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Abstract—We are witnessing the emergence of elastic web
services which are hosted in public cloud infrastructures. For
reasons of cost-effectiveness, it is crucial for the elasticity of
these web services to match the dynamically-evolving user
demand. Traditional approaches employ clusters of virtual
machines (VMs) to dynamically scale resources based on
application demand. However, they still face challenges such as
higher cost due to over-provisioning or incur service level objec-
tive (SLO) violations due to under-provisioning. Motivated by
this observation, we propose Spock, a new scalable and elastic
control system that exploits both VMs and serverless functions
to reduce cost and ensure SLO for elastic web services. We show
that under two different scaling policies, Spock reduces SLO
violations of queries by up to 74% when compared to VM-
based resource procurement schemes. Further, Spock yields
significant cost savings, by up to 33% compared to traditional
approaches which use only VMs.
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I. INTRODUCTION

The advent of public clouds in the last decade has led to

the proliferation of web services due to economies of scale.

These web services typically range from simple mailing

service to multi-tier data analytics. Further, the popularity of

deep learning based models and their multi-faceted applica-

tion to different domains has lured application developers to

create, train and host these models as a web service. These

machine learning (ML) web services such as voice, text,

video and image recognition allow [1, 2] end-users to submit

queries via web server interface.

ML inference services are pre-trained models hosted as a

web service. These inference requests are stateless and are

often user-facing. Hence, the service is administered under

a strict SLO with tight response times, typically under 500-

1000ms [3]. Thus, high availability in terms of the resource

is quintessential [4]–[6], which has to be ensured by the

scaling policy.

Today, resources are typically procured and scaled auto-

matically, in units of VMs [7]. Since new VMs may take

up to a few to several minutes to start [8], these auto-

scaling solutions are susceptible to being wasteful due to

over-provisioning (provision more VMs to reduce future

SLO violations) or suffer from poor performance due to

under-provisioning (provision lesser VMs but incur SLO

violations) [9]–[11]. These problems become particularly

prominent and difficult to address effectively during periods

of poor workload predictability (e.g., flash crowds) [12]

when VM addition/removal may only be done reactively.

In this paper, we investigate the potential of recently

emergent “serverless computing” [13] offerings from public

cloud providers to overcome this shortcoming of VM-based

auto-scaling. This is an appealing idea because serverless

products tend to have much lower start-up latencies than

VMs as they use containers to host application requests.

Specifically, we look at Function as a Service (FaaS) of-

ferings [14]–[17] that allow a tenant to simply provide code

for functions that would be executed in response to specified

events within a cloud provider-managed container runtime.

Functions are charged on a per-invocation basis without

having to pay for over-provisioned resources as in the case

of VMs. To a limited extent, the provider may take charge of

auto-scaling the resources allocated to an executing function.

This may relieve the tenant of the complexity of designing

an auto-scaling technique. More generally, the claimed ben-

efit of FaaS offerings over infrastructure-as-a-service (IaaS)

offerings, such as VMs, is that they relieve the tenants of

the need to manage the runtime [18] and the tenants pay

only for used resources.
In this paper, we explore how FaaS offerings can alleviate

the shortcomings of VM-based auto-scaling for ML inference

services, while at the same time minimizing the provisioning

costs. We make an interesting observation that deploying the

entire application as serverless functions is not cost efficient

in several scenarios discussed in the paper. To this end,

we design Spock, which uses serverless functions prudently

along with the existing VM-based auto-scaling mechanism;

thereby reducing the SLO violations without increasing the

cost of deployment. In the context of this paper, we focus

specifically on ML based web services but our proposed

idea can also be extended to any stateless web-service which

exhibits workload dynamism.
Towards this, we make the following contributions:

1) We deploy an elastic ML inference service using server-

less functions and characterize their cost benefits against

a VM-based deployment for varying user demands.

2) We present Spock, the first elastic control system which

takes advantage of serverless functions along with VMs

to reduce SLO violations by peak shaving the requests.

3) We perform a comprehensive analysis of Spock compared

to two resource procurement schemes combined with two

different auto scaling policies to reduce their cost in terms

of cloud bill and reduce SLO violations.

