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Abstract— Many applications involve objects containing1

structure and rich content information, each describing different2

feature aspects of the object. Graph learning and classification3

is a common tool for handling such objects. To date, existing4

graph classification has been limited to the single-graph setting5

with each object being represented as one graph from a single6

structure-view. This inherently limits its use to the classification of7

complicated objects containing complex structures and uncertain8

labels. In this paper, we advance graph classification to handle9

multigraph learning for complicated objects from multiple struc-10

ture views, where each object is represented as a bag containing11

several graphs and the label is only available for each graph12

bag but not individual graphs inside the bag. To learn such13

graph classification models, we propose a multistructure-view14

bag constrained learning (MSVBL) algorithm, which aims to15

explore substructure features across multiple structure views16

for learning. By enabling joint regularization across multiple17

structure views and enforcing labeling constraints at the bag18

and graph levels, MSVBL is able to discover the most effective19

substructure features across all structure views. Experiments and20

comparisons on real-world data sets validate and demonstrate21

the superior performance of MSVBL in representing complicated22

objects as multigraph for classification, e.g., MSVBL outperforms23

the state-of-the-art multiview graph classification and multiview24

multi-instance learning approaches.25

Index Terms— Graph, graph classification, multiview learning,26

subgraph mining.27

I. INTRODUCTION28

MANY real-world objects, such as chemical compounds29

in biopharmacy and proteins in molecular biology [1],30

images in Web pages [2], brain regions in brain networks [3],31

and users in social networks [4], contain rich features and32

Manuscript received May 21, 2016; revised October 24, 2016; accepted
December 31, 2016. This work was supported in part by the Australian
Research Council Discovery Projects under Grant DP140100545 and
Grant DP140102206, and in part by the U.S. National Science Foundation
under Grant III-1526499, Grant CNS-1115234, and Grant CNS-1626432.
(Corresponding author: Shirui Pan.)

J. Wu is with Department of Computing, Faculty of Science and
Engineering, Macquarie University, Sydney, NSW 2019, Australia (e-mail:
jia.wu@mq.edu.au).

S. Pan and C. Zhang are with the Centre for Artificial
Intelligence, Faculty of Engineering and Information Technology,
University of Technology Sydney, Ultimo, NSW 2007, Australia (e-mail:
shirui.pan@uts.edu.au; chengqi.zhang@uts.edu.au).

X. Zhu is with the Department of Computer and Electrical Engineering and
Computer Science, Florida Atlantic University, Boca Raton, FL 33431 USA
(e-mail: xzhu3@fau.edu).

P. S. Yu is with the Department of Computer Science, University of Illinois
at Chicago, Chicago, IL 60607 USA (e-mail: psyu@cs.uic.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2017.2703832

structure information. In many cases, these objects are repre- 33

sented by using features in the vector space, such as amino 34

acid sequences to represent a protein, bag-of-words to repre- 35

sent a document, and color histogram to represent an image. 36

In practice, simple feature-vector representations inherently 37

discard the structure information of the object, such as the 38

chemical bounds that regulate the attraction of atoms for 39

chemical compounds, the spatial correlations of regions inside 40

an image [5], and the contextual correlation of keywords 41

for a document [6]. Alternatively, a structural-representation 42

(e.g., graph) can be used to preserve the structure information. 43

When representing the structure of objects for learning, 44

existing methods often use graphs constructed from a single 45

feature view. For example, an image (i.e., an object) can be 46

represented as a single structure-view graph by using color 47

histogram as features, with each node denoting a small region 48

and adjacent regions being connected through an edge [2], 49

as shown in Fig. 1(a). Nevertheless, using graphs from an indi- 50

vidual structure-view may not adequately describe the object’s 51

content. For instance, color and texture have different visual 52

characteristics, and are both commonly utilized to describe 53

images. Therefore, using graphs constructed from multiple fea- 54

ture views can accurately represent the structure and the con- 55

tent of the object, and an example is shown in Fig. 2. The mul- 56

tiple structure-view settings can be generalized to many other 57

domains, such as brain network analysis, where a brain net- 58

work can be represented by graphs from different properties, 59

encoding correlations between the functional activities of brain 60

regions [3]. In this paper, we refer to graphs constructed from 61

multiple structure views as multistructure-view (MSV) graphs. 62

Real-world objects often have complicated character- 63

istics, depending on how they are assessed and char- 64

acterized. For example, an image may be labeled as 65

“leopard/tiger,” because it contains a leopard/tiger inside the 66

image. Arguably, not all regions of the image are relevant 67

to the object and background regions may not be directly 68

related to the label of the image, as shown in Fig. 1(b). 69

This representation and learning complication is known as 70

multi-instance learning [8]. The uniqueness of handling the 71

label ambiguity (i.e., the label information is not required for 72

each single instance) makes the multi-instance representation 73

applicable to plenty of real-world practical applications. 74

Most existing multi-instance studies focus on instances with 75

feature vectors. An alternative way to preserve the structure of 76

the object is to represent the object (e.g., an image) as a bag 77

of graphs, as shown in Fig. 1(c), with each graph representing 78
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Fig. 1. Illustration of multigraph (i.e., graph-bag) representation derived from single-graph and multi-instance (i.e., instance-bag) representation.
(a) Single-graph representation. A graph is used to denote an image with each node corresponding to a small region of the image and adjacent regions
being connected by an edge [2], [5]. Single-graph representation can lose important local structure information, because image segmentation algorithms often
separate a meaningful semantic object into multiple subregions (e.g., body or head of an animal). (b) Instance-bag representation. An image is represented
as a bag of instances where each region inside the image corresponds to an instance represented in the vector space [7]. If a region contains an object
of interest (e.g., a leopard), the image is labeled as positive. For traditional instance-bag representation, region #2 is represented as a single instance by
using visual features. In other words, although region #2 contains multiple subregions (i.e., tree, grass, and leopard) with special structures and layout,
existing instance-bag representation approaches discard the structure information and only consider the visual features of the whole region for learning.
(c) Graph-bag representation. A more effective graph representation explicitly explores complex relationships among the data and uses effective data structures,
such as graphs, to represent data for learning. As shown in the rectangle between (b) and (c), region #2 in (b) and region #5 in (c) share a common structure
representing a meaningful object (e.g., the leopard). In this case, a region of a given image can be naturally represented as a graph in order to preserve and
represent local structure information inside the region. This representation is more accurate than simply treating the whole region as one single instance, and
it can be applied to other real-world applications (e.g., a biopharmaceutical activity test via a group/bag of molecules).

Fig. 2. MSV learning in which graphs are constructed from different structure
views (e.g., the color view and the texture view). Existing graph classification
research on images [2], [5] focuses on exploring common structures from
single feature view graphs (such as the color view) as features for graph
representation and learning. In some circumstances, no common structure
exists in color space between two given graphs (e.g., G1

1 and G1
2), as shown

in the first row. Instead, common structures may exist in other feature views
(i.e., the texture view). For example, subgraph gs is discovered from
graphs G2

1 and G2
2 constructed from the texture view of the same objects.

and preserving the structure information of a portion of the79

object [9], [10]. If, for a region, the image contains any object-80

of-interest (e.g., a leopard/tiger), the bag will be labeled as81

positive. If no regions inside the image contain an object-82

of-interest, the bag will be labeled as negative. This bag83

constrained graph representation can also be applied to other84

practical application fields, such as drug activity prediction85

and scientific publication categorization. For the former, it is86

time-consuming and expensive to label each individual mole-87

cule (graph representation). In order to reduce prediction88

costs, the molecular group could be utilized to investigate the89

activities of a group (i.e., graph bag) of molecules. For the90

latter application, each scientific paper can be represented as a91

graph that considers the keyword correlations in the Abstract.92

Therefore, a scientific paper and all references cited in the93

paper form a graph bag.94

The above-mentioned observations result in the novel95

bag constrained multiple structure-view learning paradigms96

described in Fig. 3, where the object is represented as a graph-97

Fig. 3. Proposed MSVBL aims to separate objects into different classes (left)
where the object is a bag of graphs constructed from multiple structure
views (right).

