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Abstract— Random forests (RFs) are recognized as one type of
ensemble learning method and are effective for the most classi-
fication and regression tasks. Despite their impressive empirical
performance, the theory of RFs has yet been fully proved. Several
theoretically guaranteed RF variants have been presented, but
their poor practical performance has been criticized. In this
paper, a novel RF framework is proposed, named Bernoulli
RFs (BRFs), with the aim of solving the RF dilemma between
theoretical consistency and empirical performance. BRF uses
two independent Bernoulli distributions to simplify the tree
construction, in contrast to the RFs proposed by Breiman. The
two Bernoulli distributions are separately used to control the
splitting feature and splitting point selection processes of tree
construction. Consequently, theoretical consistency is ensured in
BRF, i.e., the convergence of learning performance to optimum
will be guaranteed when infinite data are given. Importantly, our
proposed BRF is consistent for both classification and regression.
The best empirical performance is achieved by BRF when it is
compared with state-of-the-art theoretical/consistent RFs. This
advance in RF research toward closing the gap between theory
and practice is verified by the theoretical and experimental
studies in this paper.

Index Terms— Classification, consistency, random
forests (RFs), regression.

I. INTRODUCTION

RANDOM forest (RF) is one type of very popular ensem-
ble learning method in which numerous randomized

decision trees are constructed and combined to form an
RF that is then used for classification or regression. It is
extremely easy and efficient to train such RFs [1]. RFs are
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Fig. 1. Illustration of (a) Breiman RF and (b) BRF. Breiman RF has a
deterministic tree node splitting process, which leads to highly data-dependent
trees. In contrast, BRF introduces randomness via Bernoulli controlled tree
construction. This kind of randomness makes the trees less data-dependent
without sacrificing their learning performance.

very powerful because of the vote/average mechanism, and
they have achieved great success in many cross-domain appli-
cations (e.g., chemoinformatics [2], bioinformatics [3], [4],
ecology [5], [6], computer vision [7], [8], and data
mining [9], [10]).

In contrast to the attractive practical performance of RFs
in many real-world applications, their theoretical properties
have yet to be fully established and are still the subject of
active research. For a learning algorithm, consistency is the
most fundamental theoretical property because it guarantees
convergence to optimum as the data grow infinitely large.
RFs employ a randomized instance bootstrapping, a random-
ized feature bagging, and a deterministic tree construction, and
thus it is not easy to prove the consistency of RFs. As shown
in Fig. 1(a), instance bootstrapping and feature bagging are
two random processes in Breiman RF whose goal is to
construct a less data-dependent tree, whereas the traditional
tree node splitting process of tree construction is determined
by a data-driven criterion (such as Gini index [11]–[13]).
Consequently, the above procedures result in data-dependent
trees, which make it difficult to theoretically analyze RFs.

Given the difficulty of analyzing the consistency of
RFs, several RF variants have been proposed [14]–[20]
to incorporate more randomness and relax or simplify
the deterministic tree construction process: 1) substituting
random sampling of a single feature for feature bagging or
2) using a more elementary splitting criterion instead of the
common complicated impurity-based one to split the tree
node. A less data-dependent tree structure is the objective
of both approaches and this also applies to the consistency
analysis. Unfortunately, such approaches usually result in
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Fig. 2. Conceptual view of using RFs to build deep learning architecture
that resembles deep neural networks. (a) Traditional deep neural network in
which each node denotes a neuron. (b) Deep forest-like architecture [25] in
which an RF serves as a “forest neuro” of the network. The “concatenate”
and “vote” resemble the nonlinear transformation procedures in deep learning.
The theoretical consistency of the proposed BRF “forest neuro” forms a clear
base for understanding the theoretical properties of such deep architecture
learning machines.

poor performance for classification or regression, even though
they have theoretically analyzed properties. The dilemma
between theoretical consistency and empirical soundness
continually inspires active research in this field.

The above observations motivate us to propose a novel RF
framework in this paper, named Bernoulli RFs (BRFs). It not
only has proven theoretical consistency but also has compa-
rable performance to Breiman RF. As illustrated in Fig. 1(b),
the key factor lies in the two Bernoulli driven/controlled tree
construction processes. A certain degree of randomness as well
as the overall quality of the trees is ensured simultaneously.
Because a probability value-controlled random process is
involved in the Bernoulli trial, the tree construction in BRF can
be either random or deterministic depending on the probability
value. Therefore, a much less data-dependent tree structure
is obtained by BRF compared with Breiman RF, yet BRF
demonstrates much better performance than all the existing
RFs with theoretical consistency.

The main contributions of this paper are threefold.
1) BRF has fully proven theoretical consistency, and it

has the fewest simplification changes compared with
Breiman RF.

2) We provide an approach for resolving the dilemma
between theoretical consistency and empirical soundness
through the Bernoulli distributions controlled splitting
feature and splitting point selection.

3) A large number of experiments demonstrate the superi-
ority of BRF over state-of-the-art theoretical/consistent
RFs.

Our proposed BRF could also advance research in
neural networks and learning systems. In traditional RF
learning, trees are generated and combined through a single
layer concatenation. Motivated by the recent success of
deep architecture [21], several researchers have proposed the
incorporation of RFs into deep neural networks [22]–[25]. One
such architecture is shown in Fig. 2 where an RF serves as a

“forest neuro,” with such neuros being stacked in multiple
layers in a deep learning fashion. One one hand, the perfor-
mance of RFs can be boosted through deep representation
learning. On the other hand, some issues of deep neural
networks can be partially addressed by the “forest neuro."
For example, deep neural networks have a huge number of
hyperparameters that need to be tuned carefully, whereas
forests have a very few hyperparameters and are not sensitive
to these parameters. Therefore, this kind of deep forests could
reduce burdensome parameter tuning. Moreover, the BRF
“forest neuro” has proven theoretical properties compared
to its peer neural network neuro, which provides a suitable
approach to conduct the theoretical analysis of deep models.

The remainder of this paper is organized as follows.
Section II reviews RF-related methodology as well as theoret-
ical work on consistency. Section III describes the proposed
BRF. Section IV outlines the consistency proof of BRF.
Section V demonstrates the extension of BRF to the classifi-
cation problem. Section VI discusses the differences between
several consistent RFs, followed by empirical comparisons
in Section VII. The conclusions of this paper are drawn in
Section VIII.

