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Abstract—Graph classification aims to learn models to classify structure data. To date, all existing graph classification methods are
designed to target one single learning task and require a large number of labeled samples for learning good classification models. In
reality, each real-world task may only have a limited number of labeled samples, yet multiple similar learning tasks can provide useful
knowledge to benefit all tasks as a whole. In this paper, we formulate a new multi-task graph classification (MTG) problem, where
multiple graph classification tasks are jointly regularized to find discriminative subgraphs shared by all tasks for learning. The niche of
MTG stems from the fact that with a limited number of training samples, subgraph features selected for one single graph classification
task tend to overfit the training data. By using additional tasks as evaluation sets, MTG can jointly regularize multiple tasks to explore
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high quality subgraph features for graph classification. To achieve this goal, we formulate an objective function which combines
multiple graph classification tasks to evaluate the informativeness score of a subgraph feature. An iterative subgraph feature
exploration and multi-task learning process is further proposed to incrementally select subgraph features for graph classification.
Experiments on real-world multi-task graph classification datasets demonstrate significant performance gain.

Index Terms—Graph classification, subgraph features, regularization, multi-task learning, supervised learning

1 INTRODUCTION

RECENT years have witnessed a wide range of applica-
tions that involve learning and classifying objects with
structure dependence and complex relationships, where
each object is represented as a graph with node-edge repre-
sentation. Typical graph applications include predicting
biological activity of molecules [1], identifying errors in
computer programs [2], and categorizing scientific publica-
tions [3]. Unlike traditional vector data, graphs are only
characterized by node-edge representation and no features
are readily available for training prediction models. This
challenge has motivated numerous studies on graph classi-
fication [4], [5], [6], [7], where existing methods either try to
learn global similarities between two graphs [6], or select
local discriminative subgraphs [1], [7] as features to transfer
graphs into feature-vector format so that traditional
machine learning algorithms can be applied.
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Although existing methods have advanced the graph clas-
sification from learning efficiency and classification accuracy
perspectives, they typically share similar deficiencies in their
designs: (1) in order to explore graph structures for training
good classification models, they require a large number of
training graphs; and (2) they can only work on a single learn-
ing task. In reality, due to the inherent complexity of the
graph data and the costs involved in the labeling process, col-
lecting a large number of labeled graphs for a specific task is
difficult. However, it is quite common that multiple similar
graph classification tasks, each having a limited number of
training samples, may co-exist and need to be handled.

The structure of molecules in molecular medicine [8], for
example, plays a crucial role in determining functions of the
molecules, so graphs are commonly used to represent mod-
els in order to preserve the structure information. Labeling
molecules, i.e., graphs, requires time, effort, and expensive
resources [9] to test whether a chemical compound is active
or inactive in relation to a cancer type, which makes it diffi-
cult to obtain labeled graphs. However similar bioassay
tasks, such as anti-cancer tests for Melanoma and Prostate,
are usually available. Instead of treating each task as a sin-
gle-task graph classification (STG) problem, multi-task
graph classification (MTG) studied in this paper can simul-
taneously handle multiple relevant graph classification
tasks with improved performance gain.

When solving MTG problems, one simple approach is to
treat each task independently and train an STG algorithm
(e.g., gBoost [4]) for each task. The result from this approach
is, however, far from optimal. This is because (1) the insuffi-
cient number of labeled graphs for each task makes it
difficult for learning algorithms to comprehend graph
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(A) Top 5 Subgraphs mined by gBoost

(B) Top 5 Subgraphs mined by multi-task learning from 9 NCI graph datasets

Fig. 1. Comparisons of the top five most discriminative subgraphs for each graph classification task, mined by (A) gBoost [4], or (B) multi-task learn-
ing (using 50 training graphs for each task). The numeric value next to each subgraph indicates the classification accuracy on test graphs using this
single subgraph as a feature (i.e., an indicator of the classification quality of this subgraph). Multi-task learning in (B) favors subgraphs which also
have high discriminative powers across all tasks. For instance, the circled g, is ranked at second place for NCI-1 on the training data because it also
has a high score on NCI-33. g;’s score 0.582 in NCI-1 outperforms four out of the top five features selected by gBoost, but it was not discovered by
gBoost to be one of the top five useful subgraphs (thus, its importance is under-evaluated when learning with the NCI-1 task alone).

structures and find effective subgraphs to train classification
models. From a machine learning perspective, a small num-
ber of labeled graphs are biased samples obtained from
sampling a large population. As a result, subgraph features
discovered from these graph samples may be also biased,
and are ineffective to classify test graphs; and (2) a learning
model trained from a small number of labeled graphs tends
to overfit the training samples and result in poor perfor-
mance on the test data.

A second approach to solving MTG problems is to first
mine frequent subgraphs [10] as features to transfer graphs
into feature-vector format, and then apply state-of-the-art
multi-task learning (MTL) algorithms [11], [12] to the vec-
tors. This method is still suboptimal, mainly because sub-
graph feature exploration process is not tied to the learning
tasks (given that there are multiple learning tasks). With
suboptimal features, it is hard, if not impossible, to achieve
good classification performance.

Instead of treating MTG as a group of multiple indepen-
dent learning tasks, we advocate multi-task driven sub-
graph (MTDS) mining in this paper to explore high
dimensional discriminative subgraph features and simulta-
neously train classification models for all tasks. By integrat-
ing MTDS-based feature selection into our multi-task graph
classification objective function, we enable knowledge shar-
ing across all tasks for better subgraph validation and
model regularization. The niche of our multi-task subgraph
feature exploration and multi-task graph classification
stems from the following key observations.

Multi-task shared subgraphs. Because multiple graph clas-
sification tasks are relevant to each other, some common
discriminative subgraph features may exist across different
tasks. A significant subgraph on one task may also have a
high discriminative score on other tasks. For instance, in
Fig. 1, g1 is a common subgraph of tasks NCI-1 and NCI-33.
However, when performing subgraph selection on NCI-1
task only, g; will be missed by an STG algorithm (e.g.,
gBoost [4]). In this context, combining NCI-1 and NCI-33 as
a multi-task problem clearly helps the NCI-1 task find a bet-
ter discriminative subgraph for classification.

Implicit evaluation set and better regularization. To avoid
overfitting incurred by insufficient training samples,
machine learning algorithms usually validate their models
on some evaluation sets before testing or incorporating regu-
larization terms for model learning. With a small number of
training graphs, any subgraph explored from a single task
has a high risk of overfitting the training data. Taking the
NCI graph classification task as an example, STG algorithms
(i.e., gBoost) can easily fit the training graphs very well
(achieved 100% or near 100% classification accuracy using 50
or 400 training graphs) but their performance on test graphs
is much worse (about 60% or 65% as shown in Fig. 2). By uni-
fying multiple tasks as one objective function, other tasks can
be used as implicit evaluation sets for each task. An MTG
objective function can thus help prune subgraph features
which are only useful in the biased training data of an indi-
vidual task but are not promising for other tasks.

As illustrated in Fig. 2, in the case of 400 training graphs,
MTG algorithms can essentially reduce the risk of overfit-
ting and achieve better graph classification, because rele-
vant graph samples from other tasks are considered to be
an implicit evaluation set to help validate the sub-graph
mining process for better regularization.

