
Class Noise Handling for Effective
Cost-Sensitive Learning by Cost-Guided

Iterative Classification Filtering

Xingquan Zhu and Xindong Wu

Abstract—Recent research in machine learning, data mining, and related areas

has produced a wide variety of algorithms for cost-sensitive (CS) classification,

where instead of maximizing the classification accuracy, minimizing the

misclassification cost becomes the objective. These methods often assume that

their input is quality data without conflict or erroneous values, or the noise impact

is trivial, which is seldom the case in real-world environments. In this paper, we

propose a Cost-guided Iterative Classification Filter (CICF) to identify noise for

effective CS learning. Instead of putting equal weights on handling noise in all

classes in existing efforts, CICF puts more emphasis on expensive classes, which

makes it attractive in dealing with data sets with a large cost-ratio. Experimental

results and comparative studies indicate that the existence of noise may seriously

corrupt the performance of the underlying CS learners and by adopting the

proposed CICF algorithm, we can significantly reduce the misclassification cost of

a CS classifier in noisy environments.

Index Terms—Data mining, classification, cost-sensitive learning, noise handling.

Ç

1 INTRODUCTION

INDUCTIVE learning usually aims at forming a generalized
description of a given set of data, so that further unseen instances
can be classified with a minimal error rate. A common assumption
is that errors result in the same amount of cost, which is seldom the
case in reality. For example, in medical diagnosis, the errors
committed in diagnosing a patient as healthy when he/she
actually has a life-threatening disease is considered to be far more
serious (hence, a higher cost) than the opposite type of error—
diagnosing a patient as ill when he/she is in fact healthy. The same
problem exists in financial institutions and other database market-
ing, where the cost of mailing to a nonrespondent is very small, but
the cost of not mailing to someone who would respond is a more
significant profit loss.

Recently, a body of work has attempted to address this issue,

with techniques known as cost-sensitive learning [1], [2], [3], where

the “cost” could be interpreted as misclassification cost, training

cost, test cost, or others. Among all different types of costs, the

misclassification cost is the most popular one. In general, the

misclassification cost is described by a cost matrix C, with Cði; jÞ
indicating the cost of predicting that an example belongs to class i

when in fact it belongs to class j. With this type of cost, the

objective of a CS learner is to form a generalization such that the

average cost on previously unobserved instances is minimized.

Obviously, this minimal cost is determined by two most important

factors: 1) the inductive bias of the underlying CS learner and

2) the quality of the training data. Existing research endeavors

have made significant progress in exploring efficient CS learning

algorithms [1], [2], [3], [4], [5], with assumptions that the input data

are noise-free or noise in the data sets is not significant. However,

real-world data are rarely perfect and can often suffer from
corruptions that may impact interpretations of the data, models
created from the data, and decisions made on the data. As a result,
many research efforts have focused on noise identification and
data cleansing, but none of them was originally designed for
CS learning, with its objective of minimizing the cost instead of
minimizing the number of errors. In this paper, we will propose a
cost-guided noise handling approach for effective CS learning
from noisy data sources.

2 COST-GUIDED ITERATIVE CLASSIFICATION FILTER

Among all existing noise handling efforts, the Classification Filter
(CF) [6] is one of the most successful algorithms. It simplifies noise
elimination as a filtering operation where noise is characterized as
instances that are incorrectly classified by a set of pretrained noise
classifiers, as shown in Fig. 1.

An inherent disadvantage of CF is that noise classifiers (Hy) are
organized in parallel so they cannot benefit each other in noise
identification. However, if we can organize the noise classifiers in
such a way that the current classifier could take advantage of the
previous results and, in addition, when conducting noise handling,
each noise classifier also takes the costs into consideration, we may
expect better results in identifying noise for CS learning. Motivated
by the above observations, we propose a Cost-Guided Iterative
Classification Filter (CICF) for noise identification.

