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Abstract—Traditional active learning methods require the labeler to provide a class label for each queried instance. The labelers are

normally highly skilled domain experts to ensure the correctness of the provided labels, which in turn results in expensive labeling cost.

To reduce labeling cost, an alternative solution is to allow nonexpert labelers to carry out the labeling task without explicitly telling the

class label of each queried instance. In this paper, we propose a new active learning paradigm, in which a nonexpert labeler is only

asked “whether a pair of instances belong to the same class”, namely, a pairwise label homogeneity. Under such circumstances, our

active learning goal is twofold: (1) decide which pair of instances should be selected for query, and (2) how to make use of the pairwise

homogeneity information to improve the active learner. To achieve the goal, we propose a “Pairwise Query on Max-flow Paths” strategy

to query pairwise label homogeneity from a nonexpert labeler, whose query results are further used to dynamically update a Min-cut

model (to differentiate instances in different classes). In addition, a “Confidence-based Data Selection” measure is used to evaluate

data utility based on the Min-cut model’s prediction results. The selected instances, with inferred class labels, are included into the

labeled set to form a closed-loop active learning process. Experimental results and comparisons with state-of-the-art methods

demonstrate that our new active learning paradigm can result in good performance with nonexpert labelers.

Index Terms—Active learning, weak labeling, pairwise label homogeneity

Ç

1 INTRODUCTION

IN many real-world applications, manually labeling mas-
sive data collections is expensive and impractical. Active

learning [6], [29] aims to address this issue by selecting a
subset of most critical instances for labeling. An active
learner aims to achieve a high classification accuracy using
as few labeled instances as possible, thereby minimizing the
cost for acquiring labeled instances [30]. In most traditional
active learning methods, an expert labeler (also called an
“oracle”) is required to provide ground truths to the queried
instances and the model is updated by incorporating the
new labeled data. The updated model is applied to the unla-
beled data again and another subset of unlabeled data are
selected for the expert’s labeling. This procedure is iterated
multiple times until some criterion is met.

Although the classical active learning paradigm only
requires a subset of instances to be labeled, it is not an easy
task for that the selected subset can still be of large size and

the active learning can last for many iterations. In addition,
because the model is learned only based on a subset of the
entire data set, the labeling quality of the selected instances
is extremely crucial for the model’s performance. As a
result, the labeling task in traditional active learning meth-
ods is still expensive in many cases.

Recently, researchers resort to employing committees of
weak (nonexpert) labelers, which are cheaper but can only
provide noisy labels for unlabeled instances. Some works
based on this idea have been proposed, such as [26], [32],
for solving the standard supervised learning problem with
multiple weak labelers. However, such noisy labels may not
be helpful in active learning scenarios for at least two rea-
sons: (1) Because only a small subset of critical instances is
selected for labeling, the labeling quality in active learning
is more sensitive to the model’s performance than that in
standard supervised learning. (2) Because active learning
comprises multiple learning iterations, the errors induced
in each round will be passed onto the following rounds and
will be amplified. Therefore, asking nonexpert labelers to
directly provide noisy labels may be risky for active
learning.

In this paper, we propose a new active learning para-
digm, named pairwise homogeneity based active learning
(PHAL), in which a nonexpert labeler is only asked
“whether a pair of instances belong to the same class”.
Unlike labeling individual instances, pairwise label homo-
geneity has less requirement on labelers’ domain knowl-
edge. This intuition can be illustrated using an animal
classification example in Fig. 1, in which pictures (a)-(c) are
camels and (d)-(e) are sheep. Suppose (a) and (f) are labeled
as “camel” and “sheep”, respectively, and our goal is to
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actively label some of the remaining pictures to train a clas-
sifier. In traditional active learning, we need a zoologist to
label these pictures since a nonexpert may find it difficult to
tell the ground truth label of (c), which seems unlike to
either (a) or (f). In PHAL, this puzzle can be addressed by
querying the label homogeneities of pair (a, b) and pair (b,
c), which are visually similar and can be easily labeled by a
nonexpert. It does not matter even though the nonexpert
provides a wrong label for the pair (a, c)—As long as most
label homogeneities in local neighborhoods are correctly
labeled, the underlying learner will finally find paths from
any unlabeled instance to the labeled ones based on the
pairwise homogeneity information. Thus, PHAL can not
only reduce labeling cost but also tolerate more noise.

Based on this assumption, the underlying queries in
PHAL are to generate pairwise constraints between labels,
which will be incorporated into the active learning proce-
dure. Fig. 2 illustrates the difference between the traditional
active learning paradigm and the proposed one. In contrast
to a specific label assigned to each queried instance in the tra-
ditional paradigm, the new paradigm only acquires a pair-
wise label homogeneity information (“yes/no”) for each
query, which is much easier and cheaper for the labeler.

While the aforementioned nonexpert labeler based active
leaning paradigm provides an opportunity to reduce label-
ing cost and makes a labeling task easier to fulfil, the “yes/
no” pairwise label homogeneity information cannot be
directly utilized to benefit active learning due to a lack of
specific class labels for individual instances. Therefore, to
enable an effective active learning process based on the pair-
wise label homogeneity information, we need to address
two technical challenges: (1) decide which pair of instances
should be selected for query, and (2) how to make use of the
pairwise homogeneity information to improve the active
learner. For pair selection, we propose to query pairwise
label homogeneity of unlabeled pairs on the Max-flow paths
and update the corresponding Min-cut models with the
query results. Using the improved Min-cut models, we
select a subset of instances with high confidences on their
prediction results, and include these instances, along with
their inferred class labels, into the labeled set to improve the
active learning process.

Compared to the existing active learning work, the con-
tribution of PHAL is threefold:

� Pairwise label homogeneity versus specific labels: Que-
rying class labels of individual instances is expen-
sive in the traditional active learning paradigm,
even if the size of queried subset is not large. To
reduce labeling cost, PHAL only queries pairwise
label homogeneities of unlabeled instance pairs,
which is much easier and can be answered by non-
expert labelers.

� max-flow based pair selection versus random pair selec-
tion: To decide which pair of instances should be
selected for query, we construct an instance graph
and regard that instance pairs on the Max-flow
paths are more important to help discriminate
instances of different classes. We theoretically ver-
ify that the Max-flow paths based weight adjust-
ment strategy can reduce the leave-one-out (LOO)
error of the corresponding Min-cut based classifier,
which confirms that, compared to random pair
selection, our instance pair selection strategy is
more effective for refining the decision boundary.

� A utility measure for instance selection: Based on the
prediction results of the Min-cut based classifier
ensemble, the proposed utility measure uses a confi-
dence based data selection criterion to choose data
with high prediction confidence to extend the
labeled data set.

The remainder of the paper is organized as follows. We
introduce related work in Section 2. The problem formula-
tion and the proposed method for active learning by query-
ing pairwise label homogeneity are presented in Sections 3
and 4 respectively. Experimental results are reported in Sec-
tion 5 and we conclude the paper in Section 6.

