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Boosting for Multi-Graph Classification
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Abstract—In this paper, we formulate a novel graph-based
learning problem, multi-graph classification (MGC), which aims
to learn a classifier from a set of labeled bags each containing a
number of graphs inside the bag. A bag is labeled positive, if at
least one graph in the bag is positive, and negative otherwise.
Such a multi-graph representation can be used for many
real-world applications, such as webpage classification, where a
webpage can be regarded as a bag with texts and images inside
the webpage being represented as graphs. This problem is a
generalization of multi-instance learning (MIL) but with vital
differences, mainly because instances in MIL share a common
feature space whereas no feature is available to represent graphs
in a multi-graph bag. To solve the problem, we propose a boost-
ing based multi-graph classification framework (bMGC). Given a
set of labeled multi-graph bags, bMGC employs dynamic weight
adjustment at both bag- and graph-levels to select one subgraph
in each iteration as a weak classifier. In each iteration, bag and
graph weights are adjusted such that an incorrectly classified bag
will receive a higher weight because its predicted bag label con-
flicts to the genuine label, whereas an incorrectly classified graph
will receive a lower weight value if the graph is in a positive bag
(or a higher weight if the graph is in a negative bag). Accordingly,
bMGC is able to differentiate graphs in positive and negative
bags to derive effective classifiers to form a boosting model for
MGC. Experiments and comparisons on real-world multi-graph
learning tasks demonstrate the algorithm performance.

Index Terms—Boosting, graph classification, multi-graph,
multi-instance learning, subgraph mining.

I. INTRODUCTION

GRAPH classification, in which the object to be classi-
fied is a graph, has found many applications in the past

decade, such as chemical compounds [1], XML documents [2],
program flows [3], and images [4]. Despite its success in a
broad spectrum of areas, standard graph classification setting
is rather restrictive for many real-world learning problems.
One of such problems is multi-graph classification (MGC),
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in which the object to be classified is a bag of graphs. For
example, a webpage may consist of texts and images, where
texts can be represented as graphs to preserve contextual infor-
mation [5] and images can also be represented as graphs to
describe structural dependency between image regions [6]. As
a result, a webpage can be regarded as a bag containing a
number of graphs, each of which represents a certain part of
the webpage content. For an information seeker, a webpage is
interesting to him/her if one or multiple parts of the webpage
(texts and/or images) draws his/her attention—a graph bag is
positive if at least one graph in the bag is positive. On the other
hand, the webpage is not interesting to the viewer if none of
the content attracts the viewer—a graph bag is negative if all
graphs inside the bag are negative.

The above multi-graph setting can be found useful in many
other domains. For bio-pharmaceutical test, labeling individual
molecules (which can be represented as graphs) is expensive
and time-consuming. Molecular group activity prediction can
be used to investigate the activity of a group (i.e., a bag) of
molecules, with the active group (i.e., positive bag), in which
at least one molecule is active, being further investigated for
individual activity test. Another MGC application is scientific
publication classification, where a paper and its references can
be represented as a bag of graphs and each graph (i.e., a paper)
is formed by using the correlations between keywords in the
paper, as shown in Fig. 1. A bag is labeled positive, if the paper
or any of its references is relevant to a specific topic. Similarly,
for online review based product recommendation, each product
receives many customer reviews. For each review composed
of detailed text descriptions, we can use a graph to represent
the review descriptions. Thus, a product can be represented
as a bag of graphs. Assume customers mainly concern about
several key properties, such as affordability and durability, of
the product. A product (i.e., a bag) can be labeled as positive
if it receives very positive review in any of these properties,
and negative otherwise. As a result, we can use MGC learning
to help recommend products to customers.

Indeed, the MGC problem is a generalization of multi-
instance learning (MIL) to graph data, but with signifi-
cant complications. Existing MIL methods cannot be simply
applied to the multi-graph setting because they can only handle
bags with all instances being represented in a common vecto-
rial feature space. Unfortunately, in the MGC problem setting,
graphs cannot directly provide feature vectors for learning.
On the other hand, existing graph classification methods can-
not be used to tackle the MGC problem neither, because they
require each single graph to be labeled in order to learn a
classifier. One simple solution is to represent all graphs in the
same feature space, by using some subgraph feature selec-
tion methods [7]–[9] to convert graphs as instances, and then
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Fig. 1. Example of multi-graph representation for a scientific publication.
Each paper is represented as a multi-graph bag, where each graph inside the
bag corresponds to the abstract of the paper or the abstract of the reference
cited in the paper (a graph is formed by using keywords of the abstract as
nodes and their correlations as edges). The graph construction details are
reported in Section VII-A.

apply existing MIL methods to the instance bags. However,
this simple solution suffers from three inherent disadvantages.

1) Large Subgraph Feature Space: The graph substructure
feature space increases, with respect to the number of
edges and nodes, in an exponential order. It is compu-
tationally inefficient, or even infeasible, to enumerate
all subgraph features, and then select some subgraph
features for classification.

2) Feature Filtering Inefficiency: By separating subgraph
feature mining and feature selection into two steps,
the filtering process of finding salient subgraph patterns
will depend on the optimal solution of the subsequent
learning algorithm. It is very difficult to theoretically
guarantee that the statistical criterion provides good fea-
tures for the subsequent learning algorithm. This is the
problem of all filter methods (as discussed in [10]).

3) Bag Constraints: The bag constraints in the multi-graph
learning provide important information to differentiate
positive and negative graphs, whereas the simple solu-
tion directly extracts subgraphs from all graphs without
considering multi-graph bag constraints for effective
learning.

In summary, the MGC problem for the aforementioned real-
world applications needs to address two essential challenges.

1) Labeling Ambiguity: Labels are only available at bag
level instead of instance level (i.e., a bag is labeled pos-
itive if it has at least one positive graph and negative
otherwise).

2) Structured Data Representation: Instances in a bag are
not vectors but graphs, which implies that all instances
are not represented in a common feature space for
calculating similarities or distances.

Motivated by the above challenges, in this paper, we pro-
pose a boosting based multi-graph classification framework
(bMGC) for multi-graph classification. In each boosting iter-
ation, bMGC explores the most informative subgraph to
construct a single weak classifier, which is used to update
the weights of graphs and bags to obtain the next informa-
tive subgraph. At the end of the boosting process, the selected
weak classifiers are combined to form a strong classifier. A
unique characteristic of bMGC is that it combines bag- and
graph-level constraints to assess the informativeness score of
a subgraph. By adapting the score as a pruning criterion, we

combine subgraph mining and informative subgraph explo-
ration to dynamically construct weak classifiers on the fly. As
a result, the proposed learning framework not only addresses
the labeling ambiguity issue by using a novel two-level (bag
and graph) weighting strategy but also addresses the struc-
tured data representation issue through a dynamic subgraph
selection criterion. The experimental results on real-world data
demonstrate that bMGC is effective for MGC.

The remainder of the paper is organized as follows. A
brief review of related works is reported in Section II. The
problem definition and the overall framework are described
in Sections III and IV, respectively. Section V introduces
the proposed subgraph selection criterion. The bMGC algo-
rithm is presented in Section VI, followed by the experiments
in Section VII. Section VIII discusses the properties of the
proposed bMGC, and we conclude the paper in Section IX.