II. RELATED WORK

A. Methodology of Random Forests

Breiman [1] first proposed RFs two decades ago, inspired by
primary work [26] in the feature selection technique [27], the
random subspace method [28], and the random split selection
approach [29]. Because of their ability to effectively handle
various types of data, RFs have achieved huge success in
numerous fields (see [2]–[10]). Below, we briefly introduce
the RF framework. Interested readers can refer to [1] and [30]
for comprehensive technical details.

Let us assume a data set Dn with n instances (X,Y ),
where X ∈ R

D . Breiman’s approach combines numerous
independently trained decision trees to form a forest. We
can regard the tree construction procedure of each tree as
a partition of data space. That is to say, if the full data
space is R

D , then a leaf is a partition of R
D and each node

corresponds to a hyperrectangular cell of data space. The
details of the RF algorithm are given below.

1) At the beginning of the tree construction, we randomly
sample n data points from the given data set Dn with
replacement [31]. These and only these bootstrap sam-
ples are used for constructing the current tree.

2) Classification and Regression Tree [11] is adopted. For
each tree node, mtry features (mtry < D) are first
randomly sampled from the original D features, which
are then used for selecting the splitting feature and
splitting point. The criterion is the largest Gini impu-
rity decrease or the largest mean squared error (MSE)
reduction for classification and regression, respectively.
The tree nodes are constructed one by one following the
above procedure until the stopping condition is reached,
e.g., the threshold of the instance size in leaf nodes.

3) RFs make predictions by averaging the result from each
tree, i.e., a majority vote from Y for classification, or
the average of Y for regression.
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The above summary shows that there are three key aspects
to RFs: 1) the method that injects randomness into the trees
(bootstrap sampling); 2) the tree construction approach; and
3) the type of prediction from each tree.

B. Consistency of Random Forests

Despite the excellent practical performance of RFs, research
on their theoretical analysis has been slow [32]. Breiman [1]
offered the first theoretical result, noting that the generalization
error is bounded by the strength of individual trees and the
correlation of multiple trees. Lin and Jeon [33] subsequently
highlighted the relation of RFs and a type of the nearest
neighbor-based estimators. A further investigation of this
direction can be found in [34].

A crucial theoretical breakthrough in the study of RFs was
conducted in [15], which proved the consistency of two direct
simplification models of Breiman RF—the random selection
of feature and splitting points. The splitting feature for each
tree node is selected uniformly and randomly from all original
features. The splitting point is also chosen uniformly and
randomly from the values of the selected feature.

Based on intuition and Breiman’s mathematical heuristics
technical report [14], Biau [18] proved another simplified
version of Breiman RF, in which the simplification aspects
are less than those in [15]. Each node of each tree is built by
randomly selecting a subspace of features, and the splitting
point is fixed at the midpoint of the data in the node for each
candidate feature. To choose between candidate features, the
splitting feature and splitting point with the greatest decrease
in impurity are selected to grow the tree.

Denil et al. [19] analyzed a new variant of RFs that is quite
similar to Breiman RF. The subspace of candidate features
for each node is selected in a Poisson distribution. The main
difference lies in how the splitting points are chosen. For each
candidate feature, a subset (e.g., m) of data points is randomly
selected and a search is conducted to find the best splitting
point, which gives the maximal reduction of squared error (the
regression problem) in the range defined by the preselected
data points.

Although the above RF methods [15], [18], [19] enjoy their
theoretical consistency, their empirical performance is, how-
ever, significant inferior to the original Breiman RF, mainly
because these methods [15], [18], [19] employ too much
randomness in the tree construction, which inherently reduce
the superiority of the optimized tree construction of RFs.
Accordingly, in [20], we have proposed a Bernoulli controlled
tree construction in the forests under the classification task, but
this approach is only proved to be consistent for classification.
In addition, our previous work [20] only considers the fol-
lowing two cases: 1) randomly choosing a single feature and
a data point as the splitting feature and splitting point with
probabilities p1 and p2, respectively, and 2) using Breiman
RF method to choose the splitting feature and splitting point
with probabilities 1 − p1 and 1 − p2, respectively. In this
paper, we propose a novel complete RF framework—named
BRFs—that is useful for both regression and classification
tasks. BRF considers all four probability combination cases,

including ( p1; p2), (p1; 1 − p2), (1 − p1; p2), and (1 − p1;
1− p2). We also prove the theoretical consistency of BRF and
evaluate its empirical performance on 23 regression tasks and
27 classification tasks, which confirm that BRF outperforms
all the existing methods [15], [18], [19] on all tasks. Moreover,
we assess the influence of all parameters in BRF, i.e., the ratio
of structure points to entire points, the number of trees, and
the probabilities p1 and p2. The computational cost of BRF
is also analyzed in this paper.

In addition to generic RFs, several special RFs have also
been demonstrated to be consistent. For example, Meinshausen
proved the consistency of RFs for quantile regression in [35].
Random survival forests were proved to be consistent in [36].
An online version of RFs was proven to be consistent in [37].

III. PROPOSED RANDOM FORESTS

To achieve theoretical consistency while retaining good
performance, the proposed BRF differs in three ways from
Breiman RF, as illustrated in Fig. 1. To simplify the structure
of this paper, we first discuss the regression problem in this
section and present the extension to the classification problem
in Section V.

A. Training Data Set Partitioning

Given a training data set Dn with D-dimensional fea-
tures and n sample points, for each sample point (X,Y ),
X ∈ R

D , where X represents the features and Y is a real value
representing the target variable. The training data set D is first
partitioned into a Structure part and an Estimation part.
The structure and estimation parts play different roles when
the trees are constructed, which is important for achieving
the consistency property of the proposed BRF (shown in
Lemma 3).

The Structure part is used when the trees are constructed.
The best feature and splitting points in each splitting node are
chosen only on the structure part, not on the estimation part,
and the structure part is not used for prediction.

The Estimation part is only used for prediction (i.e.,
averaging Y in tree leaves), not for tree construction. Note
that when a prediction is made, the estimation part is split by
the rules created in the tree construction based on the structure
part, but the estimation part has no effect on tree construction.

The training data set is partitioned randomly and indepen-
dently when each tree is constructed. The ratio of the two
parts is defined as Ratio = (No. of Structure part/No. of Entire
points), the influence of which is assessed in the experiments.

