is repre-
sented as a graph, with atoms representing nodes and chemical
bonding denoting edges. A chemical compound is positive
if it is active against the corresponding cancer, or negative
otherwise.

Table II summarizes the NCI graph data used in our
experiments, where columns 2 and 3 show the number of
positive graphs and the total number of graphs in the orig-
inal datasets. After removing disconnected graphs and graphs
with unexpected atoms (some atoms are represented as “*”),
we obtain new datasets with slightly different sizes, as shown
in columns 4 and 5. Meanwhile, each NCI dataset is highly
imbalanced, with less than 5% graphs in the positive class
(shown in column 6 of Table II). In our experiments, we
concatenate two datasets as one stream with 74374 graphs
in total (4.38% samples belonging to positive class). In the
NCI graph stream, the bioassay task changes from NCI-1 to
NCI-33, which simulates the concept drifting in the stream
(i.e., sudden drift). We sequentially construct graph chunks
such that each chunk consists of 4.38% positive graphs and
others are negative.

3) Stanford Twitter Stream: The twitter stream was
extracted from twitter sentiment classification 4. Because of
the inherently short and sparse nature, twitter sentiment anal-
ysis (i.e., predicting whether a tweet reflects a positive or a
negative feeling) is a difficult task. To build a graph stream,
we represent each tweet as a graph by using tweet con-
tent, with nodes in each graph denoting the terms and/or
smiley symbols (e.g., :-D and :-P) and edges indicating the
co-occurrence relationship between two words or symbols in
each tweet. To ensure the quality of the graph, we only use
tweets containing 20 or more words.

In our experiments, we use tweets from April 6 to June 16 to
generate 140,949 graphs (in a chronological order). Because
tweets in the original dataset are not evenly collected over
time, the number of graphs in a fixed time period varies signif-
icantly (from 100 to 10 000 per day). To reduce the difference
of chunk size over stream, we divide graphs into chunks by
using a fixed time period, i.e., graphs are collected in 24 h
(one day) to form a graph chunk from April 6 to May 27,
and collected in 8 h to form a chunk from May 27 and latter
on. To investigate algorithm performance in handling concept
drifts, we synthetically control the prior distributions of posi-
tive graphs at several fixed time stamps. Specifically, 20% of
positive graphs are randomly selected on Monday and Tuesday
over time before June 2. By doing so, we use sudden changes
of priori distributions to inject concept drifting on Monday.

4http://jmgomezhidalgo.blogspot.com.au/2013/01/a-list-of-datasets-for-
opinion-mining.html

PAN et al.: GRAPH ENSEMBLE BOOSTING FOR IMBALANCED NOISY GRAPH STREAM CLASSIFICATION 949

4) Noise and Class Imbalance in Graph Chunk: In our
experiments, each chunk Dt in graph streams has a small
number of positive graphs Dp

t , and a large number of neg-
ative graphs Dn

t , where |Dp
t | = |Dt| × |Pos|%, and |Dn

t | =
|Dt| − |Dp

t |. For instance, for the NCI graph stream (with
|Pos|% = 4.38%), if the chunk size |Dt| = 1500, then there
are 1500 × 4.38% = 66 positive and 1434 negative graphs,
respectively. For Twitter graph stream, the graph chunks on
Monday and Tuesday are imbalanced (with 20% of positive
graphs), whilst graphs on other days are relatively balanced.

To systematically study the algorithm performance in noisy
data environments, we introduce noise to each stream as fol-
lows. Given a graph chunk Dt with |Dp

t | positive graphs, we
randomly select |Dp

t | ∗Z% positive graphs and |Dp
t | ∗Z% neg-

ative graphs, and flip their class labels (i.e., change a positive
graph as negative, and vice versa). Because majority graphs
are negative, this random approach will have a severer impact
on positive class than negative class.