II. RELATED WORK

A. Multi-instance Learning

MGC is a generalization of the MIL problem, which was
first proposed by Dietterich et al. [11] for drug activity predic-
tion. Since then, it has drawn increasing interest in the machine
learning community for many real-world applications, such as
image categorization [12], web mining [13], language recogni-
tion [14], and computer security [15]. The key assumption of
MIL formulation is that the training set is composed of some
labeled bags, each of which contains a number of instances.
A bag is labeled positive if at least one of its instances is pos-
itive and negative otherwise. The goal of MIL is to predict the
label of an unknown bag. Several off-the-shelf methods have
been developed to solve the MIL problem, which can roughly
be divided into two categories.

1) Single-Instance Learner Based MIL: One approach to
solve MIL problems is to upgrade generic single-instance
learning methods to deal with multi-instance data. For exam-
ple, lazy learning Citation-KNN and Bayesian-KNN [16]
extend the k-nearest neighbor (KNN) algorithm for MIL. Tree
learning MITI [17] and MIRI [18] are variations of decision
trees for MIL. Rule learning RIPPER-MI adapts the RIPPER
algorithm [19] for MIL. Neural network BP-MIP extends stan-
dard neural networks [20], and kernel method MISMO adapts
the classical support vector machine [21] for MIL. Logistic
learning MILR [22] applies the logistic regression to MIL,
and ensemble approaches [23], [24] which extend bagging and
boosting [25] to MIL.

2) Bag-Based MIL Algorithms: The first specifically
designed method for MIL is the axis-parallel rectangle (APR)
algorithm [11], which approximates the APRs constructed by
the conjunction of features. Based on the idea of APR, a num-
ber of algorithms have also been designed for MIL. Examples
include diverse density (DD) [26], which searches a point
in the feature space by maximizing the DD function that
measures a co-occurrence of similar instances from different
positive bags; MIEMDD [27], which combines expectation-
maximization (EM) algorithm with DD to search the most
likely concept; and MIOptimalBall [28], another boosting opti-
mal ball based approach, which uses balls (with respect to
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various metrics) as weak hypotheses centered at instances of
positive bags.

B. Graph Classification

The MGC problem can also be viewed as a generalization of
graph classification where objects are bags of graphs (instead
of individual graphs). Existing graph classification methods
can be broadly classified into the following two categories.

1) Global Distance Based Approaches: The global dis-
tance based methods consider correlations [29] or similarities
between two graphs and plug the kernel matrix into a off-
the-shelf learner, such as support vector machines, to learn
a model for graph classification. Examples include graph
kernels [30], [31], graph embedding [32], and graph transfor-
mation [33]. One obvious drawback of global distance based
approaches is that the distance is calculated based on the sim-
ilarity of global graph structures, such as random walks or
paths, between two graphs. Therefore, it is not clear which
substructures (or which parts of the graph) are mostly discrim-
inative for differentiating graphs between different classes.

2) Local Subgraph Feature Based Approaches: For many
graph classification tasks, such as chemical compound classi-
fication [1], research has shown that graphs within the same
class may not have high global similarity but merely share
some unique substructures. Accordingly, extracting important
subgraph features, using some predefined criteria, to repre-
sent a graph in a vectorial space becomes a popular solution
for graph classification. The most common subgraph selec-
tion criterion is frequency, which intends to select frequently
appearing subgraphs by using frequent subgraph mining meth-
ods. For example, one of the most popular algorithms for
frequent subgraph mining is gSpan [34]. Other methods
include AGM [35], FSG [7], MoFa [36], and Gaston [37].
The subgraph feature mining approach seems applicable to
the MGC problem as a preprocessing step to transform all
graphs into feature vectors. However, one major deficiency of
this approach is that it is computationally demanding to enu-
merate all frequent subgraphs in the target graph set, which
inhibits its ability to handle large graph sets.

To overcome this drawback, some supervised subgraph
feature extraction approaches have been developed, such
as LEAP [38], gPLS [39], and COPK [8], which search
directly for discriminative subgraph patterns for classifica-
tion. Moreover, Jin et al. [40] proposes an efficient graph
classification method using evolutionary computation for min-
ing discriminative subgraphs for graph classification in large
databases. Besides, some graph boosting methods [41]–[44]
also exist to use each single subgraph feature as a weak clas-
sifier to build boosting algorithm, including some other types
of boosting approaches [45], [46] for graph classification.

III. PROBLEM DEFINITION

In this section, we define important notations and concepts,
which will be used throughout the paper. We also formally
define the MGC problem in this section.

Definition 1 (Connected Graph): A graph is represented as
G = (V, E,L, l) where V is a set of vertices, E ⊆ V × V is a

Fig. 2. Example of subgraph feature representation for bags. B+1 and B−2
are positive and negative bags, respectively. G+1 is a positive graph and G−2 ,
G−3 , and G−4 are labeled negative. The feature value of a bag corresponding
to each subgraph g1 or g2 is set to 1, iff there is a graph in the bag contains
the subgraph, and 0 otherwise.

set of edges, and L is the set of symbols for the vertices and
edges. l :V ∪ E → L is the function assigning labels to the
vertices and edges. A connected graph is a graph such that
there is a path between any pair of vertices.

Definition 2 (Bag of Graphs): A graph bag contains a
number of graphs, denoted by Bi = {Gi

1, . . . , Gi
ni
}, where Gi

j
and ni denote the jth graph and the total number of graphs in
the ith bag, respectively. For ease of representation, we also
use Gj to denote the jth graph in a given bag. A bag Bi’s label
is denoted by yi ∈ {−1,+1}. A bag is either positive (B+i ) or
negative (B−i ).

In this paper, we use B = {B1, . . . , Bp} to denote a set of
bags associated with the weights wB = {wB

1 , . . . , wB
p }, where

p denotes the number of bags in B. We can also aggregate all
graphs in B as G = {G1, . . . , Gq} associated with the weights
wG = {wG

1 , . . . , wG
q }, where q denotes the number of graphs

in G. Similarly, the set of positive bags in B is denoted by
B+, with B− denoting the set of negative bags.

Definition 3 (Subgraph): Let G = (V, E,L, l) and gk =
(V ′, E′,L′, l′) each denotes a connected graph. gk is a sub-
graph of G, i.e., gk ⊆ G, iff there exists an injective
function ϕ:V ′ → V s.t.: 1) ∀v ∈ V ′, l′(v) = l(ϕ(v)); and 2)
∀(u, v) ∈ E′, (ϕ(u), ϕ(v)) ∈ E and l′(u, v) = l(ϕ(u), ϕ(v)). If
gk is a subgraph of G, then G is a supergraph of gk.

Definition 4 (Subgraph Feature Representation for Graph):
Let Sg = {g1, . . . , gs} denote a set of subgraph patterns discov-
ered from a given set of graphs. For each graph Gi, we use a
subgraph feature vector xG

i = [(xg1
i )G, . . . , (xgs

i )G]	 ∈ {0, 1}s
to represent Gi in the feature space, where (xgk

i )G = 1, iff gk

is a subgraph of Gi (i.e., gk ⊆ Gi, gk ∈ Sg) and (xgk
i )G = 0

otherwise.
Definition 5: (Subgraph Feature Representation for Bag):

Given a set of subgraphs Sg = {g1, . . . , gs}, a graph
bag Bi can be represented by a feature vector xB

i =
[(xg1

i )B, . . . , (xgs
i )B]	 ∈ {0, 1}s, where (xgk

i )B = 1, iff gk is
a subgraph of any graph Gj in bag Bi (i.e., ∃Gj ∈ Bi ∧ Gj ⊇
gk, gk ∈ Sg) and (xgk

i )B = 0 otherwise.
An example of subgraph feature representation for graph

bags is illustrated in Fig. 2, where two graph bags (B+1 and B−2
on the left panel) are represented as two 2-D feature vectors (on
the right panel) based on two subgraph patterns (g1 and g2).