Motivated by the above observations, we propose a
multi-task graph classification algorithm which iteratively
selects the most discriminative subgraphs to minimize regu-
larized loss for all tasks. The multi-task graph classification
is achieved by combining subgraph selection and model

(A) Accuracy on NCI Graph Datasets (B) Accuracy on NCI Graph Datasets
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Fig. 2. Accuracy comparisons on training and test graphs. (A) 50 training
graphs, and (B) 400 training graphs for each task. The MTG algorithm
can release or prevent overfitting.
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learning into an iterative process, which mutually benefits
subgraph exploration and multi-task learning. For subgraph
selection, we emphasize on low dimensional subgraphs
shared among all tasks by employing the MTDS selection
scheme; and for multi-task learning, all tasks are jointly reg-
ularized to achieve an optimization goal.

The main contributions of this paper can be summarized
as follows:

e To the best of our knowledge, this is the first work
handling multi-task learning for graph data. We pro-
pose an algorithm with theoretically proved conver-
gence to jointly regularize multiple tasks to exploit
discriminative subgraphs for multi-task graph
classification.

e We generalize the column generation technique [4] to
the multi-task graph classification setting. Any dif-
ferentiable loss function, such as least squares, expo-
nential, and logistic loss functions can be used in our
algorithm.

e We propose to integrate two sparsity-inducing regu-
larization norms, ¢;-norm and ¢;;-norm, for multi-
task learning for graph data.

e We derive two branch-and-bound rules to prune the
search space for multi-task driven subgraph mining.

The remainder of the paper is structured as follows. We

review related work in Section 2. Problem definitions and
preliminary are described in Section 3. Section 4 reports the
proposed algorithm for multi-task graph classification.
Experimental results are presented in Section 5, and we con-
clude the paper in Section 6.

2 RELATED WORK

Our work is closely related to graph classification, multi-
task learning, and infinite feature selection.

Graph classification. Existing methods for graph classifica-
tion [4], [5], [6], [7], [13], [14], [15], [16] can be roughly distin-
guished into two groups: similarity-based methods and
subgraph feature-based methods.

Similarity-based approaches aim to directly learn global
similarities between graphs by using graph kernels [6] or
graph embeddings [17]. The obtained global similarities are
then fed into learning algorithms, such as support vector
machines (SVM), for learning. One obvious drawback of
global similarity-based approaches is that their similarity is
directly calculated based on global graph structures, such
as random walks or embedding space. Therefore, important
substructures useful for differentiating graphs between dif-
ferent classes remain unknown.

In many graph classification domains, such as molecule
classification, graphs from a specific class may have low
global similarities but actually share some unique substruc-
tures. Therefore, using discriminative substructures as fea-
tures and transferring graphs into vector space becomes a
popular solution. For subgraph-based methods, a key issue is
to define a measurement to assess the utility of each subgraph.
Yan et al. proposed [18] a LEAP algorithm to exploit correla-
tions between structure similarity and significance similarity,
so that a branch-and-bound rule could be derived to effec-
tively prune unpromising searching space efficiently. Ranu
and Singh [19] proposed a scalable GraphSig algorithm,

which is able to mine significant subgraphs with low fre-
quencies. Thoma et al. [20] proposed a CORK algorithm, in
combination with a frequent subgraph mining algorithm
such as gSpan [10], to find subgraph features. Instead of car-
rying out explicit subgraph feature mining, a recent
work [13] proposes to find a class-conditional “signal-sub-
graph” which is defined as the connection of edges that are
probabilistically different between classes.

Recently, researchers have also studied complicated
graph classification tasks, such as semi-supervised classifi-
cation [7], multi-label classification [21], multi-view-graph
learning [22], [23], and multi-graph classification [24], [25],
[26]. In multi-view-graph learning, an object consists of
multiple views and each view is represented as a graph
structure. In multi-graph classification, the objective is to
classify a bag which consists of multiple graphs.

Boosting methods [4], [5], [14], [27] are also popular for
graph classification. In [5], the authors proposed to boost
subgraph decision stumps from frequent subgraphs. In [4],
the authors proposed a gBoost algorithm which iteratively
selects subgraphs from the whole subgraph space (instead
of using frequent subgraphs), which has demonstrated bet-
ter performance for graph classification than using frequent
subgraph filter-based methods. We have recently extended
the gBoost algorithm to imbalanced graph classification set-
tings [14], [28] and cost-sensitive learning [29].

The aforementioned graph classification methods,
regardless of similarity-based methods or subgraph-based
approaches, only consider a single task. Therefore, they are
ineffective for multi-task settings where several graph
classification tasks are related to each other and need to be
learned in order to achieve maximum classification accu-
racy for all tasks.

Multi-task learning. State-of-the-art algorithms on multi-
task learning [11], [12], [30], [31], [32], [33], [34] can also be
roughly divided into two categories: (1) Regularized multi-
task feature learning methods [11], [12], [31], [35], which
assume that all tasks are homogeneous and that the purpose
of the learning is to discover common feature representation
across all tasks without exploring task relationships. (2) Task
relationship exploration methods [30], [32], [33], [36], which
either exploit task relationships via trace norm regularization
to achieve some similar parameters among similar tasks [36],
or try to learn a task covariance matrix from data if the task
relationship is unknown in advance [30], [33].

Note that multi-task learning is closely related to transfer
learning [37], but the difference is fundamental. Transfer
learning aims to improve the learning on a single target task
by using data from other tasks as auxiliary information. For
multi-task learning, all tasks are equally important and
should be learned simultaneously. A recent work [38]
addresses transfer learning for graph databases, but its
scope and objective are different from the proposed MTG.

Another study [39] exploits multi-task metric learning for
networked data, where each network consists of a set of
nodes with attribute contents. This problem setting still
belongs to traditional multi-task learning, except that the
instances share some dependency relationships. Our study
differs from [39] in that we have many graphs, and each
graph has a class label indicating the property of the graph
(such as the activity of a chemical compound). A graph is
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essentially one instance with structure information (such as
a chemical compound). Our learning objective is to build
classification models from labeled graphs, in order to accu-
rately determine the label of an unlabeled graph.

Infinite feature selection. In considering the use of subgraph
features for multi-task graph classification, our work is also
closely related to feature (subgraph) selection from a large
(possibly infinite) feature space. Saigo et al. [4] proposed
using the column generation technique to progressively
select subgraphs when dealing with infinite [40], [41] or
streaming features [42]. In their methods, the objective func-
tion needs to be formulated into a linear programming
problem with a hinge loss function, which restricts its appli-
cability to general graph classification problems. A regular-
ized loss minimization algorithm RLMD [16] was proposed
recently to incrementally select subgraphs for graph classifi-
cation, and can deal with any differentiable loss £ together
with both ¢; and /{;-norm regularizers. The grafting
method [41] provides another solution for online feature
selection. However all methods in [4], [16] and [41] are typi-
cally single task learning algorithms, so they are ineffective
for MTL problems. A recent research [40] proposed dealing
with a mixed norm regularized framework in a boosting
framework for MTL problems by iteratively generating fea-
tures to reduce the empirical loss. However, this method
only considers traditional vector data, rather than graph
data which is the focus of this paper.