bag consisting of graphs collected from multiple structure 98

views. To build an effective learning model, the technical 99

challenge is twofold: 1) multiple structure-view representa- 100

tions: how to find effective substructure features for different 101

structure views and 2) graph-bag-based MSV learning: how to 102

integrate bag constraints, where the class label is only available 103

for a graph-bag, for further learning. 104

Intuitively, when objects are represented as a bag of MSV 105

graphs, a straightforward solution to enable learning is to prop- 106

agate the bag label to each graph inside the bag. In this case, 107

the learning issue is downgraded to an up-to-date multigraph- 108

view graph classification problem [11]. Unfortunately, due 109

to the bag constraint that not all graphs inside a positive 110

bag are positive, simple bag label propagation may cause 111

some negative graphs to be mislabeled and deteriorate the 112

learning accuracy. Alternatively, frequent subgraphs can first 113

be explored to represent MSV graphs in vector space, so that 114

the problem is downgraded to the latest multiview multi- 115

instance learning [12]. However, this is still suboptimal, 116

mainly, because simple frequent subgraph features do not have 117

sufficient discriminative ability for learning, unless subgraph 118

features are carefully explored and assessed across different 119

structure views. 120

To solve the above-mentioned challenges, we propose an 121

MSV bag constrained learning (MSVBL) algorithm, with 122

emphasis on cross structure-view substructure feature explo- 123
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Fig. 4. Traditional graph classification intends to separate objects into
different classes (left), where each object is represented as a single graph
from a single structure-view (right).

ration for accurate graph classification. A unique feature of124

MSVBL is that it progressively selects the most discriminative125

subgraph across different structure views under graph bag126

constraints, so it not only achieves maximum margins between127

labeled graph bags (positive versus negative), but also has128

minimum loss on the graphs in negative bags. The key129

contribution of this paper is threefold.130

1) We formulate a new bag constrained graph classification131

problem, in which the learning object is a bag of132

graphs (i.e., graph-bag) with multiple structure views.133

2) MSVBL integrates multiple structure-view substructure134

exploration and learning into a unified framework. This135

is inherently different from many common subgraph-136

based graph mining methods, which treat subgraph137

exploration and subsequent model learning as separate138

processes.139

3) An upper bound score for each substructure is derived140

to effectively prune the substructure search space.141

The rest of this paper is structured as follows. The related142

works are reviewed in Section II. Preliminaries and the prob-143

lem statement are addressed in Section III. Section IV outlines144

the proposed MSV bag constrained graph learning frame-145

work MSVBL, and is followed by experiments in Section V.146

We conclude this paper in Section VI.147

II. RELATED WORKS148

Our problem is inspired by multi-instance learning on149

graphs with multiple structure views. Thus, in this section,150

we review works related to graph classification, multi-instance151

learning, and multiview bag/graph learning.152

A. Graph Classification153

Learning from graphs is a challenging task, mainly because154

graphs only have structured data (node and edge) but no155

feature representation, as shown in Fig. 4. Therefore, tradi-156

tional feature-based approaches [13] (e.g., Bayesian networks,157

decision trees, and instance-based learning) cannot be directly158

applied for learning. Motivated by the similarity strategy in159

instance-based learning, a straightforward method is to directly160

calculate the graph similarity in the structure space. To this161

end, graph kernels [14], [15] have been proposed to make162

use of graph properties (e.g., node degree distribution [16])163

to calculate the similarity between graphs. These methods164

share the same principle in their design: they enumerate graph165

structures, in terms of paths or walks, and so on, and compare166

the similarity between graphs using such structures. Because167

Fig. 5. Traditional multi-instance classification intends to separate a bag of
instances into different classes (left), where the object for classification is a
bag containing multiple instances with each instance being represented as a
feature vector (right).

graph structures are potentially infinite, these methods often 168

cannot identify which substructures (i.e., parts of the object 169

graph) are mostly discriminative for distinguishing graphs 170

from different class labels (i.e., enabling discriminative graph 171

learning and classification). 172

Methods also exist to find good subgraphs that transfer the 173

graph structure learning problem into a traditional supervised 174

learning issue. In this case, majority learning approaches 175

(e.g., support vector machines) can be directly used for classi- 176

fication. Nevertheless, if we enumerate all the subgraph candi- 177

dates, the corresponding search space increases exponentially 178

with respect to the number of graphs. To solve this issue, 179

a commonly used subgraph estimation criterion (i.e., discov- 180

ering all frequent subgraphs) is proposed by Yan and Han [17]. 181

Other subgraph excavation methods (e.g., FFSM [18] and 182

PSFS [19]) have also been proposed to find frequent subgraph 183

features for further learning. 184

The above-mentioned frequency-based methods are mainly 185

unsupervised, and do not utilize the label information. Super- 186

vised subgraph feature extraction methods have also been 187

proposed to find discriminative subgraph features for different 188

classes, such as LEAP [20], gPLS [21], COPK [22], and 189

GAIA [23]. Kong and Yu [1] proposed a gSSC method to 190

explore subgraphs (i.e., discriminative features) for semisu- 191

pervised graph classification. Kong et al. recently proposed 192

tackling graph learning issues (e.g., active graph classifica- 193

tion [24], uncertain graph [25], and multilabel graph classifi- 194

cation [26]) by employing the Hilbert–Schmidt independence 195

criterion (HSIC) [27]. There are also a number of complex 196

graph classification tasks, such as positive and unlabeled 197

graph classification [28], graph stream classification [29], 198

and multitask graph classification [30]. In addition, there 199

is another stream of work, which explores the subgraph 200

in multiplex networks [31], [32], which contain multiple 201

types or edges. Although multiplex networks do not address 202

the same multiple structure-view learning problems, they are 203

potentially useful to solve similar problems, such as the image 204

data set. 205

B. Multi-Instance Learning 206

Multi-instance learning was motivated by drug activity 207

learning [33] where if a molecule group is active, at least one 208

molecule is active. For inactive groups, all molecules inside 209

the group are inactive. Such observations led to a novel multi- 210

instance learning task, as shown in Fig. 5, in which the training 211

data are instance-bags, with the label only available for each 212

bag (but not for the instances inside the bag). 213
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To support multi-instance learning, most existing meth-214

