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Abstract—We study the problem of locating sensors to detect conditions, we provide a subsidiary result for vertex pairs
the failure of any set of radiation sources in a system. For which we hope to be able to extend to the general case.
computing illumination data, we suggest the use of radiosity & fina| goal is to prove or disprove NP-completeness of
methods. We then consider the problem of optimising sensor h bl d . bi ial desi
placement to unambiguously identify any inactive sources. We t e. Pro em, ‘T’m use 'ts_ com 'nf"‘tor'a structure .to esign an
show that the problem can be transformed from a numerical to  €fficient algorithm that gives optimal or near-optimal sensor
a geometrical domain, relate it to set covering, and then attempt layouts. In this paper, we briefly describe the problem, suggest
to transform it into the domain of graphs. We present some g method for the generation of input data, examine the problem
resuilts on hypercube cutting planes that help us progress towards o metrically, establish a link with set covering, obtain some
the latter transformation by characterizing its combinatorial imole b d he si fthe i ! |
structure. Also, we outline an approach to estimate the size of SIMPIe bounds on the size of the input space, present results
the input space. that help us progress towards a graph formulation and finally

outline an approach to refine our estimate of the size of the
|. INTRODUCTION input space.

Optimal sensor placement is a challenging problem, not
least because optimality is variously defined in this context. II. THE PROBLEM

For instance, we may say a layout is optimal if it covers We will id : ithn. radiati W
every part of a region with the fewest possible sensors. ¢ wilf consider a region witin radiation sources. Vie are

In computational geometry, this aspect has been extensivg]ven a set of sensors that respond to the amount of incident

studied as the Art Gallery Problem [1]. Alternatively, a Iayourta¥j|atl0n as follows:

may be considered optimal if the sensor outputs are higtiach sensor hak threshold levelsr, 7»,...7, each greater

sensitive to changes in specific parts of the environment. than 0, andk +1 distinctoutput values;, vs,...v,4;. Let the
We will consider optimality in the light oerror detection radiant energy incident on the sensordéhe sensor output

Briefly, we are interested in finding which elements of a set ¢f defined as follows:

sources have failed. We assume we cannot examine the sources

directly, so we must resort to observing the readings from a out(e)

set of strategically placed sensors. We also require that we

must be able to unambiguously distinguish between different

sets of f_a|I|ng SOUrces. . . . Some of the sources may have been disabled or are malfunc-
We will show that our model has strong links with studle%l

V1 ife<mn
= Vi ifT7;,1§€<Ti,2§i§]€
Vg1 If € > 7k

: . : . oning, and hence do not contribute to the overall illumination.
qf linear separablhty.of point sets, common in heural netwo e assume that an active source always radiates with the same
Iltv_erature [9]. In_partlcular, our_work examines, among Othe(hon-zero) strength and the same directionality, and an inactive
things, the conditions under which a setwfbit binary strings source has zero strength. What is the minimum number of

(whip h are represented as vertices of the unit hypercgbeg@nsors that can always tell us exactly which of.theources
m-~dimensional space) may be separated from all othdait are inactive, and how do we place them?

binary strings by a hyperplane. Probabilistic estimates of theWe assume that the radiation incident on a sensor is the

linear separability of a set of points in general position lhear sum of contributions from all sources. Specifically, if

space have been derived in [4]. Later work addressed the 095,92 0 is the energy incident on thigh sensor due to thgth

when the points are not in general position, specifically Wh%@urce (when it is active), then, the total energy incident on
the input consists of the vertices of a hypercube [2]. We e ith sensor. can be wr,itten és

to formulate graph-theoretic conditions for a linear separation

of binary strings: this has the advantage of highlighting the e; = E;. X

combinatorial aspect of our sensor placement problem over

the geometric one. Although we do not yet have the genemhere E; = [e;1 €. ..e;,] and thesource vectorX =



[X1 X5...X,,], where For each sensor, there akeparallel planes, one for each

threshold value. For a set of sensors, there are a total of

nk planes. If the sensor output vector is unique for each

_ o ~source vector, then there must be at least one sensor that
We observe that our sensor model is essentially identical d@tinguishes between each possible pair of source vectors. In

the perceptron model of [9], with binary inputs, weights equ@knher words, the linear subdivision @™ induced by these

to the contribution of each source to the incident energy, an&nes must contain each vertex €%, in an unique cell

a thresholded output functiomuz. (maximal connectedn-dimensional region). We will require

