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Abstract—In this paper, we propose a Hierarchical Sampling-based Multi-

Instance ensemble LEarning (HSMILE) method. Due to the unique multi-instance

learning nature, a positive bag contains at least one positive instance whereas

samples (instance and sample are interchangeable terms in this paper) in a

negative bag are all negative, simply applying bootstrap sampling to individual

bags may severely damage a positive bag because a sampled positive bag may

not contain any positive sample at all. To solve the problem, we propose to

calculate probable positive sample distributions in each positive bag and use the

distributions to preserve at least one positive instance in a sampled bag. The

hierarchical sampling involves inter- and intrabag sampling to adequately perturb

bootstrap sample sets for multi-instance ensemble learning. Theoretical analysis

and experiments confirm that HSMILE outperforms existing multi-instance

ensemble learning methods.

Index Terms—Multi-instance learning, ensemble learning, hierarchical sampling

Ç

1 INTRODUCTION

MULTI-INSTANCE learning (MIL), originated from drug activity
predictions [4], represents a special type of machine learning task
where a group of instances (i.e., a bag) shares one label, but no
label is available for individual instances inside the bag. A bag is
positive if it contains at least one positive instance; otherwise, it is
labeled as a negative bag. Given a number of labeled bags, the goal
of MIL is to construct a learner to predict a previously unseen bag
to be either positive or negative. MIL represents a large body of
real-world applications. Examples include content-based image
retrieval [1], visual tracking [15], and gene annotation [7].

The main challenge of the MIL lies in the fact that genuine

labels of individual instances in a positive bag remain unknown.

Simply propagating bag labels to instances inside each bag may

introduce a significant amount of label errors [13]. A number of

MIL algorithms exist to either

1. build bag-level discriminate machines, such as 1-norm
SVM [3], MI kernel [7],

2. identify most probably positive samples in each bag and
convert MIL into single instance learning problems [14];

3. synthesize rules from positive and negative bags [16], or
4. simply propagate bag labels to the instances such that

generic instance-based learner can apply.

Similar to other machine learning algorithms, most MI learners are

data driven with unstable performances. As ensemble learning

(such as Bagging predictor [2]) is a general treatment to boost
unstable learners, combining ensemble and MIL has also been
studied [12] for multi-instance learners.

Intuitively, by taking each bag as a single observation, one can
form bootstrap sets using random bag sampling to build an MI
ensemble [12]. In this paper, we refer to this approach as
traditional MI ensemble (TMIE). An inherent disadvantage of
TMIE is the low diversity of the ensemble learners [6], because
once a bag is sampled, all instances in the bag are forwarded to the
bootstrap set, which violates the random nature of bootstrap
sampling. On the other hand, simply applying bootstrap sampling
to all instances without considering bag constraint can achieve
maximum diversity, but may end up forming a positive bag
containing negative samples only.

In this paper, we propose a hierarchical sampling method, at
instance and bag levels, for multi-instance ensemble learning.
At interbag level, a bootstrap set is constructed by treating each
bag as an observation. At intrabag (i.e., instance) level, sampling
is employed to perturb instances inside the bag to construct
diverse base learners. The main technical challenge of the
hierarchical inter- and intrabag sampling stems from the reality
that genuine labels of instances in a positive bag are unknown.
In the paper, we propose a modified sampling method to ensure
that at least one probable positive instance is preserved in each
sampled positive bag.

2 HSMILE ALGORITHM DETAILS

In this section, we will describe the HSMILE algorithm, where
Fig. 1 shows the conceptual view of the hierarchical sampling
process. HSMILE, in Algorithm 1, takes four parameters, T , L, I,
and J as the input, and the output is an ensemble for classifying a
bag Bx with unknown label.

Algorithm 1. The HSMILE algorithm.

