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Active Learning From Stream Data Using
Optimal Weight Classifier Ensemble

Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi

Abstract—In this paper, we propose a new research problem
on active learning from data streams, where data volumes grow
continuously, and labeling all data is considered expensive and
impractical. The objective is to label a small portion of stream
data from which a model is derived to predict future instances as
accurately as possible. To tackle the technical challenges raised
by the dynamic nature of the stream data, i.e., increasing data
volumes and evolving decision concepts, we propose a classifier-
ensemble-based active learning framework that selectively labels
instances from data streams to build a classifier ensemble. We
argue that a classifier ensemble’s variance directly corresponds
to its error rate, and reducing a classifier ensemble’s variance is
equivalent to improving its prediction accuracy. Because of this,
one should label instances toward the minimization of the variance
of the underlying classifier ensemble. Accordingly, we introduce a
minimum-variance (MV) principle to guide the instance labeling
process for data streams. In addition, we derive an optimal-weight
calculation method to determine the weight values for the classifier
ensemble. The MV principle and the optimal weighting module
are combined to build an active learning framework for data
streams. Experimental results on synthetic and real-world data
demonstrate the performance of the proposed work in comparison
with other approaches.

Index Terms—Active learning, classifier ensemble, stream data.

1. INTRODUCTION

ECENT developments in storage technology and net-
working architectures have made it possible for broad ar-
eas of applications to rely on stream data for quick response and
rapid decision making [1]. One of the recent challenges facing
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data mining is to digest massive volumes of data collected from
data stream environments [1]-[10].

In the domain of classification, providing a set of labeled
training examples is essential for generating predictive models.
It is well accepted that labeling training examples is a costly
procedure [11], which requires comprehensive and intensive
investigations on the instances, and incorrectly labeled exam-
ples will significantly deteriorate the performance of the model
built from the data [12], [23]. A common practice to address
the problem is to use active learning techniques to selectively
label a number of instances from which an accurate predictive
model can be formed [13]-[17], [39]-[44], [54]-[57]. An active
learner generally begins with a very small number of randomly
labeled examples, carefully selects a few additional examples
for which it requests labels, learns from the results of that
request, and then by using its newly gained knowledge carefully
chooses which examples to label next. The goal of active
learning is to maximize the prediction accuracy by labeling only
a very limited number of instances, and the main challenge is to
identify “important” instances that should be labeled to improve
the model training under the fact that one could not afford to
label all samples [57]. A general practice for active learning
is to employ some heuristics (or rules) in determining the
most needed instances. For example, uncertainty sampling [43],
query by committee (QBC) [13], [14], or query by margin [41],
[43] principles take instances with which the current learners
have the highest uncertainty as the mostly needed instances for
labeling. The intuition is to label instances on which the current
learner(s) has the highest uncertainty, so providing labels to
those instances can help improve the model training. A large
body of work exists for active learning on static data sets [13]—
[17], [39]-[44], all of which aim at building one single optimal
model from the labeled data. None of them, however, fits in
data stream environments, where the continuous data volumes
and the drifting of the concepts raise significant challenges.

A. Concept Drifting in Stream Data

Given a binary classification problem with classes denoted
by c¢; and cq, respectively, the optimal decision [58] in labeling
a previously unseen example z is to find the class label ¢;, 7 €
{1, 2}, that maximizes the joint probability

argig{li)g} P(c;, x). (1

Using the probability product rule P(c;, )= P(c¢;|z)P(x)=
P(x|c;)P(c;), (1) can be rearranged for the purpose of maxi-
mizing the posterior probability as defined by (2), where P(c;)
defines the priori probability (or density) of the class ¢;, and
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Fig. 1. Conceptual view of concept drifting in data stream. (a) The genuine
decision boundary assume all samples were observed. (b) Priori probability
drifting scenario (triggered by changes in P(c;) only). (c) Conditional proba-
bility drifting scenario [triggered by changes in P(x|c;) only, where class priori
probability P(c;) remains the same as (a)]. (d) Conjunct probability drifting
[triggered by changes in P(c;) and P(z|c;)].

P(z|c;) denotes the class conditional probability (or likelihood)
of the sample x given class ¢;, i.e.,

Plale) Ple:)

o) )

arg Zg{l%{} P(c|z) = argig{liéc}

The challenge of the data stream, in comparison with a
static data set, lies on the fact that one can only observe a
portion of the stream data, so both P(z|c;) and P(c;) may
constantly change/drift across the stream. As a result, the
posterior probability of a class ¢;, given a sample z, also
constantly changes, which may result in different predictions
for two identical instances, depending on the actual time they
appear in the stream. Formally, the concept drifting in the data
stream refers to the variation of the priori probability P(c;)
and the class conditional probability P(x|c;) across the stream
data. The drifting of the concept can further be decomposed into
the following three categories: 1) priori probability drifting: the
concept drifting is mainly triggered by the class priori prob-
ability P(c¢;); 2) conditional probability drifting: the concept
drifting is mainly trigged by the class conditional probability;
and 3) conjunct probability drifting: both P(¢;) and P(x|c;)
constantly change across the data stream. A conceptual view of
the above categorizations is illustrated in Fig. 1.

B. Active Learning for Data Streams

For data streams with continuous volumes, the needs of
active learning are compelling, simply because manually inves-
tigating and labeling all instances are out of the question for
many applications. The objective of employing active learning
for data streams is to label “important” samples, based on the
data observed so far, such that the prediction accuracy on future
examples can be maximized.

For static data sets whose whole candidate pools can be
observed and their genuine decision boundaries are invariant,
active learning is supposed to find “which samples should
be labeled?” For data streams with continuously increasing
volumes and varying decision boundaries, active learning needs
to answer “when and which examples should be selected for
labeling?” Intuitively, if there is no concept drifting involved in
the incoming data, then it makes sense to save the labeling cost
for future samples that may have different distributions from
the current data [9]. Unfortunately, implementing such a when-
and-which labeling paradigm is difficult for data streams; this
is mainly because concept drifting in data streams is mostly
triggered by complicated factors (as discussed in the previous
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section), so we may not be able to accurately capture the
best time for labeling. In addition, without seeing the future
samples, it is difficult to determine the efforts (costs) one
should spend on the current samples such that the overall
prediction accuracy can be maximized. To simplify the problem
and deliver an applicable active learning framework for data
streams, we assume in this paper that the concepts in the data
are constantly evolving, so active learning is carried out on a
regular basis, and the objective is to find important samples out
of a certain number of newly arrived instances for labeling. As
we will shortly demonstrate in Section VI, such an approach
will produce better results than relying on the detection of
concept drifting for active learning.

C. Challenges of Active Learning From Stream Data

Presumably, the challenge of active learning from stream
data is threefold [46]: 1) in data stream environments, the can-
didate pool is dynamically changing, whereas existing active
learning algorithms are mainly designed for static data sets
only; 2) the concepts, such as the decision logics and class
distributions, of the data streams are continuously evolving [2]-
[10], [46], whereas existing active learning algorithms only
deal with static concepts; and 3) because of the increasing data
volumes, building one single model from all the labeled data is
computationally expensive for data streams, even if memory is
not an issue, whereas most existing active learning algorithms
rely on a model built from the whole collection of data for
instance labeling [13]-[17], [39]-[44]. In data stream envi-
ronments, it is impractical to build one single model from all
previously labeled examples. On the other hand, as the concepts
of the data streams evolve, aggregating all labeled instances
may reduce the learner performance instead of improving it [3].
Therefore, we will have to rely on a set of classifiers, instead of
one, to fulfill the objective of active learning from data streams.
More specifically, a solution to the problem must explicitly
address the following three concerns:

1) What is the objective of active learning for stream data?
Or what is the final goal of carrying out active learning
for stream data?

