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Abstract—Multitask learning (MTL) is commonly used for
jointly optimizing multiple learning tasks. To date, all existing
MTL methods have been designed for tasks with feature-vector
represented instances, but cannot be applied to structure data,
such as graphs. More importantly, when carrying out MTL, exist-
ing methods mainly focus on exploring overall commonality or
disparity between tasks for learning, but cannot explicitly cap-
ture task relationships in the feature space, so they are unable
to answer important questions, such as what exactly is shared
between tasks and what is the uniqueness of one task differing
from others? In this paper, we formulate a new multitask graph
learning problem, and propose a task sensitive feature explo-
ration and learning algorithm for multitask graph classification.
Because graphs do not have features available, we advocate a task
sensitive feature exploration and learning paradigm to jointly dis-
cover discriminative subgraph features across different tasks. In
addition, a feature learning process is carried out to categorize
each subgraph feature into one of three categories: 1) common
feature; 2) task auxiliary feature; and 3) task specific feature,
indicating whether the feature is shared by all tasks, by a subset
of tasks, or by only one specific task, respectively. The feature
learning and the multiple task learning are iteratively optimized
to form a multitask graph classification model with a global
optimization goal. Experiments on real-world functional brain
analysis and chemical compound categorization demonstrate the
algorithm’s performance. Results confirm that our method can
be used to explicitly capture task correlations and uniqueness in
the feature space, and explicitly answer what are shared between
tasks and what is the uniqueness of a specific task.

Index Terms—Feature selection, graph classification, multitask
learning (MTL), subgraph mining, supervised learning.

I. INTRODUCTION

GRAPH classification has become increasingly important
in recent years due to the rapid growth of complex data

with structural and interdependent relationships. For many
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applications, such as chemical compound categorization [1],
functional brain analysis [2], [3], malware detection [4], and
biomedical document classification [5], there is an immediate
need to automatically classify data with structural information
into meaningful categories.

To classify graphs, the key challenge lies in the fact that no
feature is readily available for learning algorithms to derive
classification model. This challenge has motivated numerous
methods of representing graphs in a suitable format for learn-
ing, including: 1) kernel-based algorithms [6], [7], which learn
kernels to measure the similarity between graph objects, so that
a pair-wise similarity matrix can be fed into learning algo-
rithms such as a support vector machine (SVM) for learning
and 2) subgraph-based algorithms [8]–[15], which aim to dis-
cover discriminative subgraph features to represent graphs into
vector space, so that generic machine learning algorithms can
be applied.

A. Multitask Graph Classification: Motivation

Although graph classification has drawn significant atten-
tions, existing methods typically share two major deficiencies
in their designs: 1) in order to explore subgraph structures for
training good classification models, a large number of train-
ing graphs are required and 2) they can only work on a single
learning task. In reality, due to the inherent complexity of the
graph data and the costs involved in the labeling process, col-
lecting a large number of labeled graphs for a specific task
is difficult. However, it is quite common that multiple simi-
lar graph classification tasks, each having a small number of
training samples, may co-exist and need to be handled. Two
motivating examples are given as follows.

Functional brain analysis aims to map human brain as a
network (or a graph) to model correlations between diseases
and functions of brain regions [16]. In order to carry out
a specific learning task, such as diagnosing attention deficit
hyperactivity disorder (ADHD) [17], each object needs to
go through functional magnetic resonance imaging (fMRI)
and intensive data preprocessing to collect training data. This
severely limits each task to have a maximum of only a cou-
ple of hundred objects. On the other hand, institutions may
have data collected for different but relevant learning tasks,
such as gender [18] or Alzheimer’s disease study. The lim-
ited samples for each individual tasks, and the commonality
between tasks raise an interesting question as to whether mul-
tiple brain function classification tasks can be combined to
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learn a multitask model for maximum performance gain for
all tasks.

Chemical compound categorization is important in biomed-
ical research for testing whether a compound is active to a
specific cancer, such as melanoma. In melanoma cancer, deter-
mining activities of a molecule is expensive, as it requires
time, efforts, and expensive resources [19] to conduct a bio-
logical assay. In reality, some similar bioassay tasks,1 such
as anti-cancer test for prostate, may be available. As graph
data for different types of cancer may share common sub-
structures, learning multiple related tasks concurrently may
potentially help improve the generalization performance of
each single task.

B. Existing MTL for Graph Data: Weakness

Indeed, existing research on multitask learning (MTL)
has demonstrated that exploring commonality between tasks
can improve the generalization performance. To support
MTL, existing algorithms commonly rely on two types of
approaches.

1) Multitask feature learning, which explores common fea-
ture space shared by all tasks. These models, including
mixed �2,1 norm sparsity inducing methods [20], [21],
composite regularized algorithms [22], [23], and the
most recent calibration-based multitask approach [24],
can be formulated as a regularized loss minimization
problem aiming to explore shared feature space among
tasks for learning.

2) Task relationship learning, which simultaneously
exploits task relationships and parameters [25], such
as task clustering [26], [27] or isolating [28], so that
knowledge can be shared by a group of tasks instead
of all tasks.

Although MTL has been applied to many applications, all
existing methods only work on data with feature-vector repre-
sentation, but cannot be directly applied to structure data, such
as graphs. In graph classification, one needs to first find sub-
graph features to represent graphs into vector space. To apply
MTL to graph classification, one simple solution is to first
mine a set of frequent subgraphs as features, and then employ
state-of-the-art MTL algorithms [20], [24]. Unfortunately, this
simple adaption is far from optimal because there is an expo-
nentially large number of subgraph features so one has to
use a threshold to limit the number of frequent subgraphs.
As a result, MTL is only carried out on a reduced subgraph
space (frequent subgraphs), and some genuine discriminative
subgraphs that are infrequent may be missed. This leads to
a deterioration of classification performance. The ineffective-
ness of this two-step approach for graph classification calls for
effective MTL algorithms that can explore the exponentially
large subgraph space.

Another drawback of exiting MTL methods is that they
mainly aim to exploit the commonality in feature space or
task correlations, but ignore the uniqueness of individual tasks.
This is potentially harmful for graph classification domains,
because graphs from similar domains usually share high global

1https://pubchem.ncbi.nlm.nih.gov/

similarity and only differ in a small set of substructures.
These, however, are crucial for model learning and should be
carefully preserved. More importantly, these unique features
are helpful for users to uncover patterns shared by different
tasks. For instance, in the drug discovery process, experts are
expected to find common substructures shared by a set of can-
cer types, as well as discover features unique to a specific
cancer. Existing MTL methods, unfortunately, mainly focus on
exploring overall commonality or disparity between tasks, but
cannot explicitly capture detailed relationships between tasks
with respect to their individual features. An example is shown
in Fig. 1 where three types of cancer diagnosis tasks share
some common subgraph features for all tasks (first column).
Some features are shared by a subset of tasks (second column),
and some subgraph features are unique for each individual task
(third column).

C. Proposed Algorithm: Novelty and Contributions

Motivated by the above observations, in this paper, we
propose a task sensitive feature exploration and learning
algorithm for multitask graph (FelMuG) classification. Two
key features that differentiate FelMuG from existing MTL
are: 1) exponential feature space exploration and 2) task
sensitive feature learning. In order to explore exponential sub-
graph feature space, we derive an effective pruning bound to
reduce unpromising candidates, so that all discriminative sub-
graphs can be discovered to help improve the classification
performance.