Require: A training set with M bags T ¼ fB1; . . . ; BMg;
Multi-instance learner L; # of Inter-bag sampling times I; # of

Intra-bag sampling times J ; a test bag with unknown class label

Bx

for i 1 to I do

Ti  Inter-bag sampling from T

for j 1 to J do

Tji  Intra-bag sampling (Ti) // Algorithm 2

Lji  Training an MI base learner from Tji
end for

LiðBxÞ  arg maxy2Y �J
j¼1;Lj

i
ðBxÞ¼y

1

end for

yx  arg maxy2Y �I
i¼1;LiðBxÞ¼y1

return yx the label of Bx

At the first step, the interbag sampling repeats I times on T by
treating each bag as an observation and builds a set of bootstrap
sets T1; . . . ; TI , each of which has the same number of bags as T . In
the second stage, the intrabag sampling, as shown in Algorithm 2,
is applied J times to each set Ti. At the jth ðj � JÞ time of the
intrabag sampling (Algorithm 2), depending on whether a bag B�

of Ti is a positive or a negative bag, instances in B� are sampled
using different approaches to form a new bag. All new bags of Ti
form the Tji , from which a base MI classifier Lji is learned and is
used as an ensemble member to predict a test bag’s label.

Algorithm 2. Intra-bag sampling (T ).

Require: A training set with M bags T ¼ fB1; . . . ; BMg
for i 1 to M do

mi  the number of instance in Bi;

if the bag label of Bi is positive then
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½P ½bi;1 j B��; . . . ; P ½bi;jBi j j B���  calculate probable

positive instance distributions in Bi;

x�Bi
 Rejection sampling to select a probable positive

instance from Bi using ½P ½bi;1 j B��; . . . ; P ½bi;jBij j B���;
B
0

i  x�Bi
;

B
0

i  randomly sample mi � 1 instances from Bi;

else if the bag label of Bi is negative then

B
0
i  Bootstrap sampling selecting mi instances from Bi;

end if

end for

return T
0 ¼ fB01; . . . ; B

0

Mg
The ensemble of HSMILE has two tiers. At the first tier, an

ensemble Li is achieved by combining a set of base learners, each
of which is trained from Tji . The outputs of Li are combined to
form the second tier ensemble for final prediction.

2.1 Inter- and Intrabag Hierarchical Sampling

One basic requirement for intrabag sampling is to preserve bag
label for each new bag after the sampling. For a positive bag,
preserving correct label for the new bag (after sampling) is difficult
because the sampling process cannot guarantee that a sampled bag
contains at least one positive instance. In the worst scenario, if all
positive instances in the original positive bag are missed during the
sampling process, the bag label will conflict to the bag content. To
solve the problem, we propose an intrabag sampling method to
maximize the possibility of preserving at least one positive instance
in each sampled positive bag. Following this intuition, the
fundamental challenge is to find probable positive instances in
each positive bag. We solve this problem by finding probable
positive sample distributions in each bag (Section 2.2), and then use
the distributions to guide the intrabag sampling (Section 2.3).

2.2 Probable Positive Sample Distributions

Denoting Bi an MI bag, the kth instance in Bi is denoted by bi;k, and
Bþi and B�j each represents the ith positive bag and the jth negative
bag, respectively. Given a training set T constituting of P positive
bags and N negative bags T ¼ fBþ1 ; . . . ; BþP ;B

�
1 ; . . . ; B�Ng, for all

negative bags, the probability of an instance x in a positive bag
being positive can be viewed as Pðx j B�1 ; . . . ; B�N Þ (or a shorthand
notation Pðx j B�Þ). Because each positive bag contains at least one
positive sample, the summation of the above probability over all
instances in Bi should be greater or equal to 1. Accordingly, we
introduce probable positive sample distributions for all instances in
a positive bag Bi as given by

PrðBi j B�Þ ¼ ½Prðbi;1 j B�Þ; . . . ;Prðbi;jBij j B�Þ�;

Prðbi;k j B�Þ ¼
Pðbi;k j B�ÞPjBi j

l¼1;bi;l2Bi
Pðbi;l j B�Þ

:
ð1Þ

According to Bayes’ rule, the probability Pðx j B�1 ; . . . ; B�NÞ can be
written as

P
�
x j B�1 ; . . . ; B�N

�
¼

P
�
B�1 ; . . . ; B�N j x

�
PðxÞ

P
�
B�1 ; . . . ; B�N

� : ð2Þ

Without loss of generality, we can regard PðxÞ as a uniform prior
(i.e., a constant), which is a common assumption in most existing
work [8]. PðB�1 ; . . . ; B�N Þ is the probability of observing all
N negative bags, which is calculated as (3) under assumption that
negative bags are independent and identically distributed

P
�
B�1 ; . . . ; B�N

�
¼ P

�
B�1
�
P
�
B�2
�

. . . P
�
B�N
�
: ð3Þ

Rearrange (2) using (3) with assumption that negative bags
B�1 ; . . . ; B�N are conditionally independent, given instance x,
we have