5) Baselines: There are few existing methods for graph
stream classification [2], [37], but they are incremental learn-
ing approaches, whereas our method, gEBoost, is an ensemble
framework. Because they are two types of methods, it is very
difficult to make direct comparisons with these methods. More
specifically, the algorithms in [2] and [37] employ hashing
for classification. Whenever a graph arrives, the hashed val-
ues of graph edges are used to build a classifier. For new
graphs in the stream, they continuously use hashed values of
the graph to update their classifier. In their experiments, the
validation of the stream classification models was done by
evaluating the accuracy of the model on a separated test set. In
the proposed gEBoost method, we use a divide-and-conquer-
based ensemble framework, which partitions stream into small
chunks, and uses classifiers trained from graph chunks to
form an ensemble for prediction. The validation was done by
evaluating the accuracy of the model on the next available
future graph chunk. Another clear advantage of our method
is that we extract sub-graph features to represent graphs in
a vector format, so any learning algorithm can be used for
graph stream classification. Whereas [2] and [37] are limited
to their own learning algorithms (e.g., [2] can only use k-NN
classifier).

For gBoost, we implement two variants of gBoost to han-
dle class imbalance. Because gBoost is designed for static
datasets, we incorporate gBoost into our ensemble framework
(like gEBoost does, i.e., setting δi = 1) for graph stream
classification. The detailed baselines are as follows.

1) gBoost-b+Stream first under-samples graphs in the
majority (negative/inactive) class in each chunk to cre-
ate a balanced graph set to train a gBoost classifier. The
most recent k chunks form an ensemble to predict graphs
in a future chunk.

2) gBoost+Stream applies the gBoost algorithm in each
graph chunk directly. An ensemble of gBoost classi-
fiers (like gEBoost) is used to classify graphs in a future
chunk.

3) Learn++.CDS-DT first mines a set of frequent sub-
graphs as features, and then transfer graphs into vec-
tor format. The Learn++.CDS is performed on the

transferred vector data with decision tree (DT) as a base
classifier for each chunk.

4) Learn++.NIE-gBoost learns gBoost classifiers in each
chunk with a bagging strategy to combat data imbalance,
and then we apply Learn++.NIE algorithm to k consec-
utive chunks to form an ensemble classifier for graph
stream classification.

Note that Learn++.CDS cannot combines with gBoost algo-
rithm, because it needs to generate synthetic positive samples
based on the vector data to handle data imbalance. By contrast,
Learn++.NIE employs a bagging strategy to combat data
imbalance, so we integrate gBoost with Learn++.NIE as a
baseline. It is worth noting that Learn++.NIE-gBoost works
on graphs directly (as gEBoost does). However, its subgraph
feature exploration process (gBoost) does not takes class
imbalance and noise into consideration.

6) Measurement and Parameter Setting: For imbalanced
data, accuracy is no longer an effective metrics to assess the
algorithm performance, so we use area under the ROC curve
(AUC) as the performance measurement in our experiments.

Unless specified otherwise, we use the following default
parameter settings in the experiments: ensemble size k = 10,
chunk size |Dt| = 800 (for DBLP) and 1500 for (NCI).
For gEBoost, we set β = |Dn

t |
|Dp

t | as the imbalance ratio, and
the decay factor τ = 0.1, the relax factor ε = 0.01 for
DBLP and Twitter, and 0.05 for NCI streams, respectively.
The number of top-l subgraphs selected in each round is 25.
For parameter v (C = 1

vn), we set different values for dif-
ferent algorithms. Specifically, v is set to 0.2 for DBLP graph
streams for all boosting algorithms. For NCI and Twitter graph
streams, we set v = 0.05 for gBoost+Stream and gBoost-
b+Stream, and v = 0.5 for gEBoost. For NCI data stream, we
set min_sup = 15% and 0 for DBLP and Twitter graph stream,
which means no support threshold is provided in these two
streams for subgraph mining. We use parameters suggested
in [33] for both Learn++.CDS-DT and Learn++.NIE-gBoost
algorithms.

B. Experiment Results

1) Performance on Noisy and Imbalanced Graph Chunks:
To report our boosting modules for noisy and imbalanced
graph data, we built a classifier Ht from the current chunk Dt

(as discussed in Section IV) to predict graphs in the next
chunk Dt+1. In this experiment, no instance weighting and
ensemble framework are involved, because we want to know
whether gEBoost’s objective function in (3) can indeed han-
dle data imbalance and noise in the graph chunks. We report
the average classification accuracy of different methods with
respect to different levels of noise over the whole stream in
Fig. 6.