A unique feature of FelMuG is its task sensitive feature
learning module which automatically learns and categorizes
subgraph features into three groups: 1) common features;
2) task auxiliary features; and 3) task specific features.
Common features are the ones shared by all tasks, task aux-
iliary features can be shared by any subset of tasks, and a
task specific feature is unique to a single task. Task sensi-
tive feature learning not only allows FelMuG to improve the
performance of MTL but also enhances the understanding of
task relationships at the feature level. In the final stage, the
learned subgraph features and graph classification tasks are
iteratively optimized to form an optimization function, with
subgraph exploration and MTL being iteratively optimized for
maximum performance gain.

This paper makes noticeable contributions in the following
three aspects.

1) Feature Learning and Categorization for MTL: We pro-
pose a novel task sensitive feature learning algorithm to
select and categorize features into different groups. It
not only helps improve the classification accuracy but
also provides solutions for understanding relationships
and uniqueness of different tasks at the feature level.

2) Cross Task Subgraph Exploration: We derive an effec-
tive pruning bound to explore discriminative subgraph
features, from the exponential subgraph search space,
without requiring any support threshold.

3) Multitask Graph Classification: We advance the single
task graph classification setting to multitask scenarios,
which jointly explore and learn multiple classification
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Fig. 1. Feature learning and categorization for three graph classification tasks (detailed in Section VII). The first column shows the top nine subgraphs shared
by all tasks (learned by our algorithm). Numeric values next to each subgraph features indicate the feature utility for NCI-1, 47, and 83 tasks (measured
by [(1/nt)

∑nt
i=1 yix

j
i ], which will be derived in Eq. (8), 0 means the feature is not discriminative while 1 means the feature perfectly classifies all graphs).

The second and third columns show the task auxiliary features and task specific features learned by our algorithms (each row corresponding to one task).
Existing common feature-based MTL algorithm might not find all discriminative features as they ignore the uniqueness of each task. For instance, g1 and
g2 are selected as common features but they have limited capability in classifying graphs from task NCI-1. By considering task auxiliary features and task
specific features, the unique property of each task can be well preserved. It is evident that the task specific subgraphs are even more discriminative than g1
and g2 for NCI-1. Note that task auxiliary features are used by a subset of tasks. For instance, g3 and g4 are only used by NCI-1 and NCI-47, but not by
NCI-83.

models to improve the classification performance over
single task graph classification.

The remainder of this paper is structured as follows. We
review related work in Section II. The problem definition
and preliminaries are given in Section III. The task sensi-
tive multitask graph classification formulation is presented in
Section IV, followed by the multitask subgraph exploration
method in Section V. The time complexity is analyzed in
Section VI. Experimental results are described in Section VII,
and we conclude the paper in Section VIII.

II. RELATED WORK

This paper is closely related to graph classification
and MTL.

A. Graph Classification

Existing methods for graph classifica-
tion [8], [11], [12], [29]–[34] can be roughly distinguished
into two groups: 1) kernel-based methods and 2) subgraph
feature-based methods.

Kernel-based approaches aim to directly learn global
similarities between graphs by using some graph ker-
nels [6], [7], [30]. The global similarities are then fed into
similarity-based classifiers, such as K-nearest neighbors or
SVM, for learning. An obvious drawback of global similarity-
based approaches is that similarity is calculated based on
global graph structures, such as random walks or embed-
ding space. Therefore, it is not clear which substructures
are mostly important for classifying graphs between different
classes.

In subgraph-based methods, the key issue is defining a mea-
surement to assess the utility of each subgraph. Yan et al. [35]
proposed an LEAP algorithm to exploit the correlation
between structure similarity and significance similarity, with a
branch-and-bound rule being derived to prune subgraph space.

Ranu and Singh [36] proposed a scalable GraphSig algo-
rithm to mine significant subgraphs with low frequencies.
Thoma et al. [10] proposed a CORK algorithm to find sub-
graph features. Kong et al. [14] proposed to select subgraph
features and instances simultaneously for active learning.
In [15], discriminative subgraph feature selection for PU
learning is studied. Our method is similar to these meth-
ods [10], [14], [15], [35], [36] in the sense that we use the
gSpan algorithm [37] to explore exponential subgraph space
and derive effective pruning bounds to prune unpromising sub-
graph candidates. However, the difference between FelMuG
and these methods is fundamental. From a feature selection
perspective, existing methods [10], [14], [15], [35], [36] are
filter-based whereas FelMuG is an embedding-based algo-
rithm. The filter-based graph classification methods first mine
a set of subgraphs as features and transfer graphs into vector
representation. It then learns a traditional classifier (e.g., SVM)
for graph classification. One possible drawback is that the
selected subgraph features may not fit the classification model
very well. Our embedding-based graph classification aims
to simultaneously select features and learn the classifica-
tion model. As a result, the selected subgraph features are
directly customized to fit the classification model for better
classification results.

In line with embedding subgraph-based graph classifica-
tion approaches, boosting-style algorithms [8], [31], [38]–[40]
are very popular. In [38], an Adaboost style algorithm was
proposed and later extended to a linear programing boost-
ing algorithm in [8]. Some boosting algorithms are designed
to handle imbalanced graph classification [31], [39] and
cost-sensitive graph classification [40]. Most recently, an
regularized loss minimization-driven algorithm [9] was pro-
posed to minimize the regularized loss function for graph
classification. These algorithms [8], [9], [39], [40] iteratively
select subgraph features to reoptimize an objective function,
demonstrating superior performance to filter-based algorithms.
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Recently, researchers have also addressed complicated
graph classification tasks, such as semi-supervised classi-
fication [12], [41] and multilabel classification [13]. We
have extended graph classification task to multiview-graph
learning [42], [43] and multigraph classification scenar-
ios [44]–[46]. In multiview-graph learning, an object consists
of multiple graph structure views. For multigraph classifica-
tion, the objective is to classify a bag that consists of multiple
graphs.

For above graph classification methods, regardless of
similarity-based methods or subgraph-based approaches, they
can only handle one learning task, and are, therefore, inef-
fective or inapplicable for multitask settings where multiple
related graph classification tasks co-exist for learning.

B. Multitask Learning

State-of-the-art algorithms on MTL [20], [25], [47]–[51] can
also be roughly divided into two categories.

1) Regularized multitask feature learning meth-
ods [20], [47], [49], which assume all tasks are
homogeneous and the learning is to discover common
feature representation across all tasks.

2) Task relationship exploration meth-
ods [25], [48], [50], [52], which either exploit task
relationships via trace norm regularization to achieve
some similar parameters among similar tasks [52], or
try to learn a task covariance matrix from data if the
task relationship is unknown in advance [25], [48].

Note that MTL is closely related to transfer learning [53],
but the difference is fundamental. Transfer learning aims to
improve the learning on a single target task by using data
from other tasks as auxiliary information. In MTL, all tasks
are equally important and should be optimized simultane-
ously. A recent work [54] addresses transfer learning for graph
databases, but its scope and objective are different from the
proposed FelMuG.

III. DEFINITIONS AND PRELIMINARIES

A. Problem Definition

Definition 1 (Connected Graph): A graph is denoted by
G = (V, E, L), where V = {v1, . . . , vn} is a set of vertices,
E ⊆ V × V is a set of edges, and L is a labeling function
assigning labels to a node or an edge. A connected graph is a
graph with a path between any pair of vertices.