ods attempt to upgrade the traditional supervised learning215

approaches. For example, Wang [34] proposed a lazy learning216

k-nearest neighbor algorithm, citation-KNN. Other approaches217

include tree-based multi-instance learning [35], multi-instance218

rule-based learning mi-DS algorithm [36], multi-instance219

kernel machines [7], and multi-instance-bag dissimilarity-220

based learning [37], [38]. Researchers have also attempted to221

adapt other popular single-instance learning algorithms to the222

multi-instance setting, such as multi-instance neural networks223

(e.g., BP-MIP [39] and RBF-MIP [40]) and MIBoost [41]224

(a variation of AdaBoost [42]).225

The above-mentioned methods mainly focus on upgrad-226

ing traditional supervised learning approaches for the multi-227

instance setting. On the other hand, transferring multi-instance228

issues to a classical single-instance setting can also work229

well. One simple and effective method is to transform the230

original multi-instance data into a single-instance data format231

by representing each bag as one instance, which is called232

SimpleMI [43]. Alternatively, [44] and [45] proposed an233

instance selection method using a feature mapping strategy234

based on the selected instances from training bags. Some235

algorithms are specially designed for multi-instance tasks,236

and examples include: maximum margin [46], scalable multi-237

instance learning based on the vector of locally aggregated238

descriptors, and MIL based on the Fisher vector [47].239

C. Multiview Bag/Graph Learning240

Multiple feature view learning [48], [49] has recently drawn241

much attention, and extensive research has shown that learn-242

ing from multiple feature views is potentially more accurate243

than relying on a single feature view. Most of the existing244

feature-based learning approaches under multiple views are245

constructed on general studies, in which the label is allo-246

cated for a single instance with feature-vector representation.247

Nevertheless, feature-based learning approaches are unable to248

handle structure data and cannot be directly applied for the249

instance-bag learning tasks, where the learning object is the250

instance-bag and the label is only available for the instance-251

bag but not for the individual instance.252

To explore informative features across multiple views in253

multi-instance learning, one intuitive solution is to first han-254

dle the single-view informative features by separating the255

views [50], and using concatenation methods [51] to com-256

bine all the selected features to represent bags for further257

classification. Nevertheless, this type of intuitive approach258

is unable to globally excavate the most informative features259

from different feature views to benefit the subsequent learn-260

ing, mainly because they only locally explore and concate-261

nates the features from each individual view. A contrasting262

approach is to concatenate all the feature views as one com-263

plete view, so that existing multiple instance feature learning264

approaches can be directly employed on the concatenated view265

(i.e., the whole feature space) for further learning [52]. One266

recent method uses a cotraining-based approach to deal with267

multi-instance data under different feature views [12].268

The substructures features (i.e., subgraphs) mined from269

single structure-view graphs cannot adequately describe the270

learning object characteristics [53] in single structure view 271

classification, whereas excavating rich information from dif- 272

ferent structure views benefits graph learning performance, 273

mainly because an object may present various properties as for 274

different feature spaces. A key problem for multiple structure- 275

view feature-based learning is the view combination addressed 276

in our previous multigraph-view learning for single graph 277

classification [11]. One popular structure-view combination 278

approach is to concatenate all individual structure views into 279

a whole structure-view. The MSV learning task can then be 280

transferred to a single structure-view learning problem. Never- 281

theless, such a structure-view combination can incur overfitting 282

issues, especially when there are insufficient training graph 283

data sets. Another cotraining structure-view method, which 284

integrates all graph classifiers in each substructure-view to 285

carry out the final target object classification, is also very 286

common. In these structure-view combination approaches, 287

the object for learning is the individual graph, so these 288

approaches cannot be directly applied to a multigraph set- 289

ting in which the object to be classified is a graph bag 290

(i.e., a graph set). The classification object in existing multi- 291

instance learning techniques is in the feature-vector space, 292

so these methods cannot be used for graphs. This naturally 293

raises the requirement to design new methods to handle bags 294

that contain graphs under multiple structure views. 295

III. DEFINITIONS AND PROBLEM STATEMENT 296

This section first introduces important notations and defin- 297

itions, and then states our research problem. 298

Definition 1 (Connected Graph): A graph is represented as 299

G = (V, E,L, l), where V is a set of vertices V = 300

{v1, . . . , vnv }, E ⊆ V×V is a set of edges, and L is the set of 301

labels for the vertices and edges. l : V∪E → L is the function 302

assigning labels to the vertices and edges. A connected graph 303

is a graph in which there is a path between any pair of vertices. 304

Definition 2 (Subgraph/Substructure): Let G = 305

(V, E,L, l) and gi = (V ′, E ′,L′, l ′) be two graphs. gi 306

is a subgraph/substructure of G, i.e., gi ⊆ G, iff there 307

exists an injective function ϕ : V ′ → V s.t. (1)∀v ∈ 308

V ′, l ′(v) = l(ϕ(v)); (2) ∀ (u, v) ∈ E ′, (ϕ(u), ϕ(v)) ∈ E and 309

l ′(u, v) = l(ϕ(u), ϕ(v)). If gi is a subgraph of G, then G is 310

a supergraph of gi . 311

Definition 3 (Structure-View): A structure-view is denoted 312

as a tuple (V, E,L, l), which represents the structure of an 313

object as a graph from a single structure-view, such as a 314

single relationship or a single feature. Similarly, MSV denotes 315

multiple types of tuples, which describe the structure variants 316

of an object from different structure views. 317

Definition 4 (Multistructure-View Graph-Bag): An MSV 318

graph-bag Bi = {B1
i , . . . , Bk

i , . . . , Bvi } consists of many 319

graph bags, where Bk
i denotes a single-structure-view graph 320

bag from the kth structure-view, and each Bk
i contains many 321

graphs Gk
j ∈ Bk

i constructed from the kth structure-view. The 322

class label of the graph bag Bi is represented by Yi ∈ Y , with 323

Y = {−1,+1}. 324

The set of all graph bags under all structure views is denoted 325

by B, with B− and B+ denoting all negative and all positive 326
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Fig. 6. Conceptual view of the proposed MSV learning for graph-bag clas-
sification (MSVBL). In each iteration, MSVBL selects an optimal subgraph
g∗ (step a). If the algorithm does not meet the stopping condition, g∗ will
be added to the subgraph set g (step d) or will otherwise terminate. During
the loop, MSVBL solves a linear programming to update the weights for
training graph-bags and graphs. The weights are continuously updated until
the optimal classifier is obtained.

graph bags, respectively. The aggregation of all graphs in327

negative bags is denoted by G−. In addition, we use G j to328

denote a graph generated from multiple structure views, with329

superscript k denoting the kth structure-view.330

Definition 5 (Subgraph Representation for Graph): Given a331

subgraph set g = {g1, . . . , gm} discovered from graphs under332

multiple structure views, where gs ∈ g could be mined from333

any structure-view. Accordingly, each graph G j can be repre-334

sented as a subgraph feature vector xG
j = [ f

G j
1 , . . . , f

G j
m ]	 ∈335

{0, 1}m , where f
G j
s = 1, 1 ≤ s ≤ m, iff gs is a subgraph of336

G j (i.e., ∃Gk
j ∈ G j ∧ gs ⊆ Gk

j ) and f
G j

s = 0 otherwise.337

Definition 6 (Subgraph Representation for Graph-Bag):338

For subgraph set g = {g1, . . . , gm} mentioned previously,339

an MSV bag Bi can be represented by a feature vector340

xB
i = [ f Bi

1 , . . . , f Bi
m ]	 ∈ {0, 1}m , where f Bi

s = 1, iff gs is341

a subgraph of any graph G j in bag Bi (i.e., ∃G j ∈ Bk
i ∈342

Bi ∧ gs ⊆ G j ) and f Bi
s = 0 otherwise.343

Given a set of bags B = {B1, . . . ,Bk, . . .Bv} containing344

labeled graph-bags from v structure views, the aim of MSV345

learning for bag constrained graph classification is to build346

a prediction model by exploring optimal subgraphs from the347

training graph bag set B, and accurately predict the labels of348

previously unseen MSV graph bags.349

IV. MULTISTRUCTURE-VIEW BAG LEARNING350

Our proposed MSV bag constrained graph classification351

framework is shown in Fig. 6. It consists of three major steps.352

1) Optimal Subgraph Exploration: In each iteration, 353

MSVBL explores a discriminative subgraph to improve 354

the discriminative capability of the graph feature set g. 355

2) Bag Margin Maximization: Based on the currently 356

selected subgraphs g, a linear programming is solved 357

to achieve maximum bag margin for graph bag 358

classification. 359

3) Updating Bag and Graph Weights: After the linear 360

programming has been solved, the weight values for the 361

training bags and graphs are updated until the algorithm 362

converges. 363

A. Maximum Bag Margin Formulation 364

In graph-bag constrained learning, bag labels are asymmet- 365

ric in the sense that every graph inside a negative graph-bag 366

has a negative label, whereas at least one graph is positive in 367

a positive graph-bag. Accordingly, we can aggregate the linear 368

constraints from two levels (bag- and graph-levels) as 369

min
w,ξ ,η

∑

k

mk∑

s

wk
s + C1

∑

i:Bi∈B
ξi + C2

∑

j :G j∈G−
η j 370

s.t. Yi

∑

k

mk∑

s=1

(
wB

s

)k
hgs

(
Bk

i

) ≥ 1− ξi , i = 1, . . . , |B| 371

∑

k

mk∑

s=1

(
wG

s

)k
hgs

(
Gk

j

) ≤ −1+ η j , j = 1, . . . , |G−| 372

wB ≥ 0; wG ≥ 0; ξ ≥ 0; η ≥ 0 (1) 373

where wk
s = (wB

s )
k + (wG

s )
k , ξi and η j are the evaluation of 374

the misclassification. C1 and C2 are misclassification tradeoff 375

hyperplane margin and errors, which are both set to 1 in our 376

experiment. Because bag labels are known, the weighted errors 377

are C1
∑

i:Bi∈B ξi . In addition, graphs in the negative bags are 378

known as negative. Therefore, the weighted errors at the graph 379

level are C2
∑

j :G j∈B− η j . 380

In (1), hgs (B
k
i ) is a weak subgraph classifier, which outputs 381

the class label of the bag Bk
i in the kth view based on 382

subgraph gs , and hgs (G
k
j ) is a weak subgraph classifier for 383

the graph Gk
j in the kth structure-view based on subgraph gs . 384

We can use a subgraph gs as a decision stump classifier for a 385

graph or bag in the kth structure-view as 386

{
hgs

(
Bk

i

) = (
ψB

s

)k(
2I

(
gs ⊆ Bk

i

)− 1
)

hgs

(
Gk

j

) = (
ψG

s

)k(2I
(
gs ⊆ Gk

j

)− 1
) (2) 387

where gs ⊆ Bk
i iff gs is a subgraph of any graph G in 388

bag Bk
i , i.e., ∃G ∈ Bk

i ∧ gs ⊆ G. (ψB
s )

k and (ψG
s )

k
389

(ψB
s , ψ

G
s ∈ � = {−1,+1}) are parameters controlling the 390

label of the classifiers, with I (·) being an indicator function. 391

(wB
s )

k and (wG
s )

k denote the weights of the bag and graph in 392

the kth structure-view, respectively. For a subgraph set with 393

size m = ∑
k mk , the prediction rule for a graph bag Bi is a 394

linear structure-view combination of the corresponding weak 395

classifiers as 396

H(Bi ) = sign

(
∑

k

mk∑

s=1

(
wB

s

)k
hgs

(
Bk

i

)
)
. (3) 397
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B. Linear Programming Optimization398

