A. Supplementary material
A.1. Qualitative results

We show visual results on more examples of chairs in
Figure 2, 3, 4, 5, more mugs in Figure 6, 7, 8, 9, and more
airplanes in Figure 10, 11.

A.2. Poisson mesh stitching

We use a Poisson-based approach to combine the syn-
thesized joints with the meshes of the aligned parts to cre-
ate a seamless final model. We first discretize the implicit
function for the joints into a voxel grid of resolution 1283
and convert it into a mesh using Marching Cubes [4]. The
Poisson mesh stitching between this mesh and the mesh of
the aligned parts has three phases: (i) finding corresponding
loops between the input parts and the synthesized joints, (ii)
removing redundant regions from the joint mesh and (iii)
Poisson mesh blending.

As described in the method section of the main paper,
we erode the part meshes to avoid potential topological mis-
matches. When eroding the part meshes, the open bound-
aries of the eroded parts are given as directed loops as
shown in Figure 1 (a) and (c). To blend them with the syn-
thesized joint mesh, corresponding loops in the joint mesh

. Poisson
‘ Poisson) i blond
blend

) Poisson ,r\s Poisson ‘

blend) \)0’ blend

(a) Input part A (b) Symhes%%ed (c) Input part B

joint

(d) Poisson blending
with the joint

(e) Poisson blending
directly without joint

Figure 1: Poisson blending with synthesized joints. (b)
shows the synthesized joint mesh for two input parts A and
B. Corresponding loops are shown for the handle (red) and
for the body (blue). (d) shows the output of our full pipeline
which blends the parts with the synthesized joint region. (e)
shows the result of naively blending the loops in A and B
without the synthesized joint.

are needed. We employ a simple approach based on nearest
neighbor search to establish these correspondences as fol-
lows.

Let us denote the loop in the input part as S and the loop
in the synthesized joint as 7. The joint is denoted as X.
The first step is to define a metric to measure the distance
between a point in S and a point in X. We consider both
euclidean distance and normal consistency and define the
distance as

D(p,q) = |lp — qll2 - (2 — npny)
where n, is the surface normal of point p.

We randomly sample a point in S as initial point, and
find its closest vertex in X as the first point in 7. Then we
keep adding new points to 7" iteratively. The algorithm is as
follows.

ALGORITHM 1: Finding corresponding loop

Input: circular array S that contains the vertices
forming the loop in the input part;

Input: vertices X and undirected edges E of the
joint;

Input: distance metric D;

Output: queue 7' that contains the vertices from X
forming the loop in the joint;

Initialize T = O;

r = arandom integer;

initS = S[r];

initT = the closest point to initS in X, according to
D;

T .push(initT);

r=r+l;

nextS = S[r];

nextT = initT;

while nextS # initS do

N = neighbor vertices of nextT in X according
to F;

nextT = the closest point to nextS in N,
according to D;

if nextT # T.head then
‘ T .push(nextT);

end

r=r+l;

nextS = S[r};

end

if T.head = T .tail then
T'.pop();

Return T';

else
‘ Return None;
end

Note that there is a chance that the algorithm cannot find

a loop, i.e., returning “None”. In our implementation, we
try several different initial points in S to find a loop. If they
all fail, we ignore this loop and move to the next loop in the
input parts. In addition, the returned loop may contain sev-
eral smaller sub-loops. In this case, we only use the largest
sub-loop.

After finding corresponding loops as shown in Figure |
(b), there are redundant regions of the synthesized joint
mesh which need to be removed before we can do Pois-
son mesh blending. Since the loops are directed, after split-
ting the joint mesh using the loops, each component can be
marked as “inside the part” or “outside the part”. We re-
move the components that are detected as “inside the part”.

After the above two steps, we use an existing Poisson
mesh blending algorithm [6] to merge the synthesized joint
mesh with the aligned part meshes. The Poisson blending
can operate directly on the input part meshes which ensures
faithful preservation of the original mesh detail without sur-
face resampling and remeshing. Note that after blending,
there might be seams between the boundary of the joint and
the boundary of the parts. We generate a ring of triangles to
fill the gap between any two corresponding loops to obtain
a seamless final model.

Figure | (e) shows the result of blending part A to part
B directly without the joint. Without the joining mesh,
the ends of the handle are swollen to fit the irregular open
boundaries of the body. Compared to directly blending the
input parts, a much better stitching result is obtained by
using our synthesized joint mesh to connect the parts, as
shown in Figure 1 (d).