P
�
x j B�1 ; . . . ; B�N

�
¼

P
�
B�1 j x

�
. . . P

�
B�N j x

�
PðxÞ

P
�
B�1
�
P
�
B�2
�

. . . P
�
B�N
� ð4Þ

P
�
B�j j x

�
¼ P

�
b�j;1 j x

�
P
�
b�j;2 j x

�
. . . P

�
b�j;jBj j j x

�
: ð5Þ

According to Bayes’ rule, we have

P
�
B�j j x

�
¼ P

�
x j B�j

�
P
�
B�j
�
=PðxÞ: ð6Þ

Then, (4) becomes

P
�
x j B�1 ; . . . ; B�N

�
¼

QN
j¼1 P

�
x j B�j

�
ðPðxÞÞjB

�
1
jþ���þjB�

N
j�1

: ð7Þ

Under the uniform prior assumption for PðxÞ and the formula
given in (1), the probable positive sample distribution for instance
bi;k in Bi can be calculated as follows:

Prðbi;k j B�Þ ¼
QN

j¼1 P
�
bi;k j B�j

�
PjBij

l¼1;bi;l2Bi

QN
j¼1 P

�
bi;l j B�j

� : ð8Þ

In (8), Pðbi;k j B�j Þ defines the conditional probability of instance
bi;k given negative bag B�j . In [3], [15], the authors proposed a
Gaussian-like distribution based most-likely-cause estimator to
estimate P ðx j BiÞ by looking only at the instance in the bag Bi

which is mostly likely relevant to x. We employ the similar
estimator in (9) so the conditional probability Pðbi;k j B�j Þ is
determined by the distance between bi;k and its most similar peers
in the negative bag B�j .

To calculate the distance between two instances, we use simple
euclidean distance as defined in (10), where bj;k;f is the fth feature
value of instance bj;k:

Pr
�
bi;k j B�j

�
/ 1� max

�;b�
j;�
2B�

j

exp �
��bi;k � b�j;���2

�2

 !
ð9Þ

��bi;k � b�j;���2 ¼
X
f

�
bi;k;f � b�j;� ;f

�2
: ð10Þ

According to the distribution given in (8), one possible way for
intrabag sampling is to select the most probable positive sample,
using the maximum a posteriori in (11) and include the selected
sample into each sampled bags. There are two disadvantages with
this approach: 1) the estimated probability value in (8) might be
inaccurate, and 2) including the same sample into all bags reduces
the diversity. In the next section, we combine rejection sampling
and random sampling, by using probable sample distributions, for
intrabag sampling:
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Fig. 1. The conceptual view of the HSMILE. Dots denote negative instances and
triangles represent positive samples. The size of the triangle implies the likelihood
of an instance to be genuinely positive.



x�Bi
¼ arg max

x2Bi

Pr
�
x j B�1 ; . . . ; B�N

�
: ð11Þ

In (9), the estimation of the most probable positive samples is
calculated without taking positive bags into consideration. This is
mainly because genuine labels of the instances in positive bags are
unknown. In our study, we have tried different metrics consider-
ing positive bags, for example, distance to positive bags. The
results, however, do not show significant improvement, compared
to the proposed method that only focuses on negative bags.

2.2.1 Validation on Synthetic Set

In Fig. 2, we report the probabilities calculated by (9) on synthetic
multi-instance data sets as shown in Fig. 2a. In the synthetic data
set, each instance represents a point in a two-dimensional space.
An instance is positive if its euclidian distance to the origin, which
is the center of the square, is less than a predefined value r (i.e., a
small circle region). To generate each bag, we randomly select one
starting point and follow random walk (along x- and y-axis using a
random step size [�1; 1]) to the next point, and so on. By varying
the radius size r, we can control the density of positive instances in
positive bags. Figs. 2b, 2c, 2d, and 2e report two sets of results with
sparse versus dense densities.

Each point in Figs. 2b, 2c, 2d, and 2e represents one positive
bag. The x-axis and the y-axis denote the largest distribution value
(9) of the negative instance and positive instance in each bag,
respectively. A point above the y ¼ x line indicates that, for this
specific bag, (9) indeed capture the positive instance. The number
of points below the y ¼ x line corresponds to the number of
positive bags to be incorrectly classified as negative bags.

