

Novel Approaches to Vision and Motion Control for
Robot Soccer

Manu Chhabra*, Anusheel Nahar, Nishant Agrawal, Tamhant Jain+,
Amitabha Mukerjee, Apurva Mathad and Siddhartha Chaudhuri++

*Department of Computer Science

Rochester University
Rochester, NY 14627, USA

Email: manuc@cs.rochester.edu

+(formerly of) Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

Kanpur 208016, India

++Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

Kanpur 208016, India
Email: {amit, apurvams, sidc}@cse.iitk.ac.in

Abstract
In this paper we present innovative solutions to two major challenges faced in the design and
construction of a Micro-Robot Soccer team. First, we examine the vision system, which requires
very fast processing of images (60 Hz) for recognizing, segmenting and tracking coloured blobs
across the playing field. This work introduces a simple neural network-based colour recognition
module, followed by robust segmentation based on MacQueen’s method. This approach results in
reliable detection and tracking even when the robots are fairly close to each other. Second, we
look at the strategy and motion control system, in which we use potential fields to compute
strategy, low-level decomposition to break up a complex trajectory into a sequence of primitive
motions, and PID controllers to drive the robot along this path.

Key Words
Robot Soccer, MIROSOT, Neural Networks, Colour Segmentation, Tracking, Trajectory
Decomposition

1. INTRODUCTIO N

Robot Soccer, since the idea was born in
1995 in the Korean Advanced Institute of
Science and Technology, has been an
intriguing field of research in Robotics and
Artificial Intelligence. The game consists of
two teams of robots playing a scaled-down
version of soccer (association football). Robot
Soccer is a multidisciplinary project, involving
research in motor control using a
microcontroller, radio communication, image
processing and strategy programming. Various

Robot Soccer championships are organis ed
under the Federation of International Robot-
Soccer Associations (FIRA) and Robocup.
Robot Soccer serves as a rigorous testing
ground for advanced technologies in
autonomous agent control and collaboration
between artificial agents. We maintain a team
of robots which participates in the MiroSot
(Micro-Robot Soccer Tournament) division of
the FIRA games. In this paper we describe
some of the approaches that we have
developed/implemented in order to
successfully play a game of Robot Soccer.

2. THE ROBOT SOCCER GAME

A Micro-Robot Soccer match is played
with two teams of three robots on a 1.5m x
1.5m field. Each robot (excluding the
communication antenna) must fit into a 7.5cm
cube. The ball is an orange golf ball. Each
team is assigned either the colour blue or the
colour yellow: the team colour should occupy
atleast 60% of the top surface of the robot.
Colours other than orange, yellow and blue
may be used for marking orientation detection
patterns on the top surface.

The playing field is black, with white

markings to indicate the outer boundary, centre
spot, half-line, penalty boxes, and certain
reference positions. The playing field
establishes the frame of reference for
computation.

Our setup uses a Canon YC -100 camera
mounted 1.5m above the playing field. The
analog input of this camera goes to the frame
grabber connected to a computer, which
digitizes the input and dumps it into a buffer.
Software routines then analyse the input data,
detect the positions of various objects on the
playing field, comp ute game strategies and
send motion commands to the robots. A
schematic diagram of the setup is shown in
Figure 1. A view of the field as seen by the
camera is shown in Figure 2.

3. VISION

To accurately determine the positions of
the robots and the ball, we need to analyse the
image captured by the overhead camera. Since
each object in the image is colour-coded, the

first step is to identify the regions of the image
with a specific colour. This is followed by
position identification and tracking. In this
section we present our implementation of these
steps, with some prefatory background
material.