4) We show that Spock reduces SLO violations of ML
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inference queries by 65%-74%, when compared to using

only VMs under two scaling policies. Further, Spock

yields significant cost savings by up to 33% compared

to traditional resource procurement schemes.

II. BACKGROUND AND MOTIVATION

In this section, we provide background about the relevant

resource offerings in public cloud which are used to host

an ML based service. Next, we describe the key ideas

motivating the need for exploiting different service offerings

to optimize for overall costs1.

A. ML Inference Service

ML-based service [19] is a popular class of web services

that lets clients support end-to-end training of ML models

and it enables users to issue inference queries (as shown in

Figure 1). There are several applications that can make use of

such inference models in an elastic fashion. Generally, these

queries are response time sensitive with desired latencies in

the 100 millisec - 1 sec range [3]. A client, in this case, has

several options in resource procurement to host the service.

The most popular approach currently for an ML service

provider is to use VMs to run inference tasks and employ

well-known auto-scaling techniques to match VM capacity

to resource needs. On the contrary, hosting is also possible

using serverless functions (like lambda 2) [20] where clients

need not perform explicit resource management unlike the

case of VMs. There are other commercial offerings from

cloud providers like Azure MLaaS [21], and AWS Sage-

maker [22], to name a few, that have complex billing by

making users pay for compute time and underlying resources

(VMs) to host the service. In this paper, we limit our

discussion to VMs and lambdas. We further discuss how the

deployment can scale for both VMs and lambdas in detail.

Figure 1: System architecture for an ML web service application
that handles user queries for different inference models. The query
is received by inference endpoint and forwarded to dedicated back-
ends that execute the inference and sends the output to the user.

B. A Representative VM Autoscaler

The service described above is typically hosted as VMs,

where the resource manager anticipates the resource de-

mands and provisions the VMs accordingly. To meet this

changing demand, the resource manager allocates from a

static pool of VMs. Public Cloud Providers (PCPs), like

1From here on-wards we refer to costs in terms of cloud bill.
2We use the terms “serverless functions” and “lambda” interchangeably.
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Figure 2: A snapshot of peak shaving by using lambda functions
along with VM-based autoscaling. The plot shows the resource
demands over time while using the Lambda functions to bridge
the lapse of VM acquisition and cold-start latency, thus reducing
SLO violations during the VM scale-out.

Amazon, provide mechanisms with resource auto-scaling

enabled such as AWS autoscaling [23]. During the setup

for VM instances, the user specifies an instance type and

availability zone and sets a scaling target in terms of different

metrics (e.g., min/max CPU utilization). If the scaling target

is reached, autoscaling acquires or releases instances to

reach the new target. We consider a representative autoscaler

as our “baseline”, which is similar to AWS autoscaling

[23]. Our autoscaler will reactively scale resources every

second, if the request demand cannot be met. As seen in

Figure 2, as the resource demand surges (shown in blue),

based on the autoscaler, VMs are spawned to react to the

demand (depicted in green). However, VMs have a start-up

latency on the order of hundreds of seconds [24]–[26], there

is an intermittent lapse of availability of the service. This

gap is bridged by the use of lambdas (depicted in orange),

which typically have start-up latencies that are an order of

magnitude lesser than VMs. We explain this further in the

next section. As the resource demand drops, the VMs are

scaled down to avoid resource over-provisioning leading to

cost savings.

C. Serverless Functions

Serverless function-based models have shown several ad-

vantages over traditional VMs due to their minimal provi-

sioning overheads. Specifically, the fundamental advantages

of serverless functions over VMs are as follows: (i) cost

efficiency at scale due to event-driven billing where the client

only pays for the compute time they consume and (ii) their

ability of scaling almost instantly and automatically. This is

possible because the back-end framework uses containers to

host the function invocations on a ready VM, thus having

minimal start-up latency compared to traditional VM with

boot times. Serverless functions are billed based on the

memory footprint [27] and function invocation count which

is based on query arrival frequency. However, in terms of

cost, the VMs are also billed on a per-second basis similar

to lambda [28]. Therefore, the real advantage of a lambda

function comes due to the reduced start-up latency. Note
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that, serverless functions have two different types of start-

up latency, (i) coldstart: which is the process of launching

a new function instance by spawning a new container and

(ii) warmstart: which is reusing an existing containers.