Given a multi-graph set B with a number of labeled graph
bags, where each positive bag contains at least one positive
graph and all graphs in each negative bag are negative (i.e., the



WU et al.: BOOSTING FOR MULTI-GRAPH CLASSIFICATION 433

bag constraint in MGC), the aim of MGC is to build a predic-
tion model from the training multi-graph bag set B to predict
some previously unseen graph bags with unknown label with
maximum bag classification accuracy.

IV. OVERALL FRAMEWORK OF bMGC

In multi-graph bags, there is no feature available to represent
graphs, so existing MIL methods, which require instances to
have a vectorized feature representation, cannot be applied to
MGC. In addition, due to lack of labeling information for
individual graphs inside positive bags, subgraph feature based
graph classification cannot be directly applied to MGC neither.

To solve the above issues, in this section we propose a bMGC
framework, which applies dynamic weight adjustment at both
graph- and bag-levels to select one subgraph in each iteration
to construct a single weak classifier. In each iteration, the bag
and graph weights are adjusted by the last bag-level and graph-
level weak classifiers, respectively. By doing so, bMGC is able
to differentiate graphs in positive or negative bags to derive
effective learning models by boosting all the single subgraph
bag-level weak classifiers. The proposed bMGC framework, as
shown in Fig. 3, includes the following four major steps.

1) Subgraph Candidate Generation: Generating subgraph
candidates is a key step for selecting the most informa-
tive subgraph. To find subgraph candidates with diverse
structures, we aggregate graphs in multi-graph bags into
three graph sets: a) graphs in all bags; b) graphs in
all positive bags; and c) graphs in all negative bags. A
gSpan [34] based subgraph mining procedure is applied
to each graph set, through which a set of diverse subgraph
candidate patterns can be discovered for validation.

2) Bag Constrained Subgraph Exploration: In the tth iter-
ation, an informative subgraph gt is selected to form a
weak classifier for MGC under the weighted bag- and
graph-level constraints. To obtain the t + 1th informa-
tive subgraph, the weights of bags and graphs should
be updated. After m iterations, the selected m subgraphs
will correspond to m weak classifiers for learning.

3) Updating Weights of Bags and Graphs: After we find the
tth informative subgraph gt, a bag-level classifier HB

t and
a graph-level classifier HG

t will be trained, respectively.
For graphs, due to our assumption that we apply bag
labels to graphs, some graphs in positive bags have been
assigned wrong labels. If a graph Gi in positive bag
set B+ is misclassified by HG

t , in the next iteration we
will decrease Gi’s weight to reduce its impact on the
learning process. If a graph Gi in negative bag set B− is
misclassified, its weight will be increased, such that Gi

in the negative bag set will play a more important role
to help the learning algorithm find better subgraphs.

4) Boosting Classification: After the subgraphs are selected
in all iterations to form the corresponding single weak
classifiers, they can be weighted to construct a strong
classifier for MGC.

In the following two sections, we first propose our subgraph
exploration criterion in Section V and then introduce detailed
procedures of bMGC in Section VI.

Fig. 3. Overview of the proposed bMGC framework.

V. SUBGRAPH EXPLORATION

Exploring optimal bag constrained subgraphs in each itera-
tion of bMGC is a nontrivial task. This process has two main
challenges.

1) How to utilize the information of the labeled graphs in
negative bags?

2) How to tackle the problem that the labels of graphs in
positive bags are unknown?

Assume that a set of candidate graphs are collected from the
bag set B, let Sg denote the complete set of subgraphs in B,
and gt be the optimal subgraph selected from Sg in the tth
iteration. Our bag constrained subgraph exploration aims to
find the most informative subgraph gt in each iteration with
weight updating for both bags and graphs. Let Z(gk), the eval-
uation criterion for a single subgraph gk ∈ Sg, be a function
to measure the informativeness of gk as

gt = arg max
gk∈Sg

(Z(gk)). (1)

The objective function in (1) indicates that the optimal bag
constrained subgraph gt should have the maximum discrimi-
native capability for MGC.

A. Evaluation Criterion for Subgraphs

In order to measure the informativeness of a subgraph gk,
i.e., Z(gk), such that we can discover the most informative
subgraph for bags, we impose constraints to the labeled bags in
the multi-graph bag set B, through which the subgraph selec-
tion criterion Z(gk) can be properly defined. For two bags, Bi

and Bj, if they have the same class labels, there is a pairwise
must-link constraint between them. If Bi and Bj have different
class labels, there is a cannot-link constraint between them.
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To further take the data distributions in each bag into consid-
eration, we also add graph-level constraints to ensure that the
selected subgraphs can make graphs in each negative bag close
to each other and make graphs in each positive bag be maxi-
mally separated. In summary, a good subgraph should satisfy
the following constraints.

1) Weighted Bag Must-Link: If there is a must-link between
Bi and Bj, their subgraph feature vectors xB

i and xB
j

should be close to each other. In a MGC scenario, each
bag Bi is associated with a weight wB

i . For each pair of
bags with the same class label, the selected subgraph
should ensure that bags with similar weights (analogous
to importance) have a high similarity.

2) Weighted Bag Cannot-Link: If there is a cannot-link
between Bi and Bj, the underlying subgraph feature
vectors xB

i and xB
j should be distinct from each other.

For each pair of bags in different classes, the smaller
the weight difference between the two bags, the more
impact the constraint will have for selecting subgraph to
represent the distinction between them.

3) Weighted Graph Must-Link: If there is a must-link
between Gi and Gj, their subgraph feature vectors xG

i and
xG

j should be close to each other. In bMGC, only graphs
in negative bags are known to have genuine labels, in
which the feature representations of the two weighted
graphs should have low diversity.

4) Weighted Graph Separability: If genuine labels of graphs
Gi andGj areunknown,thecorrespondingsubgraphfeature
vectors xG

i and xG
j should be different. This is similar to the

principal component analysis (PCA)’s assumption [47],
which aims to find the component with the largest possible
variance. This constraint applies to positive bags, because
genuine labels of all graphs in each positive bag are
unknown. As a result, we apply this constraint to encourage
each positive bag to have a large diversity inside the bag.
Similar assumption has also been used in [9] to handle
unlabeled graphs in a semi-supervised learning setting.

In summary, the bag must-link and bag cannot-link con-
straints are applied to bags with the same label and different
labels, respectively. While the graph must-link and graph sepa-
rability constraints are only applied to graphs in negative bags
and graphs in positive bags, respectively.