B. Tree Construction

In the proposed BRF, unlike the classical RF, the train-
ing data set partitioning is adopted instead of the bootstrap
technique. Two Bernoulli distributions are adopted when the
features and splitting points are selected.

The first novelty of the proposed model is that instead
of traversing all the candidate features, our candidate feature
selection is based on a Bernoulli distribution. Assume that B1
is an event choosing one value from 0 or 1 with probability;
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therefore, we can say that B1 follows a Bernoulli distribution
with a probability of p1 taking 1, or 0 otherwise. We define
B1 = 1 if one candidate feature is chosen and B1 = 0 if

√
D

candidate features are uniformly randomly chosen. In each
splitting, one candidate features are chosen with p1 proba-
bility, and

√
D candidate features are chosen with 1 − p1

probability. The single feature is to guarantee consistency and√
D is to maintain performance. In the RFs literature, setting

the number of candidate features to
√

D generally gives near
optimum results [38], [39], so we adopt this value here.

The second novelty is that the splitting point selection is
based on two different methods. Similar to B1, B2 ∈ {0, 1}
is assumed to satisfy a Bernoulli distribution which, with
p2 probability, takes 1. If B2 = 1, the random sampling
method is used, otherwise, we adopt the impurity criterion
method. Therefore, with p2 probability, the splitting point is
selected through random sampling; with 1 − p2 probability,
the splitting point is selected through the impurity criterion.

In a regression problem, the impurity decrease is based on
MSE, denoted by

MSE(DS) = 1

N(DS)

∑

(X,Y )∈DS

(Y − Ȳ )2 (1)

where N(DS ) counts the number of structure part in D and Ȳ
is the sample mean of the structure part in D.

Thus, the MSE reduction is

I (s) = MSE(DS)−MSE(DlS )−MSE(DrS ). (2)

The best splitting point is selected by maximizing the
above (2). D is the training data set in the parent node,
including the structure part DS and the estimation part DE .
Dl and Dr are the training data sets in the child nodes that
will be generated when D is split at s.

Through the two steps above, one feature and its corre-
sponding splitting point are chosen to grow the tree. It is
worth noting that the tree construction only uses the structure
part while the prediction only involves the estimation part.
The process is repeated until the given stopping criteria are
satisfied.

Similar to classical RF, the proposed BRF’s stopping condi-
tion is also related to minimum leaf size, but this restriction is
on the estimation part rather than the whole training data set,
i.e., for each leaf, the instance size of estimation part is bigger
than kn . kn is the low-order infinity of the number of training
instances n, i.e., kn →∞ and kn/n→ 0 when n→∞.

C. Prediction

After the trees in our method have been constructed by the
structure part and the sample means have been estimated based
on the estimation part, BRF can make predictions for a newly
given x as follows.

Each tree can make predictions separately. f represents the
base decision tree created by the proposed BRF. For any query
point x, the prediction of the tree is the average in the leaf

ŷ = 1

N(AE (x))

∑

(X,Y )∈AE (x)

Y (3)

where N(AE (x)) is the instance size of the estimation part in
the corresponding leaf node in which the given x falls.

The prediction of the forests is the sample average of all
the trees

ŷ = 1

M

M∑

j=1

ŷ j (4)

where M is a hyperparameter representing the tree number in
the forests. Although the leaf contains both a structure part
and an estimation part, only the estimation part is used for
prediction.

D. BRF Algorithm

We summarize the proposed BRF framework in a pseudo-
code format in Algorithms 1 and 2. Algorithm 1 is a complete
process for the prediction of an instance. Algorithm 2 is the
detailed construction procedure of decision trees in BRF.

Algorithm 1 BRF Prediction Value at a Query Point x

1: Input: Training data Dn , number of trees M ∈ N+, the
parameter kn .

2: Output: Prediction of BRF at x.
3: for j = 1, 2, . . . ,M do
4: Structure part, Estimation part ← Partitioning training

data Dn

5: A tree in Bernoulli random forests← BRF_Tree (Struc-
ture part, Estimation part, kn) // Algorithm 2

6: Leaf predictor of individual tree← Using Estimation part
following Eq. (3).

7: end for
8: Compute the predicted value of Bernoulli random forests

by averaging each tree result according to Eq. (4).
9: Return: Predicted value at x

To sum up, the proposed BRF method introduces two
independent Bernoulli distributions for tree construction and
prediction, in contrast to Breiman RF. Because of the two
Bernoulli distributions, the proposed BRF not only introduces
a certain degree of randomness to the feature and splitting
point selection, but also retains the sound performance of
Breiman RF.

IV. PROOF OF CONSISTENCY

In this section, we first show the necessary preliminaries
for the consistency proof, and then the detailed proof of
consistency of our proposed method. Our proof adopts the
following principles. Because RFs consist of decision trees, we
transfer the consistency of an RF to its decision trees. The tree
is well known as a partition of the data space. Intuitively, the
consistency of the decision trees is transferred to the associated
partition rule.

In the proof, a random variable C represents the randomness
in the process of tree construction, including the randomness
when we select features and splitting points. For space and
clarity, only the essential proofs are included in this section.
Other proofs are given in Appendix A–E.
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Algorithm 2 BRF_Tree: BRF Decision Tree Construction
1: Input: Structure part, Estimation part, parameter kn .
2: Output: The decision tree in Bernoulli random forests.
3: while stop condition is false do
4: Assume one node of the tree is D, containing structure

part DS and estimation part DE .
// Tree Construction with structure part:

5: Select subspace of candidate features. Choose one candi-
date feature in probability p1 or

√
D candidate features

in probability 1− p1.
6: Select splitting point s using structure part DS . For each

candidate feature, randomly sample a point to split with
p2 probability; or, with 1−p2 probability, a splitting point
is selected by optimizing the given impurity criterion.

7: Obtain the optimal pair of splitting feature and splitting
point following Eq. (2). Accordingly, create two child
nodes Dl and Dr . The structure and estimation parts are
correspondingly cut into child nodes, called DlS ,DlE and
DrS ,DrE .
// Stop condition with estimation part:

8: if the number of estimation part DlE and DrE are both
larger than kn then

9: Go to line 3 for Dl and Dr , recursively grow tree.
10: else
11: Stop condition is true.
12: end if
13: end while
14: Return: A decision tree in Bernoulli random forests

A. Preliminaries

Consistency is a fundamental theoretical property of a learn-
ing algorithm that guarantees that the output of the algorithm
converges to optimum as the data size closes to infinity.