I1l. DATA GENERATION WITH RADIOSITY that no plane contains a vertex. . .
The first step in attacking the problem is to gather illumi- If we connect each pair of distinct vertices@,, we obtain

clique i i 2™y 2m
nation data from different parts of the environment. As w&m. the hypercube cliquewith ( 2 ) = 0(2°™) edges. To

have seen above, we need to know the intensity distributi }‘?t?c?ri'?{ 22}‘2’3‘;3 alga?;s;bsl’z ?ﬁ;{iﬁgiggﬁrﬁ;ﬂwiguﬁ p:gﬁgs
due to each source separately. This can be done by switchii rsects the interio:oof everv edae of this ara E P
on the sources one at a time and measuring each sin(jﬁ1 - y edy grapn.

. o -~ At this point, let us define the following two concepts:

source illumination pattern. Such an approach may be tedious =~ _ S
and impractical. A reasonable alternative is to use a radiosityDefinition 1. A plane A.x = b is “non-negative” if all the
method [6] to simulate the illumination model. coordinates ofA are non-negative andl is strictly positive.

The surfaces in the scene are divided into a number W€ observe that each plane generated by illumination data for
patches, each patch small enough to be considered homdyEENSOr IS non-negative.
nous. A standard radiosity computation will give the incident Definition 2: A set of edges ofpcia < is “valid” if there
radiation at each patch. Let us performsuch computations, is some non-negative plane that intersects the interior of each
keeping exactly one (a different one) of the sources active edge in the set. Each valid set directly corresponds to an unique
each time. This will give the illumination at each patch duknear separation of the vertices of the hypercube.
to each source individually.

L V. SET COVERING
At a patchP, let the incident energy due to th¢h source ] ) )
be E;? > 0 when the source is active. Let us selecpatches We note that the problem is essentially a set covering

Pi, P,,...P, for placingn sensors. Then, for thih sensor, Problem. With each patch we may associate a sdt planes
we have and hence a set of intersected edge@fff?“*. We must select

patches so that the entire set of edge®fi¥ec is covered.
Unconstrained set covering is known to be an NP-complete
We recall that; is the total energy incident on théh sen- problem [8]. A simple greedy algorithm provides a solution

sor. We can write theensor input vectoB;,, = [e1 €>...€x]  within a factora(n) of the optimum, where is the size of

1 if sources is active
X, = . L. )
0 if sources is inactive

eijZSfiy 1<j<m

as: T the ground set and(n) = Inn — Inlnn + (1), with the last
Sin = EX term in [—0.31,0.78] [10]. Using the greedy algorithm, we
where can easily obtain a fair approximation to the optimal sensor

locations in polynomial time.
However, it is not established whether our particular prob-
The sensor output vectorS,..(S:) is defined as jem js NP-complete or not, since it is a constrained version
[out(e1) out(ez) ... out(en)]. Sout is the observable quantity of set covering. Certain subsets do not occur in the input;
in our system. Our task is to choose sensor locations such thgtipe edges in a such a subset cannot be simultaneously
Sout is Unique for each possiblg, so that we have a bijective jntersected by a set of parallel non-negative planes. For
mapping from sensor outputs to sets of inactive sources. example, in the 3-dimensional cube, it is easy to check that
IV. THE GEOMETRICAL PICTURE no single non-negative plané & 1) can intersect both the
ges([0 0 0],[1 0 0]) and([1 1 0],[1 1 1]) (see Fig. 1).
Let N, b the number of subsets thean occur. To prove
(or disprove) NP-completeness, it would be helpful to have
some idea of the relative size of the input space, i.e. the

E = [eij}nXm

The problem may be expressed geometrically. Let the inp%q
to theith sensor be; for source vectoX ande) for source
vector X’'. We say the sensddistinguishesbetweenX and

X' if out(e; t(el), i.e. if there is some threshold level™ ", cliquey .
betweﬁﬁ,e(f;fnfju (€) ratio Ny /|®|, where® = 9EDGES(Q:™) is the power set
L.