2 RELATED WORK

Traditional active learning [29] intends to reduce labeling
cost by selecting the most informative instances to label,
where informativeness is typically defined as the maximum
expected improvement in classification accuracy. After
selecting an optimal subset of most informative instances
(an instance subset can also contain only one instance), it

Fig. 1. A motivating example of active learning using pairwise label
homogeneity. The underlying learning task is to differentiate two types of
animals “camel” (first row) versus “sheep” (second row). Instead of
requiring labelers to provide ground truth label for (c), which is difficult to
obtain because (c) is visually similar to both (a) and (f), we propose to
label homogeneities of pair (a,b) and pair (b,c), which are visually similar
and can be easily labeled by a nonexpert, to help build accurate
classifiers.

Fig. 2. Traditional active learning paradigm versus the proposed PHAL
paradigm. Traditional active learning explicitly queries the class label of
each instance, whereas our approach queries the class homogeneity
between a pair of instances, i.e., whether a pair of instances belong to
the same class or not. Because the labeler is not required to provide
class label of each queried instance, pairwise label homogeneity queries
are much easier/cheaper to answer in reality.
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will query the labels of these instances from the labeler.
Based on the types of query strategies, active learning can
be divided into the following categories (interested readers
can refer to our recent survey [15] for a detailed summariza-
tion of existing active learning methods).

Active learning with membership queries represents a group
of methods which directly query the class labels of individ-
ual instances. Briefly speaking, the active learner acquires
instance labels from the labeler to extend the labeled train-
ing set and refines the model iteratively. This strategy
explicitly queries the class membership of each instance.
Existing methods in this category can be roughly divided
into three subcategories: pool-based active learning, stream-
based active learning, and query construction based active learn-
ing. Pool-based active learning [17], [19] assumes all (labeled
and unlabeled) instances can be observed as a candidate
pool. It first measures sample utilities in the pool to decide
which ones can maximally improve the performance of the
current model; then the learner queries their class member-
ships from a domain expert. Stream-based active learning
[42], [43], on the other hand, assumes that unlabeled instan-
ces are constantly flowing in a stream fashion. An active
learning method is required to label the most informative
instances to help train an accurate prediction model from
the stream data. Query construction based active learning
[3], [20] can generate some synthetic instances (without an
unlabeled pool) and then query labels for these pseudo-
instances to extend the labeled training set.

Active learning with generalized queries represents a set of
algorithms which ask some simplified (or generalized)
questions to help improve the classification accuracy. Gen-
eralized query is different from membership query mainly
because the former asks the class labels of a subset of instan-
ces instead of a specific instance. In contrast to asking the
labeler specific queries, the domain experts are ready to
answer “simplified” or “generalized” queries formed by an
optimal feature subset. For example, instead of directly ask-
ing whether a specific patient (i.e., an instance) has one type
of disease (i.e., class label) or not, a learner can ask general-
ized questions like “for patients with high blood pressure
whether they are likely to have the disease or not?”. The
answers to the generalized questions can help refine the
decision boundary for classification. In [10], the authors pro-
posed a feature based query method in active learning,
which utilizes a simple feature to label instances. A general-
ized query is introduced in [11], [28] to label instances in
groups. [37] adds confidence scores to instances based on
affinities between features and labels. In [14], we employed
a nonexpert labeler based active learning to query whether
a pair of instances belong to the same class.

A number of studies [9], [22], [25], [27], [33] have shown
that active learning greatly helps reduce labeling effort in
various domains. However, traditional active learning
depends on some strong assumptions about labelers. For
example, active learning assumes there exists a unique
omniscient labeler. In reality, it is more likely to have multi-
ple labelers with different areas of expertise. Active learning
also assumes that the unique labeler is perfect (say “oracle”)
and always provides correct answers to the queried instan-
ces. In reality, though, the labeler may be incorrect and pro-
vide noisy answers sometimes. Furthermore, the labeler is

not always indefatigable, that is to say, it may refuse to
answer if it is uncertain or too busy. Active learning pre-
sumes the labeler is either free or inexpensive and charges
uniform cost in labeling tasks. To relieve these strong
assumptions, a large number of methods have been pro-
posed to handle applications with nonexpert labelers sce-
narios. From the labeler’s perspective, existing solutions
mainly follow two directions:

� Active learning with one labeler: Many methods [21] in
active learning focus on selecting instances for label-
ing and assume that the labeling task is handled by a
single, noise-free labeler. This kind of methods only
consider the labeling cost on a large size of data set,
which is addressed by selecting a subset of data with
maximum utilities. The classical utility measures
used in active learning can be categorized into four
major types: Uncertainty sampling is based on poste-
rior probabilities, including margin sampling [1],
entropy measures [30], and least confidence meas-
ures [2]. Query by committee (QBC) [31] is the second
commonly used type, where a committee of classi-
fiers are used to assess unlabeled instances based on
voting disagreements or divergences. The third type
uses expected model change for discriminative probabi-
listic models, such as sequence labeling using condi-
tional random fields [30]. In the fourth type, the
selection criterion is to find instances directly reduc-
ing model bias and/or variance [16], [27] such that the
model trained from the labeled instances is expected
to achieve the minimum error rate.

� Active learning with crowdsouring labelers: The meth-
ods in this category use a group of cheap and noisy
labelers to address the labeling cost issue. Due to the
noisy labels provided by nonexpert labelers, the
tradeoff between labeling noise and labeling cost is a
big challenge for active learning with crowdsourcing
labelers [32], [38]. In order to improve labeling qual-
ity of weak labelers, some works [8], [23], [34], [35],
[40] explicitly consider each labeler’s annotation cost
and confidence to select one or a subset of optimal
labelers to a specific queried instance; others may
use incrementally relabeling method [39] or transfer
learning [13] to obtain an accurate labeler.

Different from all the above methods, the proposed
active learning paradigm employs nonexpert labelers to
perform labeling in each iteration of the active learning pro-
cess, but only requests them to provide pairwise label
homogeneity information (i.e., whether a pair of instances
have the same labels or not). Compared to specifying
instance labels, answering “whether two instances belong
to the same class” is much simpler for nonexpert labelers
and the queried results are more reliable for training predic-
tion models.

3 PROBLEM FORMULATION

3.1 Problem Setting

Given a data set D, which comprises a labeled subset DL, an
unlabeled subset DU , and a test set DT . The ith instance in
DL is denoted by ðxi; yiÞ, where xi is the feature vector and
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yi is the class label. Meanwhile, the ith instance in DU or DT
is denoted by ðxi; ?Þ, with the question mark denoting an
unknown label. In order to train a classifier onDL with max-
imum prediction accuracy, a commonly employed strategy
for active learning is to query the class labels of the most
informative instances in DU from an expert labeler (also
called oracle) and expand DL with the new labeled data.