Definition 1: In regression, given the data set Dn , for the
distribution of (X,Y ), a series of estimators { f } have consis-
tency when the risk function R( f ) satisfies

R( f ) = E[( f (X, C,Dn)− f (X))2] → 0, n→∞ (5)

where the underlying unknown function f (X) = E[Y |X] is
the target.

Lemma 1: Suppose a series of estimators { f } have the con-
sistency, then the empirical averaging estimator f (M), which
is the average of M copies of f with different randomness C,
has consistency.

From Lemma 1 [15], we only need to prove the consistency
of the individual tree to prove the consistency of the forest.

Revisiting the tree construction of BRF, we add the data
point partitioning procedure that partitions the training data
set into a structure part and an estimation part. The fol-
lowing Lemma 2 proves that the consistency of the deci-
sion tree is sufficient to show its consistency on data point
partitioning [19].

Lemma 2: Suppose, for the distribution of (X,Y ), a series
of estimators { f } are conditionally consistent

lim
n→∞E[( f (X, C,Dn)− f (X))2|I ] = 0 (6)

where I represents randomness when we partition the train-
ing data set. If the training data set partitioning produces
an acceptable structure part and an estimation part with
probability 1, and f is bounded, then { f } values are uncon-
ditionally consistent

lim
n→∞E[( f (X, Z ,Dn)− f (X))2] → 0. (7)

Through the above Lemmas 1 and 2, we conclude that to
prove the consistency of our proposed method, we only need
to ensure the consistency of the individual tree. To do this, we
employ Lemma 3 for partition rules as follows [40].

Lemma 3: Consider a partitioning regression function esti-
mate that builds a prediction by averaging method in each
leaf node. If the leaf predictors are fit by the data that are
independent of the tree structure, and E[Y 2] < ∞, then the
consistency of the above estimate is ensured, provided that:
1) with n → +∞, the diameter of N (X)→ 0 in probability
and 2) with n →+∞, N(N E (X))→∞ in probability, where
X falls into the leaf node N (X) and N(N E (X)) represents
the instance size of the estimation part in the leaf node.

Proof: Refer to [40, Th. 4.1] for more detail. �
It is well known that when decision trees are constructed,

the original instance space is partitioned, which implies that
the diameter of the leaf node N (X)→ 0 is equivalent to the
N (X) corresponding hypercube size approaching 0.

Lemma 3 also provides support for data point partitioning
because it requires that the leaf predictors are fit by the data
that are independent of the tree structure. More importantly,
Lemma 3 states that the consistency of the tree construction
can be proven if the hypercubes/cells belonging to leaves
approximate 0 but at the same time contain an infinite number
of estimation part, when n→∞.

In summary, Lemmas 1 and 2 assert that the consistency of
forests is implied by the consistency of individual trees. To
prove the consistency of the individual trees, we employ the
consistency condition in Lemma 3 for partition rules, because
we need to prove that the decision trees in our proposed BRF
satisfy the conditions of the partition rules. If the conditions
are satisfied, consistency is proven. The conditions include:
1) the leaf predictors are fit by the data that is independent of
the tree structure, and this is met by the data points partitioning
procedure and 2) the hypercube corresponding to the leaf
should be sufficiently small, but should contain an infinite
number of data points, as proven in the following section.

B. Proof of Consistency Theorem

The consistency of our proposed method is proven with the
lemmas given above, as follows.

Theorem 1: Assume the support of X is [0, 1]D and the
density of X is not 0 almost everywhere on the support. The
cumulative distribution function (CDF) of the selected split-
ting points is right-continuous at 0 and left-continuous at 1.
Our proposed method has consistency when kn → ∞ and
kn/n→ 0 as n →∞.

To prove the consistency of BRF according to
Section IV-A, we only need to ensure the consistency of
the individual decision trees. This consistency is guaranteed
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by proving the two conditions of Lemma 3. In summary,
we only need to prove the diameter of N (X) → 0 and
N(N E (X))→∞ in probability.

Proof: First, in the proposed BRF, since N(N E (X)) ≥ kn

is required, N(N E (X))→∞ is trivial when n→∞.
Second, we only need to prove that the diameter of the

leaf node N (X), diam(N (X)), approximates 0 in probability.
Denoting Si ze(a) as the size of the ath feature of N (X),
we only need to show that E[Si ze(a)] approximates 0 for
a ∈ {1, 2, . . . , D}.

For a given a, we denote the largest size among its child
nodes as Si ze∗(a). Since the selected splitting point is created
by a random sampling in [0, 1] with p2 probability, or by
optimizing the impurity criterion with 1− p2 probability, it is
evident that

E[Si ze∗(a)] ≤ (1− p2)× 1+ p2 × E[max(U, 1−U)]
= (1− p2)× 1+ p2 × 3

4
= 1− 1

4
p2 (8)

where U is a random sample from Uni f orm[0, 1] and is gen-
erated by the random sampling in [0, 1] with a probability p2.

Recall that when we choose the candidate features, one
candidate feature is selected with p1 probability or

√
D

candidate features are selected with 1 − p1 probability. We
now define C1,C2 as follows:

C1 = {One candidate feature is split}
C2 = {The ath one is exactly the splitting feature}.

We define Si ze′(a) as the child node size for the ath feature,
then

E[Size′(a)] = P(C1)E[Size′(a)|C1] + P(C̄1)E[Size′(a)|C̄1]
≤ p1 × E[Size′(a)|C1] + (1− p1)× 1

= p1 ×
(
P(C2|C1)E[Size′(a)|C1,C2]

+P(C̄2|C1)E[Size′(d)|C1, C̄2]
)+ (1− p1)

≤ p1 ×
(

1

D
E[Size∗(a)] + 1− 1

D

)
+ (1− p1)

≤ 1− p1 p2

4D
. (9)

We denote the number of layers from the root to the bottom
as K . After K times iteration of (9), we have

E[Si ze(d)] ≤
(

1− p1 p2

4D

)K
. (10)

This is sufficient for the proof of consistency of our proposed
BRF if K → ∞ in probability, which will be shown in
Lemma 4. �

Lemma 4: With n→∞, if the CDF of the splitting points
is right-continuous at 0 and left-continuous at 1, each node in
the tree of our proposed method, in probability, will be split
infinite times.