In this paper, we focus on connected graphs and assume that
each graph G has a class label y, y ∈ Y = {−1,+1}, indicat-
ing label information of the graph, such as an active/negative
response of a chemical compound [55].

Definition 2 (Subgraph): Given two graphs G = (V, E, L)

and gk = (V ′, E′, L′), gk is a subgraph of G (i.e., gk ⊆ G)
if there is an injective function f : V ′ → V , such that
∀(a, b) ∈ E′, we have ( f (a), f (b)) ∈ E, L′(a) = L(f (a)),
L′(b) = L(f (b)), L′(a, b) = L(f (a), f (b)). If gk is a subgraph
of G (gk ⊆ G), G is a supergraph of gk (G ⊇ gk).

1) Multitask Graph Classification: Given a set of graph
classification tasks, where each task t ∈ {1, 2, . . . , T} has a set
of labeled graphs {(Gt,1, yt,1), . . . , (Gt,nt , yt,nt )}, we use Gt,i ∈

G (G denotes the graph space) to represent the ith graph in task
t, and Gt,i’s class label is yt,i ∈ Y = {+1,−1}. Multitask graph
classification aims to learn T functions (classification models)
ft : G → Y, t ∈ [1, T], which have the best classification
accuracy on test graphs over all tasks.

B. Preliminaries

1) Single Task Graph Classification: To support graph
classification, state-of-the-art algorithms [8], [11] use a set
of subgraphs explored from training graphs as features. Let
F = {g1, . . . , gm} be the full set of subgraphs in G. Each sub-
graph gk ∈ F can map a given graph Gt,i to the class label
space Y = {+1,−1} by using a simple decision stump as
follows:

�gk

(
Gt,i

) = 2I
(
gk ⊆ Gt,i

)− 1. (1)

Here I(a) = 1 if a holds, or 0 otherwise. The rule simply
maps a graph Gt,i as a numeric feature value +1 if subgraph
gk appears in Gt,i, i.e., gk ∈ Gt,i, or −1 otherwise.

We can use F as features to represent each graph Gt,i into a
vector space as xt,i = [�g1(Gt,i), . . . , �gm(Gt,i)]T , with xk

t,i =
�gk(Gt,i). In this paper, Gt,i and xt,i are used interchangeably,
and they are both referred to the same graph (i.e., the ith graph
in task t). Given full subgraph feature set F , the prediction
function of task t is a linear classifier

ft
(
xt,i

) = wT
t · xt,i + bt =

∑

gk∈F
wt,k�gk

(
Gt,i

)+ bt (2)

where wt = [wt,1, . . . , wt,m]T is the weight vector of all fea-
tures for task t, and bt is the bias of the model. The predicted
class of xt,i is +1 if ft(xt,i) > 0, or −1 otherwise.

Note that for graph data, the feature set F is unavailable
and is exponentially large (even infinite). In the next sec-
tion, we first propose a novel task sensitive feature learning
algorithm for graph tasks with feature-vector representation
(i.e., assuming F is known). Section V proposes solutions
which integrate this algorithm into subgraph mining process
to explore subgraph features F for general graph tasks.

IV. MULTITASK GRAPH CLASSIFICATION

In this section, we first formulate a novel task sensi-
tive feature learning algorithm for multitask classification
(Section IV-A). Because the formulated problem is a mixed
integer problem (MIP), we relax it to a convex semi-infinite
problem (SIP) in Section IV-B. Since the resulting SIP relax-
ation has infinite constraints, we further propose an advanced
cutting plane optimization algorithm in Section IV-C to solve
the problem.

A. Task Sensitive Feature Learning for Multitask Learning

When applying traditional SVMs to a learning task t, one
learns a linear function ft(xt,i) = wT

t · xt,i + bt by solving the
following �2-norm regularized problem:

min
wt

1

2
‖wt‖2 + C

nt∑

i=1

L(
yt,i, ft

(
xt,i

))
(3)
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where L(yt,i, ft(xt,i)) = max (1− yt,i, ft(xt,i), 0) is a hinge loss
function, nt is the number of training samples of task t, and
C is a parameter controlling the regularization part.

Given multiple tasks, existing MTL mainly focuses on
exploring commonality between tasks, such as common fea-
ture space or task similarity, for learning. Such approaches
are unsuitable for graph classification tasks because there is
no feature immediately available to represent graphs. Instead,
one needs to gradually explore subgraph feature space, as well
as model task relationships, by using explored features, for
maximum performance gain.

Accordingly, our research advocates a new task sensitive
feature learning theme to explore and categorize features into
different nonoverlapping groups: common features, task auxil-
iary features, and task specific features. Common features are
the ones shared by all tasks, task auxiliary features are shared
by a subset of tasks, and a task specific feature is exclusively
used by a single task. By doing so, we can model common
feature space among tasks, like most existing MTL algorithms
do, and also capture discriminative features with respect to
any subset of tasks or a single task. The explicit capturing of
interrelation between features and tasks allows our method to
uncover fine-grained task relationships in the feature space.

As feature learning aims to select nonoverlapping groups,
the three groups impose hard constraints to the features.
Specifically, for each task we introduce three feature scal-
ing vectors, with δ0 = [δ1

0, . . . , δm
0 ] ∈ {0, 1}m corresponding

to common features, δts = [δ1
ts, . . . , δ

m
ts ] ∈ {0, 1}m for task

specific features, and δta = [δ1
ta, . . . , δ

m
ta] ∈ {0, 1}m for task

auxiliary features, respectively.
For δ0, δts, or δta, the jth feature is selected as a common

feature if δ
j
0 = 1, or a task specific feature if δ

j
ts = 1, or as a

task auxiliary feature if δ
j
ta = 1, exclusively. As a result, we

can obtain a rescaled instance for xt,i as follows:

x̂t,i = xt,i 
 δt, δt = δ0 + δta + δts (4)

where 
 is an element-wise product of two vectors. To control
selected features for final classification model, we enforce the
following constraints to the feature indicated vectors:

‖δ0‖1 =
m∑

j=1

δ
j
0 ≤ K0, δ

j
0 ∈ {0, 1}

‖δts‖1 =
m∑

j=1

δ
j
ts ≤ Ks, δ

j
ts ∈ {0, 1}

‖δta‖1 =
m∑

j=1

δ
j
ta ≤ Ka, δ

j
ta ∈ {0, 1}

δj = δ
j
0 + δ

j
ta + δ

j
ts ≤ 1,∀j

T∑

t=1

δ
j
ts ≤ 1,∀j (5)

where K0, Ks, and Ka are integers indicating the least number
of features used in the final models. In biological applica-
tions, due to expensive bio-diagnosis and limited resources,
biologists prefer to select a relatively small number of genes,
such as less than 100, from thousands of genes [56], [57]. For

graph classification, we also prefer to select a small number of
discriminative subgraphs, for further analysis. The forth con-
straint, δj = δ

j
0+ δ

j
ts+ δ

j
ta is the sum of δ0, δts, and δta on the

jth dimension. δj ≤ 1 enforces that the jth feature belongs to
only one group. The last constraint enforces that a task specific
feature is preserved and unique for one task only.