3.1. Colour

The sensation of light arises when the
human retina (or more precisely, the cone cells
present in the retina) is stimulated by
electromagnetic radiation. These cone cells are
responsible for the sampling of different
wavelengths present in the visual field. There
are three different types of cone cells , each of
them sensitive to a different wavelength.
Typically these wavelengths are 445, 535 and
570 nm, perceived respectively as red, green
and blue. Any colour in the visible range of
light (380 - 780 nm) may be described as a
weighted combination of the red, green and
blue primaries. The sensation induced by light
has not only a physiological but als o a
psychological (subjective) component [1].
After being sampled by the human optical
system, the visual information is fed to
structures of the nervous system: in essence, a
cognitive function acts on the sampled
electromagnetic waves. Hence, when a person
observes some colour (with any saturation or
brightness), this colour is immediately
classified as belonging to one of a number of
previously known classes, such as purple, red
or yellow. However, the exact procedure for
classification and the range of each class is not

Fig. 1: The Micro-Robot Soccer Setup

Fig. 2: View of the field captured by the
overhead camera

well-established. It has been observed that the
psychological characteristics of an individual
influence the classification of colours.

3.2. Colour Representation

Colour can be described in two ways:
physically or perceptually. Some perceptual
measurements are:

1. Hue: Distinguishes the dominant
wavelength. A person subjectively
perceives dominant wavelengths, i.e.
colours.

2. Saturation : Describes the purity of a
colour, on a scale between a
monochromatic wave (pure colour)
and white light (a mixture of all
colours).

3. Brightness: Evaluated by establishing
a visual intensity equivalence with a
shade of grey.

4. Luminance: Closely linked to
brightness, and measured in units of
luminous flux.

Physical measurements typically try to

represent colours as a combination of certain
primary colours. It has been shown [1] that the
stimulus induced in cone cells by incident light
of any colour may be reproduced by a
combination of light of certain “pure”
wavelengths. In order to uniquely specify a
given colour, it is possible to add together
three primary colors (trichromatic
representation) in amounts such that their
additive mixture matches the given colour. In
choosing the primary colours, we must ensure
that they are independent of each other, i.e.
some mixture of two primaries should not
produce the third. Once the primaries of a
system are chosen, it is usual to represent them
as an orthogonal basis of a space in which any
colour is identified by the triple of values
specifying the individual amounts of the three
primaries that constitute it. Let X, Y and Z be
three primaries of a colour system. The plane
having equation

X + Y + Z = 1

is called the Maxwell plane or chromancy

plane, as shown in Figure 3. Spectral colours
(pure colours) are represented in the Maxwell

plane by points on a curve called the spectrum
locus. The shape of the spectrum locus
depends on the choice of the primary colour
vectors. The spectrum locus encloses all
possible combinations of the chosen primaries,
i.e. all possible colours without the variation
due to luminosity. The complete colour space
is 3-dimensional.

3.2.1. The RGB Colour Space

It is natural to choose the retinal primaries
as the basis of our colour space. In practice, the
actual wavelengths used are 235.8, 546 and
700 nm, perceived as red, green and blue. The
primaries are denoted by R, G and B
respectively.

3.3. A Review of the Problem

Let us consider Figure 4, which is an
image of some sheets of coloured paper
captured by a digital camera under a
fluorescent light. In this image we find five
different classes of colours: blue, yellow,
orange, pink and black. Figure 5 shows the
location of each pixel in the RGB colour space.
This representation does not contain
information about the spatial arrangement of
the pixels in the original image.

We observe that the different colour
groups may be separated by edges in a suitable

Fig. 3: The Maxwell Plane

planar projection of the RGB space. The
problem of colour classification can thus be
reduced to the problem of finding the optimal
edges for a suitable partioning of the projected
RGB space. We note that these edges need not
be straight, or even regular.

3.4. Towards a Solution

In the past, several techniques have been
presented to identify different colours in a
scene. A survey can be found in [2]. However,
the emphasis has been on accuracy and shape
matching rather than speed. In our case, speed
is an important criterion since we require real
time control. Hence a fast, simple yet robust
technique to identify colour is essential. [3]
presents an algorithm to index and group
different colours available in an image,
resulting in distinct clusters, but we cannot use
it because it is too slow. A real time algorithm
proposed in [4] tracks a hand in an image
without supervision. In the field of robot
soccer, work on colour identification has been
mostly ad hoc. Teams have tried to use an
instance-based algorithm in which they
approximate a colour space with a cuboid. This
leads to obvious problems as (a) colour spaces
are not cuboidal and (b) because the intensity
of a single colour may vary over several
frames and at different positions in the field.
The commercially available robot soccer
system by Yujin Robotics frequently loses
track of the robots and the ball over time when
they move from one place to another. This
system uses background subtraction and
Gaussian filtering to remove noise [5],
followed by an instance-based colour
identification algorithm to identify patches.