A.3. Details of part preprocessing

We use a part-wise point cloud representation in our neu-
ral processing. We create it by first sampling 16384 points
on each shape using Poisson-disk sampling, segmenting the
resulting point set into parts [5], and randomly sampling
2048 points on each part with uniform probability. Each
resulting point cloud is normalized so that its centroid is at
the origin and its bounding box has unit diameter. To ensure
that parts can be merged together, we eliminate topological
mismatches and poor segmentation boundaries by eroding
the inputs around the joints. For each point, we compute
the distance to the segmentation boundary and if it is less
than a threshold 7, the point is excluded. As an additional
benefit, erosion also enables us to train the joint synthesis
network in a strongly-supervised fashion, since the network
has to complete the eroded regions in a training shape. Here,
erosion puts the training and testing scenarios on a common
footing by forcing both to process similarly eroded parts, in-
stead of trying to synthetically simulate real-world cutting
and joining errors for training.

A.4. Details of network architecture

In this section, we provide detailed architectures of the
PointNet++’s used in our part alignment network and joint
synthesis network. Recall that in our part alignment net-
work, we use a PointNet++ to compute the shape features
for input parts. We denote this PointNet++ as PointNet++
A. Also, in our joint synthesis network, each input part is as-
signed a two-branch point cloud encoder. The first branch
of the part encoder is a PointNet++ network for extracting
overall shape features from the parts, and we denote this
PointNet++ as PointNet++ B. The second branch is another
PointNet++ network for extracting localized shape features
from the points that are close to the joint area, and we de-
note this PointNet++ as PointNet++ C.

A set abstraction layer of PointNet++ is denoted as
SA(M,r,N,[ly,...,lq]) where M is the number of local
patches, r is the radius of balls that bound the patches,
N is the number of sample points selected in each patch,
[l1, ..., 14] are the widths of fully-connected layers used in
local PointNet.

The architectures of the three PointNet++ encoders are
as follows.

PointNet++ A: Input — SA(256, 0.2, 128, [64, 64,
128]) — SA(128, 0.4, 128, [128, 128, 128]) — SA(l, inf,
inf, [128, 128, 128]) — feature

PointNet++ B: Input — SA(256, 0.1, 128, [64, 64,
128]) — SA(128, 0.2, 128, [128, 128, 128]) — SA(l, inf,
inf, [128, 128, 128]) — feature

PointNet++ C: Input — SA(256, 0.05, 128, [32, 32,
64]) — SA(128, 0.1, 128, [64, 64, 128]) — SA(1, inf, inf,
[128, 128, 128]) — feature

A.5. Details of network training

The part alignment network is trained for 200 epochs
with batch size 8. We use an Adam optimizer with learn-
ing rate 0.001. The training time for each data category is
provided in table 1.

Chair | Airplane | Mug
Part alignment network | 3.0 2.1 0.1
Joint synthesis network | 32.7 17.4 1.4

Table 1: Training time (hours) on an RTX 2080 Ti GPU.

As the point cloud encoders and the IM-decoder in our
joint synthesis network require different learning rates for
training, we first pre-train the two-branch point cloud en-
coders for 100 epochs by pairing it with a fully connected
decoder [1] for reconstructing 3D shape parts. The learn-
ing rate starts at 10~2 and is halved after every 20 training

epochs, until reaching 1.25 x 10~%. We pair the pretrained
point cloud encoders with the IM-decoder, and train the IM-
decoder with the loss function Lijoine = Lmgse for 80 epochs,
with learning rate 10~*. To reduce training time and get
more robust output, we train the IM-decoder in a coarse-to-
fine manner. First, the network is trained by downsampled
point samples (2k samples). Then, we double the number
of samples every 20 epochs, until the number reaches 32k.
Finally, we train the encoders and the IM-decoder together
with the loss function Ligin = Lmse + 0 Lmaich for another 80
epochs. The default batch size is 1. The optimizer is Adam.

In an early stage of our experiments, we noticed that the
joint synthesis network did not work well in predicting con-
nections for chair back with bars. After a close examination
of the chair dataset, we found this is because only about
10% of chairs have bars in their back. Therefore, we did
a simple data augmentation for the chair dataset by dupli-
cating the examples with back bars by 4 times (We did the
same augmentation for all methods in our comparison ex-
periments). After the data augmentation, our joint synthesis
network works pretty well for chairs with back bars. For
example, the second chair in the teaser of the paper, and the
second row in Figure 2.