3 DEFINITION AND PRELIMINARIES
3.1 Problem Definition

Definition 1 (Connected Graph). A graph is denoted by G =
(V,E,L), where V ={v,...,v,,} is a set of vertices,
ECVxVisa set of edges, and L is a labeling function
assigning labels to a node or an edge. A connected graph is a
graph such that there is a path between any pair of vertices.

In this paper, we focus on connected graphs and assume
that each graph G has a class label y, y € J = {—1, +1} indi-
cating the overall property of the graph, such as the active/
inactive response of a chemical compound [1].

Definition 2 (Subgraph). Given two graphs G = (V, E, L) and
g, = V', E' L), g is a subgraph of G (i.e g, C G) if there is
an injective function f: V' — V, such that ¥(a,b) € E', we
have (f(a), f(b)) € E, L'(a) = L(f(a)), L'(b) = L(f(b)),
L'(a,b) = L(f(a), f(b)). If gi, is a subgraph of G (g, C G), G
is a supergraph of gi. (G 2 g.).

Multi-task graph classification. Given a set of graph classifi-
cation tasks, where each task t € {1,2,...,T} has a set of
labeled graphs {(Gi1,9:1)s-- -, (G Yin,)}, we use G; € G
(G is the graph space) to denote the i graph in task ¢, and
Gyi’s class label is y;; € Y = {+1,—1}. Multi-task graph
classification aims to learn T' functions (classification mod-
els) f; : G — Y,t € [1,T], which have best classification per-
formance on unseen graphs for all tasks.

3.2 Preliminaries

Single task graph classification. To support graph classifica-
tion, state-of-the-art algorithms [4], [5] use a set of sub-
graphs discovered from the training graphs as features.

Each subgraph g, can then map a given graph G;; to the
class label space Y = {+1,—1}:

fip (Gra) = 2L(gr € Gra) — 15 )

Here I(a) = 1if a holds, and 0 otherwise.

Let F = {1, ..., gmn} be the full set of subgraphs in G. We
can use F as features to represent each graph G, ; in a vector
space as y; = {fig, (Gy;), - .., Ry, (Gi;)}, with 2}, = hy, (Gy;).
In the following subsection, G;; and xz:; are used inter-
changeably as they both refer to the same graph (i.e., the
i-th graph in task ). Given the full subgraphs F, the predic-
tion function for task ¢ is a linear classifier:

filmy) =a; - wp + by = Z wyhg (Gii) + by, (2
gREF

where w; = [wy 1, ... ,wm,]/ is the weight vector of all fea-
tures for task ¢, and b; is the bias of the model. The predicted
class of z;; is +1if fi(z;;) > 0or —1 otherwise.

For single task graph classification, the state-of-the-art
algorithm gBoost [4] formulates its objective function as a
linear programming problem, then integrates the discrimi-
native subgraph mining into the model leaning process via
column generation techniques.

4 MULTI-TASK GRAPH CLASSIFICATION

In this section, we describe proposed multi-task graph clas-
sification algorithm.

4.1 Regularized Multi-Task Graph Classification
Formulation

To achieve multi-task graph classification, our theme is to
use multi-task to guide an iterative subgraph exploration
process in order to achieve the lowest regularized empirical
risks for all tasks. This can be formulated in the following

objective function:

ne

T
1
J = min > "= Lyri, fil@ri)) +YR(W) C)
To=1 L i=1

c

Here W = [wy, ..., wr| is a weight matrix indicating weights
of each subgraph w.r.t. different tasks, b= [by,...,by] are
the bias parameters for each function f;, and n; is the num-
ber of training graphs in task ¢. The first term C measures
the loss on the training graphs for all tasks, where
L(yri, f(x:;)) is a loss function measuring misclassification
penalty of a graph G;;. The second part is a regularization
term to enforce sparse solutions, and a parameter y is used
to trade-off between these two parts. In this paper, we
mainly consider Logistic loss function

Ly, fi(wei)) = log (1 + exp{—yrifi(xri)})- 4)

Note that any other differentiable loss function, such as least
square loss L(y, fi) =4 (y — fi)? or exponential loss L(y, f;)
= exp{—y/fi}, can be used in our algorithm. As for the sec-
ond term R(W), our main objective is to obtain a sparse
solution on W, i.e, a finite set of subgraph features shared
by all tasks. We consider the following regularizers:

£y-norm Lasso regularization R(W) =3, [W,|.
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The rationale is that the ¢/;-norm regularizer can produce
solutions with many coefficients being 0, which is known as
Lasso [43] and has been widely applied for variable selec-
tions. A simplification of Lasso in MTG is to use a parameter
y to control the regularization of all tasks, assuming that dif-
ferent tasks share the same sparsity parameter.

45 1-norm regularization. Because the total subgraph space
is infinitely large and we want to select only a subset of
most important subgraphs among all possible subgraphs,
we propose to use a mixed-norm regularizer ¢, ; norm

m

HWH2,1 = Z

k=1

m

Z (Wil = Z Wl

where W, is the k-throw of W. The ¢, ; regularizer first com-
putes the /,-norm (across the tasks) of each row in W and
then calculates the ¢;-norm of the vector d(W)=
(W1, llys- - IWp|l5)- This is a special case of group
Lasso [44] for group variable selection and was previously
applied in [12] for multi-task learning on vector data. This
norm ensures that common features will be selected across
all tasks. Using this regularizer can produce some rows of
W as0.If arow Wy, = 0!, the subgraph (feature) g; will not
be used in all tasks. In the following, we propose our gradi-
ent/subgradient-based algorithms for multi-task graph clas-
sification. Because ¢; and ¢ ; norm regularizations result in
different subgradients, we will handle each case separately.

4.2 Multi-Task Graph Classification: Challenges
and Solution Sketch

Challenges.When the whole feature set F = {g1,...,gn} is
small and available for learning, the objective function in
Eq. (3) can be effectively solved by using an existing tool-
box [31] for either ¢, or ¢,; norm regularization. For graph
data, however, the challenge is twofold: (1) the whole fea-
ture set F is implicit and unavailable, and enumerating sub-
graph features is NP-complete; and (2) the number of
subgraphs is huge and possibly infinite (m — +00).

Solution sketch. To solve the aforementioned challenges,
we propose to iteratively include features/subgraphs into
our objective function. In other words, multi-task subgraph
selection and model learning are integrated into one objec-
tive function for mutual benefits. More specifically, we carry
out subgraph selection based on the subgradient of the
objective function J, so the empirical loss can always be
reduced when selecting and adding the most discriminative
subgraph to the existing subgraph feature set. After a new
subgraph is incorporated, we re-solve the new restricted
master problem® of Eq. (3), which is defined as follows:

T ng
Tr= min 33 Ll hlall) +y RO, 6
wis
c
where W) and b are the solutions based on the selected

features in the s-th iteration, and xi‘;) is feature representa-
tion of z;; w.r.t. the selected features.

1. 0 or 1 indicates 7' dimensional vectors with all 0 or 1 values.
2. A reduced problem based on the selected features only.

The aforementioned feature selection and model learning
procedure continues until the algorithm converges. To handle
the huge subgraph space, we derive two branch-and-bound
pruning rules to reduce the search space. The above algorithm
design enjoys two unique advantages: (1) the discriminative
subgraph selection is driven by the well defined multi-task
learning objective function for model learning; and (2) the
model learning will be further enhanced by the inclusion of
newly selected discriminative subgraph features.