2) What are the objective function and criteria of instance
labeling for stream data?

3) How to tackle a data stream with drifting concepts and
massive data volumes for effective active learning?

We present in this paper our recent research efforts in re-
solving the above concerns. In short, we propose a weighted
classifier ensemble [36] framework to address the challenges
raised from data streams. Our objective is to maximize the
prediction accuracy of the classifier ensemble built from the
labeled stream data (first concern). For this purpose, we argue
that the objective function of the instance selection is to mini-
mize the variance of the classifier ensemble built from the data
(second concern). The employment of the classifier ensemble
ensures that our method cannot only handle data with massive
volumes but is also able to adapt to the drifting concepts though
the adjustment of the weight values of the ensemble members
(the third concern).

The remainder of this paper is structured as follows:
Section II briefly reviews the related work. Section III presents a
motivating example and simple solutions. Section IV introduces
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TABLE 1
KEY SYMBOLS USED IN THIS PAPER

Symbol  Description
¢ The label for the i class
/ The total number of classes in the data
Sn The ™ data chunk of the data stream
Ln, Uy The subsets of labeled and unlabeled instances in S,
Cy The classifier built from the labeled subset, L,, of S,
7' A random variable accounts for the variance of the classifier C,
ki w.r.t. class ¢;
O-’?Z The variance of 77:
e, The bias of the classifier with respect to class ¢;
An abbreviation of a classifier ensemble which consists of a
E .
number of classifiers C;, Co, ...
The number of classifiers forms a classifier ensemble, where
k e T
each component classifier is called a base classifier
w" The weight value of the classifier C,, of the classifier ensemble
771? A random variable accounts for the variance of the classifier
G ensemble £ w.r.t. class ¢;,
2 . - L
o, The variance of ﬂEi

.,

classifier variance and an optimal weight calculation method to
minimize classifier ensemble error rate. Following the conclu-
sions derived from Section IV, Section V describes the active
learning algorithm in detail. Experimental results are reported
in Sections VI, and we conclude in Section VII. For ease of
presentation, the key symbols used in this paper are listed in
Table I.

II. RELATED WORK

In addition to active learning, our research is closely re-
lated to the existing work on classifier ensemble and active
mining (AM).

Classifier ensemble is an established research area. Nu-
merous methods [34]-[37], [52], [53] exist for improving the
ensemble learning accuracies. Examples include bagging [52],
boosting [53], weighted voting [35], or diversity customization
for ensemble construction [48]. Combining classifier ensem-
ble and active learning has been reported in much research
[44], [48]-[50], [57]. Traditional query-by-bagging-based ac-
tive learning approaches [44], [48], for example, employ boot-
strap sampling to train a number of classifiers to estimate the
uncertainty of each unlabeled example. Other methods [49],
[50] employ the active learning principle to improve ensemble
learning, such as multiclass boosting classification [49] or
active ensemble learning [50]. Although all these methods have
been using the ensemble framework to benefit active learning
or vice versa, they are not primarily designed for data stream
environments.

For data streams with continuous volumes, the classifier en-
semble has shown to be effective for tackling data volume and
concept drifting challenges [3], [4], [7], [8]. Street and Kim [7]
proposed a streaming ensemble algorithm that combines deci-
sion tree models using majority voting. Kolter and Maloof [18]
proposed an AddExp ensemble method by using weighted on-
line learners to handle drifting concepts. In [3], Wang et al. pro-
posed a weighted ensemble framework for concept drifting data
streams and proved that the error rate of a classifier ensemble
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is less than a single classifier trained from the aggregated data
of all consecutive k£ chunks. In [8], Gao et al. proposed to em-
ploy sampling and ensemble techniques for data streams with
skewed distributions. In some recent works [4], [10], [59], we
have employed the classifier ensemble for stream data cleansing
[10] and for combining labeled and unlabeled samples for
multiclass [4] and uniclass [59] stream data mining [4]. In sum-
mary, although the ensemble has been popularly used for stream
data mining, no theoretical analysis is currently available for
calculating the optimal weight values for ensemble learning.
Realizing that labeling all stream data is expensive and
heavily time consuming, Fan et al. proposed an AM framework
[9] that labels samples only if it is necessary. In short, AM
uses a decision tree (trained from the currently labeled data)
to compare the distributions of the incoming samples and
the data collected at hand using the tree branches (without
observing the class labels). If two sets of samples are subject
to different distributions, then a labeling process is triggered to
randomly select a few incoming samples for labeling. Although
our research shares the same goal as AM, i.e., minimizing the
labeling cost for data streams, the differences between them are,
however, fundamental: 1) AM only answers “when to select
data for labeling,” and once it decides to label the incoming
data, it randomly selects samples for labeling. In comparison,
our work explicitly answers “which samples should be labeled.”
2) AM does not allow users to allocate labeling costs because
labeling is triggered only if the distributional changes emerge.
In comparison, our work allows users to flexibly control the
labeling cost at any point of the stream. 3) AM is only ap-
plicable for decision trees because the detection of the distri-
butional changes relies on comparisons on the tree branches. In
comparison, our work can be applied to any learners including
decision trees. Our experimental comparisons in Section VI will
demonstrate that AM is inferior to or marginally better than
random-sampling-based approaches in solving our problem.

III. PROBLEM DEFINITION AND SIMPLE SOLUTIONS
A. Motivating Example and Problem Definition

Consider an online intrusion detection center that monitors
the incoming traffic flow of some network servers to identify
suspicious users based on their actions and IP package payload.
Here, the daily (or hourly) traffic flow constitutes a data stream.
Assume that the number of network connections arrives at an
average rate of 10000 connections per hour, out of which the
network security experts can only investigate 5%. Accordingly,
the problem becomes which 5% of the connections should be
inspected to improve the existing intrusion detection model and
identify future intrusions as accurately as possible (in this paper,
we assume that all network connections are subject to the same
cost, so the objective is to minimize the misclassification error
instead of minimizing the total loss [45]). To handle massive
volumes of stream data, a common solution is to partition the
data into chunks, as shown in Fig. 2. We can label 5% of data
in each chunk and build one classifier from the labeled data.
As a result, a set of base classifiers are trained and used to
form a classifier ensemble [34]-[36] to identify intrusions from
newly arrived data. The framework in Fig. 2 can be applied to
a variety of stream applications as long as instance labeling is
of concern. The employment of a classifier ensemble ensures
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Fig. 2. general framework for active learning from stream data.

that our framework can effectively handle massive volumes
of stream data without relying on any complex incremental
learning procedures [2], [19].

Based on the framework in Fig. 2, we assume that stream
data are partitioned into chunks according to the user-specified
chunk size. We also assume that once the algorithm moves
to chunk S, all instances in previous chunks, ... S, 3,
Sn-2,Sn-1, are inaccessible except classifiers built from them
@i.e.,...,Ch_3,Ch_2,C)_1). Based on the above assumptions,
the objective becomes labeling instances in data chunk S;, such
that a classifier C), built from the labeled instances in S,,, along
with the most recent k — 1 classifiers C,,_gy1,...,Cph_1, can
form a classifier ensemble with maximum prediction accuracy
on unlabeled instances in S,,.

B. Simple Solutions

1) (RS): Arguably, random sampling (RS), where instances
in S,, are randomly sampled and labeled, is the simplest ap-
proach to solve our problem. Although simple, it turns out
that RS works surprisingly well in practice (as we will shortly
see in Section VI). The niche of RS stems from the fact that
in data stream the class distributions may vary significantly
across data chunks. While general active learning algorithms
seek to label “important” instances, they may significantly
change class distributions by favoring one class of instances.
Accordingly, the labeled instances no longer reveal genuine
class distributions in the data chunk. This problem is less severe
for a static data set where the candidate pool is fixed and active
learning algorithms are able to survey all instances. RS avoids
this problem by randomly selecting samples for labeling. As a
result, it can produce a training set with the most similar class
distributions to the current data chunk, although the instances
it labeled might not be as “informative” as those carefully
selected.