Instead of directly querying the instance labels in a tradi-
tional active learning way, we consider a pairwise label
homogeneity query setting in this paper. Assume we
employ a nonexpert labeler, who can only answer whether
a pair of instances ðxi;xjÞ belong to the same class or not.
We aim to solve the following two technical challenges:
(1) Given an active learner, how to select unlabeled pairs for
querying label homogeneity. (2) After collecting the
answers, how to make use of such information to train a bet-
ter classifier.

For ease of presentation, the notations used in this paper
are summarized in Table 1.

3.2 Method Overview

The incorporation of pairwise label homogeneity informa-
tion immediately inspires a graph-based transductive
learning approach. Our main idea is to make use of
homogeneity information to iteratively correct the edge
weights of the similarity graph in the graph-based trans-
ductive learner and finally boost its prediction accuracy.
Specifically, we first select some most important pairs to
query from the nonexpert labeler. Then, the label homo-
geneity information is used to update the current model.
After that, we infer the class memberships of unlabeled
data based on the updated model and evaluate data util-
ity with a utility measure. Finally, a classifier including
the selected most informative instances with inferred
labels is trained to predict the test set. This active learning
paradigm is illustrated in Fig. 3.

To instantiate the above active learning paradigm by
incorporating pairwise label homogeneity information, we
can choose a graph-based transduction model as a base
learner. We employ Min-cut [4], [5] as the base leaner,
which naturally rests on a pairwise similarity graph for ver-
tex bipartition (binary classification) by minimizing the sum
of the edge weights between two partitions (one for positive

instances and the other for negative instances). Because
Max-flow paths play an important role for graph bipar-
tition, we select unlabeled pairs on the Max-flow paths as
the most important pairs to query their label homogeneity.
We use an ensemble of Min-cut classifiers to infer the class
memberships of unlabeled vertices and treat the majority
voting results outputted by the Min-cut classifier ensemble
as the final prediction result of an unlabeled vertex. The
maximum probability output value is considered as its con-
fidence. It is assumed that the vertices with the highest con-
fidence values provide most useful information to help
build an accurate model.

Before proceeding, we give an overview of the proposed
PHAL procedure with the following four major steps:

1. Graph ensemble construction. To build Min-cut based
classifiers, we first construct an ensemble of k-NN
graphs in terms of k in a range with a fixed step.

2. Weight adjustment in min-cut sets. After applying the
Min-cut algorithm to the obtained graphs, a nonex-
pert labeler is asked to provide label homogeneity
information to the queried instance pairs. Based on
the query results, we adjust the weights of the que-
ried pairs.

3. Confidence based data selection. The class memberships
of unlabeled vertices are inferred according to the
ensemble of Min-cut classifiers. By sorting the unla-
beled vertices according to their label confidences,
the top vertices are selected as the optimal subset @.

TABLE 1
Notations Used in the Paper

Fig. 3. The proposed pairwise homogeneity based active learning
framework.
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4. Weight update in selected subset. We use the final pre-
diction result of an unlabeled vertex in @ as its class
label. Then we further check the edges which have
the vertices in @. If an edge links two labeled vertices,
we update the edge weight according to its label
homogeneity. By doing so, we obtain the class labels
of the vertices in @, and then use the vertices with
inferred class labels to update the graph weights. As
a result, the labeler’s answers to the label homogene-
ity queries can be incorporated into the Min-cut clas-
sifiers in the next iteration to improve the active
learning process.

The last three steps will iterate multiple times until
reaching the budget D (i.e., the total number of queried
pairs during active learning iterations). In each iteration,
the active learner selects a small optimal subset @ and treats
the predicted labels as their genuine labels. This informa-
tion is then used to update both the graph ensemble G and
the classifier ensemble H, and also helps select the optimal
subset in the next iteration. The entire algorithm is
described in Algorithm 1.

4 THE PROPOSED METHOD

In this section, we introduce the technical details of the pro-
posed pairwise label homogeneity query based active learn-
ing method. Section 4.1 and Section 4.2 will address the first
challenge mentioned in Section 3.1, and Sections 4.3 and 4.4
will address the second challenge, followed by the compu-
tational complexity analysis.

4.1 Graph Ensemble Construction

Given a distance metric, many methods exist to construct
graphs. In the following, we introduce the design criteria
for constructing an graph ensemble used in the Min-cut
algorithm. First of all, it is expected that a graph at least has
some small balanced cuts for the Min-cut based approach.
While these cuts may be inconsistent with the labeled verti-
ces, we do not anticipate that the Min-cut algorithm fails in

the beginning. This suggests that the potential graph con-
struction method only produces edges between very similar
nodes. Second, the graph is expected to have the property
that a small number of connected components cover nearly
all the instances. This indicates that the graph can represent
the real data distribution and provide sufficient correlation
information between the instances in the data set.

Based on the above criteria, we adopt the k-nearest neigh-
bor (k-NN) algorithm [7] to construct graphs, where an edge
exists between two vertices (instances) if one vertex is a
member of the other one’s top k nearest neighbors, and vice
versa. This setting caters the first criterion with the assump-
tion that vertices near in the topology structure are similar to
each other. Furthermore, it is helpful to select the best model
parameter k to reach its optimal performance. However, it is
difficult to obtain the optimal k for adapting different data
sets, so as to reflect real data distributions as the second crite-
rion says. To this end, we construct an ensemble of graphs
with different k values ranging from 3 to 24 with a fixed step
of 3. Because of the generalization capability of the ensemble
model, it guarantees that our method can at least outperform
the average performance of the individual models built sepa-
rately with different k values.

Given the labeled data set DL and the unlabeled data set
DU , we collect all instances in DL [ DU to form the vertex
set V ¼ VL [ VU in the graph ensemble. That is to say, vi 2 V
is assigned a feature vector xi and a class label yi, if labeled,
or “?” if unlabeled. For N different values of k, we construct
N edge sets E1; . . . ; EN � V � V, respectively. As a result, we
can obtain a graph ensemble G ¼ fG1 ¼ ðV; E1Þ; . . . ;GN ¼
ðV; ENÞg. We use VLþ to indicate the vertex set with positive
labels and VL� the vertex set with negative labels. An edge
weight wðvi; vjÞ in a graph is set using following steps:

� Add classification vertices. Because we use the Min-cut
algorithm, it is required to set a source vertex and a
sink vertex. We add two binary classification vertices
vþ and v� to the vertex set, which are treated as the
source and the sink, respectively. As a result, the ver-
tex set for constructing the graph ensemble becomes
V ¼ V [ fvþ; v�g. All the other vertices in V, except
fvþ; v�g, are called data vertices.