Our method is based on the gradient/subgradient func-
tional space of the objective function Eq. (3). Let us define
the gradient of the loss term C in Eq. (3) on the subgraph fea-
ture g, with respect to the ¢-th task as VCj, -

ac N OL (s fi(wei)) f (i)
Z afi(wei) dwpg

ng

E Yt,ilt, Lmt i

Ve = G = 2
(6)

ng

yhl'“
- nt21+le:ft15f:

Here, a; = — is a constant, given the feature

1
nt(1+€yﬁ,lff(zf.ﬁ))
represented graph sample z;;. Later on, we will regard it as

a weight associated to graph G;; for the subgraph mining

process.
Then the gradient vector of feature g, over all 7" tasks is

defined as

VCr. = [VChuw,s - VCiwy)- )
4.3 Optimal Subgraph Candidate Exploration
Because we assume that some subgraphs/features g, will
not be used for learning the classification models, i.e.,
W .. = 0, it makes sense to partition all subgraph features F
into two disjoint subsets F; and F,. F; stores active fea-
tures which are used to learn the classification model and
this set is frequently updated as desired. F; includes unse-
lected graphs with 0 weights (i.e., for g, € Fo, W},. = 0). We
can then iteratively select the best features from 7, to F;.

Stopping conditions and conditional score. According to the
optimal conditions, after reaching the optimum, the first
derivative of Eq. (3) should be 0:

VCiw, + v0rs =0, (8)

where oy, is the subgradient of the ¢; or ¢ ; norm of Wy,,.

Let o, = [011, . - ., 05 7] be the subgradient vector over all
tasks. For the ¢;-norm of W, (i.e., |W},.|), each dimension of
0. is as follows [45], [46]:

0 c { [71, 1]7
kit sign(Wy,,),

Wk,t = 07

Wi # 0. ©

Now we can state the optimal condition for ¢; norm regu-
larization. According to Eq. (8) and Eq. (9), a vector

W = [w,...,w] is the optimal solution of our objective
function Eq. (3) if and only if:

IVCr.ll. <y, if Wy =0, (10)

VCi, +ysign(Wy.) =0, if W;. #0, (11)
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where |VCi |, = max’,|VCiw|- Eq. (10) ensures that
Vt, |VCk,wt| S Y-
Similarly, for the {5 ;-norm, oy, for |Wy..||, are [46]:
zeRT, |z, <1: Wy =0,
o) € (12)

W]‘.‘_ .
Wl Wk 70

Therefore, according to Eq. (8) and Eq. (12), a vector

W = [uy,...,u] is the optimal solution to our objective
function Eq. (3) if and only if:
IVCi. Iy < v,

it W, =0, (13)

VCi. + y[[Willy Wi, =0, if W, #0. (14)

To reduce the objective value of J in Eq. (3), we propose
to select subgraphs in 7, whose weight violates Eq. (10) for
¢;-norm regularizer or Eq. (13) for /5 ;-norm regularizer, and
update the selected active set 7, with the newly-selected fea-
tures and re-optimize Eq. (3) with the current features. This
process will repeat until no candidate violates either Eq. (10)
or Eq. (13). In other words, these two equations can naturally
induce the stopping criterion for our process. Let us define

the conditional score of a subgraph as follows:
Definition 3 (Conditional Score). For a subgraph pattern gy,
its conditional score over all T tasks is defined as

Y(gx) = [IVCr.[l,5 q € {o0,2}, (15)

where q = oo for ¢ regularization and q = 2 for £y, regulari-
zation; VCy,. is defined in Eq. (7).

As a result, all potential subgraphs which violate Eq. (10)
or Eq. (13) can be defined as

Fs={gklgr € Fa, T(gr) > v} (16)

F3 defines all candidate subgraphs which can be selected
and added to F;.

Optimal multi-task subgraph selection: Intuitively, any sub-
graph in F3 can be selected and added to F; in each itera-
tion. To ensure quick convergence, we will select the one
with the most significant impact in reducing the function
value of J in Eq. (3). From Eq. (3) and Eq. (8), the gradients
for subgraph g;, over T tasks are defined as

T T
=) VCiw+vY or=VCr -1+yo-1. (D
t=1 t=1

From Eq. (9) and Eq. (12), we know that 0 is a feasible sub-
gradient for both ¢; and ¢5; norm regularizers. Therefore,
we can set o, = 0, in such case, I' = V(j,. - 1. Then we can
compute the absolute value |VC;. - 1|, and choose the sub-
graph with the largest value each time (because it will possi-
bly have the most significant impact in reducing J in
Eq. 3)).

4.4 Multi-Task Graph Classification Algorithm
Before explaining our multi-task graph classification algo-
rithm details, we formally define a multi-task score for a
subgraph to quantify its utility value for MTG as follows:

Definition 4 (MTG Discriminative Score). For a subgraph
pattern gy, its discriminative score over all T tasks is defined
as follows:

T
O(gr) = [VCr - 1| = | > VCrul, (18)
t=1

where VCy,. and VCy,, are defined in Eq. (7) and Eq. (6).

Algorithm 1 illustrates the detailed steps of our iterative
subgraph feature learning for multi-task graph classification.
Initially, the weights for all training graphs in each task are
set equally as 1/n; (n; is the number of labeled subgraphs in
task t), and the active set F is initialized to be empty.

On the next step, the algorithm mines a set of subgraphs P
from F3 which have the highest MTG discriminative scores
defined by Eq. (18). This step involves a multi-task driven
subgraph mining procedure, which will be addressed in the
next subsection. To reduce the number of iterations for sub-
graph mining, top K subgraphs are used in each iteration
(instead of the best subgraph). The impact of the K values on
the algorithm performance is studied in Section 5.2.3.

If the current graph set P is empty on steps 4-5, it means
that no more subgraphs are violating the optimal condition
of Eq. (10) or Eq. (13), so the algorithm will stop. On step 6,
we add newly selected subgraphs P to the existing sub-
graph set 71, and re-solve the restricted objective function
Eq. (5) on step 7. To solve the restricted objective function,
we use the MALSAR toolbox” in our experiments.

On the last step, the algorithm updates the weight «;; for
each graph G;;. This will help compute the gradient vector
of VCy,. for the purpose of computing the MTG discrimina-
tive score of each subgraph in preparation for subgraph
mining in the next round.

Algorithm 1. Multi-task Graph Classification Algorithm

Input:
{(Ge1,921)s -, (Genyyen) },t € {1,2,...,T} : Graph Data-
sets from 7T tasks;
Snar: Maximum number of iterations;
K: Number of optimal subgraphs used in each iteration;
Output:
W) b>): Parameters for multi-task models

1 oy =1/ny F1 <0, s—1;

2: while s < S,,,, do

3: Mine top-K subgraph features P = {g;},_, , from F3
with maximum discriminative score defined by Eq. 18;
/ /Algorithm 2;

4: if P = () then

5: break;

6: Fi1—F1 U P;

7 Solve Eq. (5) based on F; to get new weights matrix
W) p);

8: Update the graph weights on each training graph

_ 1
9: s« s+1; e ne (Lt /(i)

10: return W, b,

Theorem 1 (Convergence Properties). Algorithm 1 guaran-
tees that the restricted objective function Eq. (5) will monotoni-
cally decrease.