The results in Fig. 6 demonstrate that gEBoost outper-
forms its peers on all graph streams. Among all boosting
methods, gBoost-b under-samples graphs from the major-
ity (negative) class to create a balanced graph chunk before
applying gBoost, and its results are inferior to gBoost and
gEBoost. This confirms the hypothesis of information loss dur-
ing the under-sampling process, which results in low quality

950 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

Fig. 6. Comparison of different algorithms for imbalanced graph stream
classification. For each chunk Dt , we build a classifier Ht from chunk Dt to
predict graphs in Dt+1. The results represent the average AUC values and
standard deviation over all chunks in each graph stream. (A) NCI stream. (B)
DBLP stream. (C) Twitter stream.

Fig. 7. AUC with respect to different noise levels on NCI stream with
ensemble size k = 10 and chunk size Dt = 1500. (A) Z = 5. (B) Z = 15.

discriminative subgraph features for classification. Meanwhile,
although both gBoost and gEBoost directly work on imbal-
anced graph data, gEBoost considers weights for samples in
different classes. The results show that gEBoost is superior to
gBoost, which ignores the class imbalance and noise issues,
and treats all samples equally. Note that in our experiment,
both gBoost+Stream and Learn++.NSE-gBoost algorithms use
gBoost as base classifiers. The DT base classifier, which is
built on the vector data and employed in Learn++.CDS-DT
algorithm, is worse than any other boosting algorithm.

The results in Fig. 6 also validate the effectiveness of our
algorithm in handling noise. It is clear that noise deteriorates
AUC values of all algorithms. This is because noise (i.e., incor-
rectly labeled graphs) does not comply with the distributions of
majority samples in the same class, and makes a learning algo-
rithm difficult to separate positive and negative classes. The
results show that our algorithm has much less performance
loss when a higher degree of noise is imposed. This is mainly
attributed to the distance penalties in the objective functions
[ϕi for graph Gi of (3)] in gEBoost. More specifically, a neg-
ative graph, say Gi, is close to negative class center in the
feature space. So even if Gi is incorrectly labeled as positive
(i.e., a noise), it still has a large distance to the positive class
center (because Gi is close and similar to negative graphs in
the feature space). By using Gi’s distance to the class center
to adjust its role in the objective function, Fig. 6 confirms that
combining class distributions and distance penalties of individ-
ual graph indeed help gEBoost effectively handle graph data
with severely imbalanced class distributions and noise.

2) Performance on Graph Streams: In this subsection, we
report the performance of the proposed ensemble framework
for graph stream classification.

a) Results with noise degrees Z: In Figs. 7–9, we vary
the noise levels in each graph chunk, and report the results on
NCI, DBLP, and Twitter streams.

Fig. 8. AUC with respect to different noise levels on DBLP stream with
ensemble size k = 10 and chunk size Dt = 800. (A) Z = 5. (B) Z = 15.

Fig. 9. AUC with respect to different noise levels on Twitter stream. Figures
on the left panel are plotted with respect to uniform intervals of chunks in
the x-axis, and figures on the right panel are plotted with respect to uniform
intervals of weeks in the x-axis.

The results in Figs. 7–9 show that gEBoost consistently
outperforms all other algorithms across the whole stream for
all noise levels. In our experiments, Learn++.CDS-DT has
the worst performance because: 1) it uses a set of frequent
subgraph as features, which may fail to obtain genuine dis-
criminative subgraphs to build classification models; 2) it
over-samples minority class samples to handle class imbal-
ance, which may introduce ambiguousness to the sampled
data; and 3) Learn++.CDS in each chunk uses a single weak
classifier (DT) while other algorithms assemble a set of deci-
sion stumps for graph classification. It is generally believed
that an ensemble often outperforms a single classifier.

The results also show that gBoost-b+Stream, which under-
samples graphs in each chunk to alleviate the data imbal-
ance, is significantly inferior to gBoost+Stream, Learn++.NIE-
gBoost, and gEBoost, especially in Fig. 8(B). This is
because each graph chunk is extremely imbalanced (e.g.,
only containing 66 positive graphs out of 1500 graphs
for NCI stream), under-sampling will result in balanced
graph chunks with significantly smaller sizes, which makes