Though, container coldstart latency are significantly longer

than warmstart (average of 1-10s) [29], they are still a

magnitude lesser compared to VMs.

The properties of serverless function discussed above

benefit certain classes of applications better than others.

Specifically those with event-driven behavior, composed of

stateless, short running and agile queries. For example,

a face/object detection function can be triggered by the

occurrence (arrival) of an event such as an image from

the client, following which a new lambda function can

be spawned to execute inference and send the result back

to the user. Based on the changes in resource demand,

application providers need not define autoscaling policies

as these functions can scale “automatically”. In this work,

we try to exploit this property which can be used alongside

VM autoscaling. As shown in Figure 2, the sudden surge

of resource demand is intermittently handled by the lambda

functions until the new VMs are up to meet the demand to

handle the requests. This results in two benefits: (i) reduction

in SLO violations during a request surge, and (ii) reduce

intermittent over-provisioning of VMs.

III. CHARACTERIZING COST FOR VM AND Serverless

In order to understand the cost of deployment at scale for

an ML web service (as shown in Figure 1), we characterize

the service on both VMs and serverless functions. Our

experiments use the AWS Lambda [30], however we believe

our approach is also applicable to other serverless-based

offerings. Also, we do not consider spot VM instances, in

order to ensure availability and avoid potential overheads

from VM preemption and request migration.

(a) Serverless based deployment.

(b) VM based deployment.

Figure 3: Framework to deploy an ML based web-service using
serverless functions (lambda) and using VMs.

A. Serverless-Based Deployment

Figure 3a shows the overall framework to deploy ML

inference using lambda functions. Users submit a query

(image or voice) to a front end (inference end point). The

input is sent to an elastic storage (e.g. S3 bucket) [31], which

in turn triggers an event and invokes the corresponding
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(c) Caffenet model.
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(d) ResNet-200 model.

Figure 4: (a) Cost of VM and lambda for a constant request rate
executing a single inference type; (b) two different average request
rate for a constant peak request rate (140 req/sec); cost of executing
(c) Caffenet and (d) ResNet-200 in lambda for the two arrival rates
shown in (b), normalized to the cost of executing them in VM.

Query
Type

Memory Re-
quired (GB)

Memory Al-
located (GB)

Average Ex-
ecution (ms)

Requests per
vCPU for VMs

Caffenet 1.024 3.072 300 4
Googlenet 0.456 2.048 450 3
Squeezenet 0.154 2.048 130 6
Resnet-18 0.304 3.072 320 3

Resnet-200 1.024 3.072 956 1
Resnext-50 0.645 3.072 560 2

Table I: Query description for VM and lambda functions. The 2nd

column is actual memory consumed by every model. 3rd column
shows the memory allocated for lambda functions. 5th column
shows the requests per vCPU for VMs, executing in parallel.

lambda function. The lambda function fetches the pre-

trained model from an existing S3 bucket, runs the inference,

and pushes the output to the user. Every input is registered

as an event, thus leading to a separate function invocation,

and each lambda independently processes ML inference

requests. Note that, there is an initial read latency to fetch

the ML model from S3 (average of 5s) which is significantly

reduced during further invocations for the same model.

B. VM-Based Deployment

Figure 3b shows the overall framework for a VM-based

deployment to host ML inference service. A cluster of EC2

instances are deployed as a model serving cluster. The pre-

trained model is fetched into the EC2 instance using an EBS

(Elastic Block Storage) volume. Note that, depending on

the size of an instance, the number of parallel inference

executions per instance can be different. We characterize

the degree of parallelism for 6 different ML models used

for image inference in terms of virtual cpus (vCPUs) as

shown in Table I. We use a c4 large instance (2vCPU and

4GB memory) which has enough memory to accommodate

the largest ML model used in our experiments.