3. http:/ /www.MALSAR.org
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Proof. Without loss of generality, we assume in each itera-
tion that, a subgraph is selected and added to F, i.e., we
set K =1 in Algorithm 1. Let the optimal objective value
based on current s features (i.e., | F;| = s) with respect to
Eq. (5) be obtained at (W), b)), i.e.,

¢

NE W(bl; Z Zﬁ(ytuft 1?“ ‘H’R( )

C

Then in the s + 1-th iteration, the optimal objective value
of Eq. (5) is

(1) plst1)y = mln(C+ yR)|V(W

; 9+1)’ b(s+1))
< (C+yR)|(W;0],60).

minJ (W

Thus the objective value of the restricted problem Eq. (5)
based on the currently selected features F; will always
monotonically decrease in two successive iterations.
Because the objective function value is non-negative
(bounded), we can ensure that it will finally converge as
iteration continues. The proof is complete.

According to optimal conditions (Eq. (10) or Eq. (13)),
if the algorithm has reached the optimal solution,
Yar, gr € F1, we will have W,. = 0, thus its conditional
score Y(gx) = ||VCi. ||, < v.q € {00,2}. In this case, no
more subgraphs will be obtained in P from Fj3, ie,
P = 0. Thus our stopping condition (steps 4-5) guaran-
tees the optimal solution of our algorithm. ]

4.5 Multi-Task Driven Subgraph Mining

To obtain a set of discriminative features P in 73 from the T’
tasks of training graphs, we need to perform a subgraph enu-
meration procedure. The mining of the top-K subgraphs on
step 3 of Algorithm 1 also needs to enumerate the entire set
of subgraph patterns from the training graphs of all tasks. In
our MTG algorithm, we employ a frequent subgraph min-
ing-based algorithm, gSpan [10]. The key idea of gSpan is
that each subgraph has a unique DFS Code, which is defined
by a lexicographic order of the discovery time during the
search process. By employing a depth first search strategy on
the DFS Code tree (where each node is a subgraph), gSpan
can enumerate all frequent subgraphs efficiently.

During the subgraph mining process, an effective pruning
scheme is essential because the search space is exponentially
large/infinite. In this subsection, we will first derive the
upper-bound of the MTG discriminative score, and then pro-
vide an upper-bound of conditional score. Both scores will
help prune the search space and speed up the subgraph
mining.

Theorem 2 (Discriminative Score Upper-bound). Let g and
¢ be two subgraph patterns, and g C ¢, for the subgraph g, we

define
DS
=1 {ily; ;/=+1,9€Gy ;}
T
2> >
t=1 {ily; j=—1,9€Gy;}

T mn
= E At iYtis

=1 i—1

at,ia

Oty

A3207

@(q) _ {max{\Al(g) — Asl,|A2(g)[} s

max{|As(g) + A3, [A1(g)|}

then ©(g) < O(g), where O(q) is defined in Eq. (18).
Proof. We start with the definition of ©(¢'):

n
= |Ziyt7auft(xtz

nt

_|Zzytzan 219 CGtL)_lH
Z Z Ytilti — Zzamyu

=1 JCay t=1 i=
(9) — As(g) — A3
- {maXﬂAl(g’) Asl,[Aa(g)I} A3 >0,
~ (max{|A42(¢) + As], [Ai ()]} A3 <0,
- {maXﬂAl(g) Al [As(g)l} 2 A3 >0,
B max{|A2(g)+A3|,|A1(g)|}: Az <0,
=0(g

The first inequality holds because for o;;; < 0, A1(¢') <0
and Ay(¢') <0, so the upper-bound depends on Aj. If
A3z >0, A1(¢') and A3 will have different signs, then the
upper-bound is the maximum of {|4;(¢) — As], |A2(d)|}.
The case is similar for A3 < 0. The second inequality
holds because |A1(¢)| < |A1(g)| and |A2(¢)| < |Aa(g)] for
gCyd. O

Theorem 2 states that for any super graph of a subgraph
g, its MTG discriminative score, over T' tasks, is upper-
bounded by O(g).

Single discriminativeness bound. The above discriminative
score upper-bound can also be applied to each single task
separately. If only task ¢ is considered, the single discrimina-
tiveness upper-bound is defined as (g, t), which requires
that A;(g), A2(g) and Az in Theorem 2 are computed over
task t only.

Theorem 3 (Conditional Score Upper-bound). Given two
subgraph features g and gy, (g C gi.), and a set of upper-bounds
of single discriminativeness bound:

T =[0(g,1),...,6(g,7)]

let

T(9) = T

then Y (gr) < Y(g), where Y (gy) is defined in Eq. (15).

g q € {00,2},

Proof. The conditional score for g, on the task ¢ is |VCy,|,
which is upper-bounded by O(g,t),ie., O(g,t) > [VCiw, |-
Because every entry in T(g;) is smaller than that in T(m,
the /. or ¢, norm on the vector also holds, i.e.,
T(g) = Y(gn)- o

According to Theorem 3, once a subgraph g is gene-
rated, the conditional scores for all its super-graphs are
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upper-bounded by T(g). Therefore, we use this rule to
prune unpromising candidates.

Algorithm 2. Multi-Task Driven Subgraph Mining

Input:
{(Gt,l» yt71)7 ey (Gum yt,n)}at S {1, 2,... ,T} : Graph Data-
sets from 7T tasks;
y : Predefined regularization parameter;
ay; : Weight for each graph example;
K: Number of optimal subgraph patterns;
Fi: Already selected subgraph set;
Output:
P=Ag}p-1,..x
n=0,P
while Recursively visit the DFS Code Tree in gSpan do
gp « current visited subgraph in DFS Code Tree;
if g, has been examined then
continue;
Compute scores 0(g,) and T (gj,) for subgraph g,
according Eq. (18) and Eq. (15);
7: if g, € F; & O(g,) > nthen

The top-K subgraphs;

8: P—PU gy
9: if |P| > K then
10: g* — argming, cpO(gi);
11: P — P/g*;
12: n mingkep®(g;§»);
13: if ©(gy) > n& Y(g,) > y then
14: Depth-first search the subtree rooted from node g,;

15: return P = {gr},_, . i

Multi-task driven subgraph mining algorithm. Our multi-
task driven subgraph mining algorithm is listed in Algo-
rithm 2. The minimum value 7 in optimal set P is initial-
ized on step 1. Duplicated subgraph features are pruned
on steps 4-5, and the discriminative score ®(g,) and con-
ditional score Y(g,) for g, are calculated on step 6. If g,
is included in the current candidate set F = {gilgr €
F2,Y(gr) > y+e} and O(g,) is larger than 5, we add g,
to the feature set P (steps 7-8). Here, we have relaxed
Fs from Eq. (16) to a e-tolerance set, i, F3, because
Y(gr) only changes subtly in the last few iterations
(€=0.005 in our experiments).

When the size of P exceeds the predefined size K, the sub-
graph with the minimum discriminative score is removed
(steps 9-11). The algorithm then updates the minimum opti-
mal value 1 on step 12, and uses two branch-and-bound
pruning rules, Theorems 2 and 3, to prune the search space
on step 13. The two rules will reduce unpromising candi-
dates by using discriminative scores and conditional scores,
respectively. Lastly, the optimal set P is obtained on step 15.