2) LU Sampling: Another way of solving the problem is to
disregard the dynamic nature of data streams and treat each
data chunk .S,, as a static data set. One can then apply existing
active learning algorithms to the chunk S,, without considering
any other data chunks. Because instance labeling is carried
out independently in each data chunk, the weakness of local
uncertainty (LU) is obvious: although each data chunk might
be able to label the most important instances from their own
perspectives, the locally labeled instances have very limited
value for training the global classifier ensemble.

3) GU Sampling: Global uncertainty (GU) sampling-based
active learning will use historical classifiers, along with the one
from S,,, to form a committee for instance labeling. Upon the
receiving of a data chunk S,,, GU randomly labels a tiny set of
instances from .S,, and builds a classifier C,,. This classifier,
along with k£ — 1 historical classifiers, form a committee to
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assess instances in S, and label the ones with the largest
uncertainty. The whole process repeats until a certain number of
instances in ), are labeled. At any stage, the user may choose
to rebuild C), by using labeled examples in S,, to update the
base classifiers for labeling.

GU essentially labels instances on which the classifier
committee has the highest uncertainty. This appears to be a
promising design as the same concept has been validated by
QBC-based approaches [13], [14]. Unfortunately, our experi-
mental results in Section VI indicate that GU’s performance is
still unsatisfactory and often inferior to RS. One possible reason
is that different from the traditional QBC, where committee
members are learned from samples drawn from the same dis-
tributions, the committee classifiers in data streams are learned
from different data chunks. Because of this, the classifiers may
vary significantly in classifying each single instance, and the
average uncertainty over all committee classifiers (like QBC
does) may not reveal an ensemble’s genuine uncertainty on the
instance.

4) AM-Based Sampling: AM sampling is motivated by the
AM framework proposed by Fan er al. [9], and the intuition
is to select incoming samples, which have the most significant
distributional changes from the currently observed data, for
labeling. More specifically, for each data chunk Sy, a decision
tree dty is trained from the labeled samples in Sy and is
used to calculate the distribution of all samples in Sj, with
respect to the tree dtj, (please refer to [9] for technical details).
Assume that in the arrival of a data chunk S, for labeling, AM
randomly labels a tiny set of instances from .5, and builds a
decision tree dt,,. After that, AM calculates the distributions
of unlabeled samples in S, with respect to each of the k
trees (dt,_k+1,---,dtn_1,dt,). The distributions are used to
compare with the retained distribution of each tree, and the
differences are used to assign a weight value to each unlabeled
instance in S,, such that samples with the most significant dis-
tributional changes are selected for labeling. The above process
repeats until a certain number of instances in S,, are labeled.

IV. CLASSIFIER ENSEMBLE VARIANCE REDUCTION
FOR ERROR MINIMIZATION

In this section, we first study the classifier variance for a sin-
gle learner and then extend our analysis to classifier ensemble.
We argue that minimizing the classifier ensemble variance is
equivalent to minimizing its error rate. Following this conclu-
sion, we derive an optimal-weight calculation method to assign
weight values to the classifiers such that they can form an en-
semble with minimum error rate. The minimization of the clas-
sifier ensemble error rate through variance reduction acts as a
principle to actively select mostly needed instances for labeling.

A. Bias & Variance Decomposition for a Single Classifier

A Bayes optimal decision rule [58] assigns input x to a class
¢; if the a posterior probability p(c;|z) is the largest among
a set of classes ¢;, i € {1,...,l}. Although we expect that a
classifier’s probability estimation in classifying x is equal to
p(c;|x), the actual probability f., (), is, however, subject to an
added error ¢, (), as given in

fei(x) = pleilw) + &i(). ©)
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Fig. 3. Classifier bias and variance illustration in shooting arrows at a target.
The center denotes the posterior probability p(c;|x), and the probability
produced from a classifier C'y, in classifying an instance « into class c;, fe; (z),
is decomposed into three components: p(c;|x), Bc;, and 7¢;, (x). Each black
dot denotes a prediction of a classifier C), on an instance z. Assume a set of
classifiers C1,Ca, ..., C), trained by using the same learning algorithm but
different versions of the training data are used to predict an instance x, the bias
Be,; is the average offset of all classifiers’ prediction on x, and the variance
is the dispersion of one specific prediction with respect to the averaged pre-
diction center (picture revised from [32]). (a) Bias and variance decomposition.
(b) Large bias small variance. (c) Small bias large variance. (d) Small bias small
variance.

If we consider that the added error of the classifier mainly
comes from two sources, i.e., classifier bias and variance [30]—
[33], then the added error &;(x) in (3) can be decomposed into
two terms, i.e., O, and 7, (x), where [3., represents the bias of
the current learning algorithm, and 7, (z) is a random variable
that accounts for the variance of the classifier (with respect to
class ¢;), which gives [3], [20]-[22]

fe: () = pleilz) + Be, + ne, (2). 4)

In (4), (3., and 7., (x) are essentially determined by the
underlying learning algorithm and the examples used to train
the classifiers. Existing analysis on bias and variance decom-
position [29]-[31] has concluded that, given a specific learning
algorithm and a training set 7', if we build a set of classifiers
(denoted by C1,C5,...,C,) from T, then all classifiers will
share the same level of bias (which is the bias of the learning
algorithm) but different levels of variances in predicting a test
instance x.

To clearly state the bias and variance decomposition, we
follow Moore and McCabe’s illustration [32] and demonstrate
the value of f.,(x) in Fig. 3. Given a training set 7" and a
specific learning algorithm, for example, C4.5 [26] or Naive
Bayes [28], one can randomly sample 7' (with replacement)
and generate a number of training set 74,75, ...,T,, each of
which has the same number of instance as 7'. After that, one
classifier is trained from each single data set, which results in
n classifiers C1,C5,...,C, in total. At the last step, the n
classifiers are used to predict a specific instance x, with the class
probabilities of each classifier (with respect to class ¢;) denoted
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Fig. 4. Decision boundaries and error regions associated with approximating
the a posteriori probabilities (picture revised from [21]).

by a dot in Fig. 3 (for ease of understanding, we assume that
each prediction corresponds to a 2-D point). In Fig. 3(a), the
center denotes the Bayes posterior probability p(c;|x), whereas
each prediction from classifier C, Cs, . .., C,, is an offset value
from the center. Because C,Co, ..., (), are trained by using
the same learning algorithm but different versions of the same
data set, their predictions on a specific instance center around
a specific value @, which is the bias of the learning algorithm.
The distance between each dot and & denotes the variance of
the classifier’s prediction on x.

Depending on the learning algorithms and the training set
used to train the classifiers, one can expect that the overall
predictions of C, Co, . .., C,, may vary among large bias small
variance [Fig. 3(b)], small bias large variance [Fig. 3(c)], small
bias small variance [Fig. 3(d)], and others. In summary, the
above analysis indicates that classifiers trained by using the
same learning algorithm but different versions of the training
data suffer from the same level of bias but different variance
values.

Assuming that we are using the same learning algorithm
in our analysis, without loss of generality, we can ignore the
bias term [3], [20]. Consequently, the learner’s probability in
classifying x into class ¢; becomes

fe, (@) = pleilz) + ne, (). (5)

Because the Bayes optimum decision boundary is the loci of
all points «* such that p(c;|z*) = p(c;j|z*), where p(cj|z*) =
maxy.; p(ck|z), the decision boundary of a classifier denoted
by (5), which approximates p(c;|z), is also shifted from the
optimum Bayes decision boundary, as shown in Fig. 4.