C. Comparing Cost of Deployment

The overall cost difference between the VM-based or

lambda-based deployment depends upon how frequent the
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resources are used. In order to model the time-varying nature

of the resource demands, we designed a load generator

which is discussed in Section V). This load generator is

modeled to mimic the real-world datacenter’s event arrival

rate. The resource demands, in terms of memory, varies for

each query as they are associated with different ML models,

as shown in Table I. We build a cost analysis model for

each ML inference individually for VMs and lambdas. The

cost of for VMs is straightforward as VMs are billed by the

seconds of usage (with a one minute minimum) based on the

instance type used (vCPUs and memory capacity). But for

lambda functions, the cost depends on the following: (i) the

number of times a lambda function is invoked (N) (ii) the

execution time of every lambda function. (E in seconds), and

(iii) the memory allocated to the function by the application

(M in GB). Based on the above metrics the cost of a lambda

(C) is calculated using Equation 1.

C = (M ∗ E ∗ 1.67 ∗ e−5 ∗N) + (N ∗ 2.4 ∗ e−7) (1)

The constants above are modeled after Amazon Lambda

function’s pricing [27]. For our proposed scheme,to enable a

fair comparison, we consider memory allocation (as shown

in Table I) for an iso-performance case where execution time

is same for both VM and lambda based deployments.

We calculate a per-unit cost for one inference query

on both VMs and lambdas for a constant memory over a

period of 60 minutes. We observe that, the cost of executing

an inference for a single image using ResNet-200 which

consumes 1GB memory would be $0.172 using lambda

but $0.0519 on VM. It is observed that lambda functions

are more expensive compared to VMs on per unit basis.

However, for web services the requests are periodic with

sustained arrival rates.

Figure 4a shows the cost for deploying a Caffenet in-

ference model [32] either using VM or lambda over the

fixed period of 2 hours for increasing arrival rates. It can be

clearly seen that the per unit cost of memory is still higher

for lambda compared to VM over a fixed load. Given this

model, it can be seen that the cost increases linearly and

lambda is always expensive for such fixed load. However,

for a time varying workload, the queries do not follow a

constant arrival rate.

We model the load generator after the real-world traces

described in section V. As shown in Figure 4b, queries arrive

over a 2-hour period for varying arrival rates. The maximum

arrival rate is 140 requests/sec while the moving average is

plotted for every 30 second interval. The Figures 4c and 4d

show the cost of execution using lambda normalized to VMs.

It is seen that the lambdas functions are expensive in the case

of higher average request rate. On the other hand, if the

average request rate is lower, then the lambda functions are

cheaper compared to VMs as they had to be provisioned for

the peak rate (to satisfy 100% SLO) for the entire duration.

Therefore, based on the gap between average to peak arrival

rate, either VM or lambda can be cheaper.

In case of varying resource demands, it is not feasible

to provision the VMs for the peak demands. At the same

time, the peak request rate cannot be predicted during a

lot of scenarios like a flash-crowd [33, 34]. Further, during

any mis-predictions, VM start-up latency (as described in

Section II) would further lead to severe SLO violations [12,

35]. Lambda functions, on the other hand, can start up much

faster compared to VMs and bridge the gap in such cases.

Thus, we summarize our findings as follows:

1) It is non-trivial to predict the peak request rate at any

given time period.

2) Provisioning VMs for the peak demands would always

lead to higher cost of deployment. While, under provi-

sioning VMs leads to severe SLO violations for queries.

3) Using serverless functions exclusively to deploy the web

service would overcome the SLO violation problem.

However, it is not cost effective.

Hence, there is an inherent need for a “scalable elastic

control system” which exploits lambda to be used along

with existing VM-based autoscaling mechanism, especially

in case of request surges (peaks). We propose Spock, which

performs SLO and cost aware resource procurement, while

ensuring the SLO for stateless elastic web services.

IV. SPOCK DESIGN AND IMPLEMENTATION

We describe the overall design of Spock in Figure 5

along with the details of individual components and the

scaling policies used.

Figure 5: A high level view of Spock.

A. Spock Design Components.

1) Resource Manager: The resource manager (RM) 1 is

the primary entity which handles query assignment 1a , in-

stance (resource) creation 1b and termination. As discussed
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in the previous section, we use AWS EC2 VMs and AWS

lambda functions as our two main resource types. Based on

the input from the load balancer (LB) 2 which determines

the resources required, RM initiates the procurement of

additional instances. For each individual query type based on

the request, it spawns the VM instances or lambda functions

needed to meet the demand. During a scale-in decision from

the LB, it terminates VM instances, whereas for lambda

functions the scale-in is automatic.

