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Abstract—This paper formulates a multi-graph learning task. In our problem setting, a bag contains a number of graphs and a

class label. A bag is labeled positive if at least one graph in the bag is positive, and negative otherwise. In addition, the genuine

label of each graph in a positive bag is unknown, and all graphs in a negative bag are negative. The aim of multi-graph learning

is to build a learning model from a number of labeled training bags to predict previously unseen test bags with maximum

accuracy. This problem setting is essentially different from existing multi-instance learning (MIL), where instances in MIL share

well-defined feature values, but no features are available to represent graphs in a multi-graph bag. To solve the problem, we

propose a Multi-Graph Feature based Learning (gMGFL) algorithm that explores and selects a set of discriminative subgraphs

as features to transfer each bag into a single instance, with the bag label being propagated to the transferred instance. As a

result, the multi-graph bags form a labeled training instance set, so generic learning algorithms, such as decision trees, can be

used to derive learning models for multi-graph classification. Experiments and comparisons on real-world multi-graph tasks

demonstrate the algorithm performance.

Index Terms—Graph classification, multi-instance learning, multi-graph, subgraph features

Ç

1 INTRODUCTION

GRAPHS and dependency structures commonly exist in
real-world applications [36]. For example, an online

webpage may consist of text descriptions, images, and vid-
eos, where text can be represented as graphs to preserve the
content and contextual information (this representation has
demonstrated a better performance than simple bag of
words representation) [1]. In addition, each image can also
be transferred into graphs to represent image regions and
their structure dependencies (this representation is also bet-
ter than simply representing the whole image using visual
features such as color histograms or textures) [13]. As a
result, a webpage can be regarded as a bag that contains a
number of graphs, each representing a portion of the web-
page content. For each viewer, a webpage is interesting if
one, or multiple parts of the content (text or image) are inter-
esting to him/her (i.e., A bag is positive if one, or multiple
graphs inside the bag are positive). The webpage is not

interesting (negative) to the viewer if none of the content falls
within the viewer’s interests (i.e., A bag is negative if all
graphs inside the bag are negative). A conceptual view of
multi-graph representation for a webpage is shown in Fig. 1.

The above multi-graph representation can also be gener-
alized to many real-world domains, such as

� Bio-pharmaceutical activity test. Labeling individual
molecules (which are commonly represented as
graphs) is expensive and time-consuming. To reduce
labeling costs, molecular group activity prediction
can be used to investigate the activity of a group
(bag) of molecules. Detailed investigations, on indi-
vidual graph, are carried out only for each active
group (i.e., a positive bag).

� Online product recommendation based on review. Each
online product may receive many customer reviews.
For each review composed of detailed text descrip-
tions, we can use a graph to represent the review
text. As a result, a product can be represented as a
bag of graphs. Assume customers mainly concern
about several key properties, such as “affordability”
and “durability”, of the product. A product (i.e., a
bag) can be labeled as positive if it receives very pos-
itive review in any of these properties, and negative
otherwise.

� Scientific publication categorization. A scientific publi-
cation can be represented as a graph by using corre-
lations of keywords in the paper. Meanwhile, each
paper also has a number of references, each of which
can be represented as a graph. So each paper and all
references cited in the paper form a bag of graphs. A
bag can be labeled as positive if the paper or any of
its references is relevant to a specific topic.
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For the above three real-world applications, a bag-of-
graph representation can be used to represent the object
(e.g., molecular group, online product or scientific publi-
cation) as a bag containing many graphs (i.e., molecules,
online product reviews or scientific publications). The
details of these multi-graph examples are explained in
Figs. 5 and 7.

The inherent advantage of the bag-of-graph representa-
tion is twofold: 1) Content and structure description. Graph
representation ensures that the content of each observation
(such as a portion of the text or a region of the image) and
the structure dependency between observations (such as
the contextual information between words or spatial rela-
tionships between image regions) are both properly
described. This is more accurate than existing approaches
that normally focus on the content, such as bag of words
or visual features, but ignore the structure correlations
between objects. 2) Label ambiguity. Real-world applica-
tions often contain inconsistent information, e.g., a web-
page contains information not directly related to the sub-
ject or a drug contains properties not in the interests of the

test [9]. Bag-of-graph representation allows this type of
ambiguity/inconsistency in each observed bag, and then
tries to find the genuine model behind the observed incon-
sistences. This is more realistic for modeling many real-
world learning tasks.

In this paper, we generalize the aforementioned tasks as
multi-graph learning (MGL) as shown in Fig. 2d, where: (1)
underlying data observations are represented as graphs,
and (2) the label information is only available for a bag of
graphs (i.e., label ambiguity). Compared to traditional
learning tasks, multi-graph learning is more general in rep-
resenting real-world complex objects, and is effective for
accommodating the label ambiguity.

When label information is only available for a bag of
instances, traditional multi-instance (MI) learning [47] has a
set of solutions which either (1) customize an existing learn-
ing algorithm to tackle the label ambiguity problem [6], [7],
[28], [40], or (2) develop a learning paradigm specifically for
multi-instance learning (MIL) [23], [44], [45]. However, all
existing multi-instance learning algorithms can only handle
tabular instances, as shown in Fig. 2c, where instances in
each bag are characterized by a set of pre-defined features.
For example, to represent a document by using a multi-
instance model, a table can be used to represent a bag with
each column (feature) denoting a keyword and each row
(instance) denoting a portion of the document (such as a
paragraph of the document). This instance-feature represen-
tation is commonly used in traditional supervised learning
as shown in Fig. 2a. However, for graph data, such an
instance-feature representation is unavailable, and there is
no solution for multi-graph learning.

To classify graph structured data, existing algorithms
can be roughly categorized into two groups: (1) global dis-
tance based approaches (including graph kernel [22], [34],
graph embedding [30], and transformation [31]); and (2)
local subgraph feature based methods [8]. The former con-
siders a similarity function between two graphs for classi-
fication, and the latter uses a set of subgraphs to transfer
graph into vector (i.e., feature) space so that generic learn-
ing algorithms can be applied. Empirical studies [17] have
shown that subgraph feature based methods are generally
superior to distance based algorithms, mainly because
most distance approaches rely on the comparisons of

Fig. 1. An example of multi-graph representation for a webpage in Flickr
online photo sharing system (http://www.flickr.com/). Each rectangular
box represents one type of information source in the current page.
Although the current page is marked as “Tsunami watchers,” Image 1
and Text 3 are not relevant to the Tsunami, but Text 1, 2 and Image 2
are relevant to it. By converting content in each box into a graph, the
whole webpage can be represented as a bag of graphs (i.e., a multi-
graph representation).