In Fig. 4, the actual decision boundary is denoted by x, the
Bayes optimum boundary is denoted by x*, and b = x, — z*
denotes the amount by which the boundary of the classifier dif-
fers from the optimum boundary. The darkly shaded region rep-
resents the area that is erroneously classified by the classifier f.
Under mild regularity conditions, we can perform a linear
approximation of p(ck|x) around x* and express the density
function f;(b) of b in terms of 7, (x) [21]. Consequently, the
expected added error of classifier f is given by

o0

Erfonq = / A(b) f,(b) db ©)

—00

where A(b) is the area of the darkly shaded region, and fj, is the
density function for b.
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A

arg max jEE (x)
ie[l.....[] !

A test instance x
Fig. 5. classifier ensemble model consisting of k base classifiers
Crn—t+1,Cn—k+42,---,Cm,...,Cn. BEach base classifier C, has an asso-
ciated weight value w™. The class probability of a test instance on class c; is
the sum of the weighted class probabilities over all base classifiers. The final
prediction of x is the class with the largest class probability.

Tumer and Ghosh [20] showed that this quantity can be
expressed as

0'% + 0727 0727

s <)

Errggqq = ——m— = — (N
s s

where p/(-) denotes the derivative of p(-), s =p/(c;|z*) —
P (¢;]x*), which is independent of the trained model, and of,ci
denotes the variance of 7., (x).

Equation (7) states that the expected added error of a clas-
sifier is proportional to its variance a%c; thus, reducing this
quantity reduces the classifier’s expected error rate.

B. Classifier Ensemble Variance

Given a classifier ensemble E with k base classifiers (in this
paper, each member of the ensemble is called a base classifier),
the probability of the ensemble E in classifying an instance x
is given by a linear combination of the probabilities produced
by all of its base classifiers. Here, we employ a weighted
ensemble framework, as shown in Fig. 5, where each classifier
C), has a weight value w™. Under the framework in Fig. 5, the
probability of E in classifying x into class ¢; is given by (8),
where f!"(z) denotes the probability of base classifier C, in
classifying x into class ¢;, i.e.,

n

g(m) _ Z w™ cr:z(x) Z w™
m=n—k+1 m=n—k+1
n n
=p(cilz) + Z w" Z w™.  (8)
m=n—k+1 m=n—k+1
This probability can be expressed as
o (@) = pleilz) +ng (2) ©)

where 175 (z) is a random variable accounting for the variance
of the classifier ensemble E with respect to class ¢;, and

n
E w™.

m=n—k+1

n

D

m=n—k+1

nk = w™ny (10)
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Therefore, the variance of nZ (z) is given by

n n

2. 2.

2 m=n—k+1g=n—k+1
anc. = n n (1 1)

Sooowme Y wd

m=n—k+1 g=n—k+1

myg mog
wmwIcov (T)Ci,T]CZ_)

which can be rewritten as

n

(w™)?o2m
2 m=n—k+1 i
né 2
n

> wn
m=n—k+1
n n
> > wmwicov (1, n,)
m=n—k+1 g=n—k+1g#m
+ 2
n
> wm

m=n—k+1

(12)

Assuming that 7" and 7. are independent for any classifier
pairs Cy and C),, (g # m), the second term in (12) is equal to
zero, and the variance of 1% () becomes

2

n n
2 2 2
or = > (™) T >ooowm (13)
m=n—k-+1 m=n—k-+1

where 0727m denotes the variance of the random variable 7. In

our system, U%m is calculated by

1 2
2 T _ rm

T = Tay 2 W~ JI@) (14)

(z,c)eAs

where A, is an evaluation set used to calculate the classifier
variance, |A,| denotes the number of instances in A,, and ygi
is the genuine class probability of instance z. If z is labeled
as class ¢;, then yfi is equal to 1; otherwise, it is equal to O.
Consequently, the variance of the classifier C),, over all class

c1,C2, ..., cy s given by

l
2 2
T = E:%;’;’
i=1

The total variance of the ensemble E is then given by

n 2
> w™| L (16)

m=n—k-+1

15)

l n

>

i=1 m=n—k+1

which is called the classifier ensemble variance in this paper.
According to Tumer and Ghosh’s conclusion in (7), a clas-
sifier’s expected added error is proportional to its variance.
Consequently, a classifier ensemble’s expected error can be
written as

2
s

5

Equation (17) states that, to minimize the error rate of a
classifier ensemble, we can minimize its variance instead. This
objective can be achieved through the adjustment of the weight
value associated with each of E’s base classifier C,,.

E
Erryqq =

7)
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C. Optimal-Weight Classifier Ensemble

Section III-B concludes that, to build a classifier ensemble
E with minimum error rate, we need to find the weight values
w™, m=n—k-+1,...,n, such that the classifier ensemble
variance defined by (16) can reach the minimum. This is
equivalent to the problem given by
arg min (0’55) . (18)

To find the solution for the problem given in (18), we
define that the weight value of the base C,,, w™, is inversely
proportional to the sum of C,,’s variance 02;@ over all of the [

n
classes as
m __ ., m 2
wr= [ ()

where p'™ is a coefficient that grants one more degree of
freedom in addition to 01272"' defining w™. Combining (19) and
(16), the ensemble variance defined by (16) can be rewritten as

n n 2
2= 3 {(um)”o?]gt}/ ( 3 u’”). (20)

m=n—k+1 m=n—k+1
Now, letting p™ = p™ /3™, the optimization problem in
(18) can be formulated as finding an optimal solution p™
such that

19)

D SRR (GO
m=n—k+1
n
s.t. Z p™=1. (21)
m=n—k+1

This mathematical programming model can easily be solved
explicitly by using a Lagrange multiplier, where the Lagrange

function is given as
{om)?- agg,L}H(

n

L(p™,\)= Z Z pm1>.

m=n—k+1 m=n—k+1
(22)
Taking partial derivative on p™, m=n—k+1,...,n,
we have
n—k+1
% — opnhtl. gizﬁkﬂ A=0
- (23)
OL(p™ A
751;71 ) :2p"-0,2]g+)\:0

Letting ™ = af]m, the above equations are equivalent to

p'hi=p'h Vi#j. (24)
According to (22) and the constraint ) " _ P =1in

(21), we have

m L . (25)

p = -
1+ 0727@, > 1/ o2,
© t=n—k+1,t#m e
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Because the value of w™ is proportional to p™, we can
directly use the p"* values calculated from (25) as the ensemble
weight value w™, m=n—k+1, ..., n, for each individual base
classifier of the classifier ensemble E. Because the whole pro-
cess ensures that the weight values are determined such that the
variance of the classifier ensemble can reach the minimum, the
ensemble classifier is guaranteed to have the lowest error rate.

V. MV ACTIVE LEARNING FROM STREAM DATA

In stream data environments, because labeling all instances
in each data chunk is out of the question, alternative solutions
must determine that given the number of instances for labeling,
which instances should be labeled for each chunk S,,, such
that the labeled instances can build a classifier ensemble with
maximum accuracy in predicting future samples?

To explicitly answer the above question, we shall recall
that Tumer and Ghosh [20] have concluded that a classifier’s
expected added error (i.e., the error in addition to the Bayesian
error) is proportional to its variance, so reducing the variance
directly reduces the classifier’s expected error rate. Following
this conclusion, we can assert that the variance of an ensemble
classifier is also proportional to its added error. Assuming that
the weight values of the base classifiers are properly selected,
the variance corresponding to each individual instance can then
be used to assess whether the instance is “uncertain” w.r.t. the
current ensemble classifier. More specifically, if an instance
contributes a small variance value, then it means that the base
classifiers are consistent in classifying the instance, or in other
words, the knowledge of the instance is already hard coded in
the classifiers. Consequently, labeling this instance will most
likely not provide much “fresh” information to enhance the
ensemble classifier. On the other hand, if an instance has a
large variance value, then it means that the base classifiers
are inconsistent in classifying the instance, possibly because
classifiers do not have sufficient knowledge for prediction (e.g.,
due to the concept drifting). Therefore, labeling such samples
will most likely provide valuable information to help improve
the ensemble classifier.