To support multiple structure-view bag constrained graph399

classifications, a set of subgraph features g = {g1, . . . ,400

gs, . . . , gm} is required. One straightforward solution is an401

exhaustive enumeration strategy, which enumerates all sub-402

graphs to find the best ones for learning. Nevertheless,403

the number of subgraph candidates increases exponentially,404

and the huge amount of time consumed makes this type of405

greedy subgraph search method impractical for real-world406

learning tasks. This problem can be solved by a column407

generation technique [54], which works on the Lagrangian408

dual problem with respect to (1). Starting from an empty409

subgraph feature set g, column generation iteratively adds410

one subgraph gs to g which violates the constraint under411

the dual learning problem. Each time the subgraph set g is412

updated, column generation resolves the primal problem in (1)413

by solving the restricted dual problem. This process keeps414

running until convergence, which can be formulated as415

max
γ ,μ

∑

i:Bi∈B
γi −

∑

j :G j∈G−
μ j416

s.t. 0 ≤ γi ≤ C1, i = 1, . . . , |B|417

0 ≤ μ j ≤ C2, j = 1, . . . , |G−|418

∑

k

⎛

⎝
∑

i:Bi∈B
γi Yi hgs

(
Bk

i

)−
∑

j :G j∈G−
μ j hgs

(
Gk

j

)
⎞

⎠ ≤ 2v419

(4)420

where γi and μ j are Lagrange multipliers, with
∑

k 1 =421

v. Note that the related dual problem has a small number422

of variables, but many constraints. Among them, each con-423

straint ζgs =
∑

k (
∑

i:Bi∈B γi Yi hgs (B
k
i ) −

∑
j :G j∈G− μ j hgs ]424

(Gk
j )) ≤ 2v indicates a subgraph feature gs over all graph-bags425

B, with the first and second terms of the left of constraint being426

the gain on the labeled graph-bags and graphs in negative427

bags, respectively. Intuitively, this constraint provides a metric428

to access the bag constraint-based discriminative power of a429

given subgraph gs .430

C. Bag Constrained Criteria431

In addition to favoring the subgraph in the feature set g432

which has a high discriminative score, we also want to make433

sure that the selected subgraph gs has the capability to identify434

positive graphs in positive bags. The selected subgraph set435

g = {g1, . . . , gm} � gs should ensure the following con-436

straints.437

1) Graph-Bag Must-Link: Because bag labels are known in438

advance, the selected subgraph features for graph-bags439

Bi and B j should ensure that graph-bags with the same440

label are close to one another.441

2) Graph-Bag Cannot-Link: The selected subgraphs should442

ensure the disparity of graph bags with different class443

labels by taking into account the data distributions inside444

each graph-bag.445

3) Graph Must-Link: In our graph-bag setting, every graph446

inside the negative bags is negative, and thus, the447

subgraph feature representation should encourage nega- 448

tive graphs to be close to one another. 449

4) Graph Separability: The corresponding genuine labels 450

for graphs in positive graph bags are unavailable. To this 451

end, we adopt the assumption of principal component 452

analysis, i.e., exploring the component with the largest 453

possible variance, to preserve the diversity in positive 454

bags. 455

Based on the above-mentioned discussion, the subgraph 456

feature estimation 	(g) can be formulated as follows: 457

	g = 	B
g + 	G

g =
1

2

∑
Yi ,Y j

K B
g (Bi , B j )Q

B
i, j 458

+ 1

2

∑
Gi ,G j

K G
g (Gi ,G j )Q

G
i, j (5) 459

where 	B
g denotes the similarity between two graph-bags 460

via bag level criteria 1) and 2), with 	G
g representing the 461

graph level criteria 3) and 4). QB
ij = {−1/|A|,YiY j = 1; 462

1/|B|,YiY j = −1}, with A = ∑
Yi Y j=−1 1, and B = 463∑

Yi Y j=1 1 representing the total bag pairwise constraints. 464

QG
ij = {−1/|C|,∀Gi ,G j ∈ B−; 1/|D|,∀Gi ,G j ∈ B+}, 465

with C =∑
Gi ,G j∈B− 1 and D =∑

Gi ,G j∈B+ 1 denote graph 466

pairwise constraints. K B
g (Bi , B j ) and K G

g (Gi ,G j ) denote the 467

distance between two bags or graphs in the feature vector 468

space under the explored subgraph set g using an L2 norm 469

measure. 470

Accordingly, for bag level 	B
g , we have 471

	B
g =

1

2

∑
Yi ,Y j

∥∥xB
i − xB

j

∥∥2
QB

i, j 472

=
∑

Yi ,Y j

(
xB

i

)	xB
i QB

i, j −
∑

Yi ,Y j

(
xB

i

)	xB
j QB

i, j 473

=
∑

Yi

(
xB

i

)	xB
i

∑
Y j

QB
i, j −

∑
Yi ,Y j

(
xB

i

)	xB
j QB

i, j 474

=
∑

Yi

(
xB

i

)	xB
i DB

i,i −
∑

Yi ,Y j

(
xB

i

)	xB
j QB

i, j 475

= tr
(XB DBX	B

)− tr
(XB QBX	B

)
476

= tr
(XB

(
DB − QB

)X	B
) = tr

(XB L BX	B
)

477

=
∑

gs∈g

(
f B
s

)	
L B f B

s (6) 478

where tr(·) denotes the matrix trace operator, XB = 479

[xB
1 , . . . , xB

p ] = [ f B
1 , . . . , f B

m ]	 ∈ {0, 1}m×p , with p denoting 480

the size of bags. f B
s (1 ≤ s ≤ m, gs ∈ g) is regarded as a 481

vector indicator of subgraph gs , with respect to all graph bags, 482

i.e., f B
s = [ f B1

s , . . . , f
Bp

s ]	, where f Bi
s = 1, 1 ≤ i ≤ p iff 483

∃G ∈ Bk
i ∈ Bi ∧ gs ⊆ G and f Bi

s = 0 otherwise. DB , as a 484

diagonal matrix, is generated from QB , where DB
i,i =

∑
j QB

i j . 485

L B is a Laplacian matrix, denoted by L B = [L B
i, j ]p×p = 486

DB − QB . Similarly, the graph level 	G
g in (5) can also be 487

derived as a matrix format, which joins with graph level 	B
g 488

to rewrite (5) as 489

	g =
∑

gs∈g

((
f B
s

)	
L B f B

s +
(

f G
s

)	
LG f G

s

) =
∑

gs∈g

f 	s L fs (7) 490

where 491

fs =
[

f B
s

f G
s

]
, L =

[
L B 0
0 LG

]
(8) 492
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where fs is a vector indicator of subgraph gs with respect to493

the data combined with bags and graphs. In this case, each494

subgraph gs will have an independent discrimination criterion495

	gs = f	s L fs , because 	g =∑
gs∈g 	gs .496

Definition 7 (mgScore): Given a graph-bag set B contain-497

ing multiple structure-view graphs, the informative score for498

a subgraph gs can be measured by499

£gs =
∑

k

⎛

⎝
∑

Bi∈B
γi Yi hgs

(
Bk

i

)−
∑

G j∈G−
μ j hgs

(
Gk

j

)
⎞

⎠+ f	s L fs .500

(9)501

To construct the MSV bag constraining model, the most502

informative subgraph feature considering each training bag503

weight and graph weight in negative bags across all struc-504

ture views needs to be explored for bag constrained graph505

classification.506

D. Optimal Subgraph Exploration507

To discover subgraphs for validation, an intuitive solution508

for exploring an informative subgraph set is to employ an509

exhaustive enumeration strategy, which needs to enumerate510

all subgraphs and uses their mgScore values for ranking.511

Nevertheless, the number of subgraph candidates increases512

exponentially with respect to the size of the search space (i.e.,513

the graph set collected from each structure-view). The huge514

time consumption makes this type of greedy subgraph search515

method infeasible for real-world learning tasks. Instead,516

we apply gSpan [17], which is an efficient subgraph mining517

approach based on the depth-first search (DFS) strategy, to find518

the subgraph feature candidates. The core concept of gSpan519

is that it establishes a lexicographic order to encode each520

graph, through which all frequent subgraphs are discovered521

efficiently. In MSV scenarios, we derive an upper bound for522

mgScore to prune the DFS-code tree (i.e., reduce the search523

space) as follows:524

Theorem 1 (mgScore Upper Bound): Given two subgraphs525

gs , g′s ∈ g, where g′s is a supergraph of gs (i.e., gs is a subgraph526

of g′s with g′s ⊇ gs). The mgScore of g′s , £g′s is bounded by527

£̂gs , i.e., £g′s ≤ £̂gs , with £̂gs being defined as528

£̂gs = max
(
ζ−gs
, ζ+gs

)+ f	s L̂ fs (10)529

where, L̂ is conducted by L̂i, j = max(0, Li, j ), and530

ζ−gs
= 2

∑

k

⎛

⎜⎝
∑

i:Yi=−1,gs∈Bk
i

γi +
∑

j :gs∈Gk
j

μ j

⎞

⎟⎠+ v
∑

i:Bi∈B
γi Yi531

(11)532

ζ+gs
= 2

∑

k

∑

i:Yi=+1,gs∈Bk
i

γi − v
⎛

⎝
∑

i:Bi∈B
γi Yi −

∑

j :G j∈G−
μ j

⎞

⎠.533

(12)534

For any subgraph g′s ⊇ gs , £g′s ≤ £̂gs (i.e., the mgScore of535

subgraph g′s , £g′s is bounded by £̂gs ). The proof is detailed in536

the following three components: 1) ζgs ≤ ζ−gs
in Appendix A;537

Algorithm 1 Informative Subgraph Exploration
Input:

B = {B1, . . . ,Bk, . . . ,Bv}: A multi-structure-view bag set
with v structure-views;
γ = {γ1, . . . , γ|B|}: A bag weight set;
μ = {μ1, . . . , μ|G−|}: A negative graph weight set;
min_sup: The threshold of the frequent subgraph;

Output:
g∗: The most discriminative subgraph;

1: g∗ = ∅;
2: G = {G1, . . . ,Gk, . . . ,Gv } ← Aggregate all graphs in B;
3: for all structure-views Gk, k = 1, . . . , v in G do
4: while Recursively visit the DFS Code Tree in gSpan do
5: gk

s ← current visited subgraph in DFS Code Tree;
6: if f req(gk

s ) < min_sup, then
7: return;
8: Compute the mgScore £gk

s
for subgraph gk

s using
Eq. (10);

9: if £gk
s
≥ £g∗ or g∗ == ∅, then

10: g∗ ← gk
s ;

11: if £̂gk
s
≥ £g∗ , then

12: Depth-first search the subtree rooted from node gk
s ;

13: end while
14: end for
15: return g∗;

2) ζgs ≤ ζ+gs
in Appendix B; and 3) 	g′s ≤ f	s L̂ fs in 538

Appendix C. In this case, the max(£−gs
, £+gs

)+ f	s L̂ fs will be 539

selected as the upper bound. When a subgraph gs is generated, 540

all its supergraphs are upper bounded by £̂gs . Therefore, this 541

theorem will help to reduce the search space efficiently. 542

The above-mentioned upper bound can be used to prune 543

the DFS code search tree in gSpan via the branch-and-bound 544

pruning strategy; the complete subgraph feature exploration 545

approach is listed in Algorithm 1. The algorithm enumerates 546

subgraph features by searching the whole DFS code tree 547

for each structure-view. If a current subgraph gk
s in the kth 548

view is infrequent, both gk
s and its related subtree need to 549

be discarded (lines 6 and 7). If not, the mgScore of gk
s 550

(i.e., £gk
s
) will be calculated (line 8). If £gk

s
is greater than 551

the current optimal mgScore £g∗ or the optimal subgraph £g∗ 552

is empty (i.e., in the first iteration), £gk
s

will be regarded as 553

the current optimal item £g∗ (lines 9 and 10). Subsequently, 554

the upper bound pruning module will check whether £̂gk
s

is 555

less than £g∗ ; if so, this means that the mgScore value of 556

any supergraph gk
s
′

of gk
s (i.e., gk

s
′ ⊇ gk

s ) will not be greater 557

than £g∗ . Thus, the subtree rooted from gk
s is safely pruned. 558

If £̂gk
s

is indeed greater than the mgScore of g∗, the search 559

process will sequentially visit nodes from the subtree of gk
s 560

(lines 11 and 12). 561

E. MSVBL 562

The complete procedures of the proposed MSVBL frame- 563

work MSVBL are listed in Algorithm 2, which iteratively 564

extracts informative subgraphs across different structure views 565
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Algorithm 2 MSVBL
Input:

B = {B1, . . . ,Bk, . . . ,Bv}: A multi-structure-view graph
bag set;
min_sup: The threshold of the frequent subgraph;
m: the maximum number of iteration;

Output:
The target label Yc of a test multi-structure-view bag Bc;
// Training Phase:

1: g← ∅;
2: t ← 0;
3: while t ≤ m do
4: g∗ ← Apply B and min_sup to obtain the most infor-

mative subgraph; // Alogirthm 1
5: if ζg∗/2v ≤ 1+ ε then
6: break;
7: g← g ∪ g∗;
8: Solve Eq. (1) based on g to get wB and wG , and the

Lagrange multipliers of Eq. (4) γ and μ;
9: t ← t + 1;

10: end while
// Testing Phase:

11: Yc ← sign
(∑

k
∑

gs∈g

(
wB

s

)k
hgs

(
Bk

c

))
.

12: return Yc.

to expand the candidate subgraph set g, by using mgScore.566

After m iterations, MSVBL will boost the generated m weak567

classifiers for final prediction.568

MSVBL starts from an empty subgraph set g = ∅ (line 1),569

and iteratively chooses the most informative subgraph feature570

g∗ in each round (line 4) according to Algorithm 1. If the571

current optimal subgraph no longer violates the constraint,572

the iteration process terminates (lines 5 and 6). Because the573

difference between the optimal values in the last few iterations574

is relatively small, a threshold ε is used to relax the stopping575

condition (i.e., we set ε = 0.05 in our experiments). After576

that MSVBL solves the linear programming problem by using577

the current optimal subgraph set g to recalculate two groups578

of weight values: 1) wB and wG : the weights for bag-level579

and graph-level weak subgraph decision stumps, respectively580

and 2) γ and μ: the weights of training bags and graphs in581

negative bags for optimal subgraph feature exploration in the582

next iteration, which can be calculated from the Lagrange mul-583

tipliers in the primal issue (line 8). If the learning framework584

converges or the maximum number of iterations is achieved,585

the training phase of MSVBL is terminated. During the testing586

phase, the label Yc of a test bag Bc is determined by the final587

classifier sign(
∑

k
∑

gs∈g(w
B
s )

khgs (B
k
c )).588

V. EXPERIMENTS589

A. Benchmark Graph Bag Data Sets590

1) Scientific Publication Multistructure-View Graph Bags: The591

information from the Abstract content and the paper citation592

relationship naturally form two structure views. Each scien-593

tific paper is converted into an Abstract content view graph594

by utilizing the contextual correlations (edges in graphs) of595

Fig. 7. Graph representation of the Abstract in a paper entitled “Static
Analysis in Datalog Extensions.” Each node (i.e., a circle) denotes a keyword
in the Abstract. The weight values between nodes indicate the correlations
between keywords. By using a threshold (e.g., 0.005), an Abstract can be
converted into an unweighted graph.

keywords (nodes in graphs) in the Abstract. Using linked 596

keyword relationships (e.g., cooccurrence of keywords in 597

different sentences) to form a graph representation for each 598

paper (as shown in Fig. 7 to be explained later) has shown bet- 599

ter performance than simple bag-of-words representation [6], 600

because one or multiple independent keywords/attributes is 601

insufficient to describe the content of a paper. For a paper 602

citation relationship view graph, each graph node represents 603

a paper ID with edges representing the citation relationships 604

among papers (detailed in [29]). With graphs built from the 605

paper and the references cited in the paper, a paper can be 606

represented as a graph bag containing multiple graphs in two 607

structure views (i.e., Abstract view versus citation relationship 608

view). For example, assume paper A cites papers A1, A2, 609

and A3, and the label of A is “Positive.” For each view, we will 610

first generate one graph from A, A1, A2, and A3, respectively. 611

After that we put all four graphs in one bag, and label the bag 612

as “Positive.” Thus, each paper corresponds to a graph bag 613

with two structure views (Abstract content view versus paper 614

citation relationship view). 615

The Digital Bibliography and Library Project (DBLP) data 616

set1 consists of bibliography in computer science, with each 617

record containing information, such as Abstract, authors, year, 618

venue, title, and references. We select papers published in Arti- 619

ficial Intelligence (AI: IJCAI, AAAI, NIPS, UAI, COLT, ACL, 620

KR, ICML, ECML, and IJCNN) as positive bags, and Data- 621

base (DB: SIGMOD, PODS, VLDB, ICDE, CIKM, DASFAA, 622

ICDT, and SSD) as negative bags to form an MSV learning 623

task. The objective is to predict whether a scientific publication 624

is part of the artificial intelligence (positive) or database 625

(negative) field by using the graph representations with the 626

above structure views. The two research fields overlap in many 627

aspects, e.g., data mining, information retrieval, and pattern 628

recognition, which help create a challenging MSV learning 629

task. 630

In the Abstract structure-view, an element fuzzy cognitive 631

map (E-FCM) [55] is utilized for each abstract to explore 632

keywords as nodes, and correlations between keywords are 633

used to form the edges of each graph, as shown in Fig. 7. 634

1http://dblp.uni-trier.de/xml/
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The same graph representation for scientific publication can635