2) Load Balancer: Load balancer 2 uses the predicted

load from the scaling policy to decide the resources required

to be active over each monitoring period. It decides the scale-

in or scale-out of resources while balancing the load between

VMs and lambdas.

3) Scaling Policy: The scaling policy 3 at each time

determines the amount of resources expected to be active to

serve the incoming requests. Since the load monitor provides

resource usage information, users can define any scaling

policy and plug it into the framework. The scale-out policy

for both VMs and lambda are discussed in Section IV-B.

4) Load Monitor: Load monitor 4 governs the active VM

and lambda resources. The scaling policy initiates requests

to the load monitor to query for metrics such as request

served over given time, average utilization of VMs, etc. The

load monitor queries individual VMs for required metrics in

each monitoring period and performs bookkeeping for future

policy decisions.
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(b) Spock resource allocation.

Figure 6: Resource provisioning of Spock compared to only em-
ploying VMs. The red shaded region indicates SLO violations due
to start-up of VMs. The blue shaded lines indicate temporary over-
provisioning of VMs.

B. Spock Resource Procurement Scheme

The ML web service provider sets the SLO in terms

of seconds. Based on how strict or loose the SLO is, the

resource manager procures the resources (either VM or

lambda). A group of queries (ML inference) are submitted to

the cluster every second, requesting any of the ML models

shown in Table I. Spock uses dedicated instance pools to

serve individual query type as seen from the Figure 5. It

is essential to have dedicated resource pools for each ML

service model. This is because: (a) it simplifies the VM load

balancing policy and (ii) it also reduces the VM startup

time overheads. Since, loading all the models in one VM

type would lead to start-up delays, in turn, leading to unfair

comparison against model-specific lambda functions. When

a request is submitted, the RM first tries to schedule it on

any available VM which has free slots (we refer to free slots

as free vCPUs). If a free VM is not available, it redirects

the request to be run in a new lambda function. We discuss

two different scale-out policies that are leveraged by Spock

to procure resources.

1) Reactive Scale-out: Whenever the RM cannot find a

free slot in a VM to server a new request, it redirects the

request to execute in a lambda function. Then, based on the

request rate, the scaling policy decides to scale the number

of VM instances required to satisfy the current load. Until

the required number of VMs instances are spawned, any

query which cannot be accommodated on VM is redirected

to lambda functions. This is a straightforward way to reduce

the SLO violation of queries due to VM start-up latencies.

Similarly, for a scheduling decision which happens every

second, the scaling policy reactively scale-out the number of

VM instances. It is to be noted however that, this policy is

susceptible to two vulnerabilities: (i) for time-varying client

workloads the demand at time t1 need not be the same for

time t2, and (ii) the interval between t1 and t2 could be

potentially large or small depending on the characteristics of

the workload. Hence, reactively scaling the VM resources at

every time step is not a feasible solution, and may lead to

intermittent over provisioning of VMs. This, in turn, results

in higher cost of resource procurement. We discuss in detail

about this scheme in Section VI.

2) Predictive Scale-out: As discussed in Section III it

is non-trivial to predict the peak arrival rate of requests

at a given time t. To overcome this problem, we design

a predictor which can predict the average request rate at

any time t for the next t + tstartup time, where tstartup is

the start-up latency of VM. We use a moving window

linear regression (LR) model to predict requests t+tstartup

into the future. The window size is set to 500s based on

empirical analysis [3]. This enables us to provision VMs in

advance to serve the average request rate while the short

lived request surges can be served using lambda function.

The LR predictor accurately predicts the average request rate

while minimizing the overheads of the prediction policy.

From Figure 6a, we can see that VM based allocation

would lead to severe SLO violations during a request surge

(red shaded region). Due to the delayed scale-in of VMs, the

pending queries are still being served (blue shaded region)

during the scale-out phase. On the other hand, Figure 6b

shows that, Spock efficiently executes requests in lambda

during a request surge and thus avoiding the spawning

additional VMs. Spock spawns additional VMs only based

on the output from the predictor. Thus, predictive policy

accurately captures the average resource demands for a given

time period and in case of resource demand surges, it handles

the queries through lambda functions. This reduces the SLO

violations of queries while avoiding VM over provisioning.
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3) Scale-in: Subsequent to scaling-out resources, it is

also important to terminate idle instances to reduce cost

of deployment. Using the load monitor, Spock constantly

monitors the load of hosted VM resources for a given time.