The results in Fig. 2 show that (8) can indeed help capture
majority positive instances in each positive bag. In sparse density
scenario, each positive bag only contains one (Fig. 2b) or two
(Fig. 2c) positive instances on average. Our method can accurately
identify 90.5 and 91.7 percent of positive bags, and the results for
dense bags are actually much better.

In addition to the above results, we also check the ranking
loss of all positive bags as follows: For each positive bag, we sort
all instances according to their distribution values in a descend-
ing order. We check the number of negative instances that are
misplaced in each bag (a negative instance is misplaced if it has
a higher probability value than any positive instance in the bag),
and divide the total number of misplaced instances by the total
number of instances in all positive bags. The ranking loss is 5.37,
3.73, 2.31, and 2.59 percent for four data sets corresponding to
Figs. 2b, 2c, 2d, and 2e, respectively. This further demonstrate
that our method is effective to capture positive instances in
positive bags.

2.3 Rejection and Random Intrabag Sampling

Given a positive bag Bi with mi instances, intrabag sampling aims
to generate J bags, under conditions that 1) each sampled bag has
the same number of instances as Bi; 2) a sampled bag preserves the

same bag label as Bi with maximum possibility; and 3) sampled
bags have the maximum diversity. To achieve the goal, we
combine the strength of rejection sampling [9] and random
sampling to first select a probable positive sample from Bi (using
rejection sampling), and then apply random sampling to select
remaining samples.

Rejection sampling is a statistical solution to independently
select samples from a given distribution. To employ rejection
sampling to select a probable positive sample, we randomly select
a number from 1 to jBij, say |, and then reject instance bi;| with
probability 1� P ðbi;| j B�Þ. In other words, a sample with a larger
probable positive distribution value will have a better chance of
being selected in a sampled bag. After that, we employ pure
random sampling to select mi � 1 samples from Bi to form a
sampled bag B

0

i. Due to page limitations, we omit the details on
rejection sampling, interested readers can refer to external sources
[9] for theoretical aspects of the rejection sampling.

2.4 Computational Complexity

Given a training set with M bags and each bag containing
m instances on average, assume that an MIL algorithm scales
linearly to the number of bags and quadratic to the number of
instances in each bag OðMm2Þ (which is a reasonable assumption
for most MIL algorithms). For interbag sampling, HSMILE requires
OðIÞ time complexity. For each interbag sampling set Ti, it takes
OðMm2Þ to calculate the probable positive sample distribution (for
positive bags) and intrabag sampling (including rejection sam-
pling) costs OðJMmÞ. In addition, it takes OðJMm2Þ to train J MI
learners.

In summary, the time complexity of HSMILE is OðI½Mm2 þ
JMmþ JMm2�Þ ¼ OðIJMm2Þ, which is asymptotically I � J
times more expensive than a single MI leaner. This is equivalent
to training I � J MI learners from the original training set.

3 HSMILE RATIONALE

3.1 Diversity Enhancement

Existing study [6] has shown that high diversity of base classifiers
is essential to ensure the performance gain of an ensemble
predictor. In this section, we prove that bootstrap sample sets of
HSMILE have a higher diversity than the ones from TMIE.

Definition 1. Denote P fx2TgðTiÞ the average probability of a sample in

T appearing in a sample set Ti, the Diversity of Ti, denoted by DðTiÞ
is 1� P fx2TgðTiÞ.

Lemma 1. Given an MI training set T , the diversity of a bootstrap

sample set Ti from HSMILE is greater than the diversity of the

same size sample set from traditional MI ensemble but less than

the diversity of the same size sample set from pure instance-level

bootstrap sampling.

Proof. Given an MI training set T with M bags and r instances

(r�M), without loss generality, let us assume that all bags in
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Fig. 2. Validation of the probable positive sample distribution on synthetic multi-instance data sets. Each point in (b)-(e) denotes the largest distribution value using (9) of
the negative instance (x-axis) and positive instance (y-axis) in each positive bag, respectively. Each synthetic data set contains about 200 positive and 200 negative
bags. Density specifies the percentage of positive instances in a positive bag. (a) A conceptual view of the synthetic data set; (b) low density (23.47 percent positive
instances in each positive bag) with five instances/bag; (c) low density (19.66 percent) with 10 instances/bag; (d) high density (83.65 percent) with five instances/bag;
(e) high density (72.64 percent) with 10 instances/bag.