Based on the above analysis, we propose a minimum-
variance (MV) principle for active learning in the data stream,
where the intuition is to label instances that are responsible
for the large ensemble variance values. We expect that label-
ing those instances can reduce the variance of the ensemble
classifier and eventually minimize its error rate. Fig. 6 shows
the proposed framework, where the whole process consists of
three major steps: 1) initialization; 2) instance labeling; and
3) calculating optimal weight values for ensemble learning. A
loop between steps 2) and 3) continuously repeats with one step
building on the results of the other step. More specifically, the
instance labeling and the ensemble weight updating are mutual-
beneficial procedures with expectation maximization logics as
follows:

1) E-Step (Steps 7 to 9 in Fig. 6): Given a set of weight
values for a classifier ensemble, we use them to find
instances from the data stream for labeling (this is the
interest of active learning).

2) M-Step (Step 10 in Fig. 6): Given a number of labeled
samples, we use them to determine the optimal weight
values for the ensemble classifier, such that the overall
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Procedure: Active Learning from Data Streams

LH<_ @; Un<_Sn

K0
Build a classifier C,, from L,
K«0

Use C,,,/C,,,..,Cm,
For each instance /, in U,
a.  Use ensemble £ to predict a class label for /.

el I R e

EndFor

b.  Use Eq. (25) to find p" values, m=n-k*1, ..., n

11, kextl; KK+l
12. Ifx2[S,)-a
a.  Exit
13. Elseif K>(|S,-a/e)
a.  Repeatstep 4
14. Else
a.  Repeat step 8

Given: (1) current data chunk S,; and (2) k-1 classifiers Cy, .1, .., Cy, .., G,y built from the most recent data chunks;

Parameters: (1) o, the percentage of instances should be labeled from S;; (2) e, # of epochs in labeling & percentage of instances from S,;;

Objective: Label ¢ of instances in S,, such that the classifier built from L,, denoted by C,, along with the previous -1 classifier can form a classifier
ensemble as accurate as possible (in terms of its accuracy on unlabeled instances in S,).

L, < Randomly label a tiny portion, e.g. 1~2.5%, of instances from U,,.

Initialize weight value w" for each classifier C,,, m=n-k+1,.., n, where w” is equal to C,;’s prediction accuracy on L.
..., Cyto form a classifier ensemble £ as shown in Figure 5.

b.  Build an evaluation set A, =L, U I;, where fx denotes /, with a predicted class label.

¢.  Calculate each classifier C,,’s variance on A, (Egs. (14) and (15)), and feed the value into Eq. (16) to calculate ensemble variance and
use this value as instance /,’s expected ensemble variance on E.

9. Choose instance /; in U, with the largest ensemble variance, label /,, and put labeled /, into L,,, i.e., L,= L, U I, U=U, \ I,
10. Recalculate the ensemble variance of each base classifier C,, on L, and find optimum weight value w” for all base classifiers
a.  Calculate each classifier C,,’s variance on A= L, (Eqs. (14) and (15))

¢.  Use p" as optimal weight values w" for each base classifiers
d.  Update classifier ensemble £ by using the new weight values

// recording the total number of labeled instances

// recording the number of instances labeled in the current epoch

// exist if & percentage of instance are labeled
// rebuild model C, if one epoch ends

/lcontinue instance labeling without rebuilding C,

Fig. 6. MYV active learning from stream data.

prediction accuracy can be maximized (i.e., the interest
of weight updating for ensemble learning).

Assuming that the most recent k — 1 classifiers are denoted
by Cp—r+1,Cn_k,.-.,Cph_1, upon the arrival of a data chunk
Sy, our algorithm initiates an active learning process on S,
to selectively label a percent of instances from S, such that
the classifier built from the labeled instances in .S,, along with
the previous k — 1 classifiers can form an accurate classifier
ensemble. Denoting L,, and U, as the labeled and unlabeled
instance subsets of S,,, respectively, since none of the data in
S, have labels in the beginning, we set L,, « @ and U,, < S,
on step 1) in Fig. 6. After that, we randomly label a tiny
portion of instances in S,, and put them into L, ; this process
is followed by a learning procedure that builds a classifier C',
from L,,. The k classifiers Cy,_4+1,Cr—k,...,Cph_1,C,, form
an ensemble F, where the initial weight value w™ of each base
classifier C,,, m =n—k+1,...,n, is set as the prediction
accuracy of the classifier C),, on L,, (obviously, E is not opti-
mized at this stage). After that, our algorithm must determine
which instances in U,, should be labeled such that upon the
accomplishment of the labeling process the classifier ensemble
E has the minimal error rate on the remaining instances in
Sy. Accordingly, the instance labeling process uses the MV
principle to check each unlabeled instances in U,, and selects
those with the largest ensemble variance value for labeling.

According to (14) and (15), the variance of a classifier
ensemble is based on its base classifiers’ variance on a specific
evaluation set A,. For each unlabeled instance I, in U, its

evaluation set consists of all labeled instances in L,, as well as
I, itself, e.g., A, = L, U I,,. Because the calculation of 07272,7/
requires that each instance in A, should have a class label, and
I,’s label is yet to be found, we will use E to assign a class label
for I, (which might be incorrect). We then use (16) to calculate
the ensemble variance on A, which is treated as the ensemble
variance of I, as shown on Steps 8(a) to 8(c).

After the calculation of the ensemble variance for all in-
stances in U,,, we are now able to screen all unlabeled instances
in S,, and label the ones with the largest ensemble variance
value, with the labeled instance I,, moved from U, to L,,. After
that, we recalculate the optimal weight value for each base
classifier by using the updated evaluation set L,, to ensure the
minimum error rate of the classifier ensemble E. The weight-
updating process can also be beneficial for instance labeling
in the next round. For this purpose, we recalculate each base
classifier C',,’s variance on L, (the one calculated in Step 8(c)
is not accurate in the sense that the class label of [, is not
labeled but predicted from £). The variance values of the base
classifiers are used to solve (25) and calculate new weight
values w™ for each base classifier.

Following the weight updating, the algorithm checks the fol-
lowing three conditions to adjust the iterative labeling process:
1) whether the user-specified number of instances have been
labeled (Step 12); 2) whether a new classifier C,, should be
rebuilt after a certain number of instances are labeled (Step 13);
and 3) whether the algorithm should repeat and label the next
instance (Step 14).
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A. Concept Drifting

The MV active learning framework in Fig. 6 can effectively
address concept drifting challenges in data streams. This can be
justified from both local and global perspectives. Locally, since
the classifier C,, is learned from the most recent data chunk
Sy, Cp, has a smaller variance on L,, compared with the other
k — 1 classifiers built from previous data chunks. The solutions
to (25) will show that a classifier with a smaller variance on
L,, will receive a larger weight value and thus plays a more
important role in the classifier ensemble. If the concepts in
chunk S, are significantly different from the other chunks,
then the large weight value associated with C),, will force our
algorithm to favor instances with large variance values w.r.t.
C,,. Because the most recent classifier is believed to be mostly
relevant to the current concept, assigning a large weight value
to C), helps our algorithm locally adapt to concept drifting
in S,. From the global point of view, a classifier ensemble
consists of a set of weighted base classifiers; as concepts evolve
over time, we only need to adjust the weight value of each
base classifier. According to (25), the weight value of the base
classifier is inversely proportional to its variance on chunk S,,.
Assuming that the concept in chunks S, is similar to the chunk
Shn—k+1 but distinct from the rest of the chunks of the ensemble
(i.e., Sn—k+2,---,5,-1), according to (25), the weight value
of C,_+1 1s going to be significantly higher than the weights
of the rest of chunks. By doing so, the whole active learning
framework can quickly adapt to the drifting concepts in data
streams.