3.5. An Instance-Based Algorithm to
Identify Colours

We initially used a simple algorithm to
classify colour. The training input was a set of
positive examples, each example being a
colour vector of the form <R G B> . To train
the system to recognise, say, the yellow colour,
about 100 pixels in different shades of yellow
were provided as input to the program. The
mean and the standard deviation were
calculated for the set and stored. We classified
a test pixel as yellow if its <R G B> vector lay
within the standard deviation dis tance from the
mean in 3D RGB space. This scheme is very
fast and fairly accurate if we give examples
over multiple frames and create a linked list of
means and standard deviation for each frame.
However, it frequently produces false
positives. Hence we had to abandon this
approach.

3.6. A Neural Network-Based Algorithm to
Identify Colours

After identifying the limitations of the
instance-based algorithm, we decided to
implement a back-propagation neural network
to identify colour. This choice was influenced
by the fact that artificial neural networks have
been successfully used in many pattern
classification applications where the class
boundaries are not clearly specified. Their key
features are:

• Ability to approximate almost any
function.

Fig. 4: An image with five
distinct colours

Fig. 5: The five colours of Fig.
4, plotted in RGB space

• Ability to answer queries (by
interpolation) for regions in which the
network was not trained.

• Ability to learn from examples.
• Robustness over errors in training.

In our implementation, three input nodes

received the R, G and B values of the pixel.
The output was a single node, for which a
value of 0.9 denoted a positive response and
0.1 denoted a negative response. A friendly
and flexible Graphical User Interface (GUI)
was created as a front-end for the training
module. The GUI can be used to load, save,
reset and test a neural network. It also
simplifies the process of grabbing multiple
images. Training pixels are selected by
clicking on the grabbed image. Positive and
negative examples were fed to the network
using this GUI and the examples were used to
train the network over several thousand
iterations. Experiment showed that 2000
iterations over positive and negative examples
across several frames with 10 hidden nodes
gave the best results. Adjusting network
parameters and retesting undoubtedly formed
the most time -consuming part of the project. A
major advantage of using the neural network is
that it does not identify too many false
positives.

3.6. A Neural Network-Based Algorithm to
Identify Colours

The iterative nature of a neural network
computation makes it unsuitable for fast real-

time processing. To speed up the computation
drastically, we used the brute-force method of
storing the neural network outputs for a
discrete set of inputs (256 values of R x 256
values of G x 256 values of B) as a lookup
table. Now we could replace the iterative
computation by a simp le table lookup. Of
course, this approach needed a large amount of
memory, and we were forced to invest in an
extra memory card for our main computer. The
results were worth the expense: the rate of
computation, measured in a test run of the
robots, increased from about 10 frames
processed per second (fps) to 60 fps.

3.7. Initial Identification

Let us assume the team colour is blue. We
scan the entire image to identify all blue pixels
by consulting the neural network lookup table.
There will be three patches of blue pixels in
the scene, one corresponding to each robot. To
identify these patches, we apply a clustering
method.

3.7.1. MacQueen’s K-Means Clustering

The k-means clustering algorithm uses an
interchange (switching) method to partition a
graph into clusters. An initial partition is given,
and new partitions are obtained by switching
an object from one cluster to another.
MacQueen's method starts by randomly
picking k points, each corresponding to a
cluster to be made. A set of points is taken
from the graph, and each point is added to the
closest cluster (the “closeness” of a cluster is
measured as the distance to its centroid – the
mean position of its points). We then iterate
over all points, checking if, for each point, the
closest cluster (in the updated structure) is no
longer the one to which it belongs. If this is the
case, we move the point to the closest cluster.
When such a switch occurs, the centroids of
both modified clusters have to be recalculated.
This procedure is repeated until no more
switching takes place, after which we choose
the next set of points to add and proceed as
above.