T have the same size m. For pure instance-level bootstrap

sampling, the probability of an instance in T to appear in the

same size bootstrap sample set Tpure, P fx2TgðTpureÞ is 1� ð1� 1
rÞ
r

and DðTpureÞ ¼ 1� ð1� ð1� 1
rÞ
rÞ. For interbag sampling, the

probability of one instance is chosen is equal to the probability

of the bag containing the instance being chosen, which is 1
M .

Because we have to repeat interbag sampling M times to select

M bags from T to build Ti, the probability of an instance in T to

appear in Ti, P fx2TgðTiÞ is 1� ð1� 1
MÞ

M and DðTiÞ ¼ 1� ð1 �
ð1� 1

MÞ
MÞ.

Intrabag sampling is built upon the interbag sampling.
Supposing there are m instances in a bag, the probability of
one instance in T to appear in Tji , P fx2TgðTji Þ, after both interbag
sampling and intrabag sampling, is ð1� ð1� 1

MÞ
MÞð1� ð1�

1
mÞ

mÞ and DðTji Þ ¼ 1� ðð1� ð1� 1
MÞ

MÞð1� ð1� 1
mÞ

mÞÞ. Because
ð1� ð1� 1

mÞ
mÞ � 1, the diversity of Tji is greater than the

diversity of Ti, i.e., DðTpureÞ 	 DðTji Þ 	 DðTiÞ. tu

For TMIE and HSMILE, each of the base learners is trained from
Ti and Tji , respectively. When using the same type of learning
algorithm to train base learners, HSMILE has a higher diversity
than TMIE.

3.2 Variance Reduction

It has been shown in theory that the error rate reduction for an
ensemble predictor mainly attributes to the reduction of the
variance of the base learner’s error rate [2], [10]. In this section, we
study HSMILE and TMIE and conclude that HSMILE achieves
better variance reduction than its peers.

According to Tumer [10], the classification error rate is linearly
proportional to the boundary errors (i.e., the errors corresponding
to the difference between the actual decision boundary and the
Bayes decision boundary), so our study will, therefore, focus on the
classifier boundary error. Denote ci the label of the ith class and
Pðci j xÞ is the posteriori probability of ci given instance x (we use
PiðxÞ as a shorthand of Pðci j xÞ). For a two-class problem, Bayes
optimal decision boundary is the loci of all point x� where
Pnðx�Þ ¼ Ppðx�Þ [10], n and p denote the label of negative and
positive class, respectively. Due to factors, such as data errors and
limitations of the classification algorithm, the actual decision
boundary may vary from the Bayes optimal boundary. Denote
d; ðd ¼ xd � x�Þ the bias of the actual decision boundary varying
from the Bayes optimal boundary and Fið:Þ the output of the actual
classifier, the actual decision boundary is the loci of all xd, where

Fnðx� þ dÞ ¼ Fpðx� þ dÞ: ð12Þ

According to Tumer [10], the output of a classifier w.r.t. an
instance x can be expressed as

FiðxÞ ¼ Pðci j xÞ þ "iðxÞ ¼ PiðxÞ þ �iðxÞ þ �i; ð13Þ

where "iðxÞ is the error associated with the class ci given sample x,
which can be decomposed into two components: �iðxÞ the noise of
the classifier in predicting sample x, and �i, the bias of the
underlying predictor.

3.2.1 Single MI Predictor Variance

According to (12), the actual decision boundary of a single MI
predictor consists of points xd; xd ¼ x� þ d, where Fnðx� þ dÞ ¼
Fpðx� þ dÞ. Following decomposition in (13), we have

Pnðx� þ dÞ þ "nðxdÞ ¼ Ppðx� þ dÞ þ "pðxdÞ: ð14Þ

A linear approximation of PiðxÞ around x� can be expressed as
(15) under assumption that the posteriors are locally monotonic
function [10],

Piðx� þ dÞ ffi Piðx�Þ þ dP
0

iðx�Þ; i ¼ n; p; ð15Þ

where P
0

ið:Þ denotes the derivation of Pkð:Þ. Since x� is a point on

the Bayes optimal boundary where Pnðx�Þ ¼ Ppðx�Þ, the bias d can
be calculated in (16), with s ¼ P