Fig. 2. The conceptual view of different learning paradigms: (a) Supervised learning; (b) Graph learning; (c) Multi-instance learning; (d) Multi-graph
learning.
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global graph structures, such as common paths or walks
between graphs, to calculate graph distances. In reality,
even a simple graph can produce a large number of paths,
which makes the calculated distance unreliable for reveal-
ing the genuine distance between graphs. In addition, the
subgraph features can be served as tokens to provide a
transparent view in explaining why two graphs are similar
to each other. Many methods exist to extract subgraph fea-
tures (such as AGM [15], Gaston [26], gSpan [43] and
gHSIC [18], [46]) for classification, including a graph
boosting approach [33].

For graph classification, all existing methods require each
single graph to be explicitly labeled, as shown in Fig. 2b. In
a multi-graph setting, label information is only available for
a bag of graphs, so traditional graph classification
approaches cannot be directly applied to solve our problem.

The above observations motivate the proposed research,
namely Multi-Graph Feature based Learning (gMGFL),
which intends to explore a set of most effective subgraphs,
from multi-graph bags, to transfer each bag into an
instance-feature representation. So generic learning algo-
rithms can be applied for multi-graph classification. Due to
the label ambiguity and the bag constraint, the main techni-
cal challenge of gMGFL is two-fold.

� Subgraph feature exploration. Finding informative sub-
graphs to represent each bag is crucial for multi-
graph learning. Because labels are unavailable for
individual graphs, the subgraph selection should
take bag labels and sample distributions inside each
bag into consideration to find the most informative
subgraphs for bag classification.

� Multi-graph bag representation. Transferring multi-
graph bags into instance-feature representations
offers opportunities for a rich set of learning algo-
rithms to be applied for multi-graph classification.
Such a representation should preserve graph struc-
tures inside each bag and offer sufficient discrimina-
tive power for classification.

To solve the above challenges, we introduce an optimiza-
tion framework that combines bag and graph level con-
straints to assess the informativeness score for each
subgraph. We use the informativeness score as a pruning
criterion, and combine subgraph mining and informative
subgraph exploration to dynamically assess each subgraph
and prune out uninformative subgraphs on the fly. By using
selected subgraphs to represent multi-graph bags, gMGFL
demonstrates good performance in solving three real-world
multi-graph classification tasks.

The remainder of this paper is structured as follows.
Problem definition is discussed in Section 2, followed by the
overall framework in Section 3. Technical details of pro-
posed multi-graph feature based classification algorithm
gMGFL are outlined in Section 4, followed by experiments
in Section 5. Section 6 reviews related work, and we con-
clude the paper in Section 7.

2 PROBLEM DEFINITION

In this section, we define important notations used in the
paper.

Definition 1 (Connected Graph). A graph is represented as
G ¼ ðV; E;L; lÞ where V is a set of vertices V ¼ fv1; . . . ; vnvg,
E � V � V is a set of edges, and L is the set of labels for the
vertices and edges. l : V [ E ! L is the function assigning
labels to the vertices and edges. A connected graph is a graph
that has a path between any pair of vertices. Besides, all graphs
discussed in our paper are connected graphs.

Definition 2 (Graph Bag). A graph bag Bi ¼ fGi
1; . . . ;

Gi
j; . . . ; G

i
ni
g contains a number of graphs, where Gi

j and ni

denotes the jth graph and the total number of graphs in the
bag, respectively. For ease of representation, we also use Gj to
denote the jth graph in a given bag. A graph bag Bi’s label is
denoted by yi 2 Y, with Y ¼ f�1;þ1g. So a bag is either posi-
tive (Bþ

i ) or negative (B
�
i ).

In this paper, we use B ¼ fB1; . . . ; Bi; . . . ; BNb
g to denote

a set of bags, where Nb denotes the number of bags in B. We
can also aggregate all graphs in B as G ¼ fG1; . . . ; Gi; . . . ;
GNgg, where Ng denotes the number of graphs in G. Simi-
larly, the set of all positive bags can be denoted by Bþ, and
B� denotes the set of negative bags.

Definition 3 (Subgraph). Let G ¼ ðV; E;L; lÞ and gk ¼ ðV0;
E0;L0; l0Þ each denote a connected graph. gk is a subgraph of G,
i.e., gk � G, iff there exists an injective function ’ : V0 ! V s.
t. (1)8v 2 V0; l0ðvÞ ¼ lð’ðvÞÞ; (2) 8ðu; vÞ 2 E0; ð’ðuÞ;’ðvÞÞ 2
E and l0ðu; vÞ ¼ lð’ðuÞ;’ðvÞÞ. If gk is a subgraph of G, then G
is a supergraph of gk.

Definition 4 (Subgraph Feature Representation for Graph).
Let Sg ¼ fg1; . . . ; gk; . . . ; gsg denote a set of subgraphs discov-
ered from a given graph set. For each graph Gi, we use a sub-
graph feature vector xG

i ¼ ½ðxg1
i ÞG; . . . ; ðxgk

i ÞG; . . . ; ðxgs
i ÞG�> to

represent Gi in the feature space, where ðxgki ÞG ¼ 1 iff gk is a
subgraph ofGi (i.e., gk � Gi) and ðxgk

i ÞG ¼ 0 otherwise.

Definition 5 (Subgraph Feature Representation for Bag).
Given a set of subgraphs Sg, a graph bag Bi can be represented
by a feature vector xB

i ¼ ½ðxg1
i ÞB; . . . ; ðxgk

i ÞB; . . . ; ðxgs
i ÞB�>,

where ðxgk
i ÞB ¼ 1 iff gk is a subgraph of any graph Gj in

bag Bi (i.e., 9Gj 2 Bi ^Gj � gk) and ðxgk
i ÞB ¼ 0 otherwise.

Given a labeled multi-graph set B, the aim of multi-graph
learning (gMGFL) is to build a prediction model from the
labeled training multi-graph set B to predict previously
unseen multi-graph bags with maximum accuracy.

3 OVERALL FRAMEWORK OF gMGFL

Fig. 3 lists the overall framework of the proposed multi-
graph feature based learning algorithm, which includes the
following major steps:

� Subgraph candidate generation. Generating subgraph
candidates is a key step towards finding informative
subgraph features to represent multi-graph bags. In
order to find subgraph candidates with diverse
structures, we aggregate graphs in multi-graph bags
into three graph sets: (1) graphs in all bags, (2)
graphs in all positive bags, and (3) graphs in all neg-
ative bags. An improved gSpan [43] based subgraph
mining procedure (detailed in Section 4.2) is trig-
gered for each graph set, through which a set of
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diverse subgraph candidate patterns are discovered
for validation.

� Bag constrained subgraph feature exploration. A set of
informative subgraph features are selected to repre-
sent each bag Bi in bag set B. In our algorithm, we
derive bag level and graph level constraints to find
informative subgraph features.

� Multi-graph bag representation. In order to represent
each bag Bi, a feature vector xB

i ¼ ½ðxg1
i ÞB; . . . ;

ðxgk
i ÞB; . . . ; ðxgs

i ÞB�> is used, where ðxgk
i ÞB ¼ 1 iff any

graph in bag Bi contains the given subgraph gk and
ðxgk

i ÞB ¼ 0 otherwise. An example of “Multi-graph
Bag Representation” is shown in Fig. 3.