� Set edge weights with classification vertices. The classifi-
cation vertex vþ and v� are only connected to the
labeled vertices in VLþ and VL�, respectively. The edge
weight between the classification vertex and a
labeled vertex is set to a large value 1. Specifically,
wðvþ; viÞ ¼ 1 for all vi 2 VLþ and wðv�; viÞ ¼ 1 for
all vi 2 VL�.

� Set edge weights without classification vertices. As ana-
lyzed before, we adopt the k-NN algorithm to gener-
ate the edge for each pair of data vertices. The edge
weight between two data vertices represents the sim-
ilarity between them. Specifically, the weighting
function used in the paper is determined as follows:

wðvi; vjÞ ¼ expð�dðvi; vjÞÞ; (1)

where dðvi; vjÞ denotes the distance between xi and
xj. We adopt Hamming distance for categorical fea-
tures and euclidean distance for numerical features.
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4.2 Weight Adjustment in Min-Cut Sets

After graph construction, we use the Min-cut algorithm to
bipartition the graphs for binary classification [4]. The
Min-cut based classifiers are based on the Max-flow Min-
cut theorem [24], which states that, given a flow network,
the maximum flow passing from the source to the sink
equals the minimum cut of edge capacities (weights) in
the network.

Theorem 1 (Max-flow Min-cut Theorem [24]). Let f be a flow
passing from the source to the sink in a network G and ðA;BÞ
be a cut, where G ¼ A [ B. Then, for any cut, we have
fðGÞ � wðA;BÞ, where wðA;BÞ is the capacity of the cut.
When fðGÞ ¼ wðA;BÞ, f is a maximum flow and ðA;BÞ is a
minimum cut of the network.

Proof. Suppose the source is in A and the sink is in B, then
fðGÞ from the source to the sink is equal to the flow pass-
ing from A to B. Let fðvi; vjÞ denote the flow on a
directed edge vi ! vj, we have

fðGÞ ¼
X

vi2A;vj2B
fðvi; vjÞ �

X

vi2B;vj2A
fðvi; vjÞ (2)

�
X

vi2A;vj2B
fðvi; vjÞ (3)

�
X

vi2A;vj2B
wðvi; vjÞ ¼ wðA;BÞ: (4)

The first inequality holds obviously and the second holds
because the flow on an edge cannot exceed its capability.
When there is no backflow from B to A and no additional
capacity can be explored in the cut, we can obtain
fðGÞ ¼ wðA;BÞ. tu
The maximum flow through a series of paths relies on

the smallest flow of the edge on each path, which is also
the bottleneck of each path. This implies, if these bottle-
neck edges are removed from the network, it results that
no flow can pass from the source to the sink. Thus, Max-
flow and Min-cut is an equivalent problem and we
can determine a minimum cut using the maximum flow
algorithm.

When the labeled data are insufficient and the unlabeled
data are abundant, as in the active learning problem setting,
Min-cut based classification may have many minimum cuts
(with equivalent maximum flows). This may lead to
extremely imbalanced cuts, which is harmful for binary
classification. Since Min-cut based classification [4], [5]
belongs to a family of semi-supervised learning methods
based on the manifold assumption [44], which assumes that
the instances are more likely to belong to the same class if
they are close in the feature space. This commonly used
assumption motivates our new active learning paradigm to
obtain additional label homogeneity information by query-
ing unlabeled pairs on Max-flow paths in the Edmonds-
Karp algorithm [12].

To acquire pairwise label homogeneity information, we
query “whether vi and vj belong to the same class” to

the nonexpert labeler. Based on the query result, we adjust
the weight of edge between vi and vj as follows:

wðvi; vjÞ ¼
wðvi; vjÞ � ð1þ @Þ if yi ¼ yj;
wðvi; vjÞ � ð1� @Þ if yi 6¼ yj;

�
(5)

where @ is an adjustment factor, which determines the
weight updating scale (0 < @ < 1). According to Eq. (5),
the edge weight increases by @, if the pair has the same class
label, and decreases by @, otherwise.

We theoretically verify that the above weight adjustment

can reduce the leave-one-out error of the underlying Min-cut

based classifier. [4, Lemma 3.4], shows the prediction result

yi ¼ signð
P

j2kNNðiÞ yjwðvi; vjÞÞ, where kNNðiÞ denotes the k

nearest neighboring vertices. Based on this result, a margin-

like quantity is defined in [18]

�i ¼ yi
P

j2kNNðiÞ yjwðvi; vjÞP
j2kNNðiÞ wðvi; vjÞ

; (6)

which can be viewed as the margin between an instance and
the decision boundary. We use this margin-like quantity to
upper bound the leave-one-out error

�LOOðDÞ �
XjDj

i¼1

ð1� �iÞ; (7)

which suggests that the error rate can be reduced by making
the upper bound tighter. We can have the following result.

Theorem 2. The upper bound Eq. (7) will become tighter if the
edge weights are adjusted according to the pairwise label homo-
geneity query result using Eq. (5).

Proof. To prove that the upper bound Eq. (7) can become
tighter, we can equivalently prove that Eq. (8) will
increase after adjusting the edge weights using Eq. (5):

XjDj

i¼1

�i ¼
XjDj

i¼1

X

j2kNNðiÞ
yiyj

wðvi; vjÞP
j2kNNðiÞ wðvi; vjÞ

: (8)

If the queried pair have the same label (i.e., yiyj ¼ 1),
wðvi; vjÞ will become larger and the margin Eq. (8) will
increase accordingly; if the queried pair have different
labels (i.e., yiyj ¼ �1), wðvi; vjÞ will become smaller and
the margin Eq. (8) will also increase accordingly. There-
fore, the feedback of pairwise label homogeneity infor-
mation will monotonously reduce the upper bound of
the leave-one-out error over active learning iterations
(we do not change kNNðiÞ for vi after edge weight
adjustment). tu
The above weight adjustment operation can also be inter-

preted from the view of the Max-flow Min-cut theorem: It
will agglomerate the data in same classes (increasing the
weights of same labeled instances) while separate the data in
different classes (reducing the weights of differently labeled
instances). As a result, the total weight of the edges across
the two sections will be smaller and the decision boundary
determined by these edges will be refined. Moreover, based
on the Max-flow Min-cut theorem, the cut is formed by the
edges with full capacity flows, which are on the Max-flow
paths. This also suggests that querying pairs on the Max-
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flow paths is more effective than querying pairs randomly
for reducing the upper bound Eq. (7). Over active learning
iterations, the decision boundary of the classifiers will
become clearer and the imbalanced cut issue will be relieved.

4.3 Confidence Based Instance Selection

By applying the Min-cut algorithm to the graph ensemble G,
an ensemble of Min-cut based classifiers H ¼ f�h1; . . . ; �hNg
are naturally derived on G. Thus, the class labels of all unla-
beled vertices can be inferred by the cuts. Specifically, verti-
ces in the source and sink partitions are labeled positive
and negative, respectively.