The above pruning process is a key feature of our algo-
rithm, because it does not require any support threshold for
subgraph mining, whereas all other subgraph mining meth-
ods will require users to predefine a minimum threshold
value to find frequent subgraphs.

4.6 Relation to gBoost Algorithm

The gBoost algorithm [4] can be considered as a special case
of Eq. (3) with constraint w > 0 and a single task only. Inter-
ested readers can refer to the supplementary material sec-
tion for detailed analysis.

TABLE 1
Datasets Used in Experiments

Collections ID #Pos  #Total Learning tasks
1 1,793 37,349 Non-Small Cell Lung
33 1,467 37,022 Melanoma
41 1,350 25,336 Prostate
47 1,735 37,298 Central Nerv Sys
NCI Tasks 81 2,081 37,549 Colon
83 1,959 25,550 Breast
109 1,773 37,518 Ovarian
123 2,715 36,903 Leukemia
145 1,641 37,043 Renal
Sub,r 32 87 Male Rat (MR)
Subp 35 85 Female Rat (FR)
PTCTasks g0y 20 8  Male Mouse (MM)
Sub gy, 35 88 Female Mouse (FM)

5 EXPERIMENT

5.1 Experimental Settings

Benchmark data. We validate the performance of the pro-
posed algorithm on two types of multi-task graph classifica-
tion domains.

Anti-cancer activity prediction (NCI): The NCI graph collec-
tion* is a benchmark for predicting biological activities of
small molecules for different types of cancers. Each mole-
cule is represented as a graph, with atoms representing
nodes and bonds denoting edges. A molecule is positive if it
is active against a certain type of cancer, or negative other-
wise. Table 1 summarizes nine NCI graph classification
tasks used in our experiments, where columns 2-5 show the
bioassay ID, number of positive graphs, total number of
graphs in the original dataset, and the description of learn-
ing task, respectively. In our experiments, we randomly
select #Pos number of negative graphs from each original
graph set to create a multi-task graph classification problem
with relatively balanced training graphs for each task. This
allows us to concentrate on the performance of general
graph classification, without any complication of severely
imbalanced class distributions. For highly imbalanced
graph data, special designs are needed to prevent all graph
samples from being classified into a single class, by consid-
ering minority and majority classes or reweighing the mis-
classification cost of different graphs, as reported in our
recent studies [28], [29]. Note that although each of the nine
tasks focuses on the prediction of different type of cancers,
all these tasks are relevant in cancer prediction and some
common discriminative substructures may exist for all can-
cer types (as shown in Fig. 1). This makes NCI an ideal
benchmark for multi-task graph classification.

Predictive Toxicology Challenge Dataset (PTC): The PTC
challenge includes a number of carcinogenicity tasks for toxi-
cology prediction of chemical compounds®. The dataset we
selected contains 417 compounds with four types of test ani-
mal: MM (male mouse), FM (female mouse), MR (male rat),
and FR (female rat). Each compound has one label selected
from {CE, SE, P, E, EE, IS, NE, N}, which stands for Clear

4. http:/ /pubchem.ncbi.nlm.nih.gov
5. http:/ /www.predictive-toxicology.org/ptc/
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Fig. 3. The classification accuracy of each single task w.r.t. the number of training graphs in each task.

Evidence of Carcinogenic Activity (CE), Some Evidence of
Carcinogenic Activity (SE), Positive (P), Equivocal (E), Equiv-
ocal Evidence of Carcinogenic Activity (EE), Inadequate
Study of Carcinogenic Activity (IS), No Evidence of Carcino-
genic Activity (NE), and Negative (N). Similar to [27], we set
{CE, SE, P} as positive labels, and {NE, N} as negative labels.
To formulate an MTG dataset, we randomly split 417 com-
pounds into four equal and disjointed subsets. For each sub-
set, we only consider one type of carcinogenicity test as its
learning task. The subset information is also listed in Table 1.

Comparing methods. In our experiments, we consider two
types of baseline method from graph classification and
multi-task learning perspectives, as follows:

e  gBoost simply applies gBoost algorithm [4] to each
graph classification task separately, without consid-
ering graph samples from other tasks.

GAIA algorithm [15] selects discriminative subgraphs
as features using evolutionary computation. An SVM
classifier is trained using selected subgraphs.

CORK algorithm [20] mines informative subgraphs by
optimizing a submodular quality criterion so that
greedy feature selection leads to a near-optimal solu-
tion. Again, an SVM model is trained using selected
features.

MTL-¢, and MTL-l5, first mine a set of frequent sub-
graphs from all training graphs (we set the minimum
support as 0.1, which results in over 2,500 subgraph
features on each NCI dataset), and then use
those features to transfer each graph dataset into
vector format. We then apply traditional Multi-task

Learning algorithms to the transferred vector data-
sets. For MTL-¢,, ¢, regularization is used. And for
MTL-5;, 45 regularization is employed, as in [12].
Both methods are implemented with Logistic loss
function and are available in the MALSAR
toolbox [31].

MTG-t, and MTG-{y; are our proposed methods,
with MTG-¢; being regularized by ¢; norm, and
MTG-{5 being regularized by /5 ; norm.

Note that GAIA, CORK, and gBoost are single task
graph classification algorithms. Specifically, GAIA and
CORK are filter-based methods while gBoost is an
embedded algorithm. All these algorithms can automati-
cally determine the number of discriminative subgraph
features.

Unless otherwise specified, the parameters for MTG are
set as follows: K =15, and S, = 15. ¥ =0.01 is set for
both MTL-/; and MTG-/;, y = 0.02 is set for both MTL-/s;
and MTG-/s,. Detailed studies of parameters K and y are
reported in Section 5.2.3. For gBoost algorithm, the parame-
ter v is set to 0.2, as it usually achieves good results on both
NCI and PTC datasets.

5.2 Experimental Results
5.2.1 Results on NCI Tasks

For NCI multi-task learning, we randomly label a small set
of graphs as training graphs for each task, with remaining
graphs being used for test. The number of training graphs
in each task varies from 50 to 400. We conduct each group
of experiment 10 times and report the average accuracies
for each task in 10 trials of experiments in Fig. 3. The
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Fig. 4. Comparison of gBoost, MTG-/5;, and SMTG-¢;, where sMTG-/y,
only learn with a single task, i.e., NCI 1.

average AUC values for each task are reported in the sup-
plementary materials.

The results in Fig. 3 show that with the increase of train-
ing data for each task, all algorithms achieve performance
gains in accuracy values. Over all graph classification tasks,
MTG algorithms, including MTG-¢; and MTG-/s,, signifi-
cantly outperform both STG algorithms (gBoost, GAIA, and
CORK) and MTL algorithms for vector data. Among these
algorithms, GAIA and CORK are inferior to other algo-
rithms. This may be because: (1) they are filter-based algo-
rithms while others are embedding algorithms. For filter-
based algorithms, the selected features may not fit the learn-
ing model (SVM in our case) very well. This is a common
drawback of filter-based algorithms [47]. (2) the numbers of
subgraphs obtained by GAIA (about 50) and CORK (about
20), which are automatically determined by the algorithms,
are much smaller than other algorithms (over 200 subgraphs
are used in gBoost, MTL, and MTG algorithms). With a
small number of features, their models may under-fit the
data, resulting in deteriorated performance.