As shown in Fig. 2, CICF first partitions the original noisy data
set E0 into n subsets (as CF does). Given the first iteration It ¼ 1,
CICF first aggregates n� 1 subsets (excluding subset E1), and
trains the first noise classifier H1. The examples in E1, which are
incorrectly classified by H1, are forwarded to a noise subset
(NoiseSet), and all other instances are forwarded to a good instance
subset (GoodSet). The above steps are about the same as in CF. But,
the difference is that after H1 has identified noisy instances from
E1, CICF will introduce a cost-guided rejection sampling [9] (see
Section 2.2) to remain all good instances in E1 and randomly
remove identified noise in E1, by putting a heavier penalty to the
noise in cheaper classes. So, the removed noisy instances will not
take part in the following noise identification steps and, mean-
while, the noise classifier can still put an emphasis on the
expensive classes. It is obvious that such a procedure will change
the data distribution in E1 through noisy instance removals. After
the first round, CICF conducts the second iteration by aggregating
another n� 1 subsets (and excluding subset E2), identifies noise
from E2 and conducts a cost-guided rejection sampling on E2 as
well. CICF repeats the above procedures until n iterations are
accomplished, and provides the user with a cleansed data set E0.

2.1 Iterative Classification Filter (ICF)

For any current iteration It in CICF, the noise identification
results from the former iterations i, i ¼ 1; 2; . . . ; It� 1, can
possibly contribute to noise handling in EIt. Such a procedure
is demonstrated in steps (12) to (21) in Fig. 2, where ClassðIkÞ
returns the class label of Ik, and RandomðÞ produces a random
value within [0, 1]. Under such a sequential framework, the
most intuitive solution is to remove all identified noisy
instances from EIt, It ¼ 1; 2; . . . ; n, so in the following steps,
the identified noise is not used to train the noise classifiers. We
call it an Iterative Classification Filter (ICF) [17]. In Fig. 2, if we
set SaplChance to 0, the algorithm works exactly as ICF, and if
we set SaplChance to 1, the algorithm becomes CF.

ICF iteratively removes identified noisy examples in each
round, it works similar to boosting [10] but in a counterdirection.
Taking Adaboosting as an example, the data distribution in the
current round DIt crucially depends on the classification results
from the previous iterations, as denoted by (1), where ZIt is a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006 1435

. X. Zhu is with the Department of Computer Science and Engineering,
Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431.
E-mail: xzhu@fau.edu.

. X. Wu is with the Department of Computer Science, University of
Vermont, 33 Colchester Ave./ Votey 377, Burlington, VT 05401.
E-mail: xwu@cs.uvm.edu.

Manuscript received 29 Mar. 2004; revised 10 Feb. 2005; accepted 21 Mar.
2006; published online 18 Aug. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0088-0304.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

normalization constant (chosen so that DItþ1 will be a distribution)

and yIk is the class label of instance Ik. In (1), the priority was given

to incorrectly classified examples because boosting tries to boost

from uncertain examples and weaker learners, and a default

assumption is that training instances are all correctly labeled [11].

Whereas for ICF, the objective is to boost from good examples, and

the assumption is that incorrectly classified instances are essen-

tially noise prone. In comparison with boosting, ICF can be

denoted by (2)

DItþ1ðIkÞ ¼
DItðIkÞ
ZIt

�
1�ErrDIt ðHItÞ
ErrDIt ðHItÞ if HItðIkÞ ¼ yIk

1 Otherwise;

(
ð1Þ

DItþ1ðIkÞ ¼
DItðIkÞ
ZIt

� 1 if HItðIkÞ ¼ yIk
0 Otherwise:

�
ð2Þ

2.2 Cost-Guided Rejection Sampling

Although ICF progressively reduces the noise level in each round

to train the classifiers, experimental results in Section 3 will

indicate that the disadvantage of ICF is that it boosts from good

instances any falsely identified noisy instance are removed

immediately and will not be reused in the following procedures.