� Classification process. After transferring multi-graph
bags into feature vectors, generic learning algorithms
can be applied to train learning models for multi-
graph classification.

In the following sections, we first propose our subgraph
feature exploration module for gMGFL, and then discuss
detailed algorithm.

4 MULTI-GRAPH LEARNING ALGORITHM

4.1 Bag Constrained Subgraph Exploration

Subgraph feature exploration for multi-graph learning
intends to assess subgraph candidates and find a set of most
informative subgraphs to represent multi-graph bags. This
process has two main challenges:

� How to utilize multi-graph bag labels to find infor-
mative subgraphs?

� How to tackle label ambiguity in positive bags,
where genuine positive graph(s) is unknown, to find
informative subgraphs?

Assume a set of graphs are collected from the bag set B,
let Sg denote the complete set of subgraphs discovered from
B, and g ¼ fg1; . . . ; gmg is a set of subgraphs selected from
Sg. Our bag constrained subgraph feature exploration aims
to find a set of most informative subgraph features g

(g � Sg). To this end, we define ZðgÞ as an evaluation func-
tion to measure the informativeness of g. So the objective of
the subgraph feature exploration is defined in Eq. (1), where
j � j represents the cardinality of the subgraph set, and m is
the number of subgraphs to be selected from Sg.

g$ ¼ arg max
g � Sg

ðZðgÞÞ s:t: jgj ¼ m: (1)

The objective function in Eq. (1) indicates that the bag con-
strained subgraph features g$ should have maximum dis-
criminative power, i.e., maxðZðgÞ), among all alternative
subgraph sets with the same number of subgraph features.

4.1.1 Subgraph Evaluation Criteria

In order to calculate the informativeness score of a feature
set g, i.e., ZðgÞ, we impose constraints to the bag and graph
levels as follows: for any two bags Bi and Bj, if they have
the same labels, we form a pairwise must-link constraint
between Bi and Bj. If Bi and Bj have different labels, we
form a cannot-link constraint between them. To further take
the data distributions inside each bag into consideration, we
also add graph level constraints to ensure that subgraph fea-
tures can make graphs in each negative bag close to each
other, and graphs in each positive bag are maximally sepa-
rated by the subgraphs as explained below.

Accordingly, a set of good subgraph features should sat-
isfy following constraints: (a) Bag level must-link. Because
each bag Bi is associated with a known class label (positive
or negative), the subgraph features should ensure that bags
with the same label are similar to each other. (b) Bag level
cannot-link. For bags with different class labels, subgraph
features should represent the disparity between them. (c)
Graph level must-link. In multi-graph scenarios, only graphs
in negative bags are genuinely negative. The selected sub-
graph features should ensure that graphs in each negative
bag are similar to each other so they can share commonness
of being negative graphs; (d) Graph level separability. The
ground truth labels of graphs in positive bags are unknown,

Fig. 3. The proposed multi-graph learning (gMGFL) framework: The objective is to find a set of discriminative subgraphs to convert each multi-graph
bag into an instance in the new feature space for learning. gMGFL starts from subgraph candidate generation 	1 , and then uses the proposed bag
constrained subgraph evaluation criteria to assign a score (gScore) for the discovered subgraph	2 . After choosing them subgraphs with the highest
gScore in Definition 6, multi-graph bag representation 	3 is used to help transfer each bag into a binary feature instance with its subgraph feature
value being set to 1 if the bag (e.g., B1) contains the subgraph feature (e.g., g1). At last, generic learning algorithms can be applied to train learning
models for multi-graph classification	4 .
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although at least one graph must be positive. In this case, we
use Principle Component Analysis (PCA) principle [11] and
seek to find subgraph features that preserve the diverse
information in the positive bags (i.e., graphs in positive
bags are maximally separable).

Based on the above constraints, we derive a criterion to
measure the informativeness score ZðgÞ as follows:

ZðgÞ ¼ 1

2A

Xm
k¼1

X
yiyj¼�1

��
x
gk
i

�B � �
x
gk
j

�B�2

� 1

2B

Xm
k¼1

X
yiyj¼1

��
x
gk
i

�B � �
x
gk
j

�B�2

� 1

2C

Xm
k¼1

X
8Gi;Gj2B�

��
x
gk
i

�G � �
x
gk
j

�G�2

þ 1

2D

Xm
k¼1

X
8Gi;Gj2Bþ

��
x
gk
i

�G � �
x
gk
j

�G�2
;

(2)

where A ¼ P
yiyj¼�1 1, B ¼ P

yiyj¼1 1, C ¼ P
Gi;Gj2B� 1 and

D ¼ P
Gi;Gj2Bþ 1. A, B, C and D assess the total pairwise

constraints in the bag cannot-link, bag must-link, graph

must-link and graph separability.
By using a bag level matrixWB ¼ ½WB

ij �Nb�Nb , and a graph
level matrix, WG ¼ ½WG

ij �Ng�Ng defined in Eqs. (3) and (4),
respectively.

WB
ij ¼ 1=A yiyj ¼ �1;

�1=B yiyj ¼ 1:

�
(3)

WG
ij ¼

�1=C 8Gi;Gj 2 B�;
1=D 8Gi;Gj 2 Bþ;
0 otherwise:

8<
: (4)

Eq. (2) can be rewritten as follows:

ZðgÞ ¼ ZðgÞB þ ZðgÞG

¼ 1

2

Xm
k¼1

X
yiyj

��
x
gk
i

�B � �
x
gk
j

�B�2
WB

i;j

þ 1

2

Xm
k¼1

X
GiGj

��
x
gk
i

�G � �
x
gk
j

�G�2
WG

i;j:

For bag level evaluation ZðgÞB, we have

ZðgÞB ¼ 1

2

Xm
k¼1

X
yiyj

��
x
gk
i

�B � �
x
gk
j

�B�2
WB

i;j

¼
Xm
k¼1

X
yiyj

���
x
gk
i

�B�2
WB

i;j �
�
x
gk
i

�B�
x
gk
j

�B
WB

i;j

�

¼
Xm
k¼1

��
fffB
gk

�>
DBfff

B
gk
� �

fffB
gk

�>
WBfff

B
gk

�

¼
Xm
k¼1

�
fffB
gk

�>
LBfff

B
gk
:

where LB ¼ DB �WB is a Laplacian matrix, where DB ¼
diagðdBi Þ is a diagonal matrix with dBi ¼ P

j W
B
ij . ff

B
gk

is an

indicator vector of subgraph gk with respect to all bags Bi in

bag set B, i:e:; ffB
gk

¼ ½fB1
gk

; fB2
gk

; . . . ; f
BNb
gk �>, where fBi

gk
¼ 1 iff

9G 2 Bi ^G � gk and fBi
gk

¼ 0 otherwise.