PAN et al.: GRAPH ENSEMBLE BOOSTING FOR IMBALANCED NOISY GRAPH STREAM CLASSIFICATION 951

subgraph feature selection and margin learning process very
ineffective. gEBoost demonstrates a better performance than
gBoost+Stream and Learn++.NIE-gBoost in all streams. This
is mainly attributed to gEBoost’s two key components, includ-
ing: 1) boosting framework for feature selection and margin
maximization and 2) weighting to tackle concept drifting.
The former iteratively selects a set of discriminative features
and maximizes the margin sequentially, and the latter allows
multiple chunks (classifiers) to work in a collaborative way
to form an accurate ensemble model. As a result, gEBoost
achieves good performance in classifying graph streams with
dynamic changes. For example, in Fig. 7, there are sudden
concept drifting from chunks 25–30, where the bioassay task
changes from NCI-1 to NCI-33, and all three methods expe-
rience performance loss. By employing instance weighting to
tackle concept drifting, gEBoost receives much less loss than
gBoost+Stream and Learn++.NIE-gBoost.

It is worth noting that Learn++.NIE-gBoost is a specially
designed algorithm for imbalanced data streams. In our exper-
iments, the results in Figs. 7–9 show that Learn++.NIE-gBoost
is only comparable to gBoost+Stream, yet significantly worse
than gEBoost algorithm. Indeed, for noisy and imbalanced
graph streams, finding most effective subgraph features plays
an essential role. This is a major challenge for graph streams,
whereas Learn++.NIE-gBoost may fail to explore high qual-
ity subgraphs under imbalanced and noisy scenarios for graph
stream classification.

b) Twitter stream: We investigate the algorithm perfor-
mance in handling concept drifting in Twitter stream in Fig. 9.
The inverse of imbalance ratio ((|Pos|)/(|Neg|)) provides an
indicator of the change of prior class distributions (y-axis on
right side) over time (x-axis). Specifically, there are signifi-
cant concept drifts on Monday and Tuesday before June 2,
whilst class distribution (concept drift) remains relatively sta-
ble from June 2 and afterwards. The results show that for
some concept drifting points, there are indeed noticeable per-
formance drops for most algorithms. For instance, in Fig. 9(A),
the AUC values slightly decrease on May 11 and 18, and have
a significant drop on June 1. The proposed gEBoost outper-
forms all other algorithms in handling sudden concept drifting.
Another interesting observation is that not all concept drift
points will result in drop of AUC for gEBoost. For instance,
on May 4 of Fig. 9(A), while Learn++.CDS-DT witnesses a
performance loss, gEBoost has an increase of AUC index,
which shows gEBoost’s good ability in handling concept
drifts.

The average accuracies over the whole graph stream, in
Fig. 10, show that increasing the noise degree in each chunk
deteriorates the performance of all algorithms (which is con-
sistent with our previous discussions). We also conducted
pairwise t-test to validate the statistical significance of com-
parisons, the results show that gEBoost outperforms others
significantly.

c) Results on ensemble size k: In Figs. 11 and 12, we
report the algorithm performance by using different ensem-
ble size k (varying from 5, 10, to 15) for DBLP and Twitter
streams. Similar result for NCI Streams is obtained for NCI
streams.

Fig. 10. Averaged AUC values (and standard deviation) versus different
noise degrees Z, with ensemble size k = 10. (A) Averaged AUC on NCI
stream versus Z. (B) Averaged AUC on DBLP stream versus Z. (C) Averaged
AUC on Twitter stream versus Z.

Fig. 11. AUC with respect to different ensemble sizes on DBLP stream with
chunk size |Dt| = 800. (A) AUC results on DBLP with k = 5. (B) AUC results
on DBLP with k = 15.

Fig. 12. AUC with respect to different ensemble sizes on Twitter stream.
Figures on the left panel are plotted with respect to uniform intervals of
chunks in the x-axis, and figures on the right panel are plotted with respect
to uniform intervals of weeks in the x-axis.

The results show that increasing ensemble size results in
improved algorithm performance. For instance, when k = 5
[in Fig. 11(A)], all algorithms have low AUC values in
DBLP graph stream. When increasing ensemble size from 5
to 15, each algorithm experiences steady improvement across
the whole DBLP stream. This is mainly because a larger
ensemble involves more classifier models and more knowl-
edge for prediction. However, for large ensemble size, it will
also increase computational complexity to predict graphs. In
remaining experiments, we set k = 10.

952 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

Fig. 13. AUC with respect to different chunk size on NCI stream with
ensemble size k = 10. (A) |Dt| = 1000. (B) |Dt| = 2000.