In order to learn multiple tasks via feature learning, we
formulate the following objective function:

min
δt∈D

min
wt,bt,ξt,i

1

2

T∑

t=1

‖wt‖2 + C
T∑

t=1

nt∑

i=1

ξt,i

s.t. yt,i

(
wT

t

(
xt,i 
 δt

)+ bt

)
+ ξt,i ≥ 1

ξt,i ≥ 0, t = 1, . . . , T, i = 1, . . . , nt (6)

where D = {δ0 + δta + δts}, and δ0, δta, and δts are
subject to (5).

1) Merit of Our Design: We use δ0, δta, and δts to directly
learn and categorize features, with learned features being
used to characterize the optimization model. Evgeniou and
Pontil [47] decomposed the weight as wt = w0+vt; and exist-
ing composite regularization methods such as dirty model [22]
and rMTFL method [23] factorizes the weight matrix of all
tasks W = P+Q with different sparsity inducing regularizers.
However, their formulations cannot explicitly capture unique
discriminative features for a specific task or for a subset of
tasks. Furthermore, the �1 or mixed norm �21 regularizers used
in these methods attempt to control the number of select fea-
tures and the model performance simultaneously. When the
number of selected feature is small, the learned model will be
biased and under-fit the training data, resulting poor perfor-
mance. This is attributed to the bias of �1 norm regularization
effects [58].

Compared to the state-of-the-art multitask feature learning
methods, the merit of our design is fourfold.

1) It naturally selects features with desired cardinality.
This is more effective than sparsity induced cardinality
methods such as �2,1 regularization.

2) The selected features are automatically categorized into
different groups, i.e., common features, task specific fea-
tures, and task auxiliary features. This is particularly
important for graph classification tasks. Because with
categorized features, experts can easily identify common
substructures active against several types of cancers, or
find unique features for a specific type of cancer.

3) The proposed model can be transferred to a convex pro-
gramming problem, based on which an effective solver
can be developed. A similar scheme has been used
in [58], which is, in fact, a special case of our MTL
formula, with only one task being used.

4) The proposed method can be naturally integrated
to the subgraph mining process to facilitate graph
classification.

The optimization problem in (6) is an MIP, which is noncon-
vex when considering W = [w1, . . . , wt] and δt together. As
a result, this problem is computationally intractable if solved
directly. Next, we will relax this formula to a convex problem.
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B. Convex Relaxation of MTL

Considering the inner minimization problem of (6) as a
whole, its dual problem becomes

max
αt,i∈A

−1

2

T∑

t=1

∥
∥
∥
∥
∥

nt∑

i=1

αt,iyt,i
(
xt,i 
 δt

)
∥
∥
∥
∥
∥

2

+
T∑

t=1

nt∑

i=1

αt,i (7)

where A = {αt,i|∑nt
i=1 αt,iyt,i = 0,∀t ∈ [1, T]; 0 ≤ αt,i ≤ C}.

For convenience, let st,j be the feature score of the first term
on the jth dimension of task t,2 that is

st,j =
[ nt∑

i=1

αt,iyt,ix
j
t,i

]2

. (8)

Let sj =∑T
t=1 st,j be the feature score on the jth dimension

over all tasks, then the first term of (7) can be rewritten as the
sum of feature score over all features, that is

T∑

t=1

∥
∥
∥
∥
∥

nt∑

i=1

αt,iyt,i
(
xt,i 
 δt

)
∥
∥
∥
∥
∥

2

=
m∑

j=1

δj
T∑

t=1

st,j =
m∑

j=1

δjsj

where δj = δ
j
0 + δ

j
ts + δ

j
ta. For convenience, let α be all

Lagrangian multipliers αt,i, and δ be all indicated vectors δt

for all tasks, respectively, then let

F(α, δ) = −1

2

m∑

j=1

δjsj +
T∑

t=1

nt∑

i=1

αt,i. (9)

The original objective function (6) becomes

min
δ∈D

max
α∈A

F(α, δ). (10)

According to the minmax inequality [59], we have the
following lower bound to (10):

min
δ∈D

max
α∈A

F(α, δ) ≥ max
α∈A

min
δ∈D

F(α, δ). (11)

So instead of solving (6) or (10), which is computationally
intractable, we can solve the following relaxed problem:

max
α∈A

min
δ∈D

F(α, δ).

Moreover, this relaxed problem can be further transferred
to an SIP. Motivated by [58] and [60], we introduce another
variable ω ∈ R, so the relaxed problem can be formulated as
the following SIP:

max
α∈A,ω∈R

ω: ω ≤ F(α, δ),∀δ ∈ D. (12)

Equation (12) is a convex quadratically constrained
quadratic programming, where each δ ∈ D defines a quadratic
constraint with respect to α. The main challenge to solve this
problem lies in the fact that there are an infinite number of con-
straints, i.e., the number of elements in D is infinitely large.
To solve this challenge, we turn to its dual form, based on
which the problem is formulated as a multikernel learning
problem [61], [62], so that a cutting plane algorithm can be
derived, and exiting optimization toolbox can be used to solve
the multikernel problem.

2The feature utility in Fig. 1 is a simplified version of (8), i.e., √st,j =
[(1/nt)

∑nt
i=1 yix

j
i], with αt,i = 1/nt .

Algorithm 1 Task Sensitive FelMuG Classification
1: αt,i = 1/nt; C ← ∅; o← 0;
2: Select the most violated constraint δ(k)based on α

(o)
t,i ; //

Algorithm 2
3: C ← C ⋃

δ(k);
4: Solve MKMT problem Eq. (14) to get the optimal α(o) and μ(o);
5: o← o+ 1;
6: repeat 2-5 until convergence.

1) From MTL to Multikernel Learning: Introducing another
set of Lagrangian variables μ = {μk}, we will have the new
Lagrangian function, that is

L(ω,μ) = ω +
∑

δ(k)∈D
μk(F(α, δ)− ω).

Setting its first derivative to 0 with respect to ω, we have∑
δ(k)∈D μk = 1. Let M = {μ|∑δ(k)∈D μk = 1, μk ≥ 0} be

the domain of μ. The dual problem of (12) can be written as
follows:

max
α∈A

min
μ∈M

μkF(α, δ)

= min
μ∈M

max
α∈A
−1

2

T∑

t=1

(
αt,· 
 yt,·

)T

⎛

⎝
∑

δ(k)∈D
μkXt,kXT

t,k

⎞

⎠

(
αt,· 
 yt,·

)+ αt,·1 (13)

where we have Xt,k = [xt,i
δ(k), . . . , xt,nt
δ(k)], and αt,· and
yt,· are the Lagrangian multiplier and training class labels for
task t. Accordingly, the problem is also a convex optimization
problem, whose global optimal can be found. More specif-
ically, it is a multikernel multitask (MKMT) problem [62],
where Xt,kXT

t,k can be seen as a kernel defined on a subset of
features δ(k) on the tth task (with T tasks in total). For each
task, we aims to learn a convex combination of a set of ker-
nels by

∑
δ(k)∈D μkXt,kXT

t,k. Across tasks, they share a set of
common kernel functions whose index is defined by μk.

C. Cutting Plane for Infinite Constraint Optimization

The main challenge to solve MKMT problem (13) is
that there are an infinite number of constraints (δ(k) ∈ D).
Fortunately, not all constraints are active at optimality. In
this paper, we propose to solve this problem by using the
cutting plane algorithm [63]. The idea of cutting plane algo-
rithm is to start with an empty working set C and iteratively
select the most violated constraint δ(k) to be included into the
working set C, and resolve the reduced problem of (13). The
whole process continues until there is no more active con-
straint. Because in each iteration, the size of C is relatively
small, the cutting plane algorithm is very efficient for large-
scale data/features optimization. Algorithm 1 lists detailed
procedures of using cutting plane for feature learning. After
convergence, the final prediction rule for xt,q from task t is
f (xt,q) =∑|C|

k=1 μk
∑nt

i=1 αt,iyt,i(xt,i 
 δ(k))xT
t,q .