Similarly, the graph level evaluation ZðgÞG can be rewrit-
ten in a matrix form. By combining graph level score ZðgÞG,
which can be derived by using the same derivation as
ZðgÞB, Eq. (5) can be rewritten as follows:

ZðgÞ ¼ ZðgÞB þZðgÞG

¼
Xm
k¼1

��
ffB
gk

�>
LBf

B
gk
þ �

ffG
gk

�>
LGff

G
gk

�

¼
Xm
k¼1

ff>
gk
Lffgk

:

(7)

In Eq. (7), LG ¼ DG �WG is known as a Laplacian

matrix, where DG ¼ diagðdGi Þ is a diagonal matrix with

dGi ¼ P
j W

G
ij . ff

G
gk

is an indicator vector of subgraph gk with

respect to all graphs Gi in G, i:e:; ffG
gk

¼ ½fG1
gk

; fG2
gk

; . . . ; f
GNg
gk �>,

where fGi
gk

¼ 1 iff gk � Gi and fGi
gk

¼ 0 otherwise. According

to Eq. (7), it is

fffgk
¼ fffB

gk

fffG
gk

" #
; L ¼ LB 0

0 LG

� �
: (8)

where ffgk is an indicator vector of subgraph gk with respect

to the data combined with bag and graph level. By denoting

the function as hðgk; LÞ ¼ ff>gkLffgk
, the problem of maximiz-

ing ZðgkÞ in Eq. (1) is equivalent to finding a subgraph that

can maximize the hðgk; LÞ, which can be represented as

g$ ¼ max
g

X
gk2g

hðgk; LÞ s:t: g � Sg: (9)

Definition 6 (gScore). Suppose WB and WG are two matrices
defined as Eqs. (3) and (4), respectively. LB is a Laplacian
matrix defined as LB ¼ DB �WB, where DB is a diagonal
matrix withDB

ii ¼
P

j W
B
ij , similarly with LG. L is also a Lap-

lacian matrix composed of LB and LG, as defined in Eq. (8).
The informativeness score of a subgraph gk is defined in Eq. (10)

qðgkÞ ¼ hðgk; LÞ ¼ ff>
gk
Lffgk

: (10)

In order to find the subgraph set g that maximizes the
informativeness ZðgÞ defined in Eq. (1), we can calculate
the gScore value of each individual subgraph in Sg and sort
them, according to their gScore, in a descending order, i:e:;
qðg1Þ 
 qðg2Þ � � � 
 qðgsÞ. Then by using the top-m features
g ¼ fg1; g2; . . . ; gmg, we can maximize ZðgÞ.

4.2 Bag Constrained Subgraph Search

To discover subgraphs for validation, one of the most
straightforward solutions for finding a discriminative bag
constrained subgraph set is exhaustive enumeration, i.e.,
enumerate all subgraphs in a multi-graph data set, with
their gScore values being calculated for ranking. However,
the number of subgraphs grows exponentially with respect
to the size of graphs in bags, which makes the exhaustive
enumeration approach impractical for real-world data.
Alternatively, we employ a Depth-First-Search (DFS) based

2386 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 10, OCTOBER 2014



algorithm gSpan [43] to iteratively enumerate subgraphs.
The key idea of gSpan is to first assign a unique minimum
DFS code to each graph, and then discover all frequent sub-
graphs by a pre-order traversal of the tree. Some recent
graph classification approaches [19], [38], [42] incorporate
constraints to prune the search space of gSpan. Specifically,
gSpan labels a subgraph with a DFS code and then produces
child DFS codes from the right-most path of the DFS Code
Tree. If the child DFS code is a minimum DFS code, which
is defined by a lexicographic order of the discovery time
during the search process, the corresponding graph is proc-
essed (i.e., the DFS Code Tree, where each node is a sub-
graph, is obtained). By employing a depth first search
strategy on the tree, gSpan can effectively enumerate all fre-
quent subgraphs efficiently. In this paper we derive a bag
constraint upper bound for the gScore to prune the search
space in the DFS Code Tree, which is defined as follows:

Theorem 1 (Upper bound of gScore). Given two subgraphs
gk, gk

0 2 Sg, g
0
k is a supergraph of gk (i.e., g

0
k � gk). The gScore

value g0k (qðg0kÞ) is bounded by q̂ðgkÞ, i.e., qðg0kÞ � q̂ðgkÞ, where
q̂ðgkÞ is defined as follows:

q̂ðgkÞ ¼D ff>
gk
L̂ffgk

; (11)

where L̂ ¼ ½L̂B 0

0 L̂G
�, in which the matrices L̂B and L̂G

are defined as L̂B
ij ¼D maxð0; LB

ijÞ and L̂G
ij ¼D maxð0; LG

ijÞ.
Proof.

qðg0kÞ ¼ fff>g0
k
Lfg0

k

¼ fffBg0
k

� �>
fffG
g0
k

� �>� �
� LB 0

0 LG

� �
�

fffB
g0
k

fffG
g0
k

2
4

3
5

¼ fB
g0
k

� �>
LBf

B
g0
k
þ fG

g0
k

� �>
LGf

G
g0
k

¼
X

i;j:Bi;Bj2Bðg0kÞ
LB
ij þ

X
i;j:Gi;Gj2Gðg0kÞ

LG
ij

where Bðg0kÞ ¼D fBijg0k � Gj 2 Bi; 1 � i � Nb; 1 � j � Ngg
and Gðg0kÞ ¼D fGijg0k � Gj; 1 � j � Ngg. Since g0k is the

supergraph of gk (i.e., g0k � gk), according to the anti-

monotonic property, we have Bðg0kÞ � BðgkÞ and Gðg0kÞ �
GðgkÞ. Besides, L̂B

ij ¼D maxð0; LB
ijÞ and L̂G

ij ¼D maxð0; LG
ijÞ, so

L̂B
ij 
 LB

ij and L̂G
ij 
 LG

ij. Both L̂B
ij and L̂G

ij are great than or

equal to zero. Thus, Eq. (12) can be rewritten as

qðg0kÞ ¼
X

i;j:Bi;Bj2Bðg0kÞ
LB
ij þ

X
i;j:Gi;Gj2Gðg0kÞ

LG
ij

�
X

i;j:Bi;Bj2Bðg0kÞ
L̂B
ij þ

X
i;j:Gi;Gj2Gðg0kÞ

L̂G
ij

�
X

i;j:Bi;Bj2BðgkÞ
L̂B
ij þ

X
i;j:Gi;Gj2GðgkÞ

L̂G
ij

¼ ff>
gk
L̂ffgk ¼ q̂ðgkÞ:

Thus, for any g0k � gk, qðg0kÞ � q̂ðgkÞ. tu
This upper bound is utilized to prune DFS-code tree

in gSpan by using branch-and-bound pruning as shown
in Fig. 4. Algorithm 1 lists the proposed bag constrained
subgraph feature exploration method, which starts with
an empty feature set g and a minimum gScore t ¼ 0.
The algorithm continuously enumerates subgraphs by
recursively visiting the DFS Code Tree in the gSpan
algorithm. If a subgraph gk is not a frequent subgraph,
both gk and its subtree will be pruned (line 4-5). Other-
wise, we calculate gk’s gScore value qðgkÞ. If qðgkÞ is
larger than t which is the minimum gScore of the cur-
rent set g, or g has less than m subgraphs (i.e., g is not
full), gk is added to the subgraph set g (lines 7-8). If the
size of g exceeds the predefined value m, we need to
remove one subgraph with the least discriminative
power (lines 9-10). After that, the upper bound pruning
module will check if q̂ðgkÞ is less than the threshold t. If
so, it means that the gScore value of any supergraph g0k
of gk (i.e., g0k � gk) will not be greater than t. Therefore,
we can safely prune subtrees rooted from gk in the
search space. If q̂ðgkÞ is indeed greater than the threshold
t, the depth-first search will continue by following the

Fig. 4. A Search Space: DFS Code Tree with Branch-and-Bound
Pruning.
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children of gk (line 12-13), until the frequent subgraph
mining process is completed.

4.3 gMGFL

In the above section, we have addressed the problem of
finding the informative bag constrained subgraph fea-
tures by avoiding exhaustive enumeration. Based on the
subgraph extraction approach, the proposed gMGFL
framework, as shown in Algorithm 2, uses three graph
sets G (graphs collected from all bags), Gþ (graphs from
all positive bags), and G� (graphs from all negative bags)
to discover subgraph candidates. The “for” loop repre-
sents a subgraph mining processing in each graph set,
which repeats as long as the DFS tree growing process
continues (lines 4-6). The final subgraph set g contains
subgraphs with the highest gScore with respect to the
subgraphs discovered from each individual graph set
(line 8). By using subgraph features in g, the original
graph bags are presented as bag constrained subgraph
features (line 9) to help train a classifier H (line 10). At
the test phase, a test bag Bt is transferred into a feature
vector by using g, and then predicted by the classifier H
to obtain its class label yt (lines 11-12).

The benefit of gMGFL is twofold: (1) Separating posi-
tive and negative bags increases the diversity of the can-
didate subgraphs, so the subgraph feature space
becomes more dense, through which a good set of sub-
graphs can be discovered; (2) the bag and graph level
constraints fully utilize the multi-graph features to find
a set of most informative subgraph features to represent
multi-graph bags.

5 EXPERIMENTS

5.1 Data Sets

5.1.1 DBLP Multi-Graph Data Set

The Digital Bibliography & Library Project (DBLP) data set1

consists of bibliography data in Computer Science, with
each record containing information such as abstract,
authors, year, title, and references [37]. To build a multi-
graph bag, we select papers published in two main fields:
Artificial Intelligence (AI: IJCAI, AAAI, NIPS, UAI, COLT,
ACL, KR, ICML, ECML and IJCNN) and Computer Vision
(CV: ICCV, CVPR, ECCV, ICPR, ICIP, ACM Multimedia
and ICME) to form a multi-graph learning task. A concep-
tual view of building a multi-graph bag is shown in Fig. 5.
The objective is to predict whether a paper belongs to the
AI or CV field by using the abstract of each paper, and the
abstracts of its references. For each abstract, a fuzzy cogni-
tive map (E-FCM) [27] based approach is used to extract a
number of keywords and correlations between keywords.
In our experiments, we use keywords as nodes and correla-
tions between two keywords as edge weight values to build
a graph. A threshold was used to remove edges whose cor-
relation values are less than the given threshold. At the last
step, the graph is converted into an unweighted graph by
setting the weight values of all remaining edges as “1.”
Fig. 6 illustrates an example of using E-FCM to build a
graph for a research paper entitled “Static analysis in data-
log extensions” by using paper abstract. The same graph
representation was also used in previous works [14], [21].

Notice that AI and CV overlap in many aspects, such
as machine learning, optimization, and visual information
retrieval, which makes a challenging multi-graph learning
task. The original DBLP data set contains a significant
number of papers without any reference. We choose 200
papers to form positive (AI) bags (100 bags with 567
graphs) and negative (CV) bags (100 bags with 569
graphs). Among the CV bags we selected, none of the
references belongs to AI.

5.1.2 NCI Multi-Graph Data Set

The second task is to classify anti-cancer activities of chemi-
cal compounds on “Non-Small Cell Lung Cancer”. National

Fig. 5. An example of using a multi-graph bag to represent a research
paper. Each paper is converted into an undirected graph by using the
correlation of keywords in the abstract with edges denoting keyword cor-
relations. Each reference cited in the paper also forms a graph. A bag is
formed by using graphs built from the paper and references cited in the
paper.

1. http://dblp.uni-trier.de/xml/.
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Cancer Institute (NCI) cancer screening data sets are com-
monly used benchmark for graph classification.2 Each NCI
data set belongs to a bio-assay task for anti-cancer activity
prediction, where each chemical compound is a graph, with
atoms representing nodes and bonds as edges. We build a
multi-graph data set by using a graph data set (with ID 1). A
chemical compound is positive if it is active against the corre-
sponding cancer, or negative, otherwise. To build multi-
graph bags, we randomly select one to four positive graphs
and several negative graphs to form a positive bag. A nega-
tive bag is formed by randomly selecting a number of nega-
tive graphs to form a bag. The number of graphs in each bag
varies from 1 to 10. In total, we built 100 positive and 100 neg-
ative bags, and the total number of positive and negative
graphs are 208 and 901, respectively.

5.1.3 Online Product Review Data Set

The third learning task is to recommend high quality prod-
ucts to users based on the review reports. The benchmark
data set is downloaded from Stanford Network Data set
Collection.3 The beer review data set BeerAdvocate contains
review reports of different brands of beers. Each review is
associated with some attributes such as product ID,
reviewer ID, review score (customer rating score of the
product varying from 1 to 5), and detailed review text
descriptions [24], with respect to a number of key features
such as “taste,” “appearance,” and “palate.” In our experi-
ments, we consider that a product is of genuinely high qual-
ity if the average score of the product over all reviews is
greater or equal to 4. On the other hand, the customer may
be not satisfied in certain aspect of this product, such as
taste or appearance, if all review scores of the product are
less than 4. For each review report, we use fuzzy cognitive
map [21] to form a graph representation with each node in
the graph denoting one keyword and edges representing
correlations between keywords. The detailed graph repre-
sentation model is similar to the DBLP data set. In our

experiments, all edges whose correlation values less than a
certain threshold (0.006) are discarded. We choose 200 beer
products (i.e., bags) to form 100 positive (average score 
4)
bags with 576 graphs (i.e., reviews) and 100 negative (each
score �4) bags with 575 graphs.

5.2 Baseline Methods

Because there is no existing method available for multi-
graph learning, we implement the following baseline
approaches for comparisons.