B. Speed Enhancement

The algorithm in Fig. 6 updates weight values once for each
single labeled instance. To speed up the process, one can label
multiple, for example, 7, instances in one time (select the ones
with the largest variance) and use all the 7-labeled instances
(along with instances in L,,) to find optimal weight values for
the classifier ensemble (i.e., the weight values are updated once
every 7 instances). For example, assume that the number of
instances in .S,, is 10 000, and the user has specified « = 0.1 and
e = 5. It means that we should label 10% of instances (1000) in
five epochs, and the classifier C,, is retrained from L,, after the
labeling of every 200 instances (one epoch). If the user specifies
7 = 20, then the algorithm will update the ensemble weight
values once in every 20 instances.

C. Time Complexity

We carry out the time complexity analysis under following
assumptions: 1) A quadratic time complexity learning algo-
rithm is employed in the system. In other words, given a training
set with N (labeled) instances, it takes O(N?) computational
time to train a classifier from the data. In addition, we also
assume that the classifier has linear time complexity for predic-
tion, so it takes O(IV) for a classifier to classify N instances.
2) The classifier ensemble E consists of k base classifiers
built from k& consecutive chunks, each of which contains N
instances. The active learning process is supposed to label
« percent of instances from a data chunk S;, in e epochs.
3) The active learning process labels one instance each time,
and the weight values w™, m = n — k + 1,...,n, update after
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the labeling of each single instance (notice that this assumption
gives the upper bound of the proposed algorithm).

Under the above assumptions, the time complexity of the
algorithm on a specific data chunk S,, can be decomposed
into two major parts: B(n) and U(n), where B(n) denotes the
time complexity for model training, and U (n) denotes the time
complexity for active learning and ensemble weight updating.

The value of B(n) is determined by the number of times
retraining the classifier C), and the number of instances used to
train the classifier. Following the above assumptions, we know
C,, is retrained at the end of each epoch, so we need to train C,
for e times (including the first time), and the number of training
examples for each time is given by 0,! i.e., N -a/e,2 x N -
aje,...,(e—1) x N -«fe, respectively. Therefore, the total
time complexity for model training is given by

B(n):o(W>+..,+O(N2'a2-(e—1)2)

e? e?
N2.q2 &4

O( = ~Zt2>O(N2'oz2~e).
t=1

The value of U(n) is determined by the time complexity
of instance selection and weight updating, as well as the
number of times the whole process repeats. If one instance
is labeled each time, then the labeling and weight updating
process need to repeat IV - o times (again, we assume that the
number of initially randomly labeled instances is 0). In each
repetition, active learning needs to calculate the variance of
all base classifiers on the labeled subset [(14) and (15)], and
the weight updating process needs to recalculate the variance
based on newly labeled instances. Because the size of the
labeled instance subset grows continuously, according to (14), a
classifier’s variance on the evaluation set A, can be calculated
incrementally by adding the value of the new instance to the
previous results. Accordingly, assuming that the size of A,
grows from 0 to N - «, the total time complexity is 2 x O(I -
k-N)=0O(l-k-N).

For weight updating, the calculation of p™*, m =n — k +
1,...,n, in (25) takes 2 x O(k) for all k classifiers (it takes
O(k) to calculate the summation in (25) and O(k) to calculate
the p'™ values). In total, the time complexity in each repetition
for weight updating is 2 x O(k). Because the whole weight
updating process needs to be repeated N - « times, the total
time complexity for weight calculation is 2 x O(N - « - k). As
a result, the time complexity for active learning and weight
updating is given by

Un)=2x0(1-k-N+a-l-N).

(26)

27

Assuming that a data stream has M data chunks, the total
time complexity 7'(n) is given by
T(n) =M x (B(n) +U(n))

=O(N?*-M-a*-e)+O(N-M-1-(k+a)). (28)

To further simplify (28), we can consider practical parameter
settings, where M and N are relatively large, whereas e, [, and
k are usually small (« is a numerical value between 0 and 1).

IFor simplicity, we assume that the number of initially randomly labeled
instances on Step (2) in Fig. 6 is very small, which is close to zero.
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Consequently, we can safely assume that [ - (k + o) < N and
a? - e < 1, which gives

T(n)=O(N*-M-a?-e)+O(N-M-1-(k+a))

<2x O(N?-M). (29)

Equation (29) shows that the total time complexity is
bounded by two important factors: 1) the number of instances
in each chunk /N and 2) the number of data chunks M . Because
model training in each chunk is nonlinear w.r.t. the chunk
size, we may prefer a relatively small chunk size to save the
computational cost.

VI. EXPERIMENTAL COMPARISONS
A. Experimental Settings

1) General Setting: To compare different active learning
methods and assess the quality of the labeled instances, we
train a classifier ensemble E for each method by using the
framework in Fig. 2. Therefore, if one classifier ensemble
outperforms its peers, then we can safely conclude that this is
because the instances used to train the classifier ensemble are
of better quality. Notice that different active learning methods
may select different portions of instances from .S,,, which may
lead to different test sets for validation. For valid comparisons,
we have to ensure that all methods are compared on the same
test set. Therefore, our comparisons are based on the average
prediction accuracies on all instances in chunk S, over the
whole data stream.

2) Data Streams:

Synthetic data: To simulate data streams on which we
can fully control the concept drifting speed and magnitude,
we employ a hyperplane-based synthetic data stream generator
that is popularly used in stream data mining research [3],
[7]1-19]. The hyperplane of the data generation is controlled
by a nonlinear function defined by (30) (we intentionally use
a nonlinear hyperplane to challenge active learning methods).
Given an instance z, its class label is determined by the f(z)
value given in (30). Assuming that an f(x) value larger than
a threshold ag indicates that x belongs to class A, otherwise x
belongs to class B, then changing the values of a;,i = 1,...,d,
and threshold ap may lead to different posteriori probabilities
p(c;|x) for instance x. In an extreme situation, it may result
in different class labels for two identical instances. By doing
so, we are introducing dynamic and variant decision boundaries
into the data to simulate concept drifting in data streams, e.g.,

d

I0=3

i=1

(30)

In (30), d is the total dimensions of the input data x. Each
dimension z;,7 = 1,...,d, is a value randomly generated in the
range of [0, 1]. A weight value a;, i = 1,...,d, is associated
with each input dimension, and the value of a; is initialized
randomly in the range of [0, 1] at the beginning. In the data
generation process, we gradually change the value of a; to sim-
ulate concept drifting by using the following three parameters
[2], [7], [8]: 1) t, controlling the magnitude of concept drifting
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TABLE 1II
DATA CHARACTERISTICS OF THE REAL-WORLD DATA
USED FOR EVALUATION

#of #of #of Majority:Minor Accuracy (%)

Name instances attributes classes ity class ratio ————————
C4.5 NB

Adult 48,842 15 2 0.761:0.239  85.17  82.38

Covtype 581,012 55 7 0.488:0.005 89.56  66.24

Letter 20,000 17 26 0.041:0.037  87.98  64.12

(in every N instances); 2) p, controlling the number of attributes
involved in the change; 3) h and n; € {—1,1}, controlling
the weight adjustment direction for attributes involved in the
change. After the generation of each instance x, a; is adjusted
continuously by n; - t/N (as long as a; is involved in the
concept drifting), and the value aq is recalculated to change
the decision boundaries (concept drifting). Meanwhile, after
the generation of N instances, there is an h percentage of
chances that weight change will invert its direction, i.e., n; =
—n,; for all attributes a; involved in the change. In summary,
c2-1100k—d10-p5-N1000-t0.1-h0.2 denotes a two-class data
stream with 100k instances, each containing ten dimensions.
Concept drifting involves five attributes, and their weights
change with a magnitude of 0.1 in every 1000 instances, and
weight inverts the direction with 20% of chance.