By imposing constraints to both bag- and graph- levels, our
evaluation criterion intends to capture informative subgraph
features for MGC. Based on the above considerations, we
derive a criterion Z(gk) for measuring the informativeness of
a subgraph gk as follows:

Z(gk) = 1

2A

∑

yiyj=−1

(
Dgk wB

i xB
i −Dgk wB

j xB
j

)2

− 1

2B

∑

yiyj=1

(
Dgk wB

i xB
i −Dgk wB

j xB
j

)2

− 1

2C

∑

∀Gi,Gj∈B−

(
Dgk wG

i xG
i −Dgk wG

j xG
j

)2

+ 1

2D

∑

∀Gi,Gj∈B+

(
Dgk wG

i xG
i −Dgk wG

j xG
j

)2
(2)

where wB
i , wB

j , wG
i , and wG

j are the weights for Bi, Bj, Gi,
and Gj, respectively. Dgk = diag(d(gk)) is a diagonal matrix
indicating which subgraph feature gk is selected from Sg to
represent the bags or graphs, d(gk)i = I(gi = gk, gi ∈ Sg) with
I(·) equaling to 1 if the condition inside is true and 0 otherwise.
A = ∑

yiyj=−1 1, B = ∑
yiyj=1 1, C = ∑

Gi,Gj∈B− 1, and D =∑
Gi,Gj∈B+ 1 assess the total pairwise sets of constraints in

the bag cannot-link, bag must-link, graph must-link and graph
separability.

We define two matrices for bag-level and graph-level con-
straints, denoted by MB = [MB

ij ]
p×p and MG = [MG

ij ]q×q,
respectively, where MB

ij = {1/A, yiyj = −1; −1/B, yiyj = 1},
and MG

ij = {−1/C,∀Gi, Gj ∈ B−; 1/D,∀Gi, Gj ∈
B+; 0, otherwise}.

As a result, (2) can be rewritten as

Z(gk) = Z(gk)
B + Z(gk)

G

= 1

2

∑

yiyj

(
Dgk wB

i xB
i −Dgk wB

j xB
j

)2
MB

ij

+ 1

2

∑

GiGj

(
Dgk wG

i xG
i −Dgk wG

j xG
j

)2
MG

ij . (3)

For bag-level evaluation Z(gk)
B, we have

Z(gk)
B = 1

2

∑

yiyj

(
Dgk wB

i xB
i −Dgk wB

j xB
j

)2
MB

ij

= tr
(
D	gk

XBWB(DB −MB)W	B X	B Dgk

)

= tr
(
D	gk

XBWBLBW	B X	B Dgk

)

=
(

f B
gk

)	
WBLBW	B f B

gk

=
(

f B
gk

)	
QB f B

gk
(4)

where LB = DB − MB is a Laplacian matrix, where
DB = diag(dB

i ) is a diagonal matrix with dB
i =

∑
j MB

ij .
QB = WBLBW	B , where WB is a also a diagonal matrix,
with WB

ii = wB
i denoting the weight of the ith bag Bi.

XB = [xB
1 , . . . , xB

p ] = [f B
g1

, . . . , f B
gs

]	 ∈ {0, 1}s×p, where f B
gk

is an indicator vector of subgraph gk with respect to all the
bags in B. Specifically, f B

gk
= [f B1

gk , . . . , f
Bp
gk ]	 ∈ {0, 1}p, where

f Bi
gk = 1 iff ∃G ∈ Bi ∧ G ⊇ gk and f Bi

gk = 0 otherwise.
Similarly, the graph-level evaluation Z(gk)

G can be rewrit-
ten in the form of matrix. Taking both the bag-level and
graph-level evaluation functions together, we have

Z (gk) = Z (gk)
B + Z(gk)

G

=
(

f B
gk

)	
QBf B

gk
+

(
f G

gk

)	
QGf G

gk

= f	gk
Qf gk

(5)

where QG = WGLGW	G , with WG a diagonal matrix, i.e.,
WG

ii = wG
i , denoting the weight of the ith graph Gi.

LG = DG −MG is known as a Laplacian matrix, where DG =
diag(dG

i ) is a diagonal matrix with dG
i =

∑
j MG

ij . Meanwhile,
f G

gk
is an indicator vector of subgraph gk with respect to
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all graphs in G, and f G
gk
= [f G1

gk , . . . , f
Gq
gk ]	 ∈ {0, 1}q, where

f Gi
gk = 1 iff gk ⊆ Gi and f Gi

gk = 0 otherwise.
According to (5), we have

f gk
=

[
f B

gk

f G
gk

]
Q =

[
QB 0
0 QG

]
(6)

where f gk
is an indicator vector of subgraph gk with respect

to the data combined with bag matrix XB and graph matrix XG.
By denoting the function as h(gk, Q) = f	gk

Qf gk
, the problem

of maximizing Z(gk) in (1) is equivalent to finding a subgraph
that can maximize the h(gk, Q), which can be represented as

gt = max
gk∈Sg

h(gk, Q) (7)

Definition 6 (bScore): Given two matrices MB and MG

embedding the label information, respectively, and two cor-
responding weight matrices WB and WG, the informativeness
score of a subgraph gk is defined in (8)

r(gk) = h(gk, Q) = f	gk
Qf gk

. (8)

In the above definition, a larger bScore r(gk) value rep-
resents a stronger dependency between this subgraph feature
and the corresponding labels. In other words, good subgraph
features should have high bScore values. To find the optimal
subgraph in each iteration, we can calculate bScore values of
all subgraphs in Sg, and then select the topmost subgraph with
the highest r(gk) value.

B. Upper Bound of bScore

Before we introduce detailed algorithm to mine the optimal
subgraph in each iteration, we derive a bScore upper bound
to help prune the subgraph search space.

Theorem 1: Given two subgraphs gk, gk
′ ∈ Sg, g′k is a super-

graph of gk (i.e., g′k ⊇ gk). The bScore value g′k (r(g′k)) is
bounded by r̂(gk), i.e., r(g′k) ≤ r̂(gk)

r̂(gk) = f	gk
Q̂f gk

(9)

where Q̂ =
[

Q̂B 0
0 Q̂G

]
, in which Q̂B and Q̂G are defined as

Q̂B
ij = max(0, QB

ij) and Q̂G
ij = max(0, QG

ij ).
For any g′k ⊇ gk, r(g′k) ≤ r̂(gk). The corresponding proof is

given in Appendix.

C. Mining Bag Constrained Subgraph

For subgraph selection, we employ a depth-first search
(DFS) based algorithm gSpan [34] to enumerate subgraphs.
The key idea of gSpan is that each subgraph has a unique
DFS code, which is defined by a lexicographic order of the
discovery time during the search process. Two subgraphs are
isomorphism iff they have the same minimum DFS code. By
employing a depth-first search strategy on the DFS code tree
(where each node is a subgraph), gSpan can enumerate all
frequent subgraphs efficiently.

Algorithm 1 reports the proposed bag constrained sub-
graph exploration process, which starts with an empty optimal

Algorithm 1 BSE: Bag Constrained Subgraph Exploration
Input: G: A graph dataset;

min_sup: The threshold of the frequent subgraph;
Output: gt: The optimal subgraph;

1: while Recursively visit the DFS Code Tree in gSpan do
2: gk ← current visited subgraph in DFS Code Tree of G;

3: if freq(gk) < min_sup then
4: continue;
5: end if
6: Compute the bScore r(gk) for subgraph gk;
7: if gt == NULL or r(gk) > r(gt) then
8: gt ← gk;
9: end if

10: if r̂(gk) ≥ r(gt) then
11: Depth-first search the subtree rooted from node gk;
12: end if
13: end while
14: return gt;

subgraph set and continuously enumerates subgraphs by recur-
sively visiting the DFS code tree. If a subgraph gk is not a
frequent subgraph, both gk and its subtree will be pruned (lines
3–5), in which freq(gk) denotes the percentage of graphs con-
taining the subgraph gk in graph dataset G; otherwise, we
calculate gk’s bScore value r(gk) (line 6). If r(gk) is larger
than the current optimal score r(gt) or it is the first step (i.e.,
the optimal subgraph set is empty), we regard gk as the current
optimal subgraph gt (lines 7–9). After that, the upper bound
pruning module will check if r̂(gk) is less than r(gt), if so,
it means that the bScore value of any supergraph g′k of gk

(i.e., g′k ⊇ gk) will not be greater than r(gt). Thus, we can
safely prune subtrees rooted from gk in the search space. If
r̂(gk) is indeed greater than the bScore of gt, we cannot prune
this space since there might exist a supergraph g′k ⊇ gk with
r(g′k) ≥ r(gt), so the DFS will continue by following the chil-
dren of gk (lines 10–12), until the frequent subgraph mining
process is completed.