After obtaining the predicted labels of all unlabeled verti-
ces in G, we employ the predictions of H on each vertex to
calculate its class label distribution

pþðviÞ ¼
1

N

XN

n¼1

Ið�hnðviÞ ¼ þÞ; (9)

p�ðviÞ ¼ 1� pþðviÞ; (10)

where Ið�hnðviÞ ¼ þÞ is an indicator function that outputs 1,
if �hnðviÞ ¼ þ, and 0, otherwise.

We choose the label with a higher probability as the final
prediction hðviÞ (e.g., hðviÞ ¼ 1 if pþðviÞ > p�ðviÞ), and the
value is considered as the prediction confidence for the
unlabeled vertex. The prediction confidence for vertex vi is

qðviÞ ¼ maxfpþðviÞ; p�ðviÞg: (11)

We sort the unlabeled vertices based on their confidence
values in a descending order. The top j@j vertices are
selected to form the optimal labeling subset, with the final
prediction hðviÞ as their labels. We add @ into the labeled
training set by VL ¼ VL [ @ to update the active learner.

4.4 Weight Updating in Selected Subset

After incorporating the labeling information of the optimal
subset @ to the active learner, the graphs need to be updated
based on this additional information. The new labels only
affect the edges which have vertices in @, where both vertex
labels of those edges become available. Using their label
homogeneity information, we update the corresponding
edge weights using the similar operation as Eq. (5) intro-
duced in Section 4.2

wðvi; vjÞ ¼
wðvi; vjÞ � ð1þ ’Þ if yi ¼ yj;
wðvi; vjÞ � ð1� ’Þ if yi 6¼ yj;

�
(12)

where ’ is an adjustment factor, which determines the
weight updating scale (0 < ’ < 1). Because we use the
predicted labels here, pairwise label homogeneity infor-
mation may be incorrect. Therefore, in practice, we select
a smaller value for ’ than that for @ in Eq. (5), where the
query answers are almost accurate.

4.5 Time Complexity Analysis

Assume the graph ensemble is updated T times (the maxi-
mum number of active learning iterations), the time com-
plexity of our method can be decomposed into two parts:

BðVÞ and UðVÞ, where BðVÞ denotes the time complexity for
model training and UðVÞ for active pair selection for label
homogeneity queries.

The term BðVÞ is further composed by the complexity of
a graph ensemble construction BGðVÞ and the complexity
of the Min-cut based classifier ensemble training BMðVÞ. As
aforementioned, we use the k-NN algorithm to construct N
graphs with different number of neighbors. This procedure
has a complexity of OðjVj2 þNjVjÞ, where OðjVj2Þ is for
computing the pairwise similarity matrix and OðN jVjÞ for
finding N different sets of neighbors. After generating the
graph ensemble, we employ the Min-cut algorithm to train
N Min-cut based classifiers for T times. We adopt the
Edmonds-Karp algorithm [12], which has a complexity of
OðjVjjEj2Þ, for solving the Min-cut problem. Therefore, we
retrain N Min-cut based classifiers for T times, which totally
has a complexity of T

PN
n¼1 OðjVjjEnj

2Þ. The total time com-
plexity of BðVÞ is

BðVÞ ¼ BGðVÞ þBMðVÞ (13)

¼ OðjVj2Þ þOðN jVjÞ þ T
XN

n¼1

OðjVjjEnj2Þ: (14)

In practice, since jEnj is larger than jVj while N and T are
usually small. Let jEj be the average of jEnj, we can further
simplify Eq. (13) to be

BðVÞ ¼ OðTN jVkEj2Þ: (15)

The term UðVÞ is further composed by the complexity of
pair queries UP ðVÞ and the complexity of optimal labeled
data selection UCðVÞ. We assume that the average number
of queried pairs in each iteration is M. Then the total com-
plexity of T iterations is UP ðVÞ ¼ OðTMÞ. For UCðVÞ, the
membership distribution estimation needs OðNjVU j) and
the unlabeled data sorting based on confidences needs
OðjVU j2Þ, both of which are iterated for T times. As a result,
the time complexity of UðVÞ is

UðVÞ ¼ UP ðVÞ þ UCðVÞ (16)

¼ OðTMÞ þOðTN jVU jÞ þOðT jVU j2Þ (17)

¼ OðTMÞ þOðT jVU j2Þ: (18)

With the above analysis, the overall time complexity of
our method is given as

BðVÞ þ UðVÞ ¼ OðTN jVjjEj2Þ: (19)

Eq. (19) shows that major computational cost of our
method rests on the Min-cut based classifier ensemble
training.

5 EXPERIMENTS

We conduct the following three sets of experiments to vali-
date the robustness and effectiveness of the proposed
method. The experiments include three major parts, grad-
ually advanced from the validation of the parameter set-
tings, checking label errors and noise introduced by the
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proposed method, to the comparisons of the proposed
method with baseline approaches. More specifically, 1) in
Section 5.3, we investigate the parameter settings for k-NN
graphs and initial training sets; 2) in Sections 5.4, we study
the sensitivity of the proposed method by investigating
noise in both initial labeled sets and expanded labeled
sets; and 3) in Section 5.5, we compare the classification
performance of our method to a number of baseline meth-
ods, including the traditional instance-labeled method and
various pair-labeled strategies.

5.1 Data Description and Experiment Settings

We conduct experiments on ten benchmark data sets listed in
Table 2. All data sets, except “lucas”, are real-world binary
classification data sets, which can be downloaded from UCI
Machine Learning Repository.1 “lucas” is a synthetic data
set2 simulating a medical application of lung cancer diagno-
sis, prevention, and treatment. It is generated using causal
Bayesian networks with binary variables, with the target var-
iable denoting whether a patient has lung cancer or not.

For fair comparisons, all experimental results are reported
based on 10 times 10-fold cross validation. All methods are
compared on the same training and test sets (the initial ran-
domly labeled samples are also the same for all methods).
We use the number of queried instance pairs as the cost fac-
tor and all methods are compared based on the same labeling
budget, i.e., querying the same number of instance pairs.

All the compared methods are implemented using Java
and WEKA [36] data mining toolbox. Once the labeling pro-
cess is done, we use J48 (which is a WEKA implementation
of the C4.5 decision tree algorithm) to train a classifier from
the final labeled data set of each method. The performance of
different methods is then compared based on the accuracies
of the trained J48 classifiers validated on the same test set.
Given that all the compared methods use the same training/
test sets and the same labeling cost (number of queried
instance pairs), we can conclude that our method has a better
active learning performance than its peers if it outperforms
the baseline methods in terms of the classification accuracy.

5.2 Baseline Methods

To the best of our knowledge, there is no existing method
considering the “pairwise label homogeneity query”
active learning paradigm. To comparatively study the
performance of the proposed method (denoted as PHAL

in the experiments), we design the following baseline
methods using different pairwise label homogeneity
query strategies. It is worth noting that, after obtaining
the pairwise label homogeneity query results using differ-
ent strategies, the rest steps of these baseline methods are
as same as those in PHAL.