Proof: Recall that the rule for selecting the splitting point
is a random sampling method with a probability of p2 or
optimization of the impurity criterion with a probability of
1 − p2. Unlike the deterministic rule in the classical RF, the
splitting point rule in our proposed BRF has randomness.
Thus, from the root to the bottom, the splitting point in

the i th splitting in our proposed BRF is a random variable
Wi (i ∈ {1, 2, . . . , K }), whose CDF is denoted as FWi .

Given a K and δ > 0, the size of the root smallest child
is denoted as M1 = min(W1, 1 − W1), then we have, at least
with the probability

P(M1 ≥ δ1/K ) = P(δ1/K ≤ W1 ≤ 1− δ1/K )

= FW1(1− δ1/K )− FW1(δ
1/K ). (11)

The values of features can be scaled to the range [0, 1] for each
node, without loss of generality. After K splits, the smallest
child has the size of at least δ with the probability at least

K∏

i=1

(FWi (1− δ1/K )− FWi (δ
1/K )). (12)

Equation (12) is on the condition that each splitting uses
the same feature. However, even though different features
are split, (12) also holds. Since the CDF of Wi , FWi , is
right-continuous at 0 and left-continuous at 1, limδ→0 FWi

(1 − δ1/K ) − FWi (δ
1/K ) = 1. Therefore, ∀ε1 > 0, ∃δ1 > 0,

such that
K∏

i=1

(
FWi

(
1− δ1/K

1

)− FWi

(
δ

1/K
1

))
> (1− ε1)

K . (13)

In addition, ∀ε > 0, ∃ε1 > 0, such that

(1− ε1)
K > 1− ε. (14)

Equations (13) and (14) show that after K splits, the size of
each node is δ with at least 1− ε probability.

Recalling that the density of X is assumed to be nonzero
almost everywhere on the support, all the nodes in our pro-
posed method have a positive measure with respect to μX .
If we define

p = min
l: a leaf at K th level

μX(l) (15)

it is clear that p > 0 because each leaf contains a set of
positive measures and the number of leaf nodes is finite.

Assuming the size of the training data set is n, we can
denote the number of points falling into leaf N (X) as
Binomial(n, p). Without loss of generality, we assume the
Ratio is 0.5 and the expectation of the number of sample
points in the estimation part is np/2. From Chebyshev’s
inequality, we know that

P(N(N E (X)) < kn)

= P

(
N(N E (X))− np

2
< kn − np

2

)

(a)= 1

2
P

(∣∣∣N(N E (X))− np

2

∣∣∣ >
∣∣∣kn − np

2

∣∣∣
)

≤ 1
∣∣∣kn − np

2

∣∣∣
2 (16)

where (a) is from the fact that kn
n → 0 as n → ∞. The

right hand side of (16) → 0 as n → ∞. Therefore, we can
conclude that the number of sample points in the estimation
part of the leaf node is at least kn , in probability. From the
stopping condition, we know that the tree will stop only when
the number of sample points in the estimation part of the node
is less than kn . Thus, K →∞ in probability. �
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V. EXTENSION TO CLASSIFICATION

We have demonstrated the construction of BRF in
Section III and proven its consistency for regression in
Section IV. BRF is also consistent for the classification
problem, which is discussed in this section.

Suppose we have a training data set Dn with D-dimensional
features and n sample points, (X,Y ) represents one sample
point, where X ∈ R

D , and Y ∈ {1, 2, . . . ,C} is the class.
Similar to, but not the same as, the regression problem, we

modify the tree construction with two major steps to make
BRF suitable for the classification problem. The first is the
impurity criterion, which is based on Gini index, denoted by

I (v) = T (DS)− |D
lS |
|DS | T (D

lS)− |D
r S |
|DS | T (Dr S). (17)

Here the function T (DS) is the impurity criterion, which is
computed based only on the structure part DS .

The second is the prediction procedure, which uses votes
to replace averages. Assuming the classifier created by our
proposed BRF is g and the unlabeled instance for test is x,
the probability belonging to c class is

γ (c)(x) = 1

N(N E (x))

∑

(X,Y )∈N E(x)

I{Y = c} (18)

and the prediction is given by maximizing γ c(x)

ŷ = arg max
c
{γ (c)(x)} (19)

where I(·) is 1 if · is true and is 0 if · is false. The prediction
of the proposed BRF is

ŷ = arg max
c

M∑

j=1

I{ŷ( j )(x) = c}. (20)

In the classification framework, consistency is defined as
follows.

Definition 2: In classification, given the training data
set Dn , for a distribution of (X,Y ), a series of classifiers {h}
has consistency if

E[L] = P(h(X, C,Dn) 
= Y )→ L∗Bayes as n→∞ (21)

where L∗Bayes denotes the Bayes risk, i.e., the distribution of
(X,Y ) achievable minimum risk.

Corresponding to Lemma 1 in regression, the classification
Lemmas 5 and 6 [37], which consider multiclass classification
problem, is as follows.

Lemma 5: If a series of classifiers {h} have consistency, the
classifier h(M), which is defined as taking the majority vote
from different h values paired with randomness C, also has
consistency.

Lemma 6: Suppose that the maximum posterior estimation
for class c is γ (c)(x) = P(Y = c | X = x), which has
consistency. Then, the classifier

h(x) = arg max
c
{γ (c)(x)} (22)

has consistency.
Lemma 5 shows that to prove the consistency of the

proposed RFs, we only need to prove the consistency of the

individual trees. From Lemma 6, we know that we only need
to prove consistency of the maximum posterior estimation for
each class to prove the consistency of multiclass models.

Similar to Lemma 2 in regression, the consistency of
the decision tree in classification is also sufficient to show
its consistency on data point partitioning, as shown in the
following Lemma 7 [37].

Lemma 7: For a distribution of (X,Y ), suppose a series of
classifiers {h} have consistency on the condition I

P(h(X, C, I ) 
= Y | I )→ L∗Bayes (23)

where I is the randomness when the training data set is parti-
tioned. If acceptable structure and estimation parts are created
with probability 1, then {h} unconditionally has consistency

P(h(X, C, I ) 
= Y )→ L∗Bayes. (24)

In addition, the general consistency Lemma 8 in classifica-
tion is almost the same as the regression problem (Lemma 3).
The only difference is that the average in regression is replaced
by a majority vote in classification [41].