VI. bMGC

The detailed procedures of bMGC are reported in Algorithm 2,
which iteratively expands the candidate graph set to exact infor-
mative subgraphs, then explores the optimal subgraphs based on
bScore. After m iterations, bMGC boosts the m selected weak
classifiers to obtain the final classification model.

A. bMGC Algorithm

In Algorithm 2, bMGC differentiates and considers graph
in three sets: graphs in positive bags G+, graphs in negative
bags G−, and graphs in both positive and negative bags G. The
benefit of separating graphs into three sets is that the subgraph
mining process, which is carried out on each set respectively,
will increase the candidate graph set for exploring subgraphs.
By doing so, the subgraph space becomes more dense, through
which good subgraph features can be discovered.

The while loop in Algorithm 2 represents the boosting
process of bMGC. In each iteration, the subgraph mining is
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Algorithm 2 bMGC: Boosting for Multi-graph Classification
Input:

B: Multi-graph bag set; G: Graph dataset in B;
m: The number of iterations;
min_sup: The threshold of the frequent subgraph;

1: Output: The class label yk of a testing bag Bk.
2: Initialize ∀wB

i ∈ wB:wB
i = 1; ∀wG

i ∈ wG:wG
i = 1; t = 0;

// Training Phase:
3: {G+,G−} ← Graphs in B+ and B−, respectively;
4: {p, q, q+} ← #of bags ∈ B, # of graphs ∈ G,G+;
5: while t < m do
6: t← t + 1;
7: wB ← wB/

∑p
i=1 wB

i , wG ← wG/
∑q

i=1 wG
i ;

8: gGt ← BSE(G, min_sup); //Algorithm 1

9: gG+t ← BSE(G+, min_sup); //Algorithm 1

10: gG−t ← BSE(G−, min_sup); //Algorithm 1

11: gt ← The subgraph with the highest bScore (gGt , gG+t , gG−t );
// Error Calculation:

12: εB
t ← Calculate the error of HB

t corresponding to gt on B;
13: if εB

t > 1/2 then
14: HB

t ←−HB
t , εB

t ← 1− εB
t ;

15: end if
16: εG−

t ← Calculate the error of HG
t corresponding to gt on G−;

17: if εG−
t > 1/2 then

18: HG
t ←−HG

t ; εG−
t ← 1− εG−

t ;
19: end if
20: βB

t ← (1− εB
t )/εB

t ;
21: βG−

t ← εG−
t /(1− εG−

t ), βG+ ← 1/(1+√
2Inq+/m);

// Increase weight for incorrectly classified bag:

22: wB
i ← wB

i (βB
t )

I
(
HB

t (Bi) �=c(Bi)
)
, ∀Bi ∈ B;

// Decrease weight for incorrectly classified graph in B+:

23: wG+
j ← wG+

j (βG+)
I
(
HG

t (Gj) �=c(Gj)
)
, ∀Gj ∈ G+;

// Increase weight for incorrectly classified graph in B−:

24: wG−
k ← wG−

k (βG−
t )
−I

(
HG

t (Gk) �=c(Gk)
)
, ∀Gk ∈ G−;

25: end while
// Testing Phase:

26: yk ← sign
( ∑m

t=1 βB
t HB

t (Bk)
)

carried out on three graph sets as shown from lines 7 to 9. The
current optimal subgraph gt is the one with the highest bScore
with respect to the subgraph discovered from each individual
graph sets (line 10). In bMGC, the subgraph gt is directly used
as a weak bag classifier HB

t or a weak graph classifier HG
t ,

with HB
t (Bi) = 1 iff (xgt

i )B = 1, and HB
t (Bi) = −1, otherwise.

The same classification method is also used in graph based
subgraph classifier HG

t . Accordingly, the steps from lines 11
to 20 use the error rates of the weak classifiers to update the
parameters of the boosting framework.

1) Updating Bag and Graph Weights: To obtain the t+1th
optimal subgraph gt+1, we must update the weights of bags
and graphs using the tth optimal subgraph gt. The error εB

t
(line 11) on a bag set B can be defined as follows:

εB
t =

p∑

i=0

wB
i I

(
HB

t (Bi) �= c(Bi)
)

∑p
i=1 wB

i

(10)

where c(Bi) returns the label for the ith bag and I(·) is the
indicator function. The error εG−

t (line 15) on a negative graph
set can also be obtained in a similar way. Note that εB

t and εG−
t

are required to be smaller than 1/2. If not, the underlying
classifier is worse than random hypothesis, and then we should
use −HB

t and −HG
t to replace the current bag- and graph-level

classifiers, respectively. As a result, the underlying errors on
bag set and negative graph set become 1 − εB

t and 1 − εG−
t ,

respectively (lines 12–14 and 16–18).
According to the specific characteristics of bags and graphs,

we employ two different weighting strategies. Because bags are
the target of the classification and their genuine labels are given,
if a bag is misclassified by the current subgraph gt classifier
HB

t , the bag weight is increased by using the weight coefficient
factor βB

t (line 19) in order to find more informative subgraph
in the next iteration to deal with incorrectly predicted bags
(line 21). This bag-level weighting mechanism is similar to the
AdaBoost algorithm [25]. At individual graph level, because
we propagate bag labels to graphs at the very beginning of
the algorithm, some graphs in positive bags might have been
assigned with wrong labels. Therefore, if a graph in positive
bags is misclassified (i.e.,HG

t (Gj) �= c(Gj)), in the next iteration
we decrease its weight to reduce its effect through multiplying
its weight by (βG+)I(HG

t (Gj) �=c(Gj)) ∈ (0, 1], where βG+ is the
weight coefficient factor for positive graph (line 20). Thus,
the misclassified graphs in positive bags will have reduced
impact on the learning process in the next round (line 22).
The graphs with large training weights will help the learning
algorithm find better subgraphs. For negative bags, the weight
updating mechanism is the same for all graphs inside the bag
(line 23). This graph-level weighting mechanism is similar to
the TrAdaBoost algorithm [48].

In the test phase, the test bag Bk will be tested using a
weighted classifier sign

( ∑m
t=1 βB

t HB
t (Bk)

)
by boosting all the

m weak classifiers HB
t , t = 1, 2, . . . , m to obtain its class label

yk (line 25).
The key technical advantage of the bMGC process can be

summarized as follows.

a) Bag Constrained Subgraph Mining: The two-level
weight updating mechanism seamlessly integrates the
unique bag- and graph-level constraints into a repet-
itive and progressive mining process. It helps explore
informative subgraphs to represent multi-graph bags.

b) Implicit Feature Representation: bMGC selects a sub-
graph to directly form a weak classifier in each iteration.
This can efficiently tackle the challenge that no feature
vectors are available for MGC.

c) Generic Boosting Framework for MGC: The proposed
framework solves MGC by exploring informative sub-
graphs as weak classifiers to form a strong boost-
ing model. The framework can be easily adjusted to
accommodate other types of graph or bag classifiers
for MGC.