� Querying pairwise label homogeneity active learning
(QHAL) [14] is the original version of the proposed
method. The difference between QHAL and PHAL
lies in the graph construction step, where QHAL
only constructs a single k-NN graph with a fixed k
value while PHAL constructs an ensemble of k-NN
graphs with a set of different k values. QHAL
queries unlabeled pairs on the Max-flow paths of the
constructed graph and updates the model with the
acquired information.

� Random edge weight update active learning (REAL) is a
variant of PHAL within the same framework. The dif-
ference between REAL and PHAL is that REAL ran-
domly selects edges in the graph rather than selecting
edges on the Max-flow paths. For each randomly
selected edge, REAL queries the label homogeneity
between the two vertices linked by the selected edge.

� Uncertain sample based active learning (USAL) uses

entropy [29] as an uncertainty measure. Each unla-

beled instance xi’s entropy is calculated using

the class distributions predicted by a classifier,

defined as HðxiÞ ¼ �
P

yi2fþ;�g P ðyijxiÞ log P ðyijxiÞ,
where P ðyijxiÞ is the probability of xi belonging to

class yi. First, all unlabeled instances are ranked

according to their uncertainties. Then we select

top ranked instances to form a set of pairs for

label homogeneity query.

� Uncertain pair based active learning (UPAL) is another
variant of PHAL within the same framework. After
generating an ensemble of Min-cut based classifiers,
it first calculates the uncertainties (entropies) of unla-
beled vertices according to the prediction results of
the classifier ensemble. The uncertainty of an edge is
the summation of the uncertainties of the two verti-
ces of the edge. We rank edges in each graph accord-
ing to their uncertainties and select top ranked pairs
for label homogeneity query.

� Pairwise homogeneity active learning (a) (PHAL(a))
varies the percentage of pairs queried on the Max-
flow paths using a parameter a (0 � a � 1). This
method is a combination of PHAL and UPAL.
PHAL(1.0) is exactly PHAL and PHAL(0) is exactly
UPAL. For example, PHAL(0.5) means that a half
pairs are queried on the Max-flow paths and the
other half are queried based on pair uncertainty
values.3 The purpose of using PHAL(a) as a base-
line is to study whether querying instance pairs on
the Max-flow is indeed a good choice. Given an
active learning task, if we observe an increasing
performance gain from PHAL(a) as the value of a

TABLE 2
Description of the Benchmark Data Sets

1. http://archive.ics.uci.edu/ml/.
2. http://www.causality.inf.ethz.ch/challenge.php?page=datasets.

3. In our experiments, UPAL always outperforms REAL, so we use
UPAL to select the remaining pairs for the combined method.
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increases, it will validate that querying instance
pairs on the Max-flow paths is, at least, a better
choice than the random query.

In addition to the above baseline methods based on pair-
wise label homogeneity query strategies for performance
comparison, we also consider a baseline method based on
individual instance query for comparatively study of the
sensitivity to label errors (i.e., noise).

� Instance label based active learning (ILAL) uses a labeler
to provide ground truth class label for each queried
instance. It uses entropy as the instance utility mea-
sure for instance selection.

For fair comparisons, all baseline methods except ILAL
are designed to work in a “batch mode” by selecting the
same number of pairs at a time. In each iteration, PHAL
queries pairwise label homogeneity information of the un-
queried pairs on the Max-flow paths. Because the Max-flow
paths often change as the active learning process iterates,
the number of these pairs is not fixed in all iterations. In the
experiments, we guarantee that all baseline methods query
the same number of pairs as PHAL does in each iteration.
For USAL, given n instances, they can form nðn�1Þ

2 pairs at
most. Accordingly, assume we want to label % pairs, we
need to find g to satisfy

% ¼ gðg � 1Þ
2

: (20)

After finding g, we just select top g uncertain instances to
form a set of pairs for label homogeneity query.

5.3 Parameter Settings

5.3.1 Number of the k-Nearest Neighbors

QHAL uses a predefined k value to construct a single k-NN
graph and updates this graph by adjusting its edge weights
on the Max-flow paths based on the pairwise label homoge-
neity query results. This approach cannot guarantee that
the selected k will result in the best performance, unless we
exhaustively search the optimal k value, which is computa-
tionally expensive. Moreover, as explained in Section 4.1, it
is difficult to find a general criterion to search the optimal k

which often varies and depends on the data sets. To address
this problem, the proposed PHAL method adopts an
ensemble of k-NN graphs with different k values to improve
the generalization capability.

In Fig. 4, we report the results of QHAL and PHAL with
respect to different k values on 10 benchmark data sets. The
results show that the performance of PHAL is always better
than the average performance of QHAL with different k val-
ues in a large range (ranging from 3 to 24 with a step of 3).
Although PHAL constructs the graph ensemble within a
small range (ranging from 3 to 15 with a step of 3), its perfor-
mance is superior to the average performance of QHAL. We
can thus conclude that an ensemble of graphs with different
k values can indeed help improve performance due to the
generalization capability of the ensemble model.

5.3.2 Size of the Initial Labeled Set

The learning circle of active learning starts from a randomly
labeled set. To study the impact of the size of the initial
training set, we report the accuracies of PHAL and ILAL on
10 data sets in Fig. 5, respectively, with different sizes of the
initial training sets ranging from 2 to 30 percent with a step
of 2 percent. We set the same budget (size of the final
labeled data set) for the purpose of a fair comparison. The
x-axis indicates different sizes of the initial training sets
while the y-axis reports the accuracies of the classifiers
trained from the final labeled instances. We can easily find
the trend that the accuracy curves of both methods increase
as the size of the initial training set grows, which suggests
that the more information an initial model learns, the more
informative unlabeled data the underlying learner can find

Fig. 4. The accuracy comparison between QHAL and PHAL. Each verti-
cal line segment denotes the accuracy range of QHAL with k varying
from 3 to 24 with a step of 3, and the circle on the line denotes the aver-
age accuracy in the range; a red triangle denotes the accuracy of PHAL,
which comprises an ensemble of k-NN graphs with k varying from 3 to
15 with a step of 3.

Fig. 5. Evaluation of accuracy with respect to the size of initial training
set. Accuracy curves of (a) PHAL and (b) ILAL on 10 data sets with dif-
ferent sizes of initial training set ranging from 2 to 30 percent with a step
of 2 percent.
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for labeling, so as to build a final accurate model. Another
fact is that the accuracy curves of ILAL increase more
steeply than those of PHAL, which indicates that PHAL is
less sensitive to the size of the initial labeled set. This is
because the performance of PHAL depends on the overall
structures of affinity graphs such that the number of labeled
nodes on a graph may not dramatically influence the perfor-
mance. In comparison, the performance of ILAL largely
depends on the initial given label information.