This disadvantage of ICF becomes especially severe when the

accuracy of the noise classifier is low and the cost-ratio in the data

set is relatively large because expensive classes obviously should

not bear the same level of information loss as cheap ones. CF, on

the other extreme, keeps all identified noisy instances while

training the noise classifiers, which eventually results in low noise

identification accuracies. Accordingly, instead of either removing

or keeping identified noisy instances, we adopt a sampling

mechanism by taking costs into consideration.
When conducting CS learning, some algorithms [5], [12] have

used sampling mechanisms to modify the distribution of training

examples with more emphasis (a higher density) on expensive

classes, so the classifier learned from the modified data set

becomes cost-sensitive. This motivates us to adopt similar ideas

for noise handling, where at each iteration It, the identified noisy

instances are randomly sampled and removed from the data set,

therefore two objectives could be achieved through this procedure:

1) putting a focus on the expensive classes, so the classifier could

have more investigation on them and 2) reducing the noise level in

the succeeding iterations, so a more accurate noise identification

classifier can be trained. Although well motivated, sampling

instances in a correct and general manner is more challenging

than it may seem. The most challenging part is to guarantee that

instances are indeed independently sampled and with a prob-

ability proportional to their cost. General sampling procedures like

sampling with/without replacement, however, cannot provide this

warranty [5]. For sampling-with-replacement, each instance
ðx; y; cÞ is drawn according to the distribution

pðx; y; cÞ ¼ cP
ðx;y;cÞ2 ~EIt

c
;

but there is no guarantee that instances drawn independently from
~EIt, which is the subset containing identified noise in the current
round It. Sampling without replacement is not an option either
because it draws an instance from the distribution

pðx; y; cÞ ¼ cP
ðx;y;cÞ2 ~EIt

c
;

but draws next instance from ~EIt � fx; y; cg and, therefore,
instances are drawn from a smaller and smaller set according to
the weights of the remaining examples.

Rejection Sampling [9] from statistics provides a solution to
resolve our problem. This method draws independent samples
from a probability distribution P ðxÞ ¼ P �ðxÞ=ZP . We may not
know the normalizing constant ZP , but we assume that we can
evaluate P �ðxÞ at any position x we choose. It does not matter here
if the function P ðxÞ gives probabilities for a discrete x or describes
a probability density function over a continuous x. A normal
rejection sampling procedure consists of the following two steps:

. Draw a sample X from P ðxÞ and a sample U from another
distribution QðxÞ from which we can easily make an
independent selection. A uniform distribution on [0, 1] is
often taken as QðxÞ.

. Accept the sample X if U � P ðxÞ, and reject X otherwise.

2.3 Cost-Guided Iterative Classification Filter (CICF)

Based on the above analysis, we modify ICF and propose a
Cost-guided Iterative Classification Filter. Given the current
iteration It, It ¼ 1; 2; . . . ; n, assuming ~EIt denotes the subset
containing all identified noisy examples from EIt, the original
distribution in ~EIt is DIt, and the transformed distribution
(after the sampling) is D̂It, we conduct rejection sampling by
drawing examples from ~EIt, and then keeping (or accepting)
the sample with a probability proportional to D̂It=DIt. Here, we

1436 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

Fig. 1. Classification filter.

Fig. 2. Cost-guided iterative classification filter (CICF).

have D̂It=DIt / C, so we keep an example (Ik) with probability

SaplChance, which is defined by (3):

SapleChance ¼ CðPrdCls;OrgClsÞ=
X

i;j2fPrdCls;OrgClsg
Cði; jÞ; ð3Þ

where OrgCls and PrdCls indicate the original and the predicted

class of Ik, respectively. The higher the misclassification cost of Ik,

the more likely Ik is going to be kept, as shown in steps (15) to (21)

in Fig. 2. With such a procedure, the identified noise in EIt is

independently sampled (with regard to the misclassification cost of

the instance) to form a modified data set EIt (where some

identified noisy instances are removed). Accordingly, the original

distribution in EIt was modified, with a preference on good and

expensive instances. Hopefully, classifiers learned from the

modified data set will have a better performance to handle noise

from expensive classes.
The merit of such a rejection sampling-based noise handling

mechanism is twofold: 1) rejection sampling independently draws

instances to form a new distribution, and it is inherently superior

to other sampling mechanisms like sampling with/without

replacement, because instances are not independently drawn from

the latter approaches and 2) instead of either keeping (like in CS) or

removing (like in ICF) all identified noisy instances, CICF

randomly keeps identified noise (with regard to the cost of each

instance), so the noise classifier could be learned from condition-

ally reduced noisy environments with an emphasis on expensive

instances. In comparison with boosting and ICF, CICF can be

summarized as follows:

DItþ1ðIkÞ ¼
DItðIkÞ
ZIt

�
1 if HItðIkÞ ¼ yIk

CðPrdCls;OrgClsÞP
i;j2fPrdCls;OrgClsg Cði;jÞ

Otherwise:

(
ð4Þ

3 EXPERIMENTAL EVALUATIONS

3.1 Experiment Settings

The majority of our experiments use C5.0 [13]. We evaluate

different algorithms on 20 benchmark data sets [14], [15], as

summarized in Table 1, where class ratio indicates the ratio

between the most common and the least common classes. We will

mainly analyze the results on several representative data sets. The

summarized results from all benchmark data sets are reported in

Fig. 4 and Fig. 5.
For most data sets we used, they don not actually contain

much noise (at least we do not know which instances are

noisy), so we implement Total Random Corruption (TRC) to

introduce noise and evaluate the algorithms. With TRC, when

the users specify an intended corruption level x � 100 percent,

we will randomly introduce noise to all classes. That is, an

instance with its label i has a x � 100 percent chance to be

mislabeled as another random class (excluding class i). For

two-class data sets, TRC is actually the pairwise corruption
model that has been popularly used before [6], [7], [8].

To assign misclassification cost matrix values, Cði; jÞ; i 6¼ j, we
adopt a Proportional Cost (PC) mechanism with costs chosen at
follows: For any two classes i and j (i 6¼ j), we first check their class
distributions �i and �j. If �i � �j, which means that class j is
relatively rarer than i, then Cðj; iÞ ¼ 100 and Cði; jÞ equals to 100 r;
otherwise, Cði; jÞ ¼ 100 and Cðj; iÞ ¼ 100 � r, where r is the cost-
ratio, as defined by (5). In our experiments, we set r 2 ½1; 10�, which
means higher costs for rarer classes. This is consistent with the
reality, because assigning a large cost to the common class simply
does not make sense, and if we indeed do so, the CS learner will
tend to ignore all rare classes (because they are less in quantity and
cheap in cost). In our experiments, the cost-ratio r for two-class
problems are prespecified, such as r ¼ 2, 5, and 10 and, for
multiclass problems, the r values are randomly generated for each
pair of classes. The cost matrix is generated at the beginning of
each trail of 10 time cross-validation. We use average costs to
evaluate the improvement of the proposed efforts in enhancing CS
learning.

r ¼ Cði; jÞ=Cðj; iÞ: ð5Þ

3.2 Cost Improvement through Noise Cleansing

To assess different methods in improving the CS learner
performances, we perform experiments at different noise levels
and report the results in Table 2, where CSwt represents the
average cost of a CS classifier trained from a noisy data set (E0)
without any noise cleansing. CSCF , CSICF , and CSCICF denote the
average costs of the CS classifier learned from the cleansed data set
(E00) which adopts CF, ICF, and CICF, respectively. In Table 2, the
text in bold indicates the lowest cost value.

When evaluating results from two-class data sets (in Table 2), it
is not hard for us to conclude that a data set with noise cleansing
(either CF, ICF, or CICF), likely improves the CS learner
considerably, where the improvement can be as significant as
10 times better (e.g., ICIF on the Sick data set with 40 percent
noise). This shows the effectiveness and importance of noise
handling for CS learning.

For small cost-ratio values, the improvements could be found
from almost all data sets in Table 2, regardless of noise levels,
where noise handling almost always leads to better performances.
However, when the cost-ratio becomes larger, e.g., r ¼ 5 or more,
the improvement turns to be less significant. In this situation,
applying noise handling on some data sets (at some noise levels)
may raise the average costs of trained CS classifiers. For data sets
with large cost-ratio values, it is actually hard to achieve a
significant improvement through noise cleansing (due to the bias
of CS learners). Under such circumstances, a less accurate noise
cleansing mechanism will decrease the system performance rather
than enhancing it.