- g . m of the edges of the hypercube cliqgue. We note tligt =
Let us now consider then-dimensional spac&®™. We o EDGES(Qm)| _ (1) _ 9™ 2™ /2. Also. . is <imol
represent a point in this space &s= [z; z2...x,,]. Each = = - » V1 ply
source vectoiX represents one of th&" vertices of the unit the number of different linear separations of the vertices of
hypercubeQ,, in this space. Sensardistinguishes between the hypercube.
X andX’ if and only if there is some threshold leve] such VI]. SOME SIMPLE BOUNDS

o o
that X and X" lie on opposite sides of the plane Theorem 1:A plane must intersect at lea8t” — 1 edges

E;x=m, of Qcliaue if it intersects any edge and does not contain a

m



vertex, and at mos?>™~2 edges. Also, the number of different possible cuts @flia e is
Proof: Let plane A.x = b intersect at least one edgebounded by22™, the number of ways of separating the vertices
of Qcliave, Of the 2™ vertices, sayp vertices are on the into two sets. Each valid set corresponds to exactly one cut.
positive side of the planeAl.x > b) andg = 2™ — p vertices Therefore the number of valid sets is less tRdn, and
on the negative side. A pair of vertices on opposite sides of the Ny 92m
plane corresponds to an intersected edge. This is a bijective @ < NEol
mapping, since no intersected edge can join two vertices on 22
the same side of the plane. The graph defined by the vertice$Ve note in passing that the maximum number of cells in a
and intersected edges 6Jcie4 is thus isomorphic to the linear subdivision induced byl hyperplanes iR™ [7] is

— oB3x2m—a™)/2

complete bipartite grapk, , (Fig. 1). The number of edges in m I
such a graph is simplyg = p(2™ — p). The minimum of this Z ( )
expression i2™ — 1, and it is obtained whep or ¢ is 1. The i—o \Tt T

H ic92m—2 HE H _ _ om—1
maximum is27"~%, and it is obtained whep = ¢ = 2""". Tpig telis us that for isolating each &f* points, we need at

leastm hyperplanes. A set of, hyperplanes aligned with the
Theorem 2:There is at least one non-negative plane thabordinate planes (and with suitable intercepts) is an obvious
intersects exactl2™ — 1 edges ofQcleuc and at least one example that does the job. Interpreting these results for our
non-negative plane that intersects exaefl{’ ~2 edges. sensor layout, we find that at legst /%] sensors are required,
Proof: To prove the first part, we must show thagnd if we are lucky we may be able to make do with just this
some non-negative plank.x = b can isolate a single vertex. many.
Choose any positive, and make each coordinate Afgreater

thanb. The resulting plane has the origin on its negative side
and all other vertices ()Q’frlliqu6 on its positive side. The We would like to remove the geometrical Component and

number of intersected edgesa& — 1. transform the problem into the graph domain, so that we

To prove the second part, we must construct a non-negatf@ try to use the large body of results in graph theory that
plane that has half the vertices on its positive side and h&five been associated with studies of NP-completeness and
on its negative side. Let us make the first coordinateAof optimisation. As a first step, we shall construct a directed
greater tharb and all other coordinates 0. Since exactly hagraph that has some properties equivalent to those related to
the vertices of the unit hypercube have their first coordinat@e intersection of the hypercube clique with a plane.

1 and the rest have 0, this plane evenly splits the verticesWe Will use boldface to denote the position vector of a point,
The number of intersected edges2%"—2. (We note that the i-€. P is the position vector of.

edges and vertices on each side of this plane define graph§onsider a vertex of Q. Its position vectofu, us . . . uy]
isomorphic toQc" 4 m IS a bit vector, i.e. it contains only O's and 1's as elements.

moe Let us defineONES(u) as the index set of the 1's i, that
is,

VIl. TOWARDS A PURE GRAPH PROBLEM

ONES(u) = {i | uw; =1}

We observe that for any pland.x =b, where A =
[a1 as . . .am],

m
Au= g a;u; = E a;
i=1

i € ONES(u)