Although the initial points may not
generate an optimal solution, MacQueen's
method reduces the sum of squared distances
(population variance) within the clusters to a

Fig. 6: Two robots recognized and
segmented by blue triangular markings

on their top surfaces

local optimu m. MacQueen's algorithm is
guaranteed to converge, hence the algorithm is
robust.

Once the blue pixels have been identified,
MacQueen’s algorithm is used to locate the 3
principal clusters (the 3 optimal means). This
establishes the spatial extents of the three
robots (Figure 6). The markings in the second
colour (we use purple) determine the
orientation of each robot, and identify whether
it is one of the two strikers or the goalkeeper.
A similar procedure locates the opponent’s
robots.

3.8. Object Tracking

Evidently, scanning the entire frame (640
x 480 pixels) for blue pixels is expensive. We
need to exploit the fact that the physical
motion of the robots is continuous and not very
fast, hence the change in position between two
successive frames is small. Given the position
of a robot in one frame, its position in the next
frame will lie in the immediate neighbourhood
if its velocity is not too large. This reduces the
size of the search space considerably.

To do this, we must keep track of the
locations of the robots and the ball. For each
frame, we use the position information from
the last few frames and the frame rate to
compute the expected location of the object. A
window of fixed size (say thrice the size of the
robot) centred at this point gives the bounds of
our search. If we find that enough pixels of the
appropriate colour do not lie in the window,
we double the window size and repeat the
search.

We obtained tracking speeds of up to 60
frames per second with this setup in an
interlaced image.

4. STRATEGY

4.1 Potential Fields

The objective is to design a reactive
strategy function which will indicate the
appropriate actions of each robot in different
configurations. Designing such behaviors
involves planning for the individual robot as
well the team dynamics, thus the reactive
function is defined on a state vector which
consists of the position and orientation relative

to goal, position and headings of other robots
(opponent/self team), ball ownership, etc.
Now, based on the current task (defence, pass
receiving, striking, etc.), a suitable reactive
strategy has to be defined. In our approach,
this is done by defining the strategy as a sum
of several multi-dimensional fuzzy functions
more popularly known as potential fields [6].
In this approach the robot is represented as an
entity under the influence of several artificial
potential fields whose local variations are
expected to reflect the favourability of a
particular action concerning that region. The
potential functions are defined over entire
field: lower potentials move the robot towards
a more favourable location (e.g. closer to the
ball or closer to the goal), higher potentials
repel the robot from unfavourable locations
(e.g. away from opponent robots).

4.2 Fields Used

Defensive
• Goal Field: favours own goal.
• Obstruction Field : favours positions that

obstruct the opponents’ paths.

Offensive
• Opponents’ Goal Field: favours

opponents’ goal.
• Ball Occlusion Field: Avoids

Fig. 7: The goal field. Darker regions are
unfavourabl e, lighter regions favourable.

configurations that will result in the ball
being struck close to an opponent robot.

Miscellaneous
• Energy Conservation Field : favours nearer

positions, to save time taken to move
there.

• Ball Field: favours positions near the ball.
• Point Occlusion Field: avoids positions

blocked by opponent robots.
• Other Player Field: avoids collisions with

other players.

These fields are modelled with exponential or
inverse linear functions. For example, the goal
field has the function

Fieldg = kg * (distg)
ng

where distg is the distance of the robot from its
own goal, and kg and ng are parameters.

4.3 Superimposing Fields

Depending on the nature of play required
(offensive/defensive) the fields are assigned
appropriate weights and combined linearly.
Figure 8 shows the result of this approach in
defense mode.

4.4 Iterative Improvement

We established strategy groundtruths for
different situations by polling a large number

of human experts (Delphi approach). The
deviations of the potential field strategy from
the groundtruths were recorded. These were
then used as fitness measures in a genetic
algorithm which iteratively improved the
parameters used to define the potential fields.