The key steps of the cutting plane algorithm consist of two
components: 1) MKMT subproblem solving and 2) the most
violated constraint selection. In the following, we introduce
solutions to the two subproblems.
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1) Solving the MKMT Subproblem: MKMT learning was
studied recently in [62]. It assumes that over a set of T tasks
there are a set of kernel matrices in each task. By selecting a
common kernel representation, multiple tasks can be mutually
beneficial to each other. Based on the current selected kernel
set C on step 3 of Algorithm 1, our subproblem is equal to
solving the following reduced MKMT subproblem of (13):

min
μ∈M

max
α∈A
−1

2

T∑

t=1

(αt,· 
 yt,·)TK(αt,· 
 yt,·)+ αt,·1

with K =
∑

δ(k)∈C
μkXt,kXT

t,k. (14)

The problem in (14) can be effectively solved by using exist-
ing MKMT solvers [62]. Specifically, we can solve (14) via
an iterative procedure: 1) fixing μ and solving (14) to update
α based on a set of δ(k) ∈ C, which boils down to solving
T independent standard SVM problems and 2) fixing α and
using reduced gradient method [61] to update μ. The two steps
continue until they converge.

2) Most Violated Constraint Selection: To find the most
violated constraint, we need to refer to (12). Given fixed α

in (12), the problem is reduced to

max
ω

ω : ω ≤ F(α, δ),∀δ ∈ D.

Note that there is an infinite number of constraints ω ≤ F(α, δ)

with different δ. Here minδ∈D F(α, δ) is the key to this prob-
lem as if ω ≤ minδ∈D F(α, δ) then there is no other δ which
will result in a valid constraint. Therefore, finding the most
violated constraint is the same as solving the problem of
minδ∈D F(α, δ). Because the second term in (9) is constant
given α, the problem is reduced to maxδ

∑m
j=1 δjsj. Thus the

problem can be formulated as

max
δ0,δts,δta

m∑

j=1

δjsj

s.t. ‖δ0‖1 =
m∑

j=1

δ
j
0 ≤ K0, δ

j
0 ∈ {0, 1}

‖δt‖1 =
m∑

j=1

δ
j
ts ≤ Ks, δ

j
ts ∈ {0, 1}

‖δa‖1 =
m∑

j=1

δ
j
ta ≤ Ka, δ

j
ta ∈ {0, 1}

δj = δ
j
0 + δ

j
ta + δ

j
ts ≤ 1

T∑

t=1

δ
j
t ≤ 1. (15)

Accordingly, the problem becomes a binary and linear pro-
gramming problem, i.e., the knapsack problem [64]. If the
features are known, many methods such as dynamic program-
ming or greedy algorithm can be applied to solve the problem.
Various optimization solvers, such as the optimization toolbox
provided by MATLAB, can address this problem effectively.

Algorithm 2 Most Violated Constraint Selection for
Exponentially Large Subgraph Space

1: K = K0 +
∑

t Ks +∑
t Ka;

2: Ft ← mine top K subgraph by Algorithm 3, ∀t ∈ 1 · · ·T;
3: Fp ←⋃Ft;
4: Calculate sj = ∑T

t=1 st,j for each subgraph gj ∈ Fp based on
Eq. (8);

5: Solve Eq. (15) based on Fp to get δ0, δts, and δta.

a) Challenge for graph data: Equation (15) still faces a
major technical barrier with graph data, because: 1) subgraph
feature set xt,i = [�g1(Gt,i), . . . , �gm(Gt,i)]T is unknown and
2) the number of subgraph features is exponentially large (or
infinite). In the next section, we seamlessly integrate this prob-
lem into the subgraph exploration process to explore subgraph
features for graph classification.

V. MULTITASK SUBGRAPH EXPLORATION

For graph classification, finding the most violated constraint,
i.e., solving (15), in each iteration for our algorithm is NP hard
as it requires enumeration of the whole subgraph space. One
possible way is to first mine a set of frequent subgraphs, and
then apply a multitask algorithm. But this is subject to the risk
of missing discriminative subgraphs, because not every sub-
graph is checked and evaluated across all tasks. In this section,
we propose an effective algorithm to handle the exponentially
large subgraph problem. Our idea is to employ the subgraph
mining algorithm gSpan [37] to mine a small set of poten-
tial subgraph features Fp, and then solve (15) based on Fp.
For the potential subgraph feature set Fp, we ensure that if a
subgraph does not appear in Fp, it will not be selected in the
optimal set defined in (15). As Fp is very small, (15) can be
solved efficiently.

A. Multitask Subgraph Selection

Although we cannot directly obtain subgraph features which
maximize

∑m
j=1 δjsj subject to δ ∈ D, we can reduce the poten-

tial subgraph features by employing top K subgraph mining
procedures. For convenience, define K = K0+∑

t Ks+∑
t Ka,

and let Ft be the set of subgraphs with top K utility scores
defined by st,j = [

∑nt
i=1 αt,iyt,ix

j
t,i]

2 (8) on task t. Then we
can construct a small set of potential subgraphs Fp = ∪Ft.

Proposition 1: ∀gj ∈ F , if gj /∈ Fp, then δ
j
0, δ

j
ts, and δ

j
ta will

be 0 defined in (15).
This proposition can be assured as we select at most K =

K0+∑
t Ks+∑

t Ka subgraph in (15). If one graph is not the
top K highest subgraph in any task, i.e., g /∈ Fp, it will not be
selected by solving (15).

Now the problem in (15) is decomposed to T independent
top K subgraph mining problems. Specifically, for each task,
we aim to select K subgraph features with the highest discrim-
inative scores, defined by st,j in (8). Then we can solve (15)
effectively via binary and linear problem solvers. The algo-
rithm for most violated constraint solving for graph data is
illustrated in Algorithm 2.

1) Top K Subgraph Mining: Discovering the top K sub-
graphs requires the a search of an exponentially large subgraph
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space. In this section, we derive an upper-bound for each sub-
graph score, and use the branch-and-bound scheme to reduce
the subgraph space.

Theorem 1 (Single Task Feature Score Upper-Bound): Let
gj and gq be two subgraph patterns, and gj ⊆ gq, for the
subgraph gj, we define on the tth task

A1(gj) = 2
∑

{i|yt,i=+1,gj∈Gt,i}
αt,i

A2(gj) = 2
∑

{i|yt,i=−1,gj∈Gt,i}
αt,i

A3 =
nt∑

i=1

αt,iyt,i

�̂(gj, t) =
{

max
{
[A1(gj)− A3]2, [A2(gj)]2

}
: A3 < 0

max
{
[A2(gj)+ A3]2, [A1(gj)]2

}
: A3 ≥ 0

then st,q ≤ �̂(gj), where st,q is defined as the single task
feature score in (8).