Real-world data: We select three relatively large data sets
from the UCI data repository [27] and treat them as data streams
for active learning. The data sets we selected are Adult, Cov-
type, and Letter (as listed in Table II). The domain information
about the three data sets is introduced in the technical report
[60]. To help interested readers capture the learning complexity
of these data sets, Table II also lists the tenfold cross-validation
accuracies of the classifiers built from all instances (based on
C4.5 and naive Bayes classifiers).

3) Benchmark Methods: For comparison purposes, we
implemented the four methods introduced in Section III,
including RS, LU, GU sampling, and AM. The proposed
MV-based active learning method is denoted by MV. In our
implementation, AM follows exactly the GU framework except
that its instance selection procedure is replaced by using AM
[9] to select instances with the most significant distributional
changes for labeling. For fairness of the comparisons, all
classifier ensembles use exactly the same architecture as shown
in Fig. 2. The number of base classifiers is the same for all
methods, and the weight of each base classifier is determined
by its prediction accuracy on subset L,,. The parameter settings
for all methods, e.g., chunk size o and epoch value e, are the
same except for RS, which labels all instances in one epoch.
Classifier C,, is retrained at the end of each epoch for LU,
GU, AM, and MV. Each time MV updates its weights, we also
update the weights for LU, GU, and AM by using instances
in L,, so we can avoid MV taking advantage of doing more
updating than LU, GU, and AM.

All methods are implemented in Java platform. The learning
algorithms employed include C4.5 [26] and Naive Bayes [28],
which are directly imported from the WEKA data mining tool
[25]. Due to page limitations, majority of the results reported
in this paper are based on the C4.5; interested readers can
refer to the technical report [60] for detailed results and project
source codes.
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TABLE 1II
AVERAGE CLASSIFICATION ACCURACY ON DIFFERENT DATA STREAMS
(C4.5). (a) ACCURACY ON ¢2-150k-d10-p5-N1000-£0.1-h0.2 (ov = 0.1).
(b) ACCURACY ON ¢3-150k-d10-p5-N1000-t0.1-h0.2 (o = 0.1).
(¢) ACCURACY ON ¢4-150k—-d10-p5-N1000-t0.1-h0.2 (v = 0.1)

(@)

Chunk Size RS LU GU AM MV
250 74541550 73701275  75.5liz3s 73.93:300 8184123
500 83.071242 82561036  85.16495  82.894%;  87.62121
750 86.101275  85.6913135  88.14i30; 8584003 8948512
1000 8643135  86.11u412 8879547 86.7954 9012302
2000 8647501 8594145  88.69:407  86.62.449  89.164328

(b)

Chunk Size RS LU GU AM MV
250 56.36:271 55461564 56.570m 57.93412 66.3812.02
500 66.311430  66.111403 6699405  65.841404 71955329
750 71-7912.86 70-49t3_61 72.594;3.77 69-401r3.51 75.0013‘33
1000 7529085 74231307 764557  T414m60  79.01uns:
2000 73.92:6.11 72.97:601 76.37 464 74.07:5 23 76.76+4.70

(©)

Chunk Size RS LU GU AM MV
250 42271901 41381150 4134100 416710010 47211156
500 5047234  49.8lny;  4991nss 492955  S54.51nyy
750 58.1liz6s  56.75:326  560.48i300  57.91li324 60124402
1000 63.084367 02721407 61924365 6425571 65144306
2000 71.87:447 70.67:408 70.98:5 .09 72134496 73.0945.77

B. Experimental Results

1) Active Learning With a Fixed o Value: We use C4.5
as the base learner and apply active learning to three types
of synthetic data streams (two-class [Table III(a)], three-class
[Table III(b)], and four-class [Table III(c)]) and report the
results in Table III. The accuracies in the tables denote an
ensemble classifier’s average accuracy in predicting instances
in the current data chunk S,,, with chunk sizes varying from
250 to 2000. We fix the « value to 0.1 and set the k value to
10, which means that 10% of the instances are labeled for each
data chunk, and only the most recent ten classifiers are used to
form a classifier ensemble.

The results from Table III indicate that the performance of
all methods deteriorates as a consequence of the shrinking
chunk size. This is because a smaller data chunk contains
fewer examples, and sparse training examples usually produce
inferior learners in general. The advantage of having a small
chunk size is the training efficiency. This is particularly sig-
nificant for learning algorithms with nonlinear computational
complexity. As shown in (29), the time complexity of our
algorithm nonlinearly increases w.r.t. the number of instances
in each chunk.

For any particular method, Table III indicates that the results
in multiclass data streams are significantly worse than a binary
class data stream, although all data streams are generated from
the same type of hyperplanes [defined by (30)]. This shows
that active learning from a multiclass data stream is more
challenging than a binary class data stream.

Comparing all five methods, we can easily conclude that
MYV receives the best performance across all data streams. The
LU-based method is not an option for active learning from
data streams, and its performance is constantly worse than
RS regardless of whether the underlying data are binary or
multiple classes. Although GU outperforms RS quite often, for
multiclass data streams (e.g., four classes), its performance is
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unsatisfactory and is almost always inferior to RS. The results
from RS are surprisingly good, and it is generally quite difficult
to beat RS with a substantial amount of improvement [the
largest improvement of MV over RS we observed is 9.81%,
which is from a two-class data stream in Table III(b)]. As
we have analyzed in Section III, RS naturally addresses the
challenges of varying class distributions in data streams by
randomly labeling instances in the data chunk. As a result, it
produces a subset with the most similar class distributions to
the genuine distributions in the original chunk.

For the AM-based sampling method, we observed that its
performance is worse or marginally better than random selec-
tion and worse than GU most of the time. Since AM strictly
follows the GU framework, except that the instance selection
procedure is replaced by using a distribution-based measure (in-
stead of the uncertainty measure), this concludes that instance
distribution is less effective than uncertainty-based measures
for finding the most “important” samples for labeling. We
believe that the reason behind this is twofold: 1) AM relies on
sample distributions to select “important” instances for label-
ing. Notice that sample distributions do not necessarily have a
direct connection to indicate whether an instance is “important™
for labeling or not, even if the decision tree does accurately cap-
ture the data distributions. Consider a two-class sample set with
genuine decision boundary denoted by = = 0, the vertical line
(i.e., instances with & < 0 are classified as ¢y, or ¢y otherwise).
Given a labeled two-instance sample set S; = {c; : 21 =
—1,¢q : 9 = 0}, which outputs a one-node decision tree with
two leaves (splitting at —0.5), the distribution of Sy on the tree
is (c1 : 0.5,¢5 : 0.5). Given another two unlabeled sets Sy =
{5 = —3,24 = —4} and S5 = {25 = —1, ¢ = 1}, their dis-
tributions on the tree are (¢q : 1.0,¢2 : 0.0) and (c¢; : 0.5¢3 :
0.5), respectively. According to the AM principle, one should
label S5 instead of S5 because the former has a larger distribu-
tional difference from S;. It is, however, very clear that labeling
samples in Sy does not provide any additional information to
enhance the current decision boundary (' = —0.5) toward the
genuine decision boundary (x = 0), whereas labeling S3 can
indeed offer help. 2) It is well known that decision trees are sen-
sitive to the training set, and changing one or multiple training
samples can produce trees with radically different structures.
Consequently, even if instances with significant distributional
changes are worth labeling, using a decision tree may not be
able to capture the genuine distributions of the underlying data.