5. MOTION CONTROL

The basic problem is control of a
nonholonomic robot. Each of our robots has
two traction wheels, which are completely
independent of each other (they have
individual motors and can be separately
programmed). This enables very tight turns
(including point rotation) and complicated
manoeuvring, but accurate calibration is
necessary for straight line motion and path
following. PID control is useful in this regard.

5.1 Trajectory Decomposition and Minimal
Systems

Due to the limited amount of processing
time available to the robot for dynamic
strategy planning (a large part of the timeslice
is taken up by the vision system), the collision
avoidance and motion code has to be kept as
minimal and efficient as possible. Simple
strategies have traditionally worked better than
more complex and less robust ones. We were
inspired by the approach of the Spirit of
Bolivia robot soccer team to “fully exploit
minimal systems ” [7]. This approach
decomposes complex trajectories into very
simple primitives. We are in the process of
implementing and testing a small library of
routines that allow straight line motion, target
approach and orbiting motions (clockwise and
anticlockwise). These basic actions can be
combined to generate more involved
sequences .

5.2. Path Following

We use software PID controllers to keep
the robot on the designated path. An error
value is computed taking into account
deviation in both orientation and location. A
linear combination of this error value, its
integral and its derivative (with respect to
time) is used for generating the feedback (a
correctional angular velocity). A

Fig. 8: Defensive field for a sample
configuration. The white robot will

preferably move back to defend its goal.

straightforward calculation determines the
individual wheel velocities, assuming
maximum possible linear speed is to be
maintained.

5.3 The Goalkeeper

The goalkeeper is a special robot which
moves parallel to the centre line in the penalty
box region and tries to stop the ball with its
side. It is the last line of defense and has to be
fairly robust. This robot should position itself
at an optimal point in the goalkeeping area so
that it covers the position from which the ball
is most likely to come. Our current code uses
an experimentally determined formula to
compensate for overshoots in the position of
the robot. We have determined that the amount
of overshoot is approximately linearly
proportional to the velocity of robot motion,
and are trying to refine the method using PID
control.

5.4. Simulation.

It is difficult to directly test new methods
for motion control, since the robot batteries get
drained quickly and long experimental runs are
not possible. Hence we designed a software
simulator for the micro-robot environment (a
screenshot is shown in Figure 9). The
simulator implements linear and rotational
collision dynamics [8]. It is parametrized and
highly configurable – we have tested non-
standard environments with more than one ball
and arbitrary polygonal fields. We are working
to adapt the interface of the simulator library to

be exactly the same as that of the actual robot
control module, and to generate images of the
virtual environment which can be fed to the
vision module for analysis. This would enable
the physical equipment to be efficiently
replaced by their virtual counterparts for
testing purposes. Of course, since such
simulations can never be entirely accurate, the
final testing will have to be on the hardware.

5. REFERENCES

1. S. V. Novakovsky, “Colour
television: A theory of colour
reproduction”, Mir Publishers, 1975.

2. M. J Jones, J. M. Rehg, “Statistical

color models with application to skin
detection”, Technical report,
Cambridge Res. Lab., Compaq
Computer Corp, 1998.

3. M. J. Swain, D. H. Ballard, “Color

Indexing”, Int. J. Computer Vision,
Vol. 7, No. 1, pp. 11-32, 1991.

4. Ying Wu, Qiong Liu, Thomas S.

Huang, “An Adaptive Self-
Organizing Color Segmentation
Algorithm with Application to Robust
Real-Time Human Hand
Localization”, Proceedings of Asian
Conf. on Computer Vision, 2000.

5. A. N. Venetsanopoulos and K. N.

Plataniotis , “Color Image Processing
and Applications”, Springer Verlag,
2000.

6. Jean-Claude Latombe, “Robot

Motion Planning”, Kluwer Academic
Publishers.

7. Birgit Graf, “Robot Soccer”,

Diploma Thesis, Fakultät Informatik,
Universität Stuttgart, 1999.

8. David Baraff, “An Introduction to

Physically Based Modeling: Rigid
Body Simulation”, SIGGRAPH ’95.

Fig. 9: Robot Soccer Simulator, in a
symmetric field with 5 balls