� Information gain (IG) based methods (IGþMG and
IGþMI). In these approaches, a set of frequent sub-
graphs are mined from all bags. An Information
Gain based subgraph selection criterion [18], [19],
[46] is used to select m subgraphs with the highest
IG scores. After obtaining them subgraphs, IG based
multi-graph method (IGþMG) uses m subgraphs to
transfer each bag into one feature vector (the same as
our multi-graph feature representation in Fig. 3).
Meanwhile, the IG based multi-instance method (IG
+MI) uses m subgraphs to transfer each graph into
one instance, so a bag of graphs is converted into a
bag of instances, through which the existing multi-
instance learning methods can be applied for multi-
graph classification.

� Frequency based methods (TopkþMG and TopkþMI).
We also use frequency, which is an effective and
classical subgraph selection method, as a measure to
select top-k subgraphs with the highest frequency as
m subgraph features. The top-k based multi-graph
method (TopkþMG) then uses m subgraphs to con-
vert each bag as one instance, whereas the top-k
based multi-instance approach (TopkþMI) converts
each bag of graphs as a bag of instances for learning.

� Subgraph dependence evaluation based methods
(gHSICþMG and gHSICþMI). Recently, a depen-
dence evaluation criterion named Hilbert-Schmidt
Independence Criterion (HSIC) [12], has been suc-
cessfully applied to select the discriminative
subgraphs for graph related classification task (e.g.,
positive and unlabeled learning for graph classifica-
tion [46] and multi-label graph learning [18]). In
particular, gHSIC was designed to measure

Fig. 7. An example of multi-graph representation for online product
review. Each product receives a number of customer reviews, in which
each review contains text descriptions of the product with respect to a
number of key features such as “taste,” “appearance,” and “palate.” The
main body of each review can form a graph representation by using key-
words as nodes and key-word correlations as edges. The multiple
reviews of each product therefore form a bag of graphs.

Fig. 6. An example of graph representation of a research paper entitled
“Static analysis in datalog extensions” by using E-FCM [27]. The nodes
are color coded with each color denoting one keyword. The edges repre-
sent correlations between keywords. For example, the correlation value
between “describe” and “tree” is 0.007. In our experiments, all edges
whose correlation values are less than threshold 0.005 are discarded.
After that, we convert the weight graph in (a) into an unweighted graph
showing in (b) for learning.

2. http://pubchem.ncbi.nlm.nih.gov.
3. http://snap.stanford.edu/data/.
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statistical dependency for subgraph based on the
covariance operators in kernel space, which is more
general than measuring dependence in the original
space. As the state-of-the-art subgraph exploration
method, we use gHSIC as a baseline to build multi-
graph learning methods. The gHSIC based multi-
graph method (gHSIC+MG) first adopts the gHSIC
dependence evaluation criterion to mining m sub-
graphs and then uses the multi-graph representation
for learning. The gHSIC based multi-instance
method (gHSIC+MI) employs multi-instance setting
based on them subgraphs.

5.3 Experimental Settings

To demonstrate that our method is effective for different
learning algorithms, four representative classifiers, Naive
Bayes (NB), k nearest neighbors (KNN), decision trees (J48),
and support vector machines (SMO) are used in our experi-
ments. Meanwhile, in order to compare proposed gMGFL’s
performance with multi-instance classifiers (CitationKNN,
MISMO, MIEMDD, MIOptimalBall), we also report
gMGFL’s mean accuracy and variance based on the four
multi-graph classifiers. All experiments are based on
10 times 10-fold cross validation.

In all experiments, the default parameter settings are as
follows. Minimum support thresholdmin sup is set to 4 (for

DBLP), 15 (for NCI) and 10 percent (for Online Product
Review). Besides, all classifiers use default parameter set-
tings in WEKA [41], such as k ¼ 1 in KNN, k ¼ c ¼ 1 in Cita-
tionKNN. All experiments are collected from a Linux
cluster computing node with an Interl(R) Xeon(R) @3.33
GHZ CPU and 3 GB fixed memory.

5.4 Experimental Results

5.4.1 Accuracy Comparisons with MG Setting

Figs. 8, 9 and 10 report the performance of the proposed
gMGFL by using different types of multi-graph learning
algorithms with respect to different number of subgraphs
(varying from 10 to 200). The results show that gMGFL
can achieve a high level accuracy on three data sets. The
performance gain can be observed for different types of
learning algorithms using multi-graph representation,
such as IG+MG and TopkþMG, across different numbers
of selected subgraphs. This is mainly attributed to
gMGFL’s two key components, including bag constrained
subgraph exploration and the subsequent multi-graph
bag representation.

Each sub-figure in Figs. 8, 9 and 10 (e.g., Fig. 8a) reports
the performance of gHSICþMG, IGþMG and TopkþMG,
which employ HSIC dependence evaluation criterion, infor-
mation gain and the frequency of the subgraphs, respec-
tively, to represent multi-graph bags for classification. The

Fig. 8. Accuracy comparisons on DBLP data set by using different multi-graph learning algorithms with varied number of subgraphs: (a) KNN; (b) NB;
(c) J48; and (d) SMO.

Fig. 9. Accuracy comparisons on NCI data set by using different multi-graph learning algorithms with varied number of subgraphs: (a) KNN; (b) NB;
(c) J48; and (d) SMO.

Fig. 10. Accuracy comparisons on Online Product Review data set by using different multi-graph learning algorithms with varied number of sub-
graphs: (a) KNN; (b) NB; (c) J48; and (d) SMO.
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average accuracy with respect to different number of sub-
graphs on the DBLP, NCI, and Online Product Review data
sets, are reported in Figs. 11a, 11b and 11c, respectively.
Overall, the results show that frequency is not a good mea-
sure for identifying subgraphs to represent multi-graph
bags. Although gHSIC and IG based measures are both
superior to the Top-k, their subgraphs are still inefficient to
represent multi-graph bags for classification, where
gMGFL’s accuracy is normally 10 percent more accurate on
DBLP and NCI data sets and 5 percent on Online Product
Review data set, as shown in Fig. 11. By combining bag and
graph level constraints, gMGFL is able to find the most
effective subgraphs to represent multi-graph bags for
classification.

In some cases, gMGFL is less accurate than gHSICþMG
and IGþMG, especially on Online Product Review data set.
For example, the results with respect to the number of sub-
graphs varying from 50 to 90 in Fig. 10a, 20 in Fig. 10b and
20 to 40 in Fig. 10d. To demonstrate that gMGFL is indeed
statistically superior to the baselines, we report the pairwise
t-test (with confident level a ¼ 0:05) to validate the statisti-
cal significance between four methods in Table 1, where
each entry (value) denotes the p-value for a t-test between
two algorithms, and a p-value less than a ¼ 0:05 indicates
that the difference is statistically significant. The results in
Table 1 confirms that gMGFL statistically outperforms
gHSIC, IGþMG and TopkþMG in all cases.