Lemma 8: Consider a partitioning classification rule that
builds a prediction by a majority vote method in all the leaf
nodes. If the rule for classification is independent of the labels
of data for voting, we have

E[L] → L∗Bayes, n→∞ (25)

provided that: 1) n → ∞, the diameter of N (X) → 0 in
probability and 2) n →∞, N(N E (X))→∞ in probability,
where X falls into the leaf node N (X) and N(N E (X))
represents the instance size of the estimation part in the leaf
node.

Proof: Refer to [41, Th. 6.1] for more detail. �
Under the above Lemmas 5–8, Theorem 1 can be applied

to the classification framework in a straightforward manner,
because the conditions for consistency, which require that the
hypercube corresponding to the leaf should be sufficiently
small, but should contain infinite number of data points, are
the same for both regression and classification problems.

VI. FURTHER COMPARISON

In this section, we compare BRF with three consistent vari-
ants of RF, i.e., Biau08 [15], Biau12 [18], and Denil14 [19].
We also include Breiman’s original RFs [1], denoted as
Breiman in this discussion.

If the tree construction procedure uses labels, it is essential
to partition the training data set for the proof of consistency
because Lemmas 3 and 8 require the leaf predictors to be
fit by the data points, which has no effect on tree structure.
Thus, our proposed methods, Biau12 and Denil14, partition
the training data set, while Biau08 and Breiman do not.

To ensure consistency according to Lemmas 3 and 8,
each feature of the training data set must be selected in a
probability as n→∞ when we choose the candidate features.
A single feature and a fixed number of candidate features
are randomly selected in Biau08 and Biau12, respectively.
min(1 + Poisson(λ), D) candidate features are selected in
Denil14 without replacement. In contract, our proposed BRF
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TABLE I

BENCHMARK REGRESSION DATA SETS

chooses one or
√

D based on Bernoulli distribution B1 without
replacement. Last, in the classical RF, Breiman, a fixed
number of candidate features are randomly selected without
replacement.

When we select splitting points, it should be possible to
select each candidate splitting point to guarantee consistency
according to Lemmas 3 and 8. Biau08 randomly selects a
point as the splitting point, while Biau12 selects the midpoint
in each feature to split. Denil14 searches the best splitting
point in the section ranged by m selected sample points. Our
proposed method adopts a hybridized method of selecting the
splitting point, based on Bernoulli distribution B2. The strategy
is either to randomly select a point as the splitting point or to
search for the best splitting point. Last, Breiman considers
all the possible splitting points and selects the best splitting
point.

It is clear from the above discussion that our proposed
BRF is the closest to Breiman RF. The key difference is in
the Bernoulli distributions adopted in our proposed method,
which are used when we select features and split points.
Another difference is that BRF includes the training data
set partitioning procedure. All the strategies adopted by our
proposed method are to ensure consistency, while at the same
time maintaining sound performance.

VII. EXPERIMENTS

In this section, the performance of BRF is assessed on
publicly available data sets [42] in both regression and classi-
fication problems.

TABLE II

BENCHMARK CLASSIFICATION DATA SETS

A. Data Sets

Tables I and II report the 23 UCI data sets for regression
and the 27 UCI data sets for classification, respectively, ranked
from small to large instance size. The number of features
and instances in these benchmark data sets varies. Binary and
multiclass data sets are also considered for classification. They
are, therefore, sufficiently representative to demonstrate and
evaluate how well the proposed BRF behaves.

B. Baselines

The research on consistency for Breiman RF is a very
challenging issue and has not so far been studied well. Our
proposed BRF is compared with the following consistent RFs.

1) Biau08 [15] randomly and uniformly chooses a single
feature and splitting point to grow the tree, without data
point partitioning.

2) Biau12 [18] chooses a fixed number (e.g.,
√

D) of
candidate features and their corresponding midpoint as
the splitting point, then uses the paired feature and
splitting point, which achieves the largest decrease
in impurity for growing the tree with data point
partitioning.

3) Denil14 [19] chooses min(1 + Poisson(λ), D) candi-
date features, and the best splitting points are optimized
in a range that is defined by preselected m points (not
the entire number of data points). The tree is also grown
with data point partitioning.
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TABLE III

MSE ON REGRESSION DATA SETS

C. Experimental Settings

Our comparisons are as fair as possible, even though each
algorithm is parameterized slightly differently. BRF, Denil14,
and Breiman are parameterized by the number of instances
in a leaf. Following [1], we set this number to 5. Biau08
and Biau12 specify a final leaf number of n/5, such that all
the trees are constructed the same size. We set the forest size
M = 100. The parameter (Ratio) is set as 0.5 for Biau12,
Denil14, and BRF.

In Denil14, m structure points are first chosen. These
structure points are used to determine a range from which
the splitting point is selected. We set m = 100 as suggested
in [19]. The probabilities in BRF are set as p1 = p2 = 0.05
for the Bernoulli distributions. On each data set, we conduct
tenfold cross validation with the aim of alleviating the
influence of randomness.

D. Learning Performance Analysis

Tables III and IV report the MSE and ACC of different
algorithms, respectively. The statistical significance analysis is
conducted at the 0.05 significance level, marked by “•.” The
highest learning performance (i.e., the smallest MSE or the
highest ACC) among the consistent RF algorithms is marked
in boldface for each data set.

1) Regression: Compared with the other consistent random
forest algorithms, BRF achieves the lowest MSE, and the

TABLE IV

CLASSIFICATION ACCURACY (ACC%) ON CLASSIFICATION DATA SETS

improvement is significant on almost all data sets. Of the four
consistent RF algorithms, BRF employs the least simplification
of Breiman RF. For example, with regard to the splitting point,
Biau12 selects a fixed middle point, and Denil14 selects an
optimized splitting point in a data subset. Both lose a certain
amount of information during tree construction, while BRF
uses a Bernoulli controlled tree construction, which attempts to
use all the information from the entire data. The experimental
results show that BRF outperforms Denil14, which is in
turn better than Biau12. Through these comparisons, we can
say that BRF’s improvement is highly dependent on the two
Bernoulli distribution processes for controlling the selection
of splitting features and splitting points.