Fig. 14. AUC with respect to different chunk size on DBLP stream with
ensemble size k = 10. (A) |Dt| = 600. (B) |Dt| = 1000.

d) Results on chunk size Dt: In Figs. 13 and 14, we report
the algorithm performance with respect to different numbers
of graphs in each chunk |Dt|.

As expected, gEBoost has the best performance among three
algorithms for NCI (Fig. 13) and DBLP (Fig. 14) streams.
When varying the chunk sizes, the concept drifting may occur
at different locations for NCI streams. Nevertheless, our results
show that gEBoost can adapt to the concept drift very quickly
in most cases [Fig. 13(A) and (B)], which validates the effec-
tiveness of gEBoost in handling concept drift. In practice,
the chunk size should be a moderate value. For small chunk
sizes, the models trained from each chunk will be inaccurate,
because no sufficient information is available for extracting
discriminative subgraph features to train classifiers. For large
chunk sizes, a graph chunk may include several changing
concepts, which will deteriorate the learner performance.

e) Results on imbalanced degree |Pos|%: To study the
algorithm performance with respect to different data imbal-
ance degrees, we change the percentage of positive graphs
(|Pos|%) on DBLP streams. In previous experiments, |Pos|%
in each chunk is 16.3. So we under-sample positive graphs in
each chunk to create streams with different imbalance levels.
The average experimental results over streams are reported in
Table III.

Table III shows that with the increase of data imbalance
degrees (changing |Pos|% from 16.3 to 5), the performance
of all algorithms deteriorate in terms of average AUC val-
ues. This is because reducing the number of positive graphs
increases the difficulty of learning good classification models
in each chunk. Nevertheless, the proposed gEBoost outper-
forms all other algorithms under all levels of degrees, which
demonstrates the robustness of our algorithm.

3) Time and Memory Comparisons:
a) Time efficiency: The runtime efficiency in

Figs. 15 and 16 show that Learn++.CDS-DT consumes least
time among these algorithms. This is because Learn++.CDS-
DT builds a simple DT in each chunk whereas other methods

TABLE III
AVERAGE AUC VALUES AND STANDARD DEVIATIONS ON

DBLP STREAMS WITH RESPECT TO DIFFERENT

IMBALANCE DEGREES

Fig. 15. System accumulated runtime versus number of graphs processed
over stream. (A) NCI stream. (B) DBLP stream. (C) Twitter stream.

Fig. 16. System accumulated runtime versus different chunk sizes |Dt|.
(A) System accumulated time on NCI graph streams. (B) System accumulated
time on DBLP graph streams.

involve a boosting process. Meanwhile, gBoost-b+Stream
requires much less runtime than other boosting algorithms.
This is mainly because gBoost-b carries out boosting pro-
cedure on a small subset of under-sampled graphs whereas
gEBoost, gBoost+Stream, and Learn++.NIE-gBoost directly
work on all graphs in each chunk. In our experiments, the
down-sampled (and balanced) graphs for gBoost-b are less
than 10% of each chunk, so gBoost-b+Stream has much
better runtime performance. When comparing gEBoost,
gBoost+Stream, and Learn++.NIE-gBoost, an interesting
finding is that gEBoost requires much less runtime than
gBoost+Stream and Learn++.NIE-gBoost on NCI and Twitter
stream, but consumes more runtime than other two approaches
on DBLP streams. Meanwhile, the accumulated system run-
time with respect to different chunk sizes, as shown in
Fig. 16, also indicate that system runtime remains relatively
stable for different chunk sizes. Overall, gEBoost linearly
scales to the number of graphs and chunks, which makes it
capable of handling real-world high speed graph streams.

b) Memory consumption: The main memory consump-
tion of gEBoost is spent on the subgraph enumeration
procedure. As each chunk is a relative small graph set, only
a small amount of memory is required for our subgraph min-
ing component. Meanwhile, because our algorithm utilizes an
ensemble based framework, all graphs flow in a “one-pass”
fashion, i.e., historical graphs are discarded after being pro-
cessed, only a set of discriminative features (decision stumps)
and a gEBoost classifier are kept in the memory. The obsoleted
classifiers are removed whenever the ensemble size is full. As
a result, the memory consumption for stream classification is

PAN et al.: GRAPH ENSEMBLE BOOSTING FOR IMBALANCED NOISY GRAPH STREAM CLASSIFICATION 953

relatively constant for our algorithm. We never experienced
any out of memory errors on a computer with 8 GB memory.