Proof: We start with the definition of st,j

st,q =
[ nt∑

i=1

αt,iyt,ix
q
t,i

]2

=
[ nt∑

i=1

yt,iαt,i ·
{
2I

(
gq ⊆ Gt,i

)− 1
}
]2

=
⎡

⎣2
∑

gq⊆Gt

yt,iαt,i −
nt∑

i=1

αt,iyt,i

⎤

⎦

2

= ∣
∣A1(gq)− A2(gq)− A3

]2

≤
{

max
{
[A1(gq)− A3]2, [A2(gq)]2

}
: A3 < 0

max
{
[A2(gq)+ A3]2, [A1(gq)]2

}
: A3 ≥ 0

≤
{

max
{
[A1(gj)− A3]2, [A2(gj)]2

}
: A3 < 0

max
{
[A2(gj)+ A3]2, [A1(gj)]2

}
: A3 ≥ 0

= �̂(gj, t).

The first inequality holds as for αt,i ≥ 0, A1(gq) ≥ 0 and
A2(gq) ≥ 0, so the upper-bound depends on A3. If A3 < 0,
A1(gq) and A3 will have different signs, then the upper-
bound is a maximum of {[A1(gq)−A3]2, [A2(gq)]2}. The case
is similar for A3 ≥ 0. The second inequity holds because
A1(gq) ≤ A1(gj) and A2(gq) ≤ A2(gj) for gj ⊆ gq.

According to Theorem 1, once a subgraph gj is generated,
the feature scores for all its super-graphs are upper-bounded
by �̂(gj, t). Therefore, we use this rule to exponentially
prune/reduce unpromising candidates effectively.

2) Top K Subgraph Mining Algorithm: Our top K subgraph
mining algorithm is listed in Algorithm 3. The minimum value
η in optimal set Ft is initialized on step 1. Duplicated subgraph
features are pruned on steps 4–6. This step involves subgraph
isomorphism test. For gSpan algorithm, if two subgraphs have
the same minimum depth-first search (DFS) codes, they are
identical subgraphs. The discriminative score st,j for gj are
calculated on step 7. If st,j is larger than η, we add gj to
the feature set Ft (steps 8–10). If the size of Ft exceeds the

Algorithm 3 Top K Subgraph Mining
Require:
{(Gt,i, yt,i)}nt

i=1 : Graph Datasets for the task t;
αt,i : Weight for each graph example;
K: Number of optimal subgraph patterns;

Ensure:
Ft = {gj}j=1,...,K : The top K subgraphs;

1: η = 0, Ft ← ∅;
2: while Recursively visit the DFS Code Tree in gSpan do
3: gj ← current visited subgraph in DFS Code Tree;
4: if gj has been examined then
5: continue;
6: end if
7: Compute scores st,j for subgraph gj according Eq. (8);
8: if st,j > η then
9: Ft ← Ft

⋃
gj;

10: end if
11: if |Ft| > K then
12: g	 ← arg mingk∈Ft �(gk);
13: Ft ← Ft/g	;
14: η← mingk∈Ft �(gk);
15: end if
16: if �̂(gj, t) > η then
17: Depth-first search the subtree rooted from node gj;
18: end if
19: end while
20: return Ft = {gj}j=1,...,K ;

predefined size K, the subgraph with the minimum discrimina-
tive score is removed (steps 11–15), and the minimum optimal
value η is updated. We use our branch-and-bound pruning
rules, Theorems 1, to prune the search space on steps 16–18.
Finally, the optimal set Ft is returned on step 20.

The above pruning process is a key feature of our algorithm,
because it does not require any support threshold for subgraph
mining. As a result, no discriminative subgraph will be missed
by our algorithm.

VI. TIME COMPLEXITY ANALYSIS

Our FelMuG algorithm can be applied to general MTL
with feature-vector representation as well as graph data, as
we will soon demonstrate in our experiments in Section VII.
Accordingly, we analyze the time complexity for these two
cases.

A. Generic Multitask Learning

Algorithm 1 runs iteratively in two steps: 1) solve MTML
subproblem and 2) select most violated constraints. The first
step consists of T SVM training and updating the μ vector. The
SVM training3 requires approximately O(n2.5) with respect
to the number of training instances n, or linear O(m̂n) with
respect to the number of instances n and selected features m̂
by using advanced solvers, such as LIBLinear [65]. Updating
μ requires O(T · |C| · n2

t,sv), where nt,sv denotes the number of
support vectors related to task t [62] and |C| is the total num-
ber of selected constraints. For the second subproblem, we use
MATLAB function bintprog with polynomial time complexity

3For simplicity, we assume all tasks have the same number of training
data n.
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in our experiments. Other methods such as dynamic program-
ming may achieve a linear time complexity O(m̂τ), where τ is
the maximum capacity of the Knapsack problem. Assume the
number of iterations for Algorithm 1 is S, and the number of
iterations to solve MKMT problem is S1, the time complexity
of FelMuG for general MTL is

O
(

ST
(

S1

(
m̂n+ |C| · n2

t,sv

)
+ m̂τ

))
.

Note that both |C| and nt,sv are very small because only a small
number of constraints and a small amount of support vectors
are involved. Because cutting plane algorithm is used, S is very
small. S1 is the number of iterations for multikernel learning,
numerous studies [61], [62] have shown that it can be finished
efficiently. So S1 is very small as well. In our experiments,
only tens of iterations are required to reach convergence. As
a result, FelMuG is very efficient for multitask classification.

B. Multitask Graph Classification

For graph data, the time complexity becomes

O
(

ST
(

S1

(
m̂n+ |C| · n2

t,sv

)
+ m̂τ · O(gSpan)

))

where O(gSpan) is the time complexity of gSpan style algo-
rithm for top K subgraph mining. Intuitively, this is an
NP-complete problem because the subgraph space is expo-
nentially large. However, we have derived an upper-bound
and use the branch-and-bound scheme to prune unpromising
subgraphs. Our experiments in Section VII-D will show the
effectiveness of the pruning scheme. Furthermore, other tech-
niques, such as reusing the subgraph space [8], [40], can be
employed to construct a DFS tree in the first iteration. During
the remaining iterations, one can search and expand this
DFS tree effectively. In general, O(gSpan) time complexity
is inevitable for subgraph-based graph classification [8], [12].

VII. EXPERIMENTS

In this section, we first validate the feature learning module
of FelMuG on synthetic vector datasets, and then evalu-
ate FelMuGs performance on three real-world domains for
multitask graph classification. The source code of FelMuG
algorithm and the benchmark graph datasets are available
online.4

A. Experimental Settings

1) Benchmark Data: We employ two types of benchmark
data, synthetic vector data and real-world graph data, in our
experiments. For synthetic data, we predefine a set of tasks
with known ground truth feature relationships, so we can
validate how effective FelMuG can capture/retrieve the prede-
fined relationships. For real-world graphs, we demonstrate that
FelMuGs feature learning and multitask classification achieve
much better performance than its peers for functional brain
analysis and chemical compound classification.

Synthetic vector data are modified from the one used in [62]
and include four tasks. Each task is a binary classification

4http://www.cse.fau.edu/∼xqzhu/FelMuG/index.html

TABLE I
DESCRIPTION OF GRAPH DATASETS

problem with m features. Of these m features, there are d0
features shared by all tasks (i.e., common features). In addi-
tion, there are dts task specific features and dta task auxiliary
features which are relevant to task t. Therefore, for each task
t, there are dt = d0+dts+dta effective features corresponding
to it. The dt effective features follow a Gaussian probability
density function with mean u and −u, respectively, to define a
two class classification problem (the covariance matrices of
Gaussian distributions are randomly drawn from a Wishart
distribution). The mean values u are randomly drawn from
{−1,+1}dt . The other m − dt noneffective features follow
an independent and identically distributed Gaussian probabil-
ity distribution with zero mean and unit variance for both
classes. Similar to [62], we generate four tasks, each with
n = 100, nv = 100, and nthe = 5000 samples for training,
validation, and testing, respectively. Before learning, all data
are normalized to zeros mean and unit variance. Because we
know the ground-truth features relevant to a task t, we can
easily evaluate the feature learning performance by compar-
ing the learned final feature vectors δt = δ0 + δts + δta with
the ground-truth d = d0 + dts + dta.