The results in Fig. 5 also show that PHAL uses fewer
labeled samples than ILAL does to achieve the same accu-
racy on most data sets. Take “vote” as an example, PHAL
and ILAL need label 2 and 10 percent of instances to
reach the accuracy of 89 percent, respectively. This result
demonstrates that active learning methods considering
data topological structures (like PHAL) are able to find
good decision boundaries more quickly. Active learning
methods simply considering individual instance uncer-
tainties (like ILAL) may result in redundancy and outlier
problems for sample selection [15]. As a result, the latter
requires more instances to be labelled in order to achieve
the same level of accuracy.

5.4 Sensitivity to Noisy Labels

5.4.1 Input Noise

While the proposed pairwise label homogeneity query
approach does not require expert labelers to provide
ground truth label for each instance, in practice, unskilled
labelers may provide noisy pairwise label homogeneity
information in some uncertain cases. In this experiment, we
comparatively study the sensitivities of PHAL (pairwise
homogeneity query based) and ILAL (instance label based)
to label errors (i.e., noise).

To measure the robustness of a model against noise, we
can investigate the decreasing rate of the model’s accuracy
curve with respect to the percentages of noisy labels pro-
vided by a labeler (i.e., input noise). The more slowly the
accuracy curve drops, the more robust the model is; other-
wise, the model is sensitive to noise. Accordingly, we com-
pare the decreasing rates of the accuracy curves of PHAL
and ILAL to validate that PHAL is more robust than ILAL.
Note that we do not compare the absolute accuracies of the
two methods because the information acquired from pair-
wise homogeneity labeling and instance labeling are
incomparable.

To simulate noise, we randomly generate labels for a
certain percentage of queries as noisy labels. In particular,
we randomly generate binary labels for the queried
instance pairs in PHAL, and also randomly generate class
labels for the queried individual instances in ILAL.
Because PHAL queries the pairs on Max-flow paths on
the graphs, the number of queried pairs may exceed the
number of instances in the data set. As a result, we cannot
guarantee that ILAL queries the same number of instan-
ces as PHAL does at each time. For fair comparisons, we
guarantee that the same number of labeled instances are
included into the labeled data set in each active learning
iteration for both methods.

In Fig. 6, we report the accuracy curves of PHAL and
ILAL with respect to different percentages of label noise,

ranging from 2 to 30 percent with a step of 2 percent, on
the 10 benchmark data sets. For PHAL, its accuracy
curves on “kr-vs-kp”, “monks1”, “vote”, and “lucas”
have slight drops within the whole range, while the
curves on the other six data sets decline slowly as the
noise increases. For ILAL, its accuracy curves on all
10 data sets show much quicker decrement than the cor-
responding curves of PHAL, which asserts that the same
amount of label errors have much more severe impact on
ILAL than PHAL. This phenomenon might be caused by
the following reason: In ILAL, the queried instance
results are directly used for supervised model training.
So noisy labels will directly impact on the model, and
this type of errors have been confirmed to be most harm-
ful for supervised learning [41]. PHAL, on the other
hand, only uses pairwise label homogeneity information
to update the affinity graphs. Because the classification
results of PHAL depend on the overall structures of affin-
ity graphs, changes of some edges may not result in sig-
nificant errors. Therefore, we can conclude that,
compared to instance label query based methods, the pro-
posed pairwise label homogeneity query based method is
less sensitive to noise.

5.4.2 Noise in Expanded Labeled Sets

In traditional active learning, like ILAL (instance label based
active learning), the queried instances, including their class
labels, are used to form an expanded labeled set to update
the current model. In contrast, the proposed method PHAL
(pairwise homogeneity query based) employs a non-expert
to provide pairwise homogeneity information to the queried

Fig. 6. Evaluation of sensitivity to input noise. Accuracy curves of
(a) PHAL and (b) ILAL on 10 data sets with different percentages of
noisy labels ranging from 2 to 30 percent with a step of 2 percent.
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instance pairs and chooses a subset of instances with
inferred class labels to expand the labeled training set. This
implies that some inferred labels in the expanded labeled
set of PHAL might be incorrect, even though the pairwise
labels provided by the labelers are 100 percent accurate. In
this experiment, we study noise labels and their impact in
expanded data of PHAL and ILAL, by adding the same
number of instances in the expanded data set for both meth-
ods. To quantify the results for comparisons, we define the
“noise rate of the expanded set” as the percentage of instan-
ces with incorrect class labels in the whole expanded set.

In Fig. 7, we report the noise rates of the final expanded
labeled sets (the left y-axis) and the accuracy curves of the
classifiers trained from the corresponding final expanded
labeled sets (the right y-axis) with respect to the input noise
and the number of instances selected in each iteration. The
number of instances added in the labeled set, in each itera-
tion, varies from 1 to 20 with a step of 1, as indexed by the
x-axis. In the case of input noise being 0 percent, the perfor-
mance of ILAL is better than PHAL, because no noise is
induced in the expanded labeled set of ILAL. On the other
hand, the noise rates of PHAL remain at a low level, so per-
formance is comparable to ILAL in this case. When increas-
ing the input noise rates to 20 and 40 percent, PHAL
outperforms ILAL with lower noise rates in the expanded
labeled sets and higher classification accuracies. This is
because PHAL only uses pairwise label homogeneity infor-
mation to update the affinity graphs and its classification
performance depends on the overall structures of affinity
graphs. Introducing a fraction of erroneous edges may not
result in significant noise in the expanded labeled sets.
Another observation is that the accuracy curves of both
methods drop as the number of selected instances in each
iteration increases. This is because, given a fixed budget, the
number of active learning iterations (i.e., model updating
times) will decrease with a larger size of subset selected in
each iteration, which in turn result in less accurate models.
Therefore, the noise in the expanded labeled sets of PHAL

increases as the number of instances selected in each itera-
tion increases accordingly.

In addition to the detailed results in Fig. 7, we also com-
pare the performance of PHAL and ILAL with respect to
noise rate of expanded set and accuracy on all benchmark
data. For each data set and each method, there are 20 accu-
racies corresponding to different batch sizes of selected
subset in each iteration (ranging from 1 to 20 with a step of
1), and the noise rate of expanded set is the average with
respect to the same range of batch sizes of selected subset. If
we use the accuracies (or noise rate) of PHAL and ILAL,
under the same setting, as y-axis and x-axis, respectively, it
will produce 200 accuracy points and 10 noise rate points
for PHAL and ILAL on all benchmark data sets. In Fig. 8,
we report the 200 head-to-head accuracy points and 10 noise
rate points, where a point above y ¼ x line indicates that the
accuracy (or the noise rate) of PHAL is higher than that of
ILAL, and vice versa.