VII. CONCLUSION

In this paper, we investigated graph stream classification with
imbalanced class distributions. We argued that existing work
inherently overlooked class distributions in the graph data, so
the selected subgraph features are biased to the majority class,
which makes algorithms vulnerable to imbalanced class dis-
tributions and noise. The concept drifting over stream further
complicates the learning task for graph classification. In this
paper, we proposed an ensemble-based framework to partition
graph stream into chunks, with a boosting classifier being learnt
from each chunk. The boosting procedure considers class dis-
tributions to weight individual graphs, so the selected subgraph
can help find optimized margins, which further help explore
new subgraph features. To handle concept drifting in the stream,
each graph is carefully weighed by using classifiers learnt from
previous stream. Our graph stream model is inherently effec-
tive and useful for managing and mining graph streams, this
is because 1) the runtime for finding subgraph features from
the whole graph set can be very expensive. Unless we use a
very large support value, it will be very time consuming to
find frequent subgraphs from a large graph set and 2) for a
graph stream, like Twitter stream, the concepts may gradually
change, so the stream classification model is able to adapt to
such changes for accurate prediction. Our experimental results
validates the effectiveness of our algorithm.

APPENDIX

A. Lagrangian Dual of (3)

The Lagrangian function of (3) can be written as

L (ξ , w, ρ) = ρ − C(β
∑n+
{i|yi=+1} δiϕiξi +∑n−

{i|yi=−1} δiϕiξi)

+
n∑

i=1
μi{yi

∑m
j=1 wj · �(Gi; gj, πj)+ ξi − ρ}

−γ (
∑m

j=1 wj − 1)+
m∑

j=1
qj · wj +

n∑
i=1

pi · ξi.

(9)

Where, we have μi ≥ 0, pi ≥ 0, qi ≥ 0, and γ can be either
positive (> 0) or negative (< 0).

At optimum, the first derivative of the Lagrangian with
respect to the primal variables (ξ , w,and ρ) must vanish

∂L
∂ξi|yi=1

= −Cβδiϕi + μi + pi = 0⇒ 0 ≤ μi ≤ Cβδiϕi
∂L

∂ξi|yi=−1
= −Cδiϕi + μi + pi = 0⇒ 0 ≤ μi ≤ Cδiϕi

∂L
∂ρ

= 1−∑n
i=1 μi = 0⇒∑n

i=1 μi = 1
∂L
∂wj

⇒∑n
i=1 yiμi · �(Gi; gj, πj)− γ + qj = 0

⇒∑n
i=1 yiμi · �(Gi; gj, πj) ≤ γ.

Substituting these variables in (9), we obtain the its dual
problem as (5).

REFERENCES

[1] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan, “Identifying bug
signatures using discriminative graph mining,” in Proc. Int. Symp. Softw.
Test. Anal. (ISSTA), Chicago, IL, USA, 2009, pp. 141–152.

[2] C. Aggarwal, “On classification of graph streams,” in Proc. SIAM Int.
Conf. Data Mining (SDM), 2011.

[3] S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Graph stream classifica-
tion using labeled and unlabeled graphs,” in Proc. Int. Conf. Data Eng.
(ICDE), Brisbane, QLD, Australia, 2013.

[4] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, “Frequent
substructure-based approaches for classifying chemical compounds,”
IEEE Trans. Knowl. Data Eng., vol. 17, no. 8, pp. 1036–1050,
Aug. 2005.

[5] B. Li, X. Zhu, L. Chi, and C. Zhang, “Nested subtree hash kernels for
large-scale graph classification over streams,” in Proc. IEEE Int. Conf.
Data Mining (ICDM), 2012, pp. 399–408.

[6] S. Pan and X. Zhu, “Graph classification with imbalanced class distri-
butions and noise,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2013,
pp. 1586–1592.

[7] Y. Zhu, J. Yu, H. Cheng, and L. Qin, “Graph classification: A diversified
discriminative feature selection approach,” in Proc. Int. Conf. Inf. Knowl.
Manage. (CIKM), Maui, HI, USA, 2012, pp. 205–214.

[8] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda, “gBoost:
A mathematical programming approach to graph classification and
regression,” Mach. Learn., vol. 75, no. 1, pp. 69–89, 2009.