0

nðx�Þ � P
0

pðx�Þ:

d ¼ "pðxdÞ � "nðxdÞ
s

¼ �pðxdÞ � �nðxdÞ
s

þ �p � �n
s

: ð16Þ

Because learner bias �i is a constant with respect to the
underlying data set and learning algorithms, assume that noise

�iðxÞ is independent and variance �2
�i

follows Gaussian distribu-

tions, the variance of the SMI is, therefore, denoted by

�2
d ¼

�2
�n
þ �2

�p

s2
: ð17Þ

3.2.2 Traditional MI Ensemble Variance

For TMIE, the final prediction of the ensemble predictor is the

average probabilities of the I base classifiers, as shown in

FTMIE
i ðxÞ ¼ 1

I
�I
t¼1F

t
i ðxÞ; ð18Þ

where Ft
i ðxÞ is the output of each base classifier. Using bias and

variance decomposition in (13), we have

FTMIE
i ðxÞ ¼ PiðxÞ þ

1

I
�I
t¼1

�
�tiðxÞ þ �ti

�
: ð19Þ

According to (12), we have

FTMIE
p ðx� þ dTMIEÞ ¼ FTMIE

n ðx� þ dTMIEÞ: ð20Þ

Similar to SMI, the offset of the TMIE boundary from the Bayes

optimal boundary can be calculated as

dTMIE ¼
�TMIE
p ðxdÞ � �TMIE

n ðxdÞ
s

þ
�TMIE
p � �TMIE

n

s
: ð21Þ

Because noise of �iðxÞ are assumed to be independent of each other

and learner bias �i is a constant with respect to the underlying data
set and learning algorithms, the variance of a TMIE predictor is

given by

�2
dTMIE ¼

�2
�TMIE
p
þ �2

�TMIE
n

s2
¼ 1

I

�2
�n
þ �2

�p

s2
¼ 1

I
�2
d: ð22Þ

3.2.3 Hierarchical Sampling MI Ensemble Variance

For HSMILE, suppose we apply inter- and intrabag sampling I and
J times, respectively, to each Ti. F

HSMILE
i denotes the output of

HSMILE given instance x, where

FHSMILE
i ðxÞ ¼ 1

I � J
XI
�¼1

XJ
j¼1

Ft;j
i ðxÞ: ð23Þ

Following the above induction process for TMIE, the variance of

HSMILE can be denoted by

�2
dHSMILE ¼

1

I � J �
2
d: ð24Þ

Because I 	 1 and J 	 1, we have �2
dHSMILE � �2

dTMIE � �2
d, which

means that HSMILE receives higher variance reductions than
TMIE, and both of them have higher variance reduction than a

single MI predictor.

3.2.4 Diversity, Variance, and Independence Assumption

When ensemble members are dependent on each other, the

diversity enhancement of HSMILE is still valid, whereas the

variance reduction of TMIE and HSMILE, compared to SMI, will
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deteriorate. Assume that ensemble members are �-dependent on

each other, the variance of a member � is given as �2
��
i
¼ ���2

�i
,

where �� is a random value in the range [0, �]. The variances of

TMIE and HSMILE are

�2
dTMIE ¼

PI
�¼1 ��
I

�2
d; �

2
dHSMILE ¼

PI
�

PJ
j ��;j

I � J �2
d: ð25Þ

If ensemble members are identical (i.e., �1 ¼ �2 ¼ � � � ¼ �), the

variance of TMIE and HSMILE is equal to �� �2
d. If � ¼ 1, both

TMIE and HSMILE degenerate as a single SMI learner.

4 EXPERIMENTS

We implement the proposed sampling method using Java and

WEKA machine learning tool [11]. Two baseline methods, includ-

ing SMI, TMIE, and two HSMILE variants denoted by HSMILEt

and HSMILEn, are implemented for comparison purposes.

HSMILEt and HSMILEn are almost identical to HSMILE except

their instance-level sampling module. For HSMILEt (t means

“total”), instances are randomly sampled inside each bag. For

HSMILEn (n means “negative”), instances in a negative bag are

randomly sampled, and no sampling for a positive bag. Five real-

world MI data sets are collected as our benchmark testbed.1

We use 10-fold cross validations and select three MI algorithms,

Citation KNN (cKNN), MI Optimal Ball (MIOptimalBall), and MI

Nearest Neighbor with Distribution Learner (MINND), with

default parameter settings as the base learners. For fair compar-

isons, in each fold, the training and test data sets remain the same

for all methods. In our experiments, the number of interbag

sampling for HSMILE is set to 10.