VII. EXPERIMENTS

A. DataSets

1) DBLP Multi-Graph Dataset: The DBLP dataset con-
sists of bibliography data in computer science. We download
a DBLP version called DBLP-Citation-network V5 from
Arnetminer (http://arnetminer.org/citation). Each record in
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TABLE I
DBLP DATASET USED IN EXPERIMENTS

DBLP is associated with a number of attributes including
title, abstract, author names, year, venue, and reference names
etc. [49]. To build multi-graph bags, we select papers pub-
lished in artificial intelligence (AI), computer vision (CV),
and database (DB) fields to form MGC tasks. The goal is
to predict which field a paper belongs to (AI, CV, or DB),
by using abstracts of each paper and the abstracts of its refer-
ences. For each abstract, a fuzzy cognitive map (E-FCM) [50]
based approach is used to extract a number of keywords and
correlations between keywords. In our experiments, we use
keywords as nodes and correlations between two keywords as
edge weight values to build a graph. A threshold (0.005) is
used to remove edges whose correlation values are less than
the threshold. At the last step, the graph is converted into an
unweighted graph by setting the weight values of all remain-
ing edges as 1. The similar graph representation was also used
in previous works [51]–[54].

A conceptual view of building a multi-graph bag is shown
in Fig. 1. Notice that AI, CV, and DB are overlapped in
many aspects, such as machine learning, optimization and data
mining, which make them challenging MGC tasks. The orig-
inal DBLP dataset contains a significant number of papers
without references. We choose 2400 papers, each of which
containing one to ten references, to form two MGC tasks:
DBLP (AI versus CV) with positive (AI) and negative (CV)
bags, and DBLP (AI versus DB) with positive (AI) and neg-
ative (DB) bags. The last two columns in Table I report
the number of bags (papers) and graphs (abstracts) in each
category.

2) NCI Chemical Compound Multi-Graph Dataset: The
NCI cancer screening database is a commonly used graph clas-
sification benchmark. We download two NCI datasets with ID
1 and 109 from PubChem (http://pubchem.ncbi.nlm.nih.gov).
Each NCI dataset belongs to a bioassay task for anticancer
activity prediction, where each chemical compound is repre-
sented as a graph, with atoms representing nodes and bonds
denoting edges. A chemical compound is positive if it is
active against the corresponding cancer, or negative otherwise.
The original NCI datasets are highly imbalanced, with about
5% positive graphs, which is used to generate our multi-graph
bags. To build multi-graph bags, we randomly select 1 to 4
positive graphs and several negative graphs to form a positive
bag, and randomly select a number of negative graphs to
form a negative bag. In order to address different targets,
we design two NCI multi-graph classification tasks. One is
NCI(1), which is generated from NCI dataset with ID 1, and
the other is NCI(109), which is generated from NCI dataset

TABLE II
NCI CANCER SCREEN DATASETS: NCI(1) AND NCI(109)

with ID 109. The number of graphs in each bag may vary
from 1 to 10.

Table II summarizes the NCI(1) and NCI(109) datasets used
in our experiments, where columns 4–5 show the numbers of
positive and negative graphs in all multi-graph bags. In the
NCI MGC, a bag of graphs can be regarded as a molec-
ular group. Investigating the activity of a molecular group
is meaningful in the bio-pharmaceutical field. Because label-
ing individual compounds is expensive and time-consuming,
it is desirable to design effective methods (bMGC) to label
molecular groups (i.e., bags).

B. Baseline Methods

To demonstrate the effectiveness of our MGC framework,
we compare the proposed bMGC with both supervised and
unsupervised bag constrained subgraph selection methods in
the traditional MIL framework. The baseline methods are
summarized as follows.

1) Information Gain Based Approach (IG+MI): In these
methods, a set of frequent subgraphs are mined from
graphs in all bags by using gSpan [34]. A supervised
feature selection based on information gain (IG) is used
to select m subgraphs with the highest IG scores. After
obtaining the m subgraphs, IG based multi-instance
approach (IG+MI) utilizes the selected subgraphs to rep-
resent graphs in bags, so a bag of graphs are converted
into a bag of instances, through which the existing MIL
methods can be applied for MGC learning.

2) Top-k Based Approach (Topk+MI): This is an unsuper-
vised feature selection method which uses frequency as
evaluation criterion to select subgraphs discovered by
gSpan [34]. The Top-k subgraphs with the highest fre-
quency from graphs in bags are selected. Top-k based
multi-instance approach (Topk+MI) transforms each bag
of graphs into a bag of instances for learning.

To compare our MGC framework bMGC’s performance
with MIL, two types of benchmark multi-instance classi-
fiers, including boosting based (MIBoost and MIOptimallBall)
and four different kinds of general approaches (CitationKNN,
MIRI, MIEMDD, and MISMO), are used in our experiments.
In the following, CitationKNN denotes a lazy learning based
method, MIRI is an improvement of tree learning based
approach, MIEMDD is an improved DD [26], and MISMO
is an implementation of support vector machine for MIL.
The baseline MIL methods used in our experiments and their
abbreviations are listed as follows.

1) Boosting for MI Learning Approaches.
a) MIBoost is an algorithm [24] inspired by AdaBoost that

builds a series of weak classifiers (decision stump is used
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Fig. 4. Accuracy on DBLP(AI versus CV) by using proposed bMGC and
boosting based MI learning methods. (a) MIBoost. (b) MIOptimalBall.

Fig. 5. Accuracy on DBLP(AI versus DB) by using proposed bMGC and
boosting based MI learning methods. (a) MIBoost. (b) MIOptimalBall.

in our experiment) using a single instance learner based
on appropriately reweighted versions of the input data.

b) MIOptimalBall treats the weak hypotheses for AdaBoost
as balls [28] and the classification is based on the dis-
tance to a reference point. More specifically, this method
attempts to find a ball in the instance space so that
all instances of all negative bags are outside the ball
and at least one instance of each positive bag is inside
the ball.

2) General MI Learning Approaches.
a) CitationKNN, a nearest-neighbor-based approach, mea-

sures the distance between bags using Hausdorff dis-
tance [16]. The nearest neighbor example to be classified
is the one nearest to both references and citers.

b) MIEMDD is the EM version of DD with the most-
likely-cause model [26], which is used to find the most
likely target points based on the DD model that has been
learned [27].

c) MIRI is a multi-instance classifier that utilizes partial
MITI trees [17] with a single positive leaf to learn and
represent rules. MIRI [18] is a simple modification to
MITI to yield a rule learner for MIL.

d) MISMO constructs a support vector machine classifier
for multi-instance data [21], where the standard sequen-
tial minimization algorithm is used for support vector
learning in conjunction with an MI kernel as described
in [55].

C. Experiment Settings

In our experiments, all reported results are based on 10
times 10-fold cross-validation with classification accuracy
being used as the performance metrics. Unless specified other-
wise, the default parameter settings are as follows: minimum

Fig. 6. Accuracy on NCI(1) by using proposed bMGC and boosting based
MI learning methods. (a) MIBoost. (b) MIOptimalBall.