[9] H. Fei and J. Huan, “Boosting with structure information in the func-
tional space: An application to graph classification,” in Proc. ACM
SIGKDD, Washington, DC, USA, 2010.

[10] H. Kashima, K. Tsuda, and A. Inokuchi, “Kernels for graphs,” in
Kernel Methods in Computational Biology, B. Schoölkopf, K. Tsuda,
and J. P. Vert, Eds. Cambridge, MA, USA: MIT Press, 2004.

[11] X. Kong and P. Yu, “Semi-supervised feature selection for graph
classification,” in Proc. ACM SIGKDD, Washington, DC, USA, 2010.

[12] J. Wu et al., “Multi-graph learning with positive and unlabeled bags,”
in Proc. SIAM Data Mining, 2014, pp. 1586–1592.

[13] X. Liu, J. Wu, and Z. Zhou, “Exploratory undersampling for class-
imbalance learning,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 39, no. 2, pp. 539–550, Apr. 2009.

[14] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 463–484, Jul. 2012.

[15] J. Leskovec and J. Shawe-Taylor, “Linear programming boosting for
uneven datasets,” in Proc. Int. Conf. Mach. Learn. (ICML), Washington,
DC, USA, 2003, pp. 456–463.

[16] K. Veropoulos, C. Campbell, and N. Cristianini, “Controlling the sensi-
tivity of support vector machines,” in Proc. Int. Joint Conf. Artif. Intell.
(IJCAI), 1999, pp. 55–60.

[17] R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector
machines to imbalanced datasets,” in Proc. Eur. Conf. Mach. Learn.
(ECML), Pisa, Italy, 2004, pp. 39–50.

[18] H. He and Y. Ma, Imbalanced Learning: Foundations, Algorithms, and
Applications. Hoboken, NJ, USA: Wiley, 2013.

[19] S. Ranu and A. Singh, “GraphSig: A scalable approach to mining sig-
nificant subgraphs in large graph databases,” in Proc. Int. Conf. Data
Eng. (ICDE), Shanghai, China, 2009, pp. 844–855.

[20] S. Pan and X. Zhu, “CGStream: Continuous correlated graph query for
data streams,” in Proc. Int. Conf. Inf. Knowl. Manage. (CIKM), 2012,
pp. 1183–1192.

[21] P. Mahe, N. Ueda, T. Akutsu, J. Pettet, and J. Vert, “Extensions of
marginalized graph kernels,” in Proc. Int. Conf. Mach. Learn. (ICML),
Banff, AB, Canada, 2004.

[22] K. Riesen and H. Bunke, “Graph classification by means of Lipschitz
embedding,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 6,
pp. 1472–1483, Dec. 2009.

[23] T. Kudo, E. Maeda, and Y. Matsumoto, “An application of boosting
to graph classification,” in Proc. Neural Inf. Process. Syst. (NIPS),
Vancouver, BC, Canada, 2004.

[24] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[25] Y. Sun, A. Wong, and S. Mohamed, “Classification of imbalanced
data: A review,” Int. J. Pattern Recognit. Artif. Intell., vol. 23, no. 4,
pp. 687–719, 2009.

[26] J. Van Hulse and T. Khoshgoftaar, “Knowledge discovery from
imbalanced and noisy data,” Data Knowl. Eng., vol. 68, no. 12,
pp. 1513–1542, 2009.

[27] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
6th ACM Knowl. Discov. Data Mining (KDD), 2000, pp. 71–80.

[28] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for
large-scale classification,” in Proc. 7th Discov. Data Mining (KDD),
2001, pp. 377–382.

954 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 5, MAY 2015

[29] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. 9th ACM Discov. Data
Mining (KDD), 2003, pp. 226–235.

[30] X. Zhu, P. Zhang, X. Lin, and Y. Shi, “Active learning from stream
data using optimal weight classifier ensemble,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 40, no. 6, pp. 1607–1621, Dec. 2010.

[31] M. Baena-García et al., “Early drift detection method,” in Proc.
Eur. Conf. Mach. Learn. Princ. Pract. Knowl. Discov. Databases
(ECML/PKDD), Berlin, Germany, 2006.