Comparison of gBoost and MTG. As for gBoost, although it
is an embedded algorithm, its performance is significantly
worse than MTG-¢; and MTG-/{5;, mainly because it ignores

TABLE 2
Comparison of Subgraphs Selected by MTL-¢5; and
MTG-/, with 400 Training Samples

Support (%) #Frequent #MTL-ly; #MTG-fy; Overlap
25 347 168 216 45
20 518 206 216 52
15 990 411 216 85
10 2,648 855 216 126
5 15,121 2,598 216 178

(A) Accuracy on MTG-lyq v.s. MTL-l,,
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Fig. 5. Comparison of MTL-¢y; and MTG-/¢5; with respect to different
support values.

relevant graphs from similar tasks. To validate the benefit
brought by multi-task learning, we further compare gBoost
with sMTG-/5; algorithm, which is the same as MTG-/y;
algorithm except that it only considers a single task and
ignores relevant tasks, and report the results in Fig. 4. It is
clear in Fig. 4 that gBoost is very closed to sMTG-/5;. Both
gBoost and sMTG-{s; are inferior to MTG-/2;. When consid-
ering multiple tasks, the classification performance of MTG-
451, in terms of accuracy and AUC values, can be signifi-
cantly improved. This experiment demonstrates the benefits
of multi-task graph classification.

Comparison of MTG and MTL. Our experimental results in
Fig. 3 also show a clear performance gain over MTL algo-
rithms. This is because regardless of whether ¢; or ¢, ; regu-
larization is used, MTL methods will first mine a set of
frequent subgraphs as features and then employ multi-task
learning techniques for learning and classification.
Although these methods can enjoy the benefits of MTL by
jointly optimizing related learning tasks, their subgraph
mining process is not driven by the multi-task learning
objective, and these methods will miss some genuine dis-
criminative subgraphs at the first step. To validate this
hypothesis, we report overlap subgraphs selected by MTG-
l51 and MTL-{5; in Table 2 and the classification perfor-
mance in Fig. 5. Note that MTG and MTL solve the same
objective function (Eq. (3)) with different selected subgraph
features. A better subgraph set will result in better graph
classification results.

In Table 2, we vary the support threshold from 5 to 25.
Columns 2-5 indicate the number of frequent subgraphs
obtained by the corresponding support value, the number
of selected subgraphs learned by MTL-¢5; and MTG-05°,

6. The subgraphs with non-zero weights are selected.
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TABLE 3
Accuracies on Nine NCI Graph Classification Tasks w.r.t
Different Numbers of Training Graphs in Each Task

#  gBoost GAIA CORK MTL-¢; MTL-{y; MTG-t; MTG-ly
50 0590 0559 0.564 0.600 0.605 0.609 0.622
100 0.617 0578 0.604 0.632 0.636 0.656 0.673
150 0.638 0.595 0.614 0.653 0.653 0.684 0.697
200 0.658 0.604 0.615 0.661 0.669 0.701 0.719
250 0.665 0.613 0.627  0.666 0.676 0.709 0.727
300 0.674 0.611 0.635 0.671 0.690 0.715 0.735
400 0.675 0.613 0.642 0.675 0.693 0.715 0.738
400 0.676 0.615 0.640 0.680 0.701 0.727 0.750

and the overlapping subgraphs selected by both MTL-/5;
and MTG-/,;. Note that the maximum number of subgraphs
selected by MTG-fy; is 15 x 15 =225 (S, =15 and
K =15). Because some weight values are 0, we have 216
valid subgraphs in total.

The result shows that when decreasing support values,
the number of frequent subgraphs increases exponentially
and the number of overlapping subgraphs also rises. When
support value is 10 percent, there are only 126 common sub-
graphs between MTL-/,; and MTG-/{5;, which means that a
large number of useful subgraphs (216 — 126 = 90) are
under 10 percent support but they are not selected by MTL-
£51. Theoretically, unless we set the absolute support to 1,
which is impractical for the exponentially large (or infinite)
subgraph space, the MTL algorithm may be subject to risk
of missing discriminative subgraphs. The reason is that
some subgraph features may be very informative for classi-
fication but are infrequent w.r.t. the support threshold
value, so cannot be discovered by MTL algorithms. In con-
trast, MTG can overcome this issue because it does not
require any support threshold for subgraph mining. As
shown in Fig. 5, MTG outperforms MTL because it can
explore all potentially discriminative subgraph features for
graph classification.

Another interesting finding observed from Fig. 3 is that
MTG-45; outperforms MTG-¢; on most tasks. This is because
>, regularization considers group effect, which is a special
group lasso [44] and usually has better performance for
group variable selection.

The average results, in terms of accuracy and AUC val-
ues, with respect to various training graphs over all tasks
are reported in Tables 3 and 4. The results demonstrate that
MTG-¢5, can achieve significant improvement over gBoost

TABLE 4
AUC Values on Nine NCI Graph Classification Tasks w.r.t
Different Numbers of Training Graphs in Each Task

#  gBoost GAIA CORK MTL-¢{; MTL -fy; MTG-f; MTG-ly
50 0.619 0559 0.564 0.630 0.645 0.651 0.667
100 0.656 0.578 0.604 0.679 0.683 0.713 0.731
150 0.682 0.595 0.614 0.707 0.711 0.745 0.761
200 0.713 0.604 0.615 0.719 0.730 0.763 0.785
250 0.716 0.613 0.627 0.727 0.738 0.773 0.792
300 0.727 0.611 0.635 0.734 0.752 0.781 0.804
400 0.730 0.613 0.642 0.737 0.758 0.784 0.812
400 0.727 0.615 0.640 0.743 0.770 0.795 0.820

TABLE 5
Accuracies on PTC Tasks

gBoost GAIA CORK MTL-¢; MTL-{y; MTG-¢; MTG-ly

MR 0573 0.628 0.634 0.664 0.643 0.594 0.655
FR 0.561 0.615 0.581 0.522 0.547 0.541 0.607
MM 0640 0.641 0.663 0.648 0.623 0.658 0.677
FM  0.680 0.582 0.716 0.602 0.626 0.671 0.682
Avg. 0.613 0.617 0.649 0.609 0.610 0.616 0.655

and MTL methods. For instance, it outperforms gBoost and
MTL-/¢; with 9.3 and 7.7 percent gain, respectively, in terms
of AUC value (400 samples each task).

5.2.2 Results on PTC Tasks

The number of training graphs for each PTC graph classifi-
cation task is very limited, so instead of varying the training
samples for each task (such as for NCI tasks), we conduct
10-fold cross-validation on PTC tasks. In this way, we can
reduce the bias of each method caused by having a small
number of training samples. The accuracies and AUC val-
ues are reported in Tables 5 and 6.

The results in Tables 5 and 6 show that MTG methods
achieve considerable performance gains over gBoost and
MTL methods for almost all tasks. MTG-/5; outperforms
other methods for all tasks in terms of AUC. Note that for
PTC tasks, AUC values are more important because all tasks
have imbalanced class distributions.

5.2.3 Convergence Study and Parameter Analysis

In this subsection, we study the impact of parameters K and
y on algorithm performance.