be found in our previous work [51]. In the experiments,636

we choose 600 papers in total (corresponding to 600 multiple637

structure-view bags) to form positive (AI) bags (300 bags638

with 1756 graphs) and negative (DB) bags (300 bags with639

1738 graphs).640

2) Content-Based Image Multistructure-View Graph Bags: The641

original images [56] collected from the “Corel” data set2 are642

preprocessed using VLFeat segmentation.3 Each image is seg-643

mented into multiple regions, with each region corresponding644

to one graph. For an individual region simple linear iterative645

clustering [57], a state-of-the-art superpixel-based method is646

applied to obtain graph representation. Each node indicates one647

superpixel and each edge denotes the adjacency relationship648

between two superpixels.649

Two types of feature [58], hue–saturation–value (HSV) in650

the color space and local binary patterns (LBPs) in the texture651

space, are naturally related to two structure views. HSV is652

a common cylindrical-coordinate representation applied for653

constructing a color model, and LBP is a well-known tex-654

ture spectrum descriptor for capturing local texture features.655

We first extract a three-channel HSV feature on each pixel656

for the HSV representation. A 256-D codebook is constructed657

via k-means clustering on the explored HSV cylindrical-658

coordinate representations. Each pixel is transferred to a 1-D659

code by calculating the distance between the pixel color and660

the prior cluster centers. We then assign a 256-D histogram-661

based vector to each superpixel (i.e., HSV-based superpixel662

representation) using the code occurrence statistics. The uni-663

form LBP is used to generate a 59-bin code on each pixel,664

which is assigned to 1 bin based on the local texture pat-665

tern. A 59-D histogram representation can be constructed666

to encode the statistics of each superpixel. Similar graph667

representation can be found in our previous work [59]. In this668

image related experimental data set, the superclass “Cats”669

has three subclasses “Tiger,” “Lion,” and “Leopard,” which670

are used as positive images (300 bags with 2679 graphs).671

In addition, 300 images of other animals are randomly selected672

as negative bags, including 2668 segments (i.e., graphs) in673

negative bags.674

B. Experimental Settings675

All experimental results and comparisons are reported on676

10 times tenfold cross-validation. Unless specified otherwise,677

we set the minimum support threshold min_sup = 3% for678

scientific publication data (Section V-A1) and min_sup = 2%679

for content-based image data (Section V-A2). All experiments680

are conducted on a Linux cluster 16 processors [Interl(R)681

Xeon(R) at 3.47-GHz CPU] and 128-GB memory size.682

C. Baseline Methods683

To the best of our knowledge, this is the first work to684

consider the multiple structure-view bag constrained graph685

2https://sites.google.com/site/dctresearch/Home/content-based-image-
retrieval

3http://www.vlfeat.org/

classification problems. The contribution of this paper is 686

to design an effective graph classification framework under 687

multiple structure views to advance the fundamental graph 688

classification technique, not a new algorithm in a special 689

domain (e.g., image or text, or other domains in which the 690

proposed framework can be applied) to compare with other 691

type of technique, e.g., deep learning and extreme learning 692

machines. As a result, all baseline methods belong to the graph 693

classification family. 694

To comparatively study the performance of the proposed 695

MSVBL method, we first use two types of baseline (bag 696

level and graph level) for single structure-view evaluation, 697

and then implement three different structure-view combination 698

strategies for comparison studies. Bag-level approaches first 699

discover informative subgraphs at bag level to represent graphs 700

in the bag set (i.e., transferring a graph-bag set to an instance- 701

bag set) for classification. By contrast, graph-level approaches 702

propagate graph bag labels to all graphs in the bag, through 703

which the informative subgraphs can be explored to repre- 704

sent bag-of-graphs to bag-of-instances in the feature vector 705

space. 706

1) Subgraph Evaluation Criterion: To explore informative 707

subgraphs for comparison purposes, we implement the follow- 708

ing four different types of subgraph feature evaluation criteria. 709

a) Frequency-based approach: For the purpose of select- 710

ing subgraph features from graphs, the Top-k [60] approach 711

adopts the frequency criteria to select the highest frequent 712

subgraphs as features. In the graph-bag setting, the bag-level 713

frequency is measured with respect to bags (i.e., the occurrence 714

of the subgraph is counted as 1 if a subgraph is contained in 715

one or more graphs inside a bag, or 0 otherwise). By con- 716

trast, the graph-level frequency setting directly calculates the 717

frequency with respect to graphs. 718

b) Information theory-based approach: Information 719

gain (IG), which is used in selecting feature nodes for decision 720

tree construction, is commonly used for subgraph estimation 721

in graph classification [24], [29]. When dealing with graph 722

bags, bag-level IG tries to select subgraphs with the highest 723

IG based on subgraph feature representation for graph bags, 724

as given in Definition 6. Graph-level IG calculates the IG score 725

on graphs based on Definition 5. 726

c) Discrimination-based approach: A novel discrimina- 727

tive subgraph selection criterion, gSSC [1], has demonstrated 728

strong performance in tackling graph structure data. The basic 729

idea is to select informative subgraphs such that graphs with 730

different labels in the subgraph feature space are distinct 731

from each other. Accordingly, the bag- and graph-level gSSC 732

apply the gSSC discriminative measures to bags (graph-bags 733

with bag labels) and graphs (graph objects and the labels via 734

inheriting the bag labels), respectively. 735

d) Dependence-based approach: The HSIC, which mea- 736

sures the dependence between two variables in a specially 737

designed kernel space, has recently been proposed to maximize 738

the dependence between subgraphs for graph objects. This 739

state-of-the-art subgraph dependence evaluation criterion has 740

been successfully employed in many graph learning tasks, such 741

as traditional graph classification [24], uncertain graphs [25], 742

and multilabel graphs [26]. The bag-level gHSIC adopts the 743
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HSIC criterion to explore subgraphs using the proposed bag744

representation for learning, and graph-level gHSIC simply745

works on graphs by propagating the bag label to graphs inside746

each bag.747

2) Multistructure-View Combination: For comparison748

purposes, the following three structure-view combination749

strategies across different structure views are also implemented750

for learning.751

a) Local MSV: Similar to the view combination in [51],752

the local structure-view combination strategy adopts a concate-753

nation mechanism to obtain MSV subgraphs from different754

structure views. The above-mentioned subgraph evaluation755

criterion (e.g., gSSC or gHSIC) is used for each single756

structure view to select mk subgraph features, which will be757

concatenated as final subgraphs to represent graphs as feature758

vectors. A multi-instance learner (e.g., MIBoost [41]) will then759

be used for classification.760

b) Global MSV: The global view combination strategy761

concatenates heterogeneous feature spaces into one homoge-762

neous feature space. Single-view feature selection methods763

are applied to the concatenated features for learning [52].764

Because there is no feature space in the graph domain, this765

baseline approach first concatenates all the frequent subgraph766

features discovered from all structure views (i.e., constructing767

the entire subgraph feature space), and then utilizes the Top-k,768

IG, gSSC, or gHSIC evaluation criteria to directly explore the769

m subgraphs from all structure views for graph classification.770

c) Ensemble MSV: We also compare our proposed771

method MSVBL with a state-of-the-art multi-instance-view772

combination strategy [12]. A number of informative sub-773

graphs are excavated for each single structure view via Top-k,774

IG, gSSC, or gHSIC evaluation criteria. By representing775

each graph as an instance in the feature vector space, this776

structure-view combination baseline trains a multi-instance777

classifier (e.g., MIBoost [41]) by treating each view indepen-778

dently and integrates classifiers across all structure views for779

prediction.780

To sum up, we first carry out comparisons in our experiment781

via the above-mentioned three structure-view combination782

strategies based on the graph- or bag-level subgraph evaluation783

criterion.784

3) Latest Graph Classification Advances: By directly prop-785

agating bag labels to graphs inside each bag, the problem786

in this paper can be transferred to the state-of-the-art graph787

learning task with multiple structure views (MSVGL [11]),788

which will also be used as a type of baseline (detailed in789

Section V-D3). We also implement a bMSVBL approach790

(i.e., MSVBL without using the graph level constraint) as791

a baseline to explore the efficiency of the unified two792

level (bag- and graph-level) framework. A baseline dMSVBL793

approach [53], which does not consider the bag constrained794

criteria, is also implemented to demonstrate the distinct per-795

formance of the proposed MSVBL (detailed in Section V-D4).796

An unbounded MSVBL (uMSVBL) approach with no pruning797

module as described in Section V-D is implemented to evaluate798

the efficiency of the pruning strategy used in MSVBL (detailed799

in Section V-D7).800

Fig. 8. Bag-level comparisons on DBLP graph bag data set with different
structure-view combination approaches. (a) Local MSV. (b) Global MSV.
(c) Ensemble MSV.

Fig. 9. Bag-level comparisons on image graph bag data set with different
structure-view combination approaches. (a) Local MSV. (b) Global MSV.
(c) Ensemble MSV.