National Cancer Institute (NCI) anti-cancer activity predic-
tion data5 is a set of benchmarks for predicting biological
activity of small molecules for different types of cancers. Each
molecule is represented as a graph, with atoms representing
nodes and bonds denoting edges. A molecule is positive if it
is active against a certain type of cancer, otherwise it is neg-
ative. Table I summarizes the nine NCI graph classification
tasks used in our experiments. We randomly select #Pos num-
ber of negative graphs from each original graph set to create a
multitask graph classification problem with balanced training
graphs for each task. Note that although each of the nine tasks
focuses on a specific type of cancer, all these tasks are rele-
vant in cancer prediction and some common substructures may
exist for all types of cancers (as shown in Fig. 1). This makes
NCI an ideal benchmark for multitask graph classification.

Predictive toxicology challenge (PTC) data includes a
number of carcinogenicity tasks to predict the toxicology
of chemical compounds.6 The dataset we selected contains

5http://pubchem.ncbi.nlm.nih.gov
6http://www.predictive-toxicology.org/ptc/
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Fig. 2. Example of brain functional parcellation results from (a) fMRI image,
and (b) corresponding brain graph. Each color region in (a) is an ROI, which
corresponds to a node in (b) [16].

417 compounds from four types of test animals: 1) male mouse
(MM); 2) female mouse (FM); 3) male rat (MR); and 4) female
rat (FR). Each compound has one label selected from {CE,
SE, P, E, EE, IS, NE, N}, which stands for clear evidence
of carcinogenic activity (CE), some evidence of carcinogenic
activity (SE), positive (P), equivocal (E), equivocal evidence of
carcinogenic activity (EE), inadequate study of carcinogenic
activity (IS), no evidence of carcinogenic activity (NE), and
negative (N). Similar to [38], we set {CE, SE, P} as positive
label, and {NE, N} as negative label. In order to formulate
multiple tasks, we randomly split 417 compounds into four
equal nonoverlapping subsets. We only consider one type of
carcinogenicity test for each subset as its learning task. The
subset information is also listed in Table I.

BrainNet functional brain network analysis data is con-
structed from the whole brain fMRI atlas [16]. The purpose of
the study is to map brain as a network (or a graph) where each
node corresponds to a region of interest (ROI) and the edge
indicates correlations between two ROIs. In our experiments,
we use functional parcellation results, CC200, from [16],
which parcellate each brain into 200 regions of interest. In
order to discover relationships between ROIs, the mean val-
ues of each ROI are recorded with respect to certain voxel
time courses. By using Pearson correlations between two time
courses, we can calculate correlation between two ROIs, and a
graph is constructed by connecting ROIs whose correlations is
higher than a threshold value (r > 0.7 in our experiment). An
example of fMRI functional parcellation results and the corre-
sponding brain graph are shown in Fig. 2. In our experiment,
we construct three brain classification tasks, corresponding
to ADHD classification, hyperactive-impulsive (HI) classifi-
cation, and gender classification (GD). The detailed graph
information is summarized in Table I. For ADHD and HI
tasks, the functional response is real values, so we discretize
the functional response to binary values by using a simple
threshold (f = 50 in our experiment).

2) Baseline Methods:
a) Multitask learning baselines: We compare the fea-

ture learning with state-of-the-art MTL methods, i.e., sep-L1,
logistic-L1, logistic-L21 [20], rMTFL [23], dirty [22], and cal-
ibration [24] approaches. sep-L1 performs feature learning
separately on each task and logistic-L1 jointly learns mul-
titask features with LASSO regularization and the logistic
loss function. The calibration approach is the most recent

multitask feature learning algorithm [24]. All these algorithms
are available in the MALSAR toolbox [49].

To build multitask graph classification baselines, we first
mine a set of frequent subgraphs from all training graphs
(we set minimum support as 0.1, which results in over 2500
subgraph features on NCI datasets), and then use discovered
subgraph features to transfer each graph dataset into a vector
format, and then apply above MTL baselines to the transferred
vector datasets.

b) Graph classification baselines: We compare our
method with three state-of-the-art graph classification meth-
ods, i.e., gBoost [8], gSemi [12], and gMLC [13]. These
methods learn graph classification task separately, without
considering graph samples from other tasks.

3) Measurements: The graph classification performance
is measured in terms of accuracy and the area under the
curve (AUC).

The accuracy of a classification task is the percentage
of samples that are correctly classified. This is a widely
used measurement for relatively balanced classification tasks.
However, a more nature criterion for imbalanced data is
AUC [66], which is defined by the area under an receiver
operating characteristic (ROC) curve. The ROC curve for a
binary classification problem plots the true positive rate as a
function of the false positive rate.

For feature learning results, we measure the quality of
discovered features, compared to the ground truth relevant
features. In particular, we consider recall, precision, and F-
measure. Suppose the ground truth relevant features is Tg,
and the feature discovered by an algorithm is Ag. The recall
is denoted by Re = |Tg

⋂
Ag|/|Tg|, and the precision is

defined as Pr = |Tg
⋂

Ag|/|Ag|. Because a higher recall may
imply a low precision, or vice versa, we use F-measure,
defined as 2Pr× Re/Pr+ Re, to measure preferred algorithm
performance (i.e., a high precision and a high recall value).

Unless otherwise specified, the parameters for FelMuG are
empirically set as follows: C = 0.1, Ka = 2, and Ks = 1. K0
is selected from {5, 10, 15, 20}. Let the maximum iteration
number in Algorithm 1 be S = 15, then FelMuG will select
at most K × S features with K = K0 +∑

Ka +∑
Ks. For the

comparing algorithms, we select the parameters from a set of
candidates according to the property of each algorithm. For
instance, for gBoost, the parameter v is selected from {0.2,
0.3, 0.4, 0.5}; and for logistic-L21 algorithm, the parameter λ

is chosen from 0.02 to 0.1 step by 0.02. The best parameters
are selected based on the validation set. We repeat ten times of
graph classification experiments on NCI graphs and conduct
tenfold cross-validation on PTC and brain networks. In keep-
ing with [8], we report the best average accuracy and average
AUC values over all tasks for graph classification tasks.

B. Feature Learning Result Comparisons

Fig. 3 reports the feature learning results of different algo-
rithms on synthetic dataset and shows that all MTL algorithms
obtain sparse solutions and find features shared by all tasks.
Among the baseline algorithms, logistic-L21, rMTFL, and cal-
ibration select similar features, because they aim to select
common features (no outlier task exists for rMTFL thus it
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 3. Relevant features recovered by different algorithms on synthetic
dataset for four tasks with m = 30, d0 = 5, dta = 2, and dts = 2. Blue, red,
and green colored cells refer to common features, task auxiliary features, and
task specific features, respectively. (a) Ground truth of the effective features.
(b) Features learned by FelMuG from δt with K0 = 2 and Ks = Ka = 1.
(c)–(h) Features discovered by baselines from W. Only FelMuG (b) can
explicitly answer which features are shared by all tasks, by set of tasks, or
by a single task.

achieves similar results to �21 regularization). Meanwhile,
because �1 regularization is used in Sep-L1, logistic-L1,
and dirty methods, the learned features are more sparse for
these algorithms. Nonetheless, the results show that FelMuG
achieves the best performance in recovering relevant features
among all algorithm because it explicitly captures common
features, task specific features, and task auxiliary features for
each task.