A.6. Details of baseline networks

We consider two voxel-based shape completion base-
lines that can be applied to our problem: 3DCNN and
3DResNet. In the two baselines, we use architectures that
perform shape completion akin to image translation tasks.
Unlike encoder-decoder architectures such as AtlasNet [2]
and PCN [7], these methods do not have a bottleneck layer,
and they only modify input in a relatively local manner.
Thus, they do not have the challenge of reconstructing the
entire shape from the latent code, and might be better at
preserving the geometry of the original parts. The 3DCNN
and 3DResNet have similar architectures, but the latter uses
residual skip connections. 3DCNN has 12 layers that grad-
ually downsamples the input voxels to 162 and upsamples
to the output resolution; 3DResNet mimics the ResNet [3]
structure for image translation used in CycleGAN [8]: we
simply replace 2D convolutions with 3D convolutions. The
resolution of input and output voxels is 128% due to the
hardware (GPU memory) limitations. We train the two
baseline networks on individual categories for 1 million it-
erations each. When testing, we use marching cubes [4] to
obtain the meshes from the output 1283 voxels.

References

[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.
Learning representations and generative models for 3d point
clouds. In ICML, 2018. 2

(2]

(3]

(4]

(3]

(6]

(7]

(8]

T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. Atlasnet: A papier-maché approach to learning
3d surface generation. CVPR, 2018. 3

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016. 3

W. E. Lorensen and H. E. Cline. Marching cubes: A high res-
olution 3D surface construction algorithm. In ACM Trans.
Graph. (SIGGRAPH), volume 21, pages 163-169. ACM,
1987. 1,3

L. Yi, V. G. Kim, D. Ceylan, L.-C. Shen, M. Yan, H. Su,
C. Lu, Q. Huang, A. Sheffer, and L. Guibas. A scalable ac-
tive framework for region annotation in 3D shape collections.
SIGGRAPH Asia, 35(6):1-12, 2016. 2

Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y.
Shum. Mesh editing with poisson-based gradient field manip-
ulation. ACM Trans. Graph., 23(4):644—651, 2004. 2

W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn:
Point completion network. In 3DV, 2018. 3

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-
to-image translation using cycle-consistent adversarial net-
workss. In ICCV, 2017. 3

: , ‘ =3
4 =)
g
, E
¥ 1 N ' .a..o
, ,, A ..m
i] 1 B 2
, , =
i /
3 E)
=
" Q
- G
a ~ ,» 4\ . | m w
,, = @2
; | - = o
2 § v A
- i : 3
[/ & X
(]
(]
e
m
-I\‘ m ..
L 1 %/ . mc 4
ﬂ,. . 5, ‘ ; _1 m
; , m u
, m .Wc
,m F
. Q } m
m

I,. I\ j
HW'WQ.@.MW.HM
7 D o 9

o O
Ky
&

(|

”,l
=
B

\/

===

l”

(a) Input parts (b) Our final alignment (¢) Our final joint (d) Our final blending result (e) Assembly-by-alignment

Figure 5: More examples of chairs.

= ¥ BN F

(a) Input parts (b) Our final alignment (¢) Our final joint (d) Our final blending result (e) Assembly-by-alignment

Figure 6: More examples of mugs.

(a) Input parts (b) Our final alignment (¢) Our final joint (d) Our final blending result (e) Assembly-by-alignment

Figure 7: More examples of mugs.

| -
|-e S

(a) Input parts (b) Our final alignment (¢) Our final joint (d) Our final blending result (e) Assembly-by-alignment

Figure 8: More examples of mugs.

(a) Input parts (b) Our final alignment (¢) Our final joint (d) Our final blending result (e) Assembly-by-alignment

Figure 9: More examples of mugs.

OO O
I i
GUCR L NN N Y
*Aﬁﬁﬁ;gkﬁz

/./_ ./\/‘ _/\/,;4 N

(d) Our final blending result (¢) Assembly-by-alignment

oint

(¢) Our final j

(b) Our final alignment

(a) Input parts

Figure 10: More examples of airplanes.

b % \

amples of airplanes.

Figure 11: More ex