5.4.2 Accuracy Comparisons with MI Setting

In Figs. 13, 14 and 15, we report the performance of gMGFL
compared with four multi-instance learning algorithms
(including CitationKNN, MISMO, MIEMDD, and MIOpti-
malBall). For these baseline methods we use subgraph fea-
tures selected by using gHSIC, IG and frequency to convert
each graph into one instance, so a graph bag becomes an
instance bag. After that, we train four multi-instance classi-
fiers to classify test bags. By contrast, the proposed gMGFL

algorithm converts each bag as one instance and we report
its mean accuracy and variance with respect to four learning
algorithms (KNN, NB, J48, and SMO) in the figures. The
average accuracy over subgraphs varying from 10 to 200 on
the DBLP, NCI, and Online Product Review data sets are
shown in Figs. 16a, 16b and 16c, respectively. Overall, the
results show that gMGFL clearly outperforms existing
multi-instance learning methods. This is mainly attributed
to the effectiveness of the proposed subgraph feature explo-
ration modules and the effectiveness of the multi-graph rep-
resentations, which converts one bag into one instance with
dense feature values for learning.

Among the baselines, MISMO based approaches achieve
the best accuracy among all multi-instance learning algo-
rithms, as shown in Fig. 16. Furthermore, the gHSICþMI,
IG+MI and Topk+MI using MISMO as the multi-instance
learning approach, are all comparable with gMFGL in some
cases (e.g., # of subgraphs is greater than 140 for TopKþMI
in Fig. 13b). In Table 2, we report the pairwise t-test with
confident level a ¼ 0:05 to demonstrate the statistical per-
formance of the proposed gMFGL. The p-values (less than
0.05) in each entry assert that gMGFL statistically and signif-
icantly outperforms MI based learning methods gHSICþMI,
IGþMI and TopkþMI.

5.4.3 Subgraph Selection Quality Analysis

Noticeably, the results in Figs. 8, 9, 10 show that gMGFL’s
accuracies show different patterns with respect to the
increasing number of subgraphs for different classifiers.
More specifically, when applying gMGFL to NCI data set,
the accuracy of KNN and SMO classifiers show significant
drop whereas Bayes models (NB) and decision trees (J48)
remain stable on the same data set. The similar trend does
not exist in DBLP and Online Product Review data sets.
This observation raises an important question on what is
the essential connection between subgraphs selected from

Fig. 11. Average classification accuracy (and standard deviation) comparisons between gMGFL and three multi-graph learning baseline models,
gHSICþMG, IGþMG and Topk+MG, on DBLP (a), NCI (b), and Online Product Review (c) data sets, with different number of subgraphs (varying
from 10 to 200).

TABLE 1
Pairwise t-Test Results of gMGFL versus Different Multi-Graph Learning Algorithms

A, B, C, and D denote proposed gMGFL, gHSICþMG, IGþMG, and TopkþMG, respectively.
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gMGFL and the classifiers used for learning, which results
in such a distinct accuracy drop.

In order to address the above concerns, we study the
discriminative capability of each single subgraph and the
coverage of a subgraph set as follows. In Fig. 12a, we
report the discriminative capability of each single sub-
graph. In the figure, the x-axis denotes the order of each
subgraph as selected by gMGFL. The y-axis denotes the
discriminative capability of each individual subgraph gk,
which is defined as one minus the ratio between the num-
ber of bags containing subgraph gk in the minority classes
divided by the number of bags containing subgraph gk in
the majority classes. A good subgraph will cover more
bags in one class (majority class) than the other class
(minority class), so its discriminative capability will
approach to 1. A subgraph without discriminative power
will equally cover positive and negative bags (i.e., its dis-
criminative value will approach to 0). In Fig. 12b, we fur-
ther report the coverage of the selected subgraph set with
respect to the size from 1 to 200 (x-axis). The y-axis denotes
the ratio between the number of bags covered by any of
the subgraph and the total number of bags in the whole
data set (i.e., the coverage of the subgraph set). Clearly, as
the size of subgraph set increases, the coverage will

continuously increase. The maximum coverage value is 1,
which indicates that for each bag in the data set, at least
one subgraph in the subgraph set will appear in the bag.

Fig. 12a shows that, on average, subgraphs in NCI have
much lower discriminative capability than subgraphs in
DBLP and Online Product Review data sets. This suggests
that subgraph features in NCI are less effective to differenti-
ate positive vs. negative bags, and are therefore less infor-
mative for classification. In addition, Fig. 12b shows that for
the same number of subgraphs, the coverage of the sub-
graph set selected for NCI is much smaller than other two
data sets. The slope of the coverage with respect to the
increasing subgraph set size is also smaller than other two
data sets, which indicates that adding one additional sub-
graph to the set does not improve the coverage of the sub-
graph set of NCI as much as other two data sets. One
possible reason is that the new subgraph is redundant and
covers similar set of bags as the existing subgraphs. From
the results in Figs. 12a and 12b, we can conclude that the
significant performance drop of gMGFL on NCI data set for
KNN and SMO classifiers is mainly attributed to the low
discriminative capability of each single subgraph and low
coverage of the subgraph set. Indeed, both KNN and SMO
are instance-based learning algorithms, whose classification
models are based on all features (e.g., KNN uses all features
to find distance between instances). Assume a redundant
(or random) feature is introduced to the data set, KNN and
SMO will suffer severer performance drop, compared to NB
and Decision trees, which will differentiate the importance
of features to build classification models.

5.4.4 Efficiency of gMGFL

In this section, we evaluate the efficiency of gMGFL’s prun-
ing module in Section 4.2. For comparison purposes, we
implement an unbounded gMGFL (UgMGFL) and compare
its runtime and accuracy with gMGFL, through which we

(a) (b)

Fig. 12. (a) Discriminative capability of selected subgraphs, and (b) bag
coverage rate for the subgraph set on three real-world data sets,
respectively.

Fig. 13. Accuracy comparisons on DBLP data set by using proposed gMGFL algorithm and generic multi-instance (MI) learning methods with differ-
ent number of subgraphs: (a) CitationKNN; (b) MISMO; (c) MIEMDD; and (d) MIOptimalBall.

Fig. 14. Accuracy comparisons on NCI data set by using proposed gMGFL algorithm and generic multi-instance (MI) learning methods with different
number of subgraphs: (a) CitationKNN; (b) MISMO; (c) MIEMDD; and (d) MIOptimalBall.
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can demonstrate the efficiency of the pruning module. In
our implementation, UgMGFL was implemented without
using pruning strategy. It first uses gSpan to find a set of fre-
quent subgraphs, and then selects the informative sub-
graphs by using the same criteria as gMGFL. Accordingly,
gMGFL and UgMGFL share the same accuracy but different
runtime performance.