The results in Fig. 7 show that when input noise is
0 percent, ILAL outperforms PHAL among all 200 obser-
vations in terms of accuracy and noise rate in expanded
set. However, when input noise increases to 20 and 40 per-
cent respectively, PHAL is much more accurately than
ILAL on eight data sets. Moreover, PHAL always has a
lower noise rate in expanded set than ILAL. These further
assert that active learning algorithms taking instance
pair-wise correlations into consideration, like PHAL does,
are more noise tolerant and robust than traditional
instance based active learning.

5.5 Comparison of Classification Performance

5.5.1 Comparison of Different Pair-Selection Strategies

Fig. 9 reports the performance of PHAL and the com-
pared baseline methods on 10 benchmark data sets. All
the methods are built in the same framework with differ-
ent pair selection strategies, including Max-flow paths for
PHAL, random selection for REAL, instance uncertainty

Fig. 7. Detailed comparisons of accuracy (the right y-axis) and noise rate of the final expanded labeled set (the left y-axis) with respect to number of
instances selected in each iteration (the x-axis) and input noise (in three columns). Results on all benchmark data sets are summarized in Fig. 8.
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for USAL, edge uncertainty for UPAL, and a combination
selection in PHAL(a). For PHAL(a), we investigate differ-
ent values of a in f0:25; 0:5; 0:75g, which correspond to
the percentages of pairs queried on the Max-flow paths.
The x-axis indicates the numbers of queried pairs. All the
compared methods in each active learning iteration have
the same number of queried pairs, that is, the tth tick on
the x-axis is the average number of accumulated instance
pairs queried in the previous t iterations in PHAL. In
each iteration, we include the same amount of labeled
instances into the training set for each method. We com-
pare the performance of different methods over 10 itera-
tions with an increasing number of queried pairs.

As the number of queries increases, the performance of
all methods improves. This observation suggests that pair-
wise label homogeneity information does help improve
model effectiveness no matter what kind of pair selection
strategy is employed. It is very clear that the proposed
PHAL method performs best on most data sets except
“vote” and “kr-vs-kp”. These results indicate that pairs on
the Max-flow paths are more effective for improving model
performance than those pairs selected using other strate-
gies. Moreover, PHAL(0.25) is slightly superior to UPAL; as
a increases, the performance of PHAL(a) continually
approaches to PHAL. We can thus assert that pairs on the
Max-flow paths are more critical than the most uncertainty
pairs for improving model performance. This is because
Max-flow paths play an important role for generating the
decision boundary. The pair weight adjustments on the
Max-flow paths have more concentration on fitting the gen-
uine decision boundary than those pairs selected based on
uncertainty. Thus, selecting pairs on the Max-flow paths
help accelerate finding the optimal decision boundary for
classification. In contrast, the pairs selected based on high
uncertainty may ignore the correlations of instances and
introduce redundances and outliers.

Another interesting observation is that all the graph-
based pair selection methods, which query pairs on the
k-NN graphs, are superior to USAL, which queries any
pairs of uncertain instances. Even UPAL that uses the
same uncertainty metric outperforms USAL. These results
imply that pairwise correlations play an important role

on training an accurate model. In the graph-based pair
selection methods, a data set is represented as k-NN
graphs, in which the edges represent pairwise correla-
tions of the data. In this case, the selected pairs have
strong relationships from each other, the nonexpert
labeler is more likely to provide accurate pairwise homo-
geneity information for the queried pairs. However, the
pairs generated in USAL only consider uncertainties of
individual instances, without incorporating correlations.
In this case, it is possible for the nonexpert labeler to pro-
vide wrong answers for these disconnected pairs. More-
over, it is also possible to introduce outliers with high
uncertainties into the model. These factors lead to the
noticeable performance gap between the graph-based
pair selection methods and USAL.

Overall, the results show that UPAL outperforms REAL
in most cases, which suggest that pairs selected based on
uncertainty are more informative than randomly selected
pairs. Randomly selected pairs may introduce redundant
information into the model. In contrast, uncertainty pairs
can supplement the missing information for the underlying
model to improve model performance.

5.5.2 Detailed Comparison of All Methods

In each active learning iteration, we include a batch of
labeled instances with high prediction confidences into the
training set and retrain the model. This process repeats
10 times in total. For each method, we use the training set
extended in each iteration to construct a J48 classifier for
prediction, and record its accuracy on the same test set for a
fair comparison. Tables 3a, 3b and 3c report the detailed
performance of all the compared methods on 10 benchmark
data sets in the third iteration, the sixth iteration, and the
ninth iteration, respectively. Among all the methods, the
proposed PHAL method achieves the best performance.
UPAL is the second best method, but only marginally out-
performs REAL. These results again validate that instance
pairs selected on the Max-flow paths play an important role
on training an accurate model. As we have discussed in Sec-
tions 5.2, UPAL integrates uncertainty measure in the pair
selection strategy, which does help Min-cut based classifiers

Fig. 8. Head-to-head accuracy and noise rate comparisons between PHAL and ILAL on all benchmark data sets. For each figure, the y-axis denotes
the accuracy (or noise rate) of PHAL and the x-axis denotes the accuracy (or noise) of ILAL in the same setting. A point above y ¼ x line indicates
that the accuracy (or the noise rate) of PHAL is higher than that of ILAL, and vice versa.
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to find better cuts than random pair selection in REAL to
some extent.

Obviously, USAL is inferior to all the graph-based pair
selection methods, which take pairwise instance correla-
tions into account. This is because USAL employs a pair
selection strategy that only considers the uncertainties of
the instances of a pair without considering their correlation.
Although we design a pair selection scheme for USAL as
introduced in Sections 5.2, the selected pairs seem of less
help for improving model performance than the other meth-
ods, in which the selected pairs reflect the real data correla-
tions in a graph topology. These results demonstrate that

pairwise correlations do play an important role for pairwise
label homogeneity based methods to select informative
pairs for labeling.

6 CONCLUSION

In this paper, we formulated a new active learning para-
digm, in which an active learner is to query the label homo-
geneity of a pair of instances instead of querying the class
label of an individual instance. We argued that obtaining
pairwise label homogeneity information (“yes/no”) is
much easier and less costly than querying ground truth
labels for individual instances, which normally requires
strong expertise. The key technical challenges include
(1) how to find important instance pairs for query; and (2)
how to make use of the pairwise homogeneity information
to improve the active learner. To solve the problem, we pro-
posed to incorporate the query results into a Min-cut based
active learner by adjusting the edge weights of unlabeled
pairs on the Max-flow paths of an ensemble of k-NN graphs.
After that, a subset of vertices with high prediction confi-
dences are selected to be included in the labeled data set for
model training. Extensive comparisons, on a number of
benchmark data sets, demonstrate that the proposed
method clearly outperforms the baselines. Furthermore, the
proposed active learning paradigm is more robust to noisy
labels than traditional active learning that queries class
labels for individual instances.

Fig. 9. Performance comparison of PHAL and the baseline methods with
different pair selection strategies on 10 data sets.

TABLE 3
Detailed Performance Comparison
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