Consider two vertices: and v such that ONES(u) C
ONES (v), whereC denotes theroper subsetelation. Then
for any non-negative pland.x = b we haveA.u < A.v.
Consider thedirected hypercube grapbjm on the vertices
of Q... Its edges coincide with the edges of the hypercube
(those that join vertices differing in exactly one coordinate)
and are directed fron0 0...0] to [1 1...1], i.e. edge(u,v)

o 1 Bioar s formed by i on of a plane (qrey) _his present iffv has a 1 wherexr has a 0 and they agree in all
ig. 1. Bipartite graphK’> ¢ formed by intersection of a plane (grey) wit ;
the 3-cube clique. The black vertices are on one side of the plane and %@er coordinates.
white vertices on the other side. Thick lines denote intersected edges (som¢é. emma 1:There is a path of non-zero length fromto v
non-intersected edges have been omitted for clarity). in Q’ if and onIy if ONES(u) - ONES(U)

m .

Proof: If part : Successively change each Ounto 1, if

These results show that the size of each valid set is tighttyhas a 1 in that coordinate. After a finite humber of steps,

bounded above and below By™~2 and2™ — 1 respectively. we will obtain v, since ONES(u) C ONES(v). Each step




corresponds to an edge §f,,, since the initial and final values simultaneously. This implies that:
differ by exactly one 1. We see by induction that there is a

= . Au <A.
pathu ~ v in @,,. Also, sinceu # v, we must change a 0 A :i <A 11;;
to a 1 at least once, so the path has non-zero length. A < Avy
Only-if part : Consider any edgéu’,v’) on the pathu ~» Avi<Avy

v (there must be at least one such edge since the path h

non-zero length). By the construction &f,,, we know that
v’ is the same aw’ but for an extra 1. SOONES(u') C

ONES(v"). Further,C is a transitive relation. Applying this

inductively to the vertices in the path, starting from we
obtain ONES(u) C ONES (v). |

Since the subset relationship and path existen«ié,,irhave

RNow if the plane intersectéus, vo), we must have

Ay <b<Alvs,
Avy <b< A

or

In the first case, we havA.u; < A.up; < b andA.v; <
A .uy < b, so the plane cannot interseet;, v1). Similarly in
the second case, we havku; < A.vy < bandA.v; <

been shown to be equivalent, we will introduce a common né--v2 < b, so the plane cannot interseat; , v1).

tation for them. We say that — v if the following equivalent
statements hold:

1) ONES(u) C ONES(v) (C denotesproper subsgt
2) There is a path of non-zero length framto v in Q,,.

If v — w, then for any non-negative pland.x = b,
Au<A.wv.

We will now present a result abowilid pairs i.e. valid
sets of 2 edges.

the distinct edges$u,,v;) and (ug, v2) in Qc%ue if and
only if bothu, andwv; do not lie on paths from the origin
0=1[00...0] touy andws in Q,,, and vice versa.

Theorem 3:There is a non-negative plane that intersects

This is a contradiction, so our supposition was incorrect:
uy andwv; cannot both lie on paths from the origin 1@ and
vy in @,,. By an identical argument, with subscripts 1 ahd
interchanged, we can show that andv, cannot both lie on
paths from the origin ta;; andv;.

If part : We know that the configuration is allowed. We will
examine each possible configuration (afi, v1) and (uq, ve)
that does not contain any set of forbidden relationships.

The base configuration space is very large: each (pair)
from the set{u;,v1,us,v2} may be related a® — ¢, or
q — p, or not related at all, a total of 3 possibilities. There
are (‘21) = 6 possible pairs, so the total number of possible
configurations is3¢ = 729. Fortunately, three factors drasti-
cally reduce the number of configurations we must examine.
These are:

In other words, there is a non-negative plane that intersects|) There are many forbidden configurations.