In Figs. 17a, 17b and 17c, we report the average CPU run-
time performance and the accuracy with respect to different
minimum support min sup values (the number of selected
subgraphs is fixed to 100) on DBLP, NCI, and Online Prod-
uct Review data sets, respectively. The results show that, as
the min sup values increase, the runtime and accuracy of
both gMGFL and UgMGFL decrease. This is because a
larger min sup value will reduce the number of candidates
for validation, which may rule out some informative sub-
graphs. By incorporating the proposed upper-bound prun-
ing, gMGFL demonstrates much better runtime
performance than its unbounded version. For example,
when min sup ¼ 6 percent in Fig. 17b, gMGFL’s runtime is
about 150 seconds, whereas UgMGFL actually doubles the
running time (about 300 seconds), which implies a 50 per-
cent efficiency gain for gMGFL.

In Figs. 18a, 18b and 18c, we also report the average CPU
runtime and accuracy by varying the number of selected
subgraphs from 20 to 200, on DBLP, NCI, and Online

Product Review data sets, respectively (the minimum sup-
port threshold min sup ¼ 4 for DBLP, 15 for NCI and 10
percent for Online Product Review data set). The results
show that gMGFL’s runtime and accuracy are relatively sta-
ble with respect to the number of selected subgraphs. For
the unbounded version, increasing number of subgraph
patterns will reduce its runtime efficiency. This is mainly
attributed to the pruning module in gMGFL, which uses
threshold min sup and upper bound t ¼ mingi2gqðgiÞ (as
shown in Algorithm 1) to dynamically prune the candidate
set for better runtime efficiency.

6 RELATED WORK

Multi-instance learning was first proposed by Dietterich
et al. [9] for drug activity prediction. Since then, numer-
ous approaches [47] have been proposed for different
applications, such as stock market prediction, landmark
matching, and computer security. In summary, existing
MIL algorithms can be categorized into the following
two major groups: (1) Upgrading single-instance learners.
Updating existing single-instance based learning algo-
rithms to support multi-instance is a common approach.
Lazy learning Citation-KNN and Bayesian-KNN [40]
extend k nearest-neighbor algorithm for multi-instances.
Other approaches include tree based multi-instance

Fig. 15. Accuracy comparisons on Online Product Review data set by using proposed gMGFL algorithm and generic multi-instance (MI) learning
methods with different number of subgraphs: (a) CitationKNN; (b) MISMO; (c) MIEMDD; and (d) MIOptimalBall.

Fig. 16. Average classification accuracy (and standard deviation) comparison between gMGFL and three multi-instance learning baseline models,
gHSICþMI, IGþMI and TopkþMI, over subgraphs varying from 10 to 200 on DBLP (a), NCI (b), and Online Product Review (c) data sets,
respectively.

TABLE 2
Pairwise t-Test Result of gMGFL versus Different Multi-Instance Learning Algorithms

A, B, C, and D denote proposed gMGFL, gHSICþMI, IG+MI, and TopkþMI, respectively.
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learning [3], multi-instance decision rules learning based
on RIPPER algorithm [6], multi-instance kernel machines
MISMO [28], and multi-instance logistic regression learn-
ing MILR [29]; (2)Specifically designed MIL algorithms. Spe-
cifically designed multi-instance learning utilizes bag
constraints to reorganize instances inside each bag into
specific formats for learning. Diverse Density (DD) [23]
intends to search for a point in the feature space by max-
imizing the diverse density function that measures the
co-occurrence of similar instances in different positive
bags. MIEMDD [23] combines expectation-maximization
(EM) with DD to search for the most likely concept, and
MIOptimalBall [2] finds a suitable ball in the multiple-
instance space, with a certain data point in the instance
space as a ball center so that all instances of negative
bags are outside the ball and at least one instance of
each positive bag is inside the ball.

All existing MIL algorithms require instances in each bag
to be represented as a tabular instance-feature format, so
they are incapable of handling graph data.

Existing graph classification methods can be roughly
classified into two categories (1) distance based approaches
(including graph kernel [22], [39], graph embedding [30],
and transformation [31]) and (2) subgraph feature based
approaches. The former considers a similarity function
between two graphs for learning whereas the latter tries to
find some subgraphs as features to represent each graph in
vector space for learning.

One drawback of the distance based approach is that the
graph similarity is assessed based on the global graph struc-
tures, such as paths or walks, between graphs. So it is not
clear which substructures (or which parts of the graphs)
contribute the most to the similarity assessment. Subgraph
feature based methods have been commonly used for graph
learning and classification, where the main challenge is to
find important subgraphs from the graph data set. The most

common criterion in selecting subgraph features is fre-
quency. For example, gSpan [43] uses a lexicographic order
based coding to discover frequently connected subgraphs
that can be used as features. Other frequent subgraph enu-
meration approaches include AGM [15], FSG [20], and Gas-
ton [26].

In addition to the above unsupervised subgraph mining
approaches, some supervised methods take class labels of
individual graphs into consideration to find high quality
discriminative subgraphs for learning. Examples include
LEAP [42], gPLS [32], and an evolution computation based
approach [16]. Moreover, some discriminative frequent pat-
tern mining based exploration approaches in [4], [5], [10],
and statistical metric pruning based methods in [25], [35]
could also be applied for selecting effective subgraphs for
classification. Recently, a dependence evaluation criterion
named Hilbert-Schmidt Independence Criterion [12], has
been successfully applied for searching high quality dis-
criminative subgraphs for graph classification. For example,
Zhao et al. [46] adopt HSIC based subgraph mining
approach to deal with the positive and unlabeled learning
for graph classification task. Kong and Yu [18] also use the
gHSIC method to find the discriminative subgraph set for
multi-label graph learning. For evaluation criterion, gHSIC
assumes that the subgraph features should follow the prop-
erty of dependence maximization, i.e., subgraph features
should maximize the dependence between the subgraph
features of graph objects and their labels.

7 CONCLUSION

This paper investigated a multi-graph learning task, where
a number of graphs form a bag, with each bag being labeled
as either positive or negative. To build a learning model for
multi-graph classification, we proposed an optimization
function that combines bag and graph level constraints to

Fig. 17. Average CPU runtime and classification accuracy comparison between gMGFL v.s. unbounded gMGFL (UgMGFL) with respect to different
min sup and a fixed number of subgraphsm ¼ 100.

Fig. 18. Average CPU runtime and classification accuracy comparison between gMGFL v.s. unbounded gMGFL (UgMGFL) with respect to different
number of selected subgraphs (m values) and a fixedmin sup (4 for DBLP, 15 for NCI and 10 percent for Online Product Review data set).
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find a set of informative subgraph features to represent
multi-graph bags as instances. So generic learning algo-
rithms can be applied for multi-graph learning. We applied
the proposed design to three real-world multi-graph tasks
(DBLP citation network, NCI chemical compound classifica-
tion, and Online Product Recommendation). Experiments
demonstrate that our method is effective in finding informa-
tive subgraph features to represent multi-graph bags, and
its classification accuracy is normally 5-10 percent higher
than the baselines.
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