The LB decides to scale in the VM resources after three

minutes of idle usage ( as proposed by Gandhi et.al. [36])

in order to prevent early termination of instances in case of

short term request rate fluctuations.
4) Runtime Packing: The RM decides to schedule re-

quests on existing VMs, only if they have free resources

to accommodate. The primary objective of RM should be to

minimize the cost in terms of total VM active time. As we

know, the total number of queries that each vCPU can handle

in parallel (shown in Table I), we order the VMs by least

available free vCPU (as opposed to most available vCPUs).

This is because the busy VMs would remain active and it

potentially enables underutilized VMs to become idle which

can be terminated eventually. The potential drawback is that,

more VMs would be terminated, and during a request surge,

they might need to be re-spawned. Since we inherently

use VMs to serve the average request rates, the peaks are

efficiently handled using lambda functions.

(a) Berkeley trace. (b) WITS trace.

Figure 7: Traces used by the load generator. A moving window
average is denoted by the yellow line. We use first 4000 minutes
of Berkeley trace and 800 minutes of Wits trace.

V. IMPLEMENTATION METHODOLOGY

1) Simulator: We built a high fidelity event-driven sim-

ulator to evaluate the benefits of Spock. The simulator

takes input from the load generator (explained further in

Section V-2), which uses real-world trace for request arrival

time generation. Each request is derived from a pool of

pre-trained ML inference models for image classification

(shown in Table I). We use mxnet [37] ML framework

to deploy and run inference on the models. Note that,

each of these ML models consumes different amount of

memory, depending on the underlying model architecture.

These model have been studied in the past in detail. and are

trained in our study using the imagenet dataset [38]. The

simulator accounts for VM start-up latency (60s to 100s)

as observed on AWS [8, 39]. We limit our experiments to

use instances from the same EC2 [28] family (c4-large, c4-

xlarge, c4-2xlarge) to enable fairness. For lambda functions,

we account for coldstart latency for the first invocations,

but, during further invocations, we mitigate coldstarts by

enabling warmstart through injecting a lambda function

every 20 minutes, equivalent to the peak arrival rate in the

past 500s window. This is also based on the observation

made by Wang et al., [29] that lambda functions are kept

warm for at least 20 minutes from the start time and the

median cold start latency in AWS is within 200ms. We also

account for the additional invocations in our cost calculation.

Primarily, we limit our instance allocation region to US-east-

1 only. This avoids unnecessary costs resulting from data

transfer across regions.
2) Load Generator: We use traces from Berkeley [40]

and WITS [41], which are given as input to the load gen-

erator. WITS trace has a large variation in peaks compared

to the Berkeley trace. The requests arrive every second over

the entire trace duration (show in Figure 7). All traces are

scaled to have an average of 130 requests per second in order

to generate sufficient load for the experiments. We associate

each request with an image to run ML inference, which is

selected randomly from the pool of ML models. The images

are picked from a subset of imagenet data set. In this way, we

mimic a real-world scenario where the web service engine

receives different requests for different models every second.

We consider two different workload mixes by inter-mixing

the different models based on varying memory requirements.
3) Assumptions: We set the SLO for every request to

a maximum of 1s. This includes the end-to-end request

latency (including model fetch time from S3 for lambda).

Apart from the compute and invocation costs associated with

lambda and VMs, there are also additional storage costs.

We incur storage cost for EBS (elastic block store) in VMs

and read/write request cost for remote store used along with

lambda. From our initial characterization (Section III), these

costs were similar for both VMs and lambdas. Hence, they

do not affect our cost calculation. Each VM contains 2 to

8 vCPUs, and it can service requests proportionate to the

number of requests each vCPU can handle in parallel (shown

in Table I). Also each VM can queue any number of requests.

VI. EVALUATION AND RESULTS

We evaluate our results by comparing the cost and SLO of

Spock for two workload mixes against the following resource

procurement schemes: (i) deploying the web service appli-

cation via lambda; (ii) deploying the same via VMs with

autoscaling (as defined in Section II). We name this scheme

as autoscale; (iii) using conservative over-provisioning with

autoscaling i.e., acquire 1.5 times more resources than

required. This is commonly used in autoscaling to reduce

SLO violations. We name the last scheme X-autoscale.