D. Experimental Results 801

1) Comparison With Bag-Level Evaluation Criteria: Figs. 8 802

and 9 report the results of the diverse bag-level subgraph 803

feature estimation criteria (i.e., TopK, IG, gSSC, or gHSIC) 804

under the proposed three multiple structure-view combination 805

strategies on DBLP and Image bag constrained graph data sets, 806

respectively. It can be seen that MSVBL consistently performs 807

better than baseline approaches when the number of selected 808

subgraph features is 20 or more. When the number of selected 809

subgraph features is less than 10, the performance of all 810

algorithms is comparable, mainly because a small number 811

of subgraph stumps (i.e., weak classifiers) leads to inferior 812

classification accuracy in early iterations. 813

Although the generally worst-performing MSV-TopK 814

obtains slightly better performance when the number of 815

subgraph candidates is sufficiently large (e.g., ≥80) under 816

the ensemble structure-view combination strategy, as shown 817

in Fig. 8(c), its subgraph evaluation measure relies on fre- 818

quency and is not suitable for graph-bag learning with multiple 819

structure views. This is mainly because their frequent sub- 820

graphs are not selected toward the distinction of complicated 821

objects in positive and negative graph bags. 822

Most of the time, the information theory-based MSV-IG 823

and discrimination-based MSV-gSSC subgraph evaluations 824

are comparable, as shown in Figs. 8(a) and 9(a)–(c). 825

However, gSSC-based approach significantly outperforms 826

IG-based MSVBL on the DBLP graph data, as shown 827

in Fig. 8(b) and (c), which can be attributed to the dis- 828

criminative criterion used in MSV-gSSC. Of the baselines, 829

HSIC-based MSV-gHSIC shows the best performance, except 830

in comparison with MSV-IG under the global structure-view 831

combination strategy on the DBLP graph-bag data in Fig. 8(b). 832

Although MSV-gHSIC obtains high accuracy during the last 833

few iterations, as shown in Figs. 8(c) and 9(c), this baseline 834
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TABLE I

BAG-LEVEL t -TEST RESULTS. A, B, C, AND D DENOTE MSVBL, LOCAL
MSV, GLOBAL MSV, AND ENSEMBLE MSV, RESPECTIVELY

Fig. 10. Graph-level comparisons on DBLP bag constrained graph data
set with different structure-view combination approaches. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

Fig. 11. Graph-level comparisons on image bag constrained graph data
set with different structure-view combination approaches. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

still cannot outperform the best achievement of the proposed835

MSVBL.836

To further demonstrate that MSVBL is indeed statistically837

superior to the bag-level MSV baselines, we report the pair-838

wise t-test (with confidence level α = 0.05) to validate the839

statistical significance in Table I, where each entry (value)840

denotes the p-value for a t-test between two algorithms, and841

a p-value less than α = 0.05 indicates that the difference842

is statistically significant. The results in Table I on both bag843

constrained graph data sets confirm that MSVBL statistically844

outperforms local, global, and ensemble MSV in all cases.845

2) Comparison With Graph-Level Evaluation Criteria:846

The results in each subfigure of Figs. 10 and 11 report the847

comparison with graph-level evaluation criteria under a special848

structure-view combination strategy. As expected, all graph-849

level subgraph evaluation criteria under any structure-view850

combination strategy are inferior to the proposed MSVBL,851

which should contribute to the dual bag- and graph-level852

mechanisms. In Table II, we report the pairwise t-test with853

confidence level α = 0.05 to demonstrate the statistical perfor-854

mance of the proposed MSVBL. The p-values (less than 0.05)855

in each entry assert that MSVBL statistically and significantly856

outperforms graph-level MSV-based learning methods MSV-857

TopK, MSV-IG, MSV-gSSC, and MSV-gHSIC under all three858

structure-view combination strategies.859

TABLE II

GRAPH-LEVEL t -TEST RESULTS. A, B, C, AND D DENOTE MSVBL,
LOCAL MSV, GLOBAL MSV, AND ENSEMBLE

MSV, RESPECTIVELY

Fig. 12. Average results on DBLP graph bag data set with different structure-
view combination approaches at bag and graph levels. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

Fig. 13. Average results on image graph bag data set with different structure-
view combination approaches at bag and graph levels. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

When the number of subgraph features is sufficiently 860

large (e.g., more than 90), all baselines achieve similar per- 861

formance. The information theory-based approach MSV-IG 862

performs better than the approach at bag level, which is 863

inferior to other discriminative approaches in Section V-D1. 864

For instance, MSV-IG achieves better performance than dis- 865

criminative MSV-gSSC on the image graph bag data set, 866

as shown in Fig. 11(a)–(c). Moreover, MSV-IG is superior 867

to the best bag-level baseline MSV-gHSIC under the local 868

MSV strategy on the image graph bag data set [Fig. 11(a)], 869

and the global structure-view combination strategy on both 870

data sets [Figs. 10(b) and 11(b)]. This is possibly because 871

the graphs at graph level may provide more information than 872

bags. The graph-level methods directly propagate bag labels to 873

graphs inside each bag. This can lead to a situation in which 874

some graphs in the positive graph-bags may have incorrect 875

labels, which results in performance degradation for graph- 876

level MSV-gSSC and MSV-gHSIC (both need to utilize the 877

label information). 878

For the purpose of comparing the same subgraph evalua- 879

tion criteria under different estimation levels, we report the 880

average accuracy in Figs. 12 and 13, where each subfigure 881

[e.g., Fig. 13(a)] corresponds to a specific structure-view 882

combination strategy (e.g., local strategy), summarizing 883

both graph- and bag-level subgraph evaluation criteria. 884
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TABLE III

BEST ACCURACY RESULT OF MSVBL VERSUS DIFFERENT BAG- OR GRAPH-LEVEL SUBGRAPH EVALUATION CRITERIA
UNDER DIFFERENT STRUCTURE-VIEW COMBINATION STRATEGIES, OVER ITERATIONS (SUBGRAPHS)

VARYING FROM 1 TO 100 ON DBLP BAG CONSTRAINED GRAPH DATA

TABLE IV

BEST ACCURACY RESULT OF MSVBL VERSUS DIFFERENT BAG- OR GRAPH-LEVEL SUBGRAPH EVALUATION CRITERIA

UNDER DIFFERENT STRUCTURE-VIEW COMBINATION STRATEGIES, OVER ITERATIONS (SUBGRAPHS)
VARYING FROM 1 TO 100 ON IMAGE BAG CONSTRAINED GRAPH DATA

In most cases, the subgraph evaluation criteria at bag-level are885

approximately 5% more accurate on both the DBLP and Image886

graph bag data sets. The only exception in Fig. 12(c) is that887

the graph-level TopK and IG approaches, under the ensemble888

structure-view combination strategy, perform 2% better than889

the related bag-level versions. By comparing the best accuracy890

over 100 iterations or subgraphs in Tables III and IV, we find891

that the bag-level subgraph evaluation criterion shows more892

improvement over graph-level baselines.893

3) Internal Performance Analysis in MSVBL: The above-894

mentioned comparison results with the bag- and graph-level895

baselines have demonstrated the superiority of the proposed896

MSVBL. Indeed, because MSVBL includes two relatively897

independent components: 1) dual bag- and graph-level mech-898

anism and 2) discriminative subgraph candidate generation,899

we want to carry out an internal performance study to better900

understand the actual role of each component. To investigate901

the efficiency of the dual level (unified bag- and graph-902

level) framework used in MSVBL, we implement an MSVBL903

version without using the graph level constraint, namely,904

bMSVBL. In consideration of the discriminative subgraph905

search used in MSVBL, another type of baseline dMSVBL906

approach that does not utilize the bag constrained discrimina-907

tive score for subgraph candidate generation is also imple-908

mented to further demonstrate the distinct performance of909

MSVBL.910

The detailed experimental results are reported911

in Fig. 14(a) and (b) for both the DBLP and Image912

Fig. 14. Experimental results for MSVBL on (a) DBLP and (b) image graph
bag data set.

graph bag data sets. dMSVBL is inferior to MSVBL when 913

the subgraphs are relatively adequate (i.e., ≥40). On the other 914

hand, MSVBL constantly outperforms bMSVBL without 915

using the graph-level constraint. The results also show that 916

when the number of subgraphs is less than 40, dMSVBL 917

without bag constrained discriminative subgraph selection 918

achieves comparable performance to the proposed MSVBL, 919

which indicates that effective discriminative subgraph features 920

cannot be identified with an insufficient number of subgraphs. 921

This observation is consistent with the bag constrained 922

subgraph quality analysis in Section V-D4. 923

In addition, graph-level approaches directly propagate bag 924

labels to graphs. This transfers the problem to an up-to-date 925

graph learning task with multiple structure views [11], where 926

the learning approach MSVGL is also used for comparison 927
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TABLE V