2) Classification: As expected, BRF achieves the highest
accuracy of all consistent RF algorithms. For example,
BRF achieves a remarkable improvement in accuracy
on the INDOORLOC data set, i.e., up to 65.58%, over
Denil14 which was previously the most consistent RF. The
reason for this huge improvement is that some features
in the INDOORLOC data set have numerous values. The
preselected m data points are likely to cover several of the full
feature values, which will influence splitting point selection,
and further affect tree structure and performance. Similar
to regression, the promotion of BRF is mainly beneficial
to Bernoulli controlled tree construction, which maintains
good tree structure quality and introduces a degree of useful
randomness to guarantee consistency.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

MS E DIFFERENCE BETWEEN CONSISTENT RFS (Denil14, BRF)
AND Breiman (NONCONSISTENT)

Fig. 3. ACC difference between consistent RFs (Denil14, BRF) and
Breiman (nonconsistent).

E. Closing the Gap with Empirical Soundness

All consistent RF variants employ various levels of Breiman
RF simplification to guarantee consistency. As a result, the
performance of consistent RFs is not as effective as that of
Breiman’s version.

Table V and Fig. 3 report the gap between theory and
practice on 20 regression and 20 classification learning tasks,
respectively. The gap between Denil14, demonstrated to be
an example of the best consistent RFs before [19], and the
nonconsistent/empirical Breiman is the narrowest. Compared
to Denil14, the proposed consistent BRF further narrows
the gap between theoretical consistency and practical per-
formance. For example, Fig. 3 shows that BRF narrows the

Fig. 4. MSE of BRF with different p1 and p2 values (M = 100,
Ratio = 0.5). (a) STUDENT. (b) SKILLCRAFT. (c) CT SLICES.

Fig. 5. ACC of BRF with different p1 and p2 values (M = 100,
Ratio = 0.5). (a) CHESS. (b) MADELON. (c) ADS.

gap in classification to around 3%, whereas Denil14 only
narrows it by around 10%. The narrowing is caused by BRF’s
controlled tree construction using two Bernoulli distributions,
which has a fewer simplifications than Denil14. The gap
between BRF and Breiman, however, still exists, because the
training data set partitioning procedure reduces the instance
size for constructing the trees in BRF. Similar observations
can be found in regression, as shown in Table V.

In summary, BRF is proven in this paper to be consistent.
On one hand, BRF is superior to all other consistent variants on
empirical performance. On the other hand, it is the closest one
to Breiman compared to other theoretical versions of RFs.

F. Parameter Analysis

Furthermore, a series of cross-test experiments in the
BRF parameters are conducted, i.e., the number of trees M ,
the (Ratio), and the probabilities p1, p2 in the Bernoulli
distributions.

Here, three representative data sets are selected with a small,
middle, and large number of instances or features, i.e., STU-
DENT, SKILLCRAFT, and CT SLICES for regression, and
CHESS, MADELON, and ADS for classification. Parameters
are tested in the following range: p1, p2 ∈ {0.05, 0.15, 0.25,
0.35, 0.45, 0.5}, M ∈ {1, 10, 100, 500, 1000, 5000}, Ratio ∈
{0.15, 0.3, 0.45, 0.6, 0.75, 0.9}.

When p1 and p2 have small values, their changes barely
influence the MSE or ACC of BRF, i.e., p1, p2 ≤ 0.5 in Fig. 4
or p1, p2 ≤ 0.25 in Fig. 5. The reason is that p1 and p2 are
two parameters that are set to balance consistency analysis
and empirical performance in the tree construction procedure
of BRF. When p1, p2 → 0, BRF degenerates to Breiman,
whereas BRF degenerates to Biau08 as p1, p2 → 1. From
this viewpoint, it is reasonable that the values of p1 and p2
should be small. The results in Figs. 6 and 7 show that M SE
decreases or ACC increases gradually and tends to be constant
as M increases. Meanwhile, a large Ratio value means that
the estimation points are fewer, which leads to imprecise leaf
predictors, while a small Ratio value means that the structure
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Fig. 6. MSE of BRF with different M and Ratio values (p1 = p2 = 0.05).
(a) STUDENT. (b) SKILLCRAFT. (c) CT SLICES.

Fig. 7. ACC of BRF with different M and Ratio values (p1 = p2 = 0.05).
(a) CHESS. (b) MADELON. (c) ADS.

points are fewer, which results in a nonoptimal tree structure.
To balance the structure and estimation parts, we usually set
Ratio = 0.5 without favoring either element. There is no need
to set the ensemble size very large, because it is necessary
to consider the balance between computation complexity and
performance gain.

G. Computational Costs

The RF model is an ensemble method whose complexity
tends to be the summation of the complexities of constructing
individual trees. Typically, the running time of constructing
a balanced binary tree is O(nD log(n)) and the query time
is O(log(n)). When building RFs, we need to consider two
aspects–the number of trees in the forest M , and the size of
the feature subspace mtry for building each node of the tree.
Thus, the complexity of Breiman RF should be O(M ∗mtry ∗
n ∗ log(n)). Note that this calculation ignores the complexity
involved in the random selection of the feature subspace at
each node.

Biau08 uses two random processes to select the splitting
feature and splitting point, so its complexity is O(M ∗ log(n)).
For Biau12, it is O(M ∗ √D ∗ log(n)). Denil14 is O(M ∗
min(1 + Poisson(λ), D) ∗ n′ ∗ log(n)), where n′ < n is the
search space defined by the preselected m points. Last, BRF
is O(M ∗ (p1 ∗ 1 + (1 − p1) ∗

√
D) ∗ (1 − p2) ∗ n ∗ log(n)),

which is comparable to Denil14 and lower than Breiman.

VIII. CONCLUSION

In this paper, a novel RF framework named BRFs is
proposed, which has nice practical soundness and proven
theoretical consistency. We argued that Breiman RF has very
good empirical performance because the data-driven tree con-
struction procedure is highly sensitive; however, its theoretical
consistency has not been confirmed. Several theoretically guar-
anteed RF variants are criticized for their inferior empirical
performance. While two Bernoulli distributions are employed
into the strategies of features and splitting points selection

in BRF. Because a probability value-controlled random
process is involved in the Bernoulli trial, the tree construction
in BRF is random or deterministic with respect to a probability
value. A much less data-dependent tree structure is, therefore,
obtained by BRF compared with Breiman RF, yet it still
achieves a much better performance than RFs with theoretical
consistency. Experiments and comparisons show that signifi-
cantly superior performance is achieved by BRF compared to
all existing variants with theoretically guaranteed consistency,
and this performance is also the closest one to Breiman RF.
BRF takes a big step toward closing the gap between the
theoretical consistency and practical performance of RFs.