[32] J. Gao, W. Fan, J. Han, and S. Y. Philip, “A general framework for
mining concept-drifting data streams with skewed distributions,” in Proc.
SIAM Int. Conf. Data Mining, 2007.

[33] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 25,
no. 10, pp. 2283–2301, Oct. 2013.

[34] S. Wang, L. L. Minku, and X. Yao, “A learning framework for online
class imbalance learning,” in Proc. IEEE Symp. Ser. Comput. Intell.
(SSCI), 2013.

[35] S. Chen and H. He, “Towards incremental learning of nonstationary
imbalanced data stream: A multiple selectively recursive approach,”
Evolving Syst., vol. 2, no. 1, pp. 35–50, 2011.

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, no. 1, pp. 321–357, 2002.

[37] L. Chi, B. Li, and X. Zhu, “Fast graph stream classification using dis-
criminative clique hashing,” in Proc. 17th Pacific-Asia Conf. Knowl.
Discov. Data Mining (PAKDD), 2013.

[38] S. Nash and A. Sofer, Linear and Nonlinear Programming. New York,
NY, USA: McGraw-Hill, 1996.

[39] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization.
Belmont, MA, USA: Athena Scientific, 1973, ch. 4.

[40] D. Luenberger, Optimization by Vector Space Methods. New York, NY,
USA: Wiley-Interscience, 1997.

[41] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”
in Proc. IEEE Int. Conf. Data Mining (ICDM), Maebashi, Japan, 2002.

[42] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” in Computational Learning
Theory. Barcelona, Spain, Springer, Mar. 1995, pp. 23–37.

[43] S. Pan, X. Zhu, and C. Zhang. (2014, Jul. 28). Imbalanced Noisy Graph
Stream Classification: Results and Source Code [Online]. Available:
http://www.cse.fau.edu/∼xqzhu/Stream/geboost/index.html

[44] J. Tang et al., “ArnetMiner: Extraction and mining of academic social
networks,” in Proc. ACM SIGKDD, Las Vegas, NV, USA, 2008,
pp. 990–998.

Shirui Pan received the master’s degree in computer
science from Northwest A&F University, Yangling,
Shaanxi, China, in 2011, and is currently pursu-
ing the Ph.D. degree from the Centre for Quantum
Computation and Intelligent Systems, Faculty of
Engineering and Information Technology, University
of Technology, Sydney, Sydney, NSW, Australia.

His current research interests include data mining
and machine learning.

Jia Wu received the bachelor’s degree in computer
science from the China University of Geosciences
(CUG), Wuhan, China, in 2009, and is currently
pursuing the Ph.D. degree under the Master-Doctor
combined program in computer science from CUG,
and also pursuing the Ph.D. degree from the Centre
for Quantum Computation and Intelligent Systems
Centre, Faculty of Engineering and Information
Technology, University of Technology, Sydney,
NSW, Australia.

His current research interests include data mining
and machine learning.

Xingquan Zhu (SM’12) received the Ph.D.
degree in computer science from Fudan University,
Shanghai, China.

He is an Associate Professor at the Department of
Computer and Electrical Engineering and Computer
Science, Florida Atlantic University, Boca Raton,
FL, USA. Prior to that, he was with the Centre
for Quantum Computation and Intelligent Systems,
University of Technology, Sydney, Sydney, NSW,
Australia. His current research interests include data
mining, machine learning, and multimedia systems.

Since 2000, he has published over 170 refereed journal and conference papers
in these areas.

Dr. Zhu was the recipient of two Best Paper Awards and one Best Student
Paper Award. He is an Associate Editor of the IEEE TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING from 2008 to 2012 and from 2014
to till date.

Chengqi Zhang (SM’95) received the Ph.D. degree
from the University of Queensland, Brisbane,
QLD, Australia, in 1991, and the D.Sc. degree
(higher doctorate) from Deakin University, Geelong,
Australia, in 2002.

Since 2001, he has been a Professor of
Information Technology with the University
of Technology, Sydney (UTS), Sydney, NSW,
Australia, where he has been the Director of the
UTS Priority Investment Research Centre for
Quantum Computation and Intelligent Systems,

since 2008. His current research interests include data mining and its
applications.

Prof. Zhang will be the General Co-Chair of KDD 2015 in Sydney and
the Local Arrangements Chair of IJCAI-2017 in Melbourne, and is also a
fellow of the Australian Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