With respect to these resource acquisition schemes, we

perform evaluations using two scale-out policies (discussed

in Section IV) namely (i) reactive and (ii) predictive. The

simulations were run over 5 iterations for consistency.

A. Results Analysis

Figures 8a and 8b, shows the cost savings and reduction in

SLO violations for the Berkeley trace across two workload
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(a) Berkeley under Reactive.
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(b) Berkeley under Predictive.
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(c) Wits under Reactive.
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(d) Wits under Predictive.

Figure 8: Cost savings and percentage of SLO violations for Berkeley and Wits trace. The cost is normalized to the cost of execution
using only lambda. The resource procurement schemes are shown in-y axis.

mixes. The cost is normalized to the resource procurement

scheme that only uses lambda. We report both the cost

savings and SLO as an average of the two workload mixes.

The results show that Spock reduces the cost and SLO

violations compared to autoscale and X-autoscale under both

the scaling policies for both the workload mixes. For the

Berkeley trace, Spock, when compared to autoscale, reduces

SLO violations by 68% and 74% for both the reactive

and predictive scale-out policies, respectively. At the same

time, Spock also reduces cost by 15%, when employing

the reactive policy. The cost savings are not significant for

the predictive policy because it inherently avoids VM over-

provisioning; but this leads to more SLO violations.

Similarly, when compared to X-autoscale, Spock reduces

SLO violations by 41% and 21% for the two scale-out

policies, respectively. The reduction is lesser when compared

to the reactive policy, mainly because the additional re-

sources provided can handle the requests during peak surge.

However, these additional VMs come at a higher cost, which

results in more cost savings when employing Spock (by 33%

and 36%, respectively, for the two scaling policies).

Figures 8c and 8d, show the cost savings and reduction in

SLO violations for the WITS trace. Spock, when compared

to autoscale, reduces the SLO violations by 68% and 65%

and reduces the cost by 33% and 18% for the two scale-

out policies. The cost savings are higher when compared

to the Berkeley trace because the WITS trace exhibits a

large variation in peak to median ratio of request rates.

Recall from Section IV that reactive autoscaling leads to

intermittent over-provisioning of VMs, which in turn results

in higher cost. Similar to Berkeley, the cost savings is

higher (up to 61%) when compared to X-Autoscale; though

the reduction in SLO violations is low. In general, Spock

with predictive scale-out is the best with the least cost

and minimal SLO violations for both traces tested. This

is because, as seen in Figure 9, the predictive scheme can

closely predict the average rate in the 500s window. Due to

this, requests arriving in the peak are efficiently handled by

lambdas (a.k.a. peak shaving).

B. Breakdown of Benefits

Intuitively, compared to autoscale, Spock is expected to

be more expensive because it uses lambda along with VMs

during a scale-out phase. However, in the autoscale policy,

(a) Berkeley trace. (b) WITS trace.

Figure 9: LR based prediction of average request rates.

during the scale-out, requests get queued on existing VMs

until new VMs are spawned. This results in VMs staying

active for a longer duration. Since Spock uses lambda during

scale-out, it helps in reducing the queuing of queries to

existing VMs. This in turn enables early scale-in of unused

VMs spawned during the scale-out period.

Figure 10a shows the breakdown of cost for both VM and

lambda using autoscale policy. The total cost is normalized

to the cost of executing using only VMs. It can be seen

that Spock reduces cost of VMs by 23% and 40% for the

Berkeley trace under the two scaling policies, respectively.

However, the overall savings is only 15% for reactive scaling

and nearly no savings for the predictive scaling. This is

because there is an additional 15% and 41% cost added

by lambdas. The cost added by lambda is higher for the

predictive scale-out because the Berkeley trace exhibits more

frequent peaks, and thus results is less cost savings. In

contrast, for the WITS trace, the cost added by lambda

is significantly lower because peaks occur infrequently.

However, the overall cost savings is higher (by 20%) because

the peak to average ratio is high.