APPENDIX A
PROOF OF LEMMA 1

The risk function

R( f (M)) = E

⎡
⎢⎣

⎛

⎝ 1

M

M∑

j=1

f (X, C( j ),Dn)− f (X)

⎞

⎠
2
⎤
⎥⎦

(a)≤ 1

M

M∑

j=1

E[( f (X, C( j ),Dn)− f (X))2]

= R( f )→ 0 (A.1)

where (a) is due to (
∑M

j=1 a j )
2 ≤ M

∑M
j=1 a2

j and the triangle
inequality. �

APPENDIX B
PROOF OF LEMMA 2

The risk function

R( f ) = EX,C,I,Dn [( f (X, C, I,Dn)− f (X))2]
= EI [EX,C,Dn [( f (X, C, I,Dn)− f (X))2|I ]]. (B.1)

Since

EX,C,Dn [( f (X, C, I,Dn)− f (X))2]
≤ EX,C,Dn [( f (X, C, I,Dn))

2] + EX [ f (X))2] (B.2)

because of the boundedness assumption of f , both terms are
finite. Therefore, the dominated convergence theorem can be
applied to exchange the expectation and the limit

lim
n→∞ R( f )

= EI [ lim
n→∞EX,C,Dn [( f (X, C, I,Dn)− f (X))2|I ]]

= 0. (B.3)

�

APPENDIX C
PROOF OF LEMMA 5

Let h∗(x) denote the Bayes classifier, then the lower bound
of any classifier is Bayes risk, denoted by

L∗ = P(h∗(X) 
= Y | X = x) = 1−max
c
{γ (c)∗ (x)}. (C.1)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Define G, B as follows:
G = {c | γ (c)(x) = max

c
{γ (c)(x)}} (C.2)

B = {c | γ (c)(x) < max
c
{γ (c)(x)}}. (C.3)

Then

P(h(M)(X, C,Dn) 
= Y | X = x)

=
∑

c

P(h(M)(X, C,Dn) = c | X = x)P(Y 
= c|X = x)

≤ (
1−max

c

{
γ (c)∗ (x)

}) ∑

c∈G

P(h(M)(X, C,Dn) = c | X = x)

+
∑

c∈B

P(h(M)(X, C,Dn) = c | X = x) (C.4)

it is sufficient to show that P(h(M)(X, C,Dn) = c | X = x)→
0 for all c ∈ B . For all c ∈ B , we have

P(h(M)(X, C,Dn) = c | X = x)

= P

⎛

⎝
M∑

j=1

I{h(x, C( j )) = c} > max
t 
=c

M∑

j=1

I{h(x, C( j )) = t}
⎞

⎠

≤ P(

M∑

j=1

I{h(x, C( j )) = c} ≥ 1)

≤ E

⎡

⎣
M∑

j=1

I{h(x, C( j )) = c}
⎤

⎦

= MP(h(x, C) = c)→ 0. (C.5)

�

APPENDIX D
PROOF OF LEMMA 6

By definition, we need to prove that the rule

h∗(x) = arg max
c

{
γ (c)∗ (x)

}
(D.1)

achieves the optimal risk, i.e., the Bayes risk. If γ (c)∗ (x),
c = 1, 2, . . . ,C , equal, the Bayes risk is obtained, because any
choice has the same error probability. In other cases, assuming
there is at least one class c that satisfies γ (c)∗ (x) < γ

(h∗(x))∗ (x),
we can define

ψ∗(x) = γ (h∗(x))∗ (x)−max
c

{
γ (c)∗ (x)

∣∣ γ (c)∗ (x) < γ (h
∗(x))∗ (x)

}

(D.2)

ψ(x) = γ (h∗(x))(x)−max
c

{
γ (c)(x)

∣∣ γ (c)∗ (x) < γ (h
∗(x))∗ (x)

}

(D.3)

where ψ∗(x) ≥ 0 measures how much better the best class is
than the second, not considering the ties for best. ψ(x) is the
margin of h(x). If ψ(x) > 0, h(x) has the same probability
of making mistakes as the Bayes classifier.

The aforementioned assumption ensures that there is a ε
satisfying ψ∗(x) > ε. Denoting C as the number of classes,
if n is large enough, we have

P
(∣∣γ (c)(X)− γ (c)∗ (X)

∣∣ < ε/2
) ≥ 1− δ/C (D.4)

since η(c) is a constant. Therefore

P

(
C⋂

c=1

|γ (c)(X)− γ (c)∗ (X)| < ε/2
)

≥ 1− C +
C∑

c=1

P
(∣∣γ (c)(X)− γ (c)∗ (X)

∣∣ < ε/2
)

≥ 1− δ (Bonferroni inequalities [43]). (D.5)

The following equation holds with at least 1− δ probability:
ψ(X) = γ (h∗(X))(X)−max

c

{
γ (c)(X)

∣∣γ (c)∗ (X)<γ (h
∗(X))∗ (X)

}

≥ (
γ (h

∗(X))∗ − ε/2)

− max
c

{
γ (c)∗ (X)+ ε/2∣∣γ (c)∗ (X) < γ (h

∗(X))∗ (X)
}

= γ (h∗(X))∗ (X)

− max
c

{
γ (c)∗ (X)

∣∣γ (c)∗ (X) < γ (h
∗(X))∗ (X)

}− ε
= m∗(X)− ε
> 0. (D.6)

Due to the fact that δ is arbitrary, it is clear that the risk of h
→ L∗Bayes in probability. �

APPENDIX E
PROOF OF LEMMA 7

Assuming I ∈ I, and the distribution of I is ν, then

P(h(X, C, I ) 
= Y )

= E[P(h(X, C, I ) 
= Y |I )]
=

∫

I
P(h(X, C, I ) 
= Y |I )ν(I )

+
∫

Ic
P(h(X, C, I ) 
= Y |I )ν(I ). (E.1)

Due to the assumption that the training data set partitioning
generates an acceptable structure part and an estimation part
with probability 1, ν(Ic) = 0.

Since the probability is intrinsically bounded in [0, 1], the
dominated convergence theorem can also be applied

lim
n→∞P(h(X, C, I ) 
= Y )

= lim
n→∞

∫

I
P(h(X, C, I ) 
= Y |I )ν(I )

=
∫

I
lim

n→∞P(h(X, C, I ) 
= Y |I )ν(I )

= L∗Bayes

∫

I
ν(I )

= L∗Bayes. (E.2)

�
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