To compare different methods at individual data chunk level,
we record each method’s accuracy on each single data chunk
and report the results (ten times average) in Fig. 7(a), where the
x-axis represents data chunk ID in its temporal order, and the
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y-axis shows the classifier ensemble accuracy (chunk size 500).
Meanwhile, to demonstrate the impact of the changing priori
class distributions on data streams, we record class distributions
of each data chunk and report the values in Fig. 7(b). The results
in Fig. 7 indicate that the accuracies of the data chunks vary
significantly across data streams. Comparing the accuracies to
the corresponding class distributions reveals a clear connection
between them. If a data stream is experiencing a significant
class distribution change, it immediately impacts on the clas-
sification accuracy.

The results from Fig. 7(a) show that MV consistently outper-
forms other methods across all data chunks, which asserts that
the advantage of MV can be observed across different types of
data streams (binary class and multiclass) and different chunks
across the whole data stream.

2) Active Learning With Different o Value: In Fig. 8, we
compare all four methods w.r.t. different o values. Not sur-
prisingly, when the « value increases, all methods gain better
prediction accuracies. This is because the increasing number
of labeled instances helps build strong base classifiers. Overall,
MYV and GU achieve the best performance, and LU is inferior
to RS in the majority of the cases. Both MV and GU label
instances for the benefit of a global classifier ensemble but
from different perspectives. GU labels instances with the largest
uncertainty w.r.t. the current classifier ensemble, whereas MV
labels instances with the largest ensemble variance. The main
difference is that GU intends to label instances that have the
largest mean uncertainty over all base classifiers, whereas MV
prefers to label instances contradictory to base classifiers.

As discussed in Section III, GU extends QBC to data streams
by using classifiers learned from different data chunks as com-
mittee members. In the original QBC, the committee members
are learned from the data with the same distributions (randomly
sampled from the labeled data); therefore, committee members
are similar to each other with relatively small variances in
their predictions. In data stream environments, the committee
classifiers are learned from different portions of stream data,
and the concept drifting in data chunks also renders classi-
fiers significantly different from each other. As a result, the
weighted average uncertainty over all committee members may
not reveal the genuine uncertainty of the ensemble formed by
them. The results in Fig. 8 support our hypothesis very well.
As we can see, MV constantly outperforms GU across all «
values. For multiclass data streams, the performance of GU is
unsatisfactory and is largely inferior to the RS. This becomes
extremely clear in the next section, where GU’s performance
on a real-world 26-class data stream is significantly worse than
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RS and MV, particularly when a small portion of instances are
labeled.

3) Active Learning From Real-World Data: In Fig. 9, we
report the algorithm performance on three real-world data. Dif-
ferent from synthetic data streams, where the decision concepts
in data chunks gradually change and follow the formula given
in (30), the real-word data do not share such concept drifting
property among data chunks, and in fact, we do not even know
the genuine concepts underneath the real-world data.

The results in Fig. 9 again assert that MV consistently
outperforms other methods. Although GU is able to perform
well for both Adult and Covtype, its performance on Letter
is significantly worse than all the other methods, where its
accuracy can be as much as 20% lower than MV. Considering
that Letter is a sparse data set with 26 evenly distributed
classes, this observation supports our analysis in Sections III
and VI-B, where for sparse data streams with a large number
of classes, the classifiers built from different data chunks vary
significantly. Simply calculating the averaged uncertainty over
all committee classifiers (like QBC does [13], [14]) is not a
good solution and can produce much worse results than RS.

4) Active Learning From Noisy Stream Data: The adoption
of the chunk-based ensemble learning framework for data
streams raises a possible concern that the whole framework
may be sensitive to attribute noise, particularly when the size
of the data chunk is small. This is because of the following:
1) a classifier learned from a small chunk may be overfit to the
noisy data, and 2) the instance selection process may focus on
“noisy” samples since they are likely the ones responsible for
a high variance value. To assess the system performance on a
noisy stream data, we employ a random noise injection process
[23] to corrupt the stream data. Given an instance x and an
attribute noise level, for example p = 0.1, the noise is injected
such that each attribute value of x has a probability of p to be
changed to another randomly selected value. Therefore, if x has
ten attributes and p = 0.1, it means that, on average, at least one
attribute of x is noise corrupted.

In Fig. 10, we report the results on two data streams, with the
attribute noise varying from 0 to 0.25. Overall, attribute noise
brings significant impact to the underlying methods, where
for as little as 5% attribute noise, the prediction accuracy can
deteriorate up to 6%. When comparing RS to MV, we can find
that MV constantly outperforms RS across all noise levels,
and their performances both deteriorate, as the noise levels
increase, at almost the same rate. This asserts that compared
to random selection, which has no special treatment for noise,
the proposed MV framework does not seem to be any more
vulnerable to noise. Indeed, as long as noise is randomly
distributed in some or across all attributes, the chance for
an “important” instance to be corrupted is the same as an
“unimportant” instance. Therefore, the proposed MV method
is practically not sensitive to noisy data and small chunk sizes.

5) Runtime Performance Study: In Fig. 11, we report the
system runtime performance, where the z-axis denotes the
chunk size, and the y-axis denotes the average system runtime
w.r.t. a single data chunk. Because AM strictly follows the GU
framework except that its instance selection module is replaced
by using a distributional measure, the runtimes of AM and GU
are very close to each other with AM slightly more efficient
than GU. Not surprisingly, RS has demonstrated itself to be the
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most efficient method due to its simple random selection nature.
GU and AM are at the second tier because instance labeling
in each chunk involves a recursive labeling and retraining
process. Similar to GU and AM, LU also requires a recursive
instance selection process plus a number of local training to
build classifiers from each chunk. Consequently, LU is less
efficient than GU and AM. The proposed MV method is the
most time-consuming approach mainly because the calculation
of the ensemble variance and the weight updating require
additional scanning in each chunk. On average, when the chunk
size is 5000 or less, the runtime of MV is about two to four
times more expensive than its other peers. The larger the chunk
size, the more expensive the MV can be, because the weight
updating and instance labeling requires more iterations. Such
observations are consistent with the analysis in Section V-C
and suggest that MV prefers smaller chunk sizes from the
computational efficiency perspective.

VII. CONCLUSION

In this paper, we have proposed a new research topic on
active learning from stream data, where data volumes con-
tinuously increase and data concepts dynamically evolve, and

the objective is to label a small portion of the data to form a
classifier ensemble with minimum error rate in predicting future
samples. To address the problem, we studied the connection
between a classifier ensemble’s variance and its prediction
error rates and showed that minimizing a classifier ensemble’s
variance is equivalent to minimizing its error rates. Based on
this conclusion, we derived an optimal weighting method to
assign weight values for base classifiers such that they can form
an ensemble with minimum error rate. Following the above
derivations, we proposed an MV principle for active learning
from stream data, where the key is to label instances responsible
for a large variance value from the classifier ensemble. Our
intuition was that providing class labels for such instances
can significantly reduce the variance of the classifier ensemble
and therefore minimize its error rates. Experimental results on
synthetic and real-world data showed that the dynamic nature
of data streams imposes significant challenges to existing active
learning algorithms, particularly when dealing with multiclass
problems. Simply applying uncertainty sampling globally or
locally to the data may not receive good performance in prac-
tice. The proposed MV principle and active learning framework
address these challenges using a variance measure to guide the
instance selection process, followed by the weight optimization
to ensure that the instance labeling process can quickly adapt to
the drifting concepts in the stream data.
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