In Fig. 4, we vary the number of relevant features d0
and report the feature selection and multitask classification
results, which show that FelMuG can recover much more rel-
evant features than other algorithms. In addition, Fig. 4(b)
shows that FelMuG achieves the best feature recovery quality
(F-measure) among all methods. This is because existing MTL
algorithms mainly focus on common features but inherently

(a)

(b)

(c)

Fig. 4. Feature learning performance on synthetic data with varying d0.
We generate data with dta = dts = d0/2, and m = 100. FelMuG is learned
with K0 = Ka = Kt = 2. A Recall value “1” means an algorithm can
recover all relevant features, and F-measure with 1 means perfect recovery
of all relevant features. The results show FelMuG achieves competitive or
better classification accuracy on all tasks (c), and the recovered features are
much better than the other algorithms (a) and (b). (a) Recall on selected
features. (b) F-measure on selected features. (c) Classification accuracy on
synthetic tasks.

overlook task specific and task auxiliary features. By contrast,
FelMuG not only learns common features, but also captures
the underlying difference between each task. Fig. 4(c) shows
that FelMuG is comparable or outperforms state-of-the-art
MTL algorithms in terms of accuracy.

C. Brain and Chemical Compound Graph Classification

1) Performance on NCI: We randomly label a small set of
graphs as training graphs for each task of NCI graphs, and the
remaining graphs are used for testing. The number of training
graphs in each task varies from 50 to 400. We report the aver-
age accuracies and AUC values over all tasks under ten times
of train/test split in Fig. 5.

The results in Fig. 5 show that when increasing train-
ing data for each task, all algorithms achieve continuous
improvement in accuracy and AUC values. FelMuG outper-
forms graph classification baselines (including gBoost, gSemi,
and gMLC). This is mainly because these baselines are sin-
gle task algorithms which ignore relevant graphs from similar
tasks. Because subgraph features are represented by the edge



PAN et al.: TASK SENSITIVE FELMUG CLASSIFICATION 755

Fig. 5. Average accuracy and AUC values for NCI graph classification tasks with different number of training graphs in each task.

connection of some common atoms, some common discrim-
inative structures may exist in multiple graph learning tasks
and are therefore beneficial for multitask graph classification.

Regardless of which regularizers are used in the algorithm,
existing MTL algorithms will first mine a set of frequent
subgraph as features and then employ MTL techniques for
classification. Although these methods enjoy the benefits of
MTL by jointly optimizing related learning tasks, they still
suffer from severe disadvantages: 1) their subgraph mining
process is not driven by MTL objective, and may therefore
miss discriminative subgraphs at the first place and 2) they
ignore task specific and task auxiliary features for each task, so
cannot capture the underlying unique discriminative subgraphs
of each task. Since subgraph features are crucial for graph clas-
sification, a simple adaptation of existing MTL algorithm for
graph classification is suboptimal.

By contrast, the proposed FelMuG method not only has the
advantage of using graph samples from relevant tasks, but also
unifies multitask subgraph feature learning and model learning
into one objective function. This design helps FelMuG outper-
form single task graph classification and MTL algorithms with
significant performance gains.

2) Performance on Functional Brain Analysis and PTC
Tasks: For functional brain analysis and PTC graph classi-
fication tasks, the number of training graphs for each task is
very limited. So instead of varying the training samples for
each task (such as for NCI tasks), we conduct tenfold cross-
validation on these tasks. In this way, we can reduce the bias
of each method caused by limited training samples.

The results in Figs. 6 and 7 show that FelMuG achieves
considerable performance gains over single task graph

Fig. 6. Average accuracy and AUC values for functional brain analysis tasks.

Fig. 7. Average accuracy and AUC values for PTC graph classification tasks.

classification and two-step multitask methods for graph clas-
sification. Note that for PTC tasks, AUC values are more
important because they are all imbalanced tasks.

D. Multitask Subgraph Exploration Efficiency

In this section, we investigate the efficiency of FelMuG
in reducing the search space (Theorem 1 in Section V-A)
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(a) (b)

(c) (d)

Fig. 8. Pruning efficiency on NCI and PTC graph classification tasks.
(a) and (b) NCI datasets. (c) and (d) PTC datasets.

for subgraph feature exploration. Because the search space
is exponentially large, assessing the pruning effectiveness of
FelMuG with respect to the whole search space is challeng-
ing. Accordingly, we introduce a threshold value min_sup, to
denote the minimum frequency of each qualified subgraph fea-
ture in the training graph dataset and bound the number of
subgraphs in the search space. In doing so, we know the total
number of subgraph candidates, and can then assess its pruning
efficiency by checking the percentage of candidates pruned in
the process. The frequent subgraph-based algorithm is termed
Fre-FelMuG.

The results in Fig. 8(a) and (c) show that with the increase
of the support threshold value min_sup, all methods experi-
ence reduced running time. This is because a large support
value will result in a small number of subgraph features
[Fig. 8(b) and (d)]. It is obvious that our algorithm can
reduce unpromising subgraph features significantly while Fre-
FelMuG needs to enumerate an exponentially large number of
candidates. Our algorithm is an order of magnitude faster than
the nonprune baseline.

It is worth noting that using a threshold value min_sup in
the subgraph pattern mining may result in missing of dis-
criminative subgraph features, because some subgraph features
may be very informative for classification but are not fre-
quent to meet the support threshold value. However, discarding
the support threshold value (i.e., min_sup) will make most
algorithms unable to find subgraph patterns. For example, in
our experiments, we have tried to further reduce the support
threshold min_sup for Fre-FelMuG, but it caused an out-of-
memory error on a 16 GB memory machine for NCI tasks. In
comparison, our FelMuG algorithm is able to mine discrimi-
native subgraphs very quickly, even if the support threshold is
removed (i.e., min_sup).

VIII. CONCLUSION

In this paper, we formulated a new multitask graph learning
problem. We argued that existing MTL algorithms are inappli-
cable to graphs, mainly because they cannot handle structure

data, and cannot explicitly capture relationships between tasks
and individual features, which are crucial for classifying and
understanding graph classification tasks. Accordingly, we pro-
posed a task sensitive FelMuG multitask graph classification
algorithm. The uniqueness of FelMuG lies in its task sensitive
feature exploration and learning module, which explicitly cat-
egorizes each subgraph feature into three categories: common
feature, task auxiliary feature, and task specific feature. The
learned features and the underlying multiple learning tasks
are iteratively optimized to form a multitask graph classifi-
cation model with a global optimization goal. Experiments
on synthetic and real-world data confirm that: 1) FelMuG can
accurately capture feature-task relationships; 2) cross task sub-
graph feature exploration and learning can effectively discover
discriminative subgraph features for learning; and 3) FelMuG
outperforms all baselines for real-world multitask functional
brain analysis and chemical compound classification.
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