Further investigations on CF, ICF, and CICF reveal that ICF
appears to be very unstable. A possible reason is that ICF prohibits

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006 1437

TABLE 1
Benchmark Data Set Characteristics

noise identified in each round from being reused at later stages,

which may result in a certain amount of bias and make the noise
classifier too conservative. This disadvantage becomes more

apparent for data sets with a large cost-ratio because removing
valuable information from expensive classes can significantly

impact on the CS learner. In conclusion, removing all noisy
instances identified in each round is an inferior solution to training

noise classifiers for CS learning.
By integrating cost-guided rejection sampling and iterative

noise handling, CICF receives very attractive results. For small cost
ratio values, CICF is comparable to CF. When the cost ratio

becomes higher, e.g., r ¼ 5 or more, CICF dominates and outper-
forms CF most of times. This demonstrates that a noise handling

mechanism which takes the cost into consideration is promising
for CS learning, especially when some classes are much more

expensive than others.

3.3 Experimental Comparisons with Bagging and
Boosting

To compare the performances of bagging, boosting, and CICF, we
implement another set of experiments: Given a noise corrupted

data set E0 with jjE0jj instances, we train a CS classifier from E0,
with its misclassification cost denoted by CSwt. Meanwhile, we

construct a total number of B bags with each bag containing jjE0jj
instances randomly sampled from E0 (with replacement). We built
one CS classifier from each bag, and their voting result is denoted

by CSBagging. To build a cost-sensitive boosting classifier, we follow
the algorithm design of Adaboosting and randomly sample

jjE0jj instances from E0 (with replacement) to generate bootstrap

samples, where the sampling rate for each instance is controlled by
the fact whether this instance can be correctly classified or not [10].
We build one CS classifier from the bootstrap samples, and repeat
the same procedure for B times or until the classification error rate
is no less than 0.5. The CS boosting classifier, CSBsting, is the voting
of all classifiers built from the bootstrap samples. We report the
results in Table 3, where the bold text and the shading rectangle
boxes indicate the methods with the least and the second least cost,
respectively (because of cross-validation and random procedures,
the results of CSwt and CICF in Table 3 and Table 2 are slightly
different but statistically equivalent). We set B ¼ 10 in our
experiments.

In Table 3, the merit of CICF in comparison with bagging and
boosting is quite clear. Boosting has the worst performance most of
the time, and its misclassification costs are significantly higher than
the others. This does not surprise us because noisy examples tend
to be misclassified, receive a higher sampling rate, and they appear
more often in the bootstrap samples. As shown in Fig. 3a, although
noise levels for bagging are almost the same for all bags, for
boosting, the noise level in the second round raises dramatically,
and keeps increasing in the succeeding rounds.

The results in Table 3 show that bagging is likely inferior to the
classifier built from the original noisy data sets (CSwt), especially
when the cost ratio (r) is small, say r ¼ 2. When the cost ratio r

becomes larger, bagging is comparable to CSwt or even slightly
better, e.g., when r ¼ 10. This is surprising, as bagging indepen-
dently generates bootstrap examples without considering the
results of other rounds, and it should not suffer from the same
problem as boosting does. In addition, existing research often [16]

1438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

TABLE 2
Cost Improvements from Two-Class Data Sets (TRC, n ¼ 10)

TABLE 3
Experimental Comparisons with Bagging and Boosting (TRC, B ¼ 10, n ¼ 10)

concludes that bagging is robust and likely outperforms a single
learner most of the time. To explore the reason behind this
surprise, we further investigate the class distributions of bootstrap
instances in each round, and report the results in Fig. 3b and
Fig. 3c, where ClsRatio means the class ratio of the major class in E0,
“Bagging” and “Bsting” means the class ratio of the major class in
different rounds of bootstrap examples for bagging and boosting,
respectively (and we only report the results of first five rounds).