Fig. 7. Accuracy on NCI(109) by using proposed bMGC and boosting based
MI learning methods. (a) MIBoost. (b) MIOptimalBall.

support threshold min_sup = 4% for DBLP datasets and
min_sup = 15% for NCI datasets. All the above classifiers
for traditional MIL utilize the versions provided in WEKA
machine learning workbench [56], with default parameter set-
tings. Besides, all experiments are conducted on a Linux
cluster computing node with an Interl(R) Xeon(R) @3.33GHZ
CPU and 3GB memory.

D. Accuracy on Multi-Graph Classification

In this section, we report experimental results on DBLP and
NCI datasets, by comparing the performance of bMGC with
two types of MIL methods, including boosting based and gen-
eral approaches under the supervised and unsupervised feature
selection settings respectively. All methods are compared by
using the same number of subgraphs. For our boosting based
bMGC, one subgraph is selected in each iteration until the total
number reaches m, whereas for baseline methods, a number
of m subgraphs are selected in one time. As expected, bMGC
clearly outperforms existing traditional MIL methods on both
DBLP and NCI multi-graph datasets with different number of
subgraphs (varying from 1 to 100).

1) bMGC Versus Boosting for MI Learning Approaches:
We compare bMGC to MIBoost and MIOptimalBall, where
the two boosting based baselines are two variants of the well
known AdaBoost algorithm [25] with the objective of mini-
mizing the exponential loss for bags of instances. Like other
boosting schemes, these two algorithms greedily fit an additive
model to the training data. In each iteration of the sequen-
tial boosting process, a weak learner (a decision stump for
MIBoost, and a ball for MIOptimalBall) is applied to generate
one component of the underlying additive model.

Results in Figs. 4(a) to 7(a) show that both bMGC and
MIBoost can achieve a high accuracy on DBLP (AI versus
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TABLE III
PAIRWISE t-TEST RESULT OF BMGC VERSUS BOOSTING BASED MI LEARNING METHODS ON (a) DBLP AND (b) NCI DATASETS. A, B, AND C DENOTE

BMGC, IG+MI, AND TOPK+MI, RESPECTIVELY. H1 AND H2 DENOTE MIBOOST AND MIOPTIMALBALL, RESPECTIVELY

CV, AI versus DB) and NCI (1, and 109) datasets. Meanwhile,
bMGC consistently outperforms MIBoost when the number of
selected subgraphs is 20 or more. On the other hand, compar-
ing our bMGC with MIOptimallBall, significant performance
gain can be observed in Figs. 4(b) to 7(b) on both datasets. The
superior performance of bMGC is due to the optimal subgraph
mining strategy combined with AdaBoost and TrAdaBoost
algorithms. Further more, it seems that MIOptimallBall fails
to adapt to the feature space composed of subgraphs.

Our results also show that bMGC has a very low accuracy
in early iterations, and its accuracy may be worse than base-
lines such as MIBoost in some cases. This is mainly because
that the boosting model of bMGC relies on weak classifiers to
achieve better performance. When the number of weak clas-
sifiers is small (normally happens at the early stage of the
boosting process), the accuracy of bMGC is noticeably low.
In order to show that this situation will not affect the per-
formance of bMGC, we summarize the pairwise t-test results
(with confidence level α = 0.05) of bMGC and boosting MI
learning methods on both datasets in Table III. Each entry
(value) denotes the p-value for a t-test between two algorithms,
and a p-value less than α = 0.05 indicates that the difference
is statistically significant. From Table III, bMGC statistically
outperforms boosting based MI learning baselines in all cases.

2) bMGC Versus General MI Learning Approaches: We
carry out another experimental comparison to demonstrate
the performance of bMGC, with other four different types
of general MI learning approaches (CitationKNN, MIRI,
MIEMDD and MISMO). From the results in Figs. 8(c)
to 11(c), MIEMDD shows ineffective performance for MGC,
and increasing number of subgraphs cannot result in additional
accuracy gain.

Although the performance of CitationKNN, MIRI, and
MISMO based methods improve as the number of sub-
graphs increases, they still cannot reach the best performance
achieved by bMGC except for IG+MIRI on NCI(109) dataset
as shown in Fig. 11(b). It is worth mentioning that bMGC
may achieve comparable performances over other baselines
in some cases, such as Topk+CitationKNN [Fig. 9(a)] and
MISMO [Figs. 8(d) and 9(d)] on DBLP dataset, IG+MISMO
[Figs. 10(d) and 11(d)] on NCI dataset.

To further validate the statistical performance of bMGC, in
Table IV, we also report the pairwise t-test to validate the
statistical significance between two methods. From Table IV,
bMGC statistically outperforms general MI learning baselines
in all cases. This is mainly attributed to the effectiveness of
the proposed bag constrained subgraph exploration criterion

and the specially designed boosting strategy, which weights
a set of single weak classifiers under our specially designed
weighting mechanism.

E. Effectiveness of Subgraph Candidate Generation in
bMGC

As discussed above, one main component of bMGC is
the utilization of subgraph candidate generation (as described
in Section IV). More specifically, in addition to aggregating
graphs in all bags G, we also aggregate: 1) graphs in all pos-
itive bags G+, and 2) graphs in all negative bags G−. As a
result, a set of diverse subgraph candidate patterns can be
discovered for validation. In order to further illustrate the
effectiveness of the proposed strategy for subgraph candidate
generation and validate whether using the two extra graph sets
G+ and G− can indeed improve the performance of bMGC,
we compare bMGC with an approach which only uses the
G to generate the subgraphs for learning, namely bMGC-G.
In Fig. 12(a) and (b), we report the accuracy with respect
to different iterations on DBLP (AI versus CV) and NCI(1)
datasets, respectively. The results show that the classification
accuracy of bMGC using all three graph sets is normally 3%–
5% higher than bMGC-G which only uses the G. This is due
to the fact that the separation of graphs into G+ and G− can
help find some unique subgraph patterns, which do not appear
in the whole graph set G. Indeed, because the subgraph explo-
ration essentially relies on a threshold (i.e., the support value)
to discover frequent subgraphs. When aggregating all graphs
in one set G, it is possible that a good subgraph in G+ may
not be discovered from G, simply because the frequency of
the subgraph is below the given threshold in G. The sepa-
ration of graphs into three sets G+, G−, and G will therefore
help discover a rich set of subgraph candidates, through which
bMGC can find the ones with the highest informativeness
scores.

F. Convergence Study

Fig. 13 reports the error rate curves of bMGC in terms
of the number of iterations on four multi-graph datasets. The
curves are quite smooth, but converge well, which is consistent
with the theoretical analysis and the existing observations from
Adaboost [25]. The error rates of bMGC, after the algorithm
reaches the convergence, are higher on DBLP datasets than on
the NCI datasets. Overall, bMGC on all four datasets receives
a fast convergence speed.

For NCI datasets, the convergence is reached within ten
iterations, whereas for DBLP datasets, bMGCs convergence
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Fig. 8. Accuracy on DBLP(AI versus CV) by using bMGC and generic MI learning methods. (a) CitationKNN. (b) MIRI. (c) MIEMDD. (d) MISMO.

Fig. 9. Accuracy on DBLP(AI versus DB) by using bMGC and generic MI learning methods. (a) CitationKNN. (b) MIRI. (c) MIEMDD. (d) MISMO.

Fig. 10. Accuracy on NCI(1) by using bMGC and generic MI learning methods. (a) CitationKNN. (b) MIRI. (c) MIEMDD. (d) MISMO.