PAIRWISE t -TEST RESULTS. A DENOTES THE PROPOSED MSVBL, AND
B, C, AND D DENOTE dMSVBL, bMSVBL, AND

MSVGL, RESPECTIVELY

Fig. 15. Bag constrained subgraph quality on image graph bag data set.

with the proposed MSVBL. MSVGL first explores an optimal928

set of subgraphs as features to transfer MSV graphs into929

feature-vectors, with an AdaBoost [42] classifier being trained930

for final prediction. The results in Fig. 14(a) and (b) show931

that, in spite of the acceptable performance MSVGL obtains,932

it cannot reach the best performance achieved by MSVBL.933

In Table V, we report the pairwise t-test with confidence934

level α = 0.05. The p-values (less than 0.05) in each entry935

confirm that MSVBL statistically significantly outperforms936

bMSVBL, dMSVBL, and the state-of-the-art MSVGL.937

4) Bag Constrained Subgraph Quality Analysis: To validate938

the quality of the selected subgraph set, and check whether939

the informative subgraphs chosen by the proposed MSVBL940

can identify genuinely positive patterns, we report the results941

of the Image graph bag data in Fig. 15. In this figure, the942

x-axis denotes selected subgraph size. The y-axis denotes the943

precision of positive patterns, calculated by selecting the “most944

positive graph” for each positive bag (i.e., the graph has the945

farthest distance from those graphs in negative bags based946

on the subgraph feature graph representation (Definition 5).947

At the beginning of the subgraph generation, both MSVBL and948

dMSVBL have discriminative score criteria, so cannot obtain949

an accurate positive graph prediction, mainly because a small950

quantity of the subgraph set has very limited discriminative951

power. As the size of the subgraph set grows, MSVBL continu-952

ously increases and outperforms dMSVBL, which is attributed953

to the bag constrained discrimination used for subgraph mining954

in the proposed MSVBL approach.955

5) Sensitivity to Noisy Graph Bag Data: To validate that the956

proposed MSVBL is indeed robust and effective in handling957

noise in the bag constrained graph data, we investigate the958

noise sensitivity of MSVBL and baseline methods, including959

dMSVBL, bMSVBL, and MSVGL (the state-of-the-art graph960

learning task with multiple structure views) on both DBLP961

Fig. 16. Comparisons on noisy graph bag set with respect to different noise
levels (s values) on (a) DBLP and (b) image graph bag data set.

and Image graph bag sets. Following similar settings as those 962

in [61] and [62], we manually inject noise into the graph bag 963

sets by randomly flipping the class labels (i.e., changing a 964

positive graph bag to negative, and vice versa) of s% graph 965

bags in the training data. As a result, the training set has 2*s% 966

graph bags with noisy labels (called noisy graph bags). 967

The results in Fig. 16 show that the proposed MSVBL is 968

more robust than dMSVBL, bMSVBL, and MSVGL. This 969

validates that combining cross structure-view subgraph feature 970

exploration and learning indeed help MSVBL to effectively 971

handle bag constrained graph data with noise. The increase 972

in noise levels results in a deterioration in accuracy for all 973

algorithms. This is because noise complicates the decision 974

boundaries and makes it difficult for the learner to sepa- 975

rate positive and negative classes. In contrast to MSVBL, 976

MSVGL seems to be the most sensitive to labeling noise and 977

suffers the most performance loss; this is because MSVGL 978

only considers the graph level and directly propagates bag 979

labels to graphs inside each bag. A mislabeled noisy graph 980

bag will generate several noisy graphs, which significantly 981

deteriorates the quality of the hyperplanes learned from the 982

data. 983

6) Time Complexity Analysis: All the methods used in this 984

paper have two major components: 1) subgraph mining and 2) 985

classifier building. The baseline approaches MSV-TopK and 986

MSV-IG under all three structure-view combination strate- 987

gies (i.e., local, global, and ensemble MSV) take O(gSpan) = 988

O(l(q)) for subgraph mining, where q is the number of 989

graphs, with l being the function based on the total number 990

of vertices and edges. In contrast, MSV-gSSC, MSV-gHSIC, 991

and the state-of-the-art MSVGL baseline approaches have 992

the complexity of O(l(q) + q2), where O(q2) reflects the 993

informative subgraph evaluation. All the MSV-based baseline 994

approaches use MIBoost as the classifier, where decision 995

dump is used as the weak learner. The computational cost 996

is O(mq), where m is the maximum number of iterations. 997

To sum up, the overall complexity of MSV-TopK and MSV-IG 998

is O(l(q)+ mq). MSV-gSSC, MSV-gHSIC. and the state-of- 999

the-art MSVGL will cost O(l(q)+ q2 + mq). 1000

The time complexity of subgraph mining in the proposed 1001

MSVBL will take O(l̄(q)) � O(l(q)), because the pro- 1002

posed pruning strategy in Section IV-D significantly reduces 1003

the subgraph search time. MSVBL uses a linear program- 1004

ming for classification with O(m(p + q−)), where p is 1005

the number of bags and q− is the number of graphs in 1006
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Fig. 17. Average CPU runtime comparison between MSVBL versus
uMSVBL, dMSVBL, bMSVBL, and MSVGL with respect to different
min_sup values on (a) DBLP and (b) image graph bag data set.

negative bags. Therefore, the corresponding overall complexity1007

is O(l̄(q)+ m(p + q−)), O(l̄(q))� O(l(q)).1008

7) Efficiency of the Pruning Strategy: For the purpose of1009

evaluating the efficiency of the pruning module of MSVBL1010

as described in Section IV-D, we implement a uMSVBL1011

approach with no pruning module and compare its runtime1012

performance with MSVBL, from which we can demonstrate1013

the efficiency of the pruning module. In our implementation,1014

uMSVBL first exploits gSpan to mine a frequent subgraph set,1015

and then finds the optimal subgraph features by applying the1016

same criteria as MSVBL. We also report the runtime perfor-1017

mance for the MSV-based baselines and the state-of-the-art1018

MSVGL. Because the MSV-TopK and MSV-IG have similar1019

runtime performance, we use only one line MSV-TopK/IG1020

to represent them. The same case can be found in1021

MSV-gSSC/gHSIC.1022

The results in Fig. 17 show that increasing min_sup1023

values results in the decrease in runtime of unbounded1024

uMSVBL, MSV-TopK/IG, MSV-gSSC/gHSIC, and MSVGL,1025

mainly because a larger min_sup value reduces the number1026

of subgraph candidates for validation. By using a pruning1027

strategy (i.e., the constraints including threshold min_sup1028

and upper bound £̂gs = max(ζ−gs
, ζ+gs

) + f	s L̂ fs as shown1029

in Algorithm 1), MSVBL’s runtime performance is relatively1030

stable with respect to different min_sup values. This obser-1031

vation demonstrates the superiority on runtime performance1032

over the unbounded version, especially when min_sup is small.1033

Of all the MSV-based methods, MSV-gSSC/gHSIC consumes1034

more time than MSV-TopK/IG, because the calculation of1035

the discriminative subgraph criteria (gSSC/gHSIC) is more1036

complicated than IG or TopK. Overall, MSVGL is the most1037

time-consuming, because it requires extra time to ensure1038

minimum redundancy.1039

VI. CONCLUSION AND FUTURE WORK1040

This paper investigated a novel bag constrained graph1041

classification task under multiple structure views, where the1042

object for classification is a graph bag whose class label is only1043

available at the bag level (but not available for graphs inside1044

each bag). We argued that many real-world objects contain1045

structure information from different structure views, and MSV1046

bag constrained graph representation provides an effective way1047

to preserve structure and complicated features of the object for1048

learning. To build a learning model for MSV bag constrained 1049

graph classification, we iteratively select the most discrimina- 1050

tive subgraphs, across different structure views, to minimize 1051

loss on a learning objective function. By joint regularization 1052

across multiple structure views, and enforcing labeling con- 1053

straints at bag and graph levels MSVBL is able to discover 1054

the most effective subgraph features across all structure views 1055

to directly optimize learning. The key contribution of this 1056

paper, compared with existing works, is threefold: 1) a new 1057

MSV bag constrained graph classification problem formulation 1058

to advance the fundamental graph classification task; 2) a 1059

cross structure-view search space pruning strategy; and 3) a 1060

combined cross structure-view subgraph feature exploration 1061

and learning method. 1062

We believe that the proposed multiple structure-view- 1063

based graph classification opens a new opportunity to expand 1064

existing multi-instance learning and multiview learning to 1065

increasingly popular graph applications. Although all tech- 1066

niques proposed in this paper are based on using frequent 1067

subgraphs to represent different structure views, the principle 1068

of combining graph- and bag-level constraints can be extended 1069

to many other types of approach, such as graph kernel and 1070

graph matching [63] techniques. 1071
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