As shown in Fig. 3b, for each bootstrap bag built from bagging
and boosting, its class ratio has been changed and is different from
the class ratio of the original data set (E0). For non-CS learning,
although the introduced class distribution bias does impact on the
underlying learner, the influence is likely limited and tends to be
ignorable after the final voting. For CS classification, however, the
bias normally brings a heavy impact and often results in
deteriorated CS learners and may eventually corrupt the bagging
results. In Fig. 3c, the larger the cost ratio, the more severe the bias
introduced to boosting is, and this observation alone also partially
explains the ineffectiveness of boosting in noisy environments.
Although the cost ratio has nothing to do with the underlying class
distribution of bagging, it is understandable that with a certain
amount of bias, the smaller the class ratio, the more the class
distribution bias may impact on the learner, and as a result, the

worse the performance of bagging is. This conclusion can be

further verified in Table 3 by comparing the results of different

r values.

3.4 Experimental Result Summarization

In Fig. 4 and Fig. 5, we summarize the results from all benchmark
data sets and provide two sets of comparisons: 1) the cost between

CICF and the original noisy data set (Fig. 4) and 2) the cost between

CF and CICF (Fig. 5). In Fig. 4, the x-axis and y-axis represent the

cost of the CS classifier trained from the noisy data set with and

without adopting CICF, respectively. Each point corresponds to a
data set evaluated at one noise level and one type of cost matrix (so

each figure has 40 points). Points above the y ¼ x line are those

receiving a better performance by adopting CICF. In Fig. 5, the

x-axis and y-axis represent the cost of the CS classifier trained from

the data set cleansed by CICF and CF, respectively.
In Fig. 4a, when the cost-ratio is small, adopting CICF can

improve the performance of the CS classifier from almost all data

sets. However, when r increases from 2 to 5, 10 points are actually

below y ¼ x. When r becomes 10, this number raises to 14, which
means that about 35 percent (14/40) points receive negative

impacts. The results in Fig. 4d show that, on average, the

performance from multiclass data sets are less attractive than

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006 1439

Fig. 3. Experimental comparisons with noise levels and class distributions in different rounds of bootstrap examples (WDBC data set, TRC noise corruption, noise level

x ¼ 0:1, n ¼ 10). (a) Noise level in bootstrap samples. (b) Class distribution in bootstrap samples (r ¼ 2). (c) Class distribution in bootstrap samples.

Fig. 4. Experimental summaries of cost improvements between CICF and no noise handling mechanism (20 data sets). (a) Two class (r ¼ 2). (b) Two class (r ¼ 5).

(c) Two class (r ¼ 10). (d) Multicalss (random r).

Fig. 5. Experimental comparisons of cost improvemet between CF and CICF from all 20 benchmark data sets. (a) Two class (r ¼ 2). (b) Two class (r ¼ 5). (c) Two class

(r ¼ 10). (d) Multicalss (random r).

two-class data sets. Among all 40 points, there are 13 points below
the y ¼ x line, which is 32.5 percent. Further analysis indicates that,
on average, the noise identification precision for multiclass data
sets is less accurate, in comparison with two-class data sets. As a
result, noise cleansing likely removes valuable information and
negatively impacts on the CS learner. In addition, we randomly
assign cost-ratio values r to multiclass data sets, which may result
in relatively large cost-ratio values.

The comparisons between CICF and CF in Fig. 5 lead to a
conclusion that the higher the cost-ratio, the more obvious CICF
dominates and outperforms CF. For small r values, e.g., r ¼ 2, CICF
and CF are comparable. However, when the cost-ratio becomes
higher, CICF tends to outperform CF. In these situations, the
improvement from CICF (in comparison with CF) becomes
significant. The above observation supports our motivation in
designing CICF. When handling noise for CS learning, one should
pay more attention to expensive classes and prevent noise
classifiers from misidentifying noise from expensive classes. The
higher the cost-ratio, the more necessary we need to do so. With
cost-guided rejection sampling, CICF inherently attains this goal
through unique procedures: 1) iteratively reducing the overall
noise level by removing more suspicious instances in cheap classes
and 2) putting more efforts on investigating noise in expensive
classes.