Fig. 11. Accuracy on NCI(109) by using bMGC and generic MI learning methods. (a) CitationKNN. (b) MIRI. (c) MIEMDD. (d) MISMO.

TABLE IV
PAIRWISE t-TEST RESULT OF BMGC VERSUS GENERAL MI LEARNING METHODS ON (a) DBLP AND NCI DATASETS. A, B, AND C DENOTE BMGC,

IG+MI, AND TOPK+MI, RESPECTIVELY. H1,H2,H3, AND H4 DENOTE CITATIONKNN, MIRI, MIEMDD, AND MISMO, RESPECTIVELY

is reached after 20 or more iterations. Notice that each weak
classifier in bMGC denotes one subgraph, this indicates that
more subgraph features are needed in order to differentiate the

object classes in the DBLP dataset. Indeed, because DBLP
tasks involve overlapping domains (such as AI versus CV),
using more subgraph features (which correspond to keywords
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Fig. 12. Accuracy comparisons by using bMGC and bMGC-G on DBLP
and NCI datasets, respectively. (a) DBLP (AI versus CV) dataset. (b) NCI (1)
dataset.

Fig. 13. Error rate curves on DBLP (AI versus CV, AI versus DB) and
NCI(1 and 109) multi-graph datasets in terms of the number of iterations.

and their correlations) can constantly help improve the classifi-
cation accuracy. For NCI graphs, the positive versus negative
graphs are mostly separated by some unique subgraph fea-
tures. So as long as such unique patterns are discovered, the
algorithm can quickly converge.

G. Effectiveness Results

To evaluate the effectiveness of the pruning module
of bMGC in reducing the search space (as described in
Section V-C), we compare bMGC with an approach which
does not have pruning module in the subgraph search space
(denoted by ubMGC). In our implementation, ubMGC first
uses gSpan to find a set of frequent subgraphs, and then selects
the optimal subgraph by using the same criteria as bMGC in
each iteration. In Fig. 14(a) and (b), we report the average
CPU runtime with respect to different minimum support val-
ues min_sup (the number of selected subgraphs is fixed to 100)
on DBLP(AI versus CV) and NCI(1) datasets, respectively.
The results show that as the min_sup values increase, the run-
time of both pruning and unpruning bMGC decrease, this is
mainly because a larger min_sup value will reduce the number
of candidates for validation. Accordingly, by incorporating the
proposed pruning strategy, bMGC can improve the runtime
performance. The reason is that the bScore upper bound of
bMGC can effectively help prune the subgraph search space
without decreasing the quality of classification.

VIII. DISCUSSION

In this paper, we focus on using subgraph based boosting
framework for MGC. Indeed, the idea of exploiting subgraphs

Fig. 14. Average CPU runtime for bMGC versus unpruned ubMGC with
different min_sup under a fixed number of subgraphs m = 100 on DBLP and
NCI datasets, respectively.

for graph classification has been studied in a number of
existing works, including a recent ensemble based semi-
supervised graph stream classification approach [9]. The core
of the proposed bMGC approach is to combine two types of
boosting strategies: AdaBoost [25] for bag-level boosting and
TrAdaBoost [48] for graph-level boosting, to integrate graph-
and bag-level learning for MGC. Boosting algorithms for graph
classification have already been studied in several previous
works. For example, Kudo et al. [41] proposes an AdaBoost
based graph classification approach, which is the origi-
nal algorithm among many variants [42]–[44]. Meanwhile,
LPBoost [57], namely linear programming Boosting, is another
type of boosting algorithm for graph classification. The pro-
posed bMGC follows similar subgraph search approaches
as used in these existing works. For bMGC, it uses gSpan
algorithm [34] in each boosting iteration, together with the
proposed pruning strategy, to explore subgraphs.

The main complication of MGC is that the genuine labels
of graphs inside a positive bag are unknown. To tackle
uncertainty inside positive bags, bMGC takes the bag con-
straints into consideration and explores subgraphs to represent
graphs with maximum diversity, as defined in (2). This is
similar to the way of handling unlabeled graphs in an exist-
ing semi-supervised graph stream classification method [9].
In [9], an instance weighting mechanism has also been pro-
posed but is different from the weighting approach in bMGC,
where the weights are directly associated to the graphs
and bags. In addition, the weight updating strategy in [9]
is based on AdaBoost [25], which only considers labeled
graphs. In bMGC, we borrow the weighting strategy from
TrAdaBoost [48] to update the graph weighs in both labeled
and unlabeled graph sets. In summary, the idea in [9] provides
inspirations to motivate the proposed MGC design.

We believe that the proposed bMGC opens a new oppor-
tunity to expand existing MIL to increasingly popular graph
applications. Although bMGC proposes to use subgraph min-
ing to tackle the MGC challenges, the principle of combining
graph and bag level constraints can be extended to many other
types of approaches to handle MGC problems. For example,
for kernel based methods, MGC problem can be solved by two
subtasks: 1) add multi-graph constraints to traditional graph
kernel, and 2) propose a new multi-graph kernel framework.
In addition, one can also impose multi-graph constrains to
graph embedding methods (e.g., the one in [32]) to directly
calculate the distance between two graphs or between two
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graph bags. With the calculated distances between graphs and
between bags, standard learning algorithms (including MIL
algorithms) can be applied to solve MGC tasks.

IX. CONCLUSION

In this paper, we investigated a novel MGC problem, in
which a number of graphs form a bag, with each bag being
labeled as either positive or negative. Multi-graph represen-
tation can be used to represent many real-world applications,
where label is only available for a bag of objects with depen-
dency structures. To build a learning model for MGC, we
proposed a bMGC, which employs dynamic weight adjust-
ment, at both graph- and bag-levels, to select one subgraph
in each iteration to form a set of weak graph classifiers.
The MGC is achieved by using weighted combination of
weak graph classifiers. Experiments on two real-world MGC
tasks, including DBLP citation network and NCI chemical
compound classification, demonstrate that our method is effec-
tive in finding informative subgraph, and its accuracy is
significantly better than baseline methods.

APPENDIX

PROOF OF THE THEOREM 1

According to (8), for any g′k ⊇ gk we have
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where B(g′k)
�= {Bi|g′k ⊆ Gj ∈ Bi, 1 ≤ i ≤ p, 1 ≤ j ≤ q} and
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�= {Gj|g′k ⊆ Gj, 1 ≤ j ≤ q}. Since g′k is the supergraph

of gk (i.e., g′k ⊇ gk), according to the anti-monotonic property,
we have B(g′k) ⊆ B(gk) and G(g′k) ⊆ G(gk)

r
(
g′k

) =
∑

i,j:Bi,Bj∈B(g′k)

QB
ij +

∑

i,j:Gi,Gj∈G(g′k)

QG
ij

≤
∑

i,j:Bi,Bj∈B(g′k)

Q̂B
ij +

∑

i,j:Gi,Gj∈G(g′k)

Q̂G
ij

≤
∑

i,j:Bi,Bj∈B(gk)

Q̂B
ij +

∑

i,j:Gi,Gj∈G(gk)

Q̂G
ij

=
(

f B
gk

)	
Q̂Bf B

gk
+

(
f G

gk

)	
Q̂Gf G

gk

= f	gk
Q̂f gk

= r̂(gk). (12)

Thus, for any g′k ⊇ gk, r(g′k) ≤ r̂(gk).
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