(u1,v1) and (ug,vz) in Qcliaue iff the following do not hold
simultaneously (whem, vi, us andwv, are all distinct):

Ul — Uz, V1 — Uz, Uy — V2, U1 — V2
and also, the following do not hold simultaneously:

U2 — Uy, V2 — U, U2 — V1, V2 — V1

These “forbidden configurations” may be expressed graph-

ically as
U1 U1 u U1
|y e X
U V2 u (%

If the edges share a common endpoint, say= us = u,
then the forbidden configurations reduce to

u—- "1

L

U2

U<—~"11

v

U2

and

Proof: Only-if part (by contradiction) : There is
some non-negative plank.x = b that intersectgu,, v;) and

(u2,v2). Let us suppose, without loss of generality, that bo

u; and v, lie on paths from the origin ta:; and vs in
Qm, 1.e., u1 — usg, v1 — ug, u; — v9 and v; — vy hold

2) The subset relationship is transitive, so configurations
such as the following are equivalent:

Uy — U1 Uy — V1

L= N\

(%) (%) u9 V2
Also, configurations that contain a cycle do not occur
in our graph: we cannot haye— g — r — p because
this would imply thatp — p, which is impossible since
a set cannot be a proper subset of itself.
Symmetries may be exploited. We can (a) swap the
endpoints of either edge or (b) exchange the two edges,
without essentially altering the configuration and the
associated arguments.

We will enumerate all possible unique allowed configura-
tions (by unique we mean that we will not consider equivalent
configurations separately) and show that in each case, we
can construct a non-negative pladex =b, where A =
[a1 as...an), that intersects both the edges.

3)

A. uq, ug, v; and v, are distinct
We may divide the possible configurations into 7 cases, as

tWesented below. For lack of space, we will not prove each of

these cases in this paper. The complete proof may be found
in [3].



Case 1: Configurations with the following subgraph or its We observe that none af;, v, us, vo can be the origin
symmetrical equivalents: 0, since0 — p for any other vertexp of Q™. Therefore
|ONES (p)| > 0 for eachp € {uy, vy, uz2,v2}.

e u Let us consider the case WheénVES (u;) has an element
T not in ONES(vy) or ONES (v3). We seta; > b. Also, we set
U > Vo as = (b+¢€)/|ONES(ug)| for eachs € ONES (uz), s # t,
where a dotted line indicatesbsenceof the corresponding ar- ;>u0.;°\|bl other a;’s are set to 0. This gives u&.u, > b and
U9 .

row. If this subgraph is present, then for each ONES (uz),

setas = (b+¢€)/|ONES(us)|, ¢ > 0. Set all other coef-

ficients to 0. This givesA.u; > b and A.uy > b. Since

neither ONES (vy) or ONES(v2) contains all the elements of

ONES (us), € can be made small enough so thawv; < b and

A.vy < b. Hence the plane interseqts;, v1) and (uz, vs).
Some of the configurations in this class are:

ONES (v1) does not have, nor does it have all the elements
of ONES(u3) (else uy — vy1). Similarly for ONES(vs).
Therefore for small enough A.v; < b andA.v, < b.

.. This plane intersectéu;,v1) and (ug, vs).

In general, we can construct a plane in similar fashion
whenever the endpoint of an edge has a 1 where the other
endpoint of the same edge and at least one endpoint of the

Uy vy U <— U1 Uy <— V1 other edge have O’s.
T i T / l and T >< l If there is no such 1, then the following sets are empty:
uy vy Uy U Uy <— V3 ONES(u1) N ONES(0;) N ONES(us)
Case 2: Configurations with the following subgraph or its ONES(u1) N ONES(v1) N ONES(vs)
symmetrical equivalents: ONES(uz) N ONES(vz) N ONES(uy)
ONES(UQ) n ONES(UQ) n ONES(Ul)
o u ONES(v1) N ONES(u1) N ONES(uz)
i L ONES(vy) N ONES(u1) N ONES(vs)
Ug < V2 ONES(v3) N ONES(uz2) N ONES(uy)
where a dotted line again indicates absence of the correspond- ONES(v2) N ONES(uz) N ONES(v1)

ing arrow. If this subgraph is preser®NES(v;) must have
some element not in ONES (uz), hence not inONES (uq)
either, and ONES(v2) must have a similar element (s
and ¢t need not be distinct). Set,;, a; > b, and all other
coefficients to 0. This giveA.u; = 0 < b < A.vy = ag
and A.u, = 0 < b < A.vy = a4. Hence the plane intersects
(ul,vl) and (’U,Q,Ug).
Some of the configurations in this class are:

< )
o e V#‘;’?

| I ad
Uo Vo U2 V2 U2 — V2 ‘w
Cases 3 - 7:Individual configurations not covered by cases ’

These correspond to the greyed-out regions in the Venn
diagram in Fig. 2.
ONES(v))

ONES(v))

1 and 2 above:

ONES(u
Uy <=— U1 Ul <— U1 Uy — U1 ( ‘i) ONES(H_,)
T ‘L T Fig. 2. Venn Diagram for Case 7 (all vertices distinct)
U2 —> V2 Ug — V2 Uy — V2
So we have
Uy — 01 ui U1

ONES(u1)=SUAUBUCUD
ONES(us) =SUAUBUEUF
Ua V2 Ug V2 ONES(v1)=SUBUCUDUE

For brevity, let us only prove Case 7, with the configuration ONES(v2) = SUAUDUEUF

where S, A, B, C, D, F and F, as shown in Fig. 2, are all
disjoint.

A and E cannot be empty, since the®NES(u;) C
Ug Vo ONES (vy) or vice versa. Similariy3 and D cannot be empty.

Uy U1



For eachs € AUB, we seta, = (b+¢)/|AU B|, e > 0. We defines the partition, and hence the corresponding valid set
also set all othes;’s to 0. This givesA.u; > bandA.u, > b, of edges. Our comments o™ in the next few paragraphs
since bothONES (u;) and ONES (us) are supersets ofUB. apply equivalently ta5—.

Also, ONES(v;) does not containd and ONES(vs) does  Let '™ be the set of all possible basis s&$. We define
not contain B. Since A and B are disjoint and non-empty, A as the set of all subseig of the vertices of,, such that
|A] < |[AU B| and |B| < |AU B|. So for small enoughk, now, v € V haveu — v, i.e. it is not possible to go from
A.vi<bandA.vy, <b. to v via the edges o@m. Evidently, ™ C A. So
.. This plane intersectguy, v1) and (us, v2).

o . : Ny =TT < [A|
It is simple, though tedious, to check that the cases listed
above cover all valid configurations when, u., v; andwvs We may write an expression fdA| using the inclusion-
are distinct. exclusion principle and attempt to bound the sum. This is a

he ed h dboi work under progress, so we will only state the straightforward
B. The edges share a common endpoint, Bay- uz = u result that the number of non-zero length pathgjp is 3" —
Again, we may divide our work into cases. These are: 2™ (see [3] for a derivation).
Case 1: Configurations with the following subgraph or its

. . IX. CONCLUSION
symmetrical equivalents:

We have described a problem in sensor placement and out-

U > VY lined an approach towards its analysis and solution. The results
obtained in this paper are a first step towards characterizing the
v problem combinatorially. We have shown that the problem is a

v ) . d . ) .
2 highly constrained version of set covering, with a considerably

Case 2: Configurations with the following subgraph or itssmaller input space. We are working on establishing whether

symmetrical equivalents: the problem is NP-complete or not, using the results in this
UV paper and those of other authors. Our immediate goal is a tight
A estimate of the exact size of the input space. With a generalized
version of Theorem 3, we envisage an optimized covering
U2 algorithm for sensor placement that yields better results in
As usual, a dotted line indicates absence of the correspolRES time-
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VI, if a vertex u lies on the pOSItI\_IG side of the_ _plan_e, the 0] P. Sladk, “A tight analysis of the greedy algorithm for
all verticesv such thatu — v also lie on the positive side (a  set cover’, Technical Report, SUNY, Buffalo, 1995. URL:
similar result holds for the negative side). http://www.cse.buffalo.edu/tech-reports/95-54.ps .

Let us consider théasis setB+, which comprises all the
verticesv on the positive side for which there are no other
verticesu also on the positive side such that— v. It is easy
to check that3™ uniquely defines the complete set of vertices
on the positive side. A similar basis Bt may be obtained
for the negative side. FurtheB™ and B~ are complementary,

so specifying either one of them completely and uniquely