Impact of K values. To study the role of the K value,
which denotes the number of subgraphs selected in each
iteration, in algorithm performance, we report the conver-
gence and runtime performance of MTG w.r.t. different K
values in Table 7. The results show that small K values
(e.g., K =1) require a large number of iterations and
more system runtime. When K values continuously
increase, the number of iterations and runtime drop dra-
matically because more subgraphs are discovered and
included in the feature set in each iteration. For large K
values, there is no significant difference in terms of algo-
rithm runtime.

Interestingly, Table 7 shows that although different K
values will result in different number of subgraphs ulti-
mately being selected in 7, the algorithm will always con-
verge to an e-tolerance optimal solution (¢ is used in
Algorithm 2) via solving objective function Eq. (5), as shown

TABLE 6
AUC Values on PTC Tasks

gBoost GAIA CORK MTL-{; MTL-ly; MTG-t; MTG-ly

MR 0574 0.502 0.500 0.574 0.586 0.631 0.656
FR 0522 0526 0.500 0.516 0.517 0.505 0.591
MM 0.600 0.500 0.500 0.563 0.597 0.624 0.671
FM  0.686 0.530 0.663 0.601 0.623 0.696 0.702
Avg. 0596 0515 0541 0.563 0.581 0.614 0.655
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TABLE 7
Running Statistics w.r.t Different K Values for MTG-¢;
(50 Training Graphs for Each Task, S, = 150)

K  Obj(J,) #lter |F;| Accuracy AUC  Time(s)
1 2.0754 122 122 0.621 0.670 1032
5 2.0814 29 138 0.620 0.667 283
10 2.0861 18 164 0.620 0.669 203
15 2.0779 15 172 0.622 0.667 186
20 2.0771 14 209 0.622 0.669 181

in column 2 of Table 7. As a result, their accuracy and AUC
values are very close to each other, regardless of different K
values being used in the experiments. This result actually
demonstrates the convergence of our algorithms, and
assures that K will mainly affect the algorithm runtime
performance.

The number of iterations in Table 7 shows that our algo-
rithm has a fast convergence speed. When K = 15, it will
take 15 iterations to reach convergence. In practice, we
found that there is no need to wait until the algorithm
reaches convergence for optimal results, so we set the maxi-
mum number of iterations S,,,,; = 15 in our experiments.

Impact of y values. We vary the regularization parameter
y from 0.005 to 0.5, and report the results in Table 8, where
the sparsity denotes the percentage of zero elements in the
final weight matrix W. The results show that increasing y
values will result in increased sparsity, because ¢; norm
regularizes more elements to be 0. For small y values
(from 0.005 to 0.05), the accuracy and AUC values have
minor differences, but for very large y values (y = 0.5), the
regularization term dominates the objective function
Eq. (3), with no subgraph being used for classification, and
results in poor AUC values. Similar results are also
observed in the MTG-/5; algorithm.

5.2.4 Runtime Efficiency Study

In this subsection, we investigate the pruning efficiency of
MTG in reducing the search space [Theorems 2 and 3 in Sec-
tion 4.5] for subgraph feature exploration. Because the
whole subgraph search space is exponentially large (or infi-
nite), it is challenging to assess the pruning effectiveness of
MTG. Accordingly, we introduce a threshold value
min_sup, which denotes the minimum frequency of each
qualified subgraph feature in the training graph datasets, to
bound the number of subgraphs in the search space. In this
way, we know the total number of subgraph candidates, as
a result of which we can assess the pruning efficiency by
checking the percentage of candidates pruned by the prun-
ing process.

TABLE 8
Results w.r.t. Different y Values for MTG-¢;
(50 Training Graphs for Each Task, S,,.. = 15)

Y | F1l Sparsity Accuracy AUC
0.005 178 0.720 0.613 0.654
0.01 225 0.785 0.609 0.651
0.05 219 0.905 0.606 0.641
0.1 115 0.922 0.588 0.619
0.5 8 1 0.5

(A) Running time (B) No. of qualified subgraphs
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Fig. 6. Pruning effectiveness with different pruning modules on NCI
tasks for subgraph mining. (A) Running time. (B) Number of enumerated
subgraphs.

In our experiments, the min_sup threshold value,
together with Theorems 2 and 3, are used for pruning the
search space on step 13 of Algorithm 2. Then our MTG is
compared with the following baselines:

e Fre-MTG. this method only uses the support thresh-
old min_sup to prune the search space [in step 13 of
Algorithm 2], with Theorems 2 and 3 being dis-
carded. In other words, the multi-task driven sub-
graph mining procedure is reduced to a classical
frequent subgraph mining problem.

e Dis-MTG. this method uses the support threshold
min_sup and the discriminative score bound (Theo-
rem 2) to prune the search space.

e Con-MTG. this method uses support threshold
min_sup and the conditional score bound (Theorem
3) to prune the search space.

The experimental results in Fig. 6A show that with the
increase of the support threshold value min_sup, all meth-
ods experience reduced running time. This is because that a
large support value will result in a small number of sub-
graph features (Fig. 6B). Among all compared methods, Fre-
MTG consumes much more time than other methods
because there is no pruning process to help reduce the
search space.

By sequentially including the upper-bounds of the dis-
criminative score (Dis-MTG) and conditional score (Con-
MTG) in the pruning process, algorithm runtime is reduced
significantly. For instance, when using a small threshold 0.2
for NCI tasks, it only takes about 28,000 ms for MTG to mine
the optimal subgraphs, whereas Fre-MTG requires about
330,000 ms. MTG algorithm is an order of magnitude faster
than Fre-MTG, which shows the significant pruning effi-
ciency of MTG.

The results in Fig. 6 also reveal that discriminative score
bound is more effective than conditional score bound. Note
that these two bounds mainly affect runtime efficiency, but
will not influence the accuracy of the algorithm. This is
because these two bounds can safely prune unpromising
subgraphs, as proved in Theorems 2 and 3. If these two
pruning bounds are removed, the algorithm will fail
because without a support threshold value, the number of
subgraph candidates will grow exponentially.

Our runtime efficiency study suggests that MTG is not
only efficient in pruning the subgraph feature space to find
high quality subgraph features, it can also carry out sub-
graph feature exploration without requiring a minimum
support threshold value min_sup. As a result, it is efficient
and effective in finding discriminative subgraph features
for multi-task graph classification.
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6 CONCLUSION

In this paper, we formulated a unique multi-task graph clas-
sification problem. Our goal is to combine multiple graph
classification tasks as one learning objective for all tasks to
achieve maximum classification accuracy. We argued that
due to the inherent complexity of the graph data and the
costs involved in the labeling process, many graph classifi-
cation tasks have a very limited number of training samples.
By unifying multiple tasks to guide the subgraph feature
exploration and the succeeding learning process, multi-task
graph classification has clear advantages in finding good
subgraph features and avoiding overfitting, compared to
models learned from single tasks alone. In this paper, an
MTG algorithm is proposed which combines all tasks as a
jointly regularized function. The joint regularization ensures
that the inclusion of subgraph features can result in mini-
mized regularization loss, which in turn leads to optimal
learning models. Two Branch-and-bound pruning rules are
also proposed to prune the search space. Experiments and
comparisons on real-world data confirm the performance of
our algorithms.
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