4 CONCLUSIONS

In this paper, we have proposed a Cost-guided Iterative
Classification Filter (CICF) to identify and remove noise for
effective CS learning. Two novel features make CICF distinct from
existing approaches. First, it provides a general framework which
seamlessly integrates the misclassification cost of the instance for
noise handling, with expensive classes receiving more attention. It
can be easily demonstrated that this framework is general enough
to accommodate any existing noise handling efforts to make them
cost-sensitive in handling noise. Second, CICF iteratively involves
noise identification results in earlier iterations to train the noise
classifier in the current round. As a result, the system can
progressively improve the accuracy of noise identification and
eventually contribute to CS learning. Experimental results and
comparative studies have demonstrated that one can significantly
reduce the average cost of a CS classifier by applying CICF to the
underlying noisy data sources.

ACKNOWLEDGMENTS

This research was partially supported by US NSF under grant
number CCF-0514819. A preliminary version of this paper was
published in the Proceedings of International Conference Data Mining
2004 [17].

REFERENCES

[1] M. Tan, “Cost-Sensitive Learning of Classification Knowledge and Its
Applications in Robotics,” Machine Learning, vol. 13, pp. 7-33, 1993.

[2] P. Turney, “Cost-Sensitive Classification: Empirical Evaluation of a Hybrid
Genetic Decision Tree Induction Algorithm,” J. AI Research, vol. 2, pp. 369-
409, 1995.

[3] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume, and C. Brunk, “Reducing
Misclassification Costs,” Proc. 11th Int’l Conf. Machine Learning, 1994.

[4] P. Domingos, “MetaCost: A General Method for Making Classifiers Cost
Sensitive,” Proc. Fifth Int’l Conf. Knowledge Discovery and Data Mining, 1999.

[5] B. Zadrozny, J. Langford, and N. Abe, “Cost-Sensitive Learning by Cost-
Proportionate Example Weighting,” Proc. Third Int’l Conf. Data Mining,
2003.

[6] C. Brodley and M. Friedl, “Identifying Mislabeled Training Data,” J. AI
Research, vol. 11, pp. 131-167, 1999.

[7] X. Zhu, X. Wu, and Q. Chen, “Eliminating Class Noise in Large Data Sets,”
Proc. 20th Int’l Conf. Machine Learning, 2003.

[8] X. Zhu, X. Wu, and Q. Chen, “Bridging Local and Global Data Cleansing:
Identifying Class Noise in Large, Distributed Data Data sets,” Data Mining
and Knowledge Discovery, vol. 12, no. 3, 2006.

[9] J. Von Neumann, “Various Techniques Used in Connection with Random
Digits,” Nat’l Bureau of Standards Applied Math. Series 12, pp. 36-38, 1951.

[10] Y. Freund and R. Schapire, “Experiments with a New Boosting Algorithm,”
Proc. 13th Int’l Conf. Machine Learning, 1996.

[11] A. Krieger, C. Long, and A. Wyner, “Boosting Noisy Data,” Proc. 18th Int’l
Conf. Machine Learning, pp. 274-281, 2001.

[12] P. Chan and S. Stolfo, “Toward Scalable Learning with Non-Uniform Class
and Cost Distributions,” Proc. Int’l Conf. Knowledge Discovery and Data
Mining, 1998.

[13] J. Quinlan http://rulequest.com/see5-info.html, 1997.
[14] C. Blake and C. Merz UCI Data Repository, 1998.
[15] S. Hettich and S. Bay The UCI KDD Archive, 1999.
[16] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2, pp. 123-

140, 1996.
[17] X. Zhu and X. Wu, “Cost-Guided Class Noise Handling for Effective Cost-

Sensitive Learning,” Proc. Fourth Int’l Conf. Data Mining, 2004.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

1440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 10, OCTOBER 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