4.1 Intrabag Sampling Results

To study the impact of the intrasampling times (J) on the

algorithm performance, we vary the J values, from 1 to 35, and

report the performance of HSMILE in Fig. 3. Because the J value

determines the ensemble size for each individual bag, increasing

sampling times for each bag can bring positive impact on the

algorithm performance. Such improvement, in practice, can be

observed across all MI learners. On the other hand, because each

bag is reproduced J times through intra-bag sampling, increasing

J value directly increases the training set size and requires

significant extra computational costs. According to the impact of

the sampling times J with respect to the algorithm performance, as

reported in Fig. 3, and the computational cost concerns, we use

J ¼ 3 for all experiments in the remaining sections.

4.2 Accuracy Comparisons and Analysis

Table 1 reports results across different learning methods and

different benchmark data sets. For each row (i.e., one learning

algorithm w.r.t. one benchmark data set), the method with the

highest mean accuracy is bold faced. A y indicates that HSMILE is

statistically significantly better, t-test at 95 percent level, than TMIE
for the particular data set and MI learner.

For all five methods, ensemble learning indeed achieves
performance gain for single multi-instance learner. For some data
sets we observed, MI ensemble learning can receive more than
10 percent performance gain, in comparison with a single MI
learner. For example, the accuracy of SMI on the “Elephant” data
set is 67.5 percent, and the absolute ensembling accuracy gains for
TMIE, HSMILEt, HSMILEn, and HSMILE are 9.5, 15.5, 17.0, and
16.5 percent, respectively. On the other hand, although SMI
occasionally outperforms ensemble predictors, it actually has the
lowest average accuracy across all methods, which asserts that
similar to generic supervised learning, simple ensemble learning is
an effective way for boosting multi-instance learners.

Among three base learners, both cKNN and MINND are KNN
related. Existing research has concluded that kNN is a stable
learner and is not an ideal candidate for ensemble learning [2]. Our
results indicate that there is no clear evidence to support this
hypothesis, and both MIOptimalBall and KNN related MI
ensemble learners can receive good performance gain for multi-
instance learning. This may be because that the bag labeling
constraint alleviates the stable learning condition and makes a
typical stable learner relatively unstable.

Among all ensembling approaches, HSMILE has won TMIE,
HSMILEt, and HSMILEn 13, 14, and 10 times, respectively, on the
total 15 tests. Among all 15 tests, HSMILE is statistically
significantly better than traditional multi-instance learning (TMIE)
on nine tests. Recall that HSMILE employs inter- and intrabag
sampling to 1) retain the most probably positive sample in each
positive bag, and 2) generate bootstrap MI sample sets with
maximum diversities; it is clear that generic sampling approaches
that do not take bag labeling constraints into consideration for
ensemble learning is inferior to the HSMILE for multi-instance
ensemble learning.

5 CONCLUSIONS

In this paper, we proposed a new hierarchical sampling method
for multi-instance ensemble learning (HSMILE). We argued that
due to the unique multi-instance bag labeling constraint,
traditional MI ensemble approaches, which carry out sampling
at interbag level, are insufficient to generate diverse MI bootstrap
sets. Pure instance-level bootstrap sampling without considering
the bag labeling constraint, on the other hand, may result in
inconsistent positive bags and deteriorate the learning perfor-
mance. To solve the problem (i.e., increasing diversity and
maintaining bag label consistency), HSMILE employs hierarchical

2904 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

TABLE 1
Classification Accuracy Comparisions

A y indicates that HSMILE is statistically significantly better, t-test at 95 percent
confidence level, than TMIE.

1. The source code and data sets can be downloaded from http://
www.cse.fau.edu/~xqzhu/hsmile.html.

Fig. 3. Prediction accuracies (y-axis) with respect to different number of times for
intra-bag sampling (x-axis).



sampling, at both bag and instance levels, to ensure that each bag
is sufficiently randomly perturbed but still complies with the bag
labeling constraints. Theoretical studies analyzed the rationality
of the HSMILE from both diversity enhancement and variance
reduction perspectives. Experimental comparisons using three MI
learning methods and five benchmark data sets confirmed that
HSMILE outperforms its peers for multi-instance ensemble
learning.
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