Figure 10c shows the total VM active time for autoscale,

X-autoscale and Spock under the two scaling policies. It is

evident that Spock significantly reduces the total number of

active VMs for all scenarios which is due to early scale-in

of VMs. Figure 10b shows the percentage of total requests

handled in VM and lambda for both traces. The number

of requests in lambda is more for the predictive scale-out

when compared to the reactive scale-out. This is because

the predictive scale-out can fairly predict the average request

rate in the arrival distribution. This is evident from Figure

9. Thus, VMs efficiently handle all requests in the average

arrival rate, whereas request that arrive in sudden bursts are

offloaded to lambda. On the contrary, since more VMs are

spawned in the reactive scale-out scheme, the number of
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Figure 10: Breakdown of benefits from Spock.

requests offloaded to lambda is less.

In the case of workloads, where there is no sudden request

surge, and peaks are fairly predictable, Spock would still

work but the benefits in terms of SLO violations and cost

will be subdued. We also compare Spock to an “ideal”

scheme. The ideal scheme assumes the VMs to have start-up

latencies similar to lambda functions. With this assumption,

the ideal scheme will not have as many SLO violations

compared to traditional VMs and will also avoid over-

provisioning. Figure 10d shows the normalized cost of the

ideal scheme compared to Spock under the two scaling

policies. Spock is very close to the ideal scheme (difference

of less than 7%) in terms of cost and at the same time

achieves low SLO violation (maximum of 3%).

VII. RELATED WORK

A. VM procurement and auto-scaling

There are several research works in the past that optimize

for the VM provisioning cost. Typically these works broadly

fall in to two categories as follows, (i) tuning the auto-scaling

policy to optimize for type of VM procurement based on

changing needs (Spot, On Demand, etc.,) [39, 42]–[46], (ii)

predicting the peak loads and offer proactive provisioning

based auto-scaling policy [3, 12]. Since all the VM offerings

are billed at an hour granularity in the majority of these price

models, their auto-scaling policy often fails to optimize for

the case of intermittent load surges while end up paying the

higher procurement costs. In contrast to these related work,

Spock leverages two different types of service deployment

which in turn exploits two different service offerings leading

to overall cost-savings.

The most relevant work to Spock is FEAT, proposed

by Novak et al. [47]. Both FEAT and Spock consider

exploiting serverless functions to efficiently autoscale VMs,

while Spock is specifically catered towards elastic ML-based

web services. In addition Spock supports applications with

multiple request types.

B. Serverless Computing

Despite its recency, serverless computing has already been

used in different fields like Internet of Things [48, 49]

and edge computing [50, 51], data parallel frameworks

[52, 53], real-time video processing [54]–[57], and system

security [58]. However, the recent work on serverless can

be classified broadly into two categories.
1) Serverless application design: Firstly, To decompose a

monolithic application into interconnected microservices to

use the functional execution framework. Major body of

related work [52, 54, 59] in serverless research proposes

techniques to redesign the applications to take advantage

of serverless functions owing to reduced management over-

heads. Villamizar et al. [60] compare the infrastructure

costs of running application as microservices using IaaS or

serverless platform without considering the mix of both in

terms of cost. While Elgamal et al. proposed [61] function

fusion and placement to reduce serverless function costs.

However, they do not consider the case of changing resource

demands which Spock uses to its advantage (as proposed in

Section III).
2) Serverless framework optimization: Further there are

several research works [29, 62, 63] that propose to optimize

for lambda cold starts and address several other performance

limitations of using serverless framework. Container initial-

ization and package dependencies are also common causes

for container cold-start, which is addressed in [64]. We fine-

tune Spock framework based on their findings to keep the

containers warm that further reduces SLO violations.

VIII. CONCLUSION

In this paper, we identify the shortcomings of using ex-

isting VM-based autoscaling mechanisms and its inabilities

to guarantee the SLO at a given cost budget for an elastic

web service. We propose Spock, a scalable elastic control

system which exploits serverless functions along with VMs

autoscaling. We evaluate Spock against two different au-

toscaling mechanisms under reactive and predictive scaling

policies. Spock reduces the SLO violations by up to 74%

while reducing the cost by up to 36% when compared to

VM only resource procurement scheme. We further plan to

deploy Spock in public cloud systems and evaluate for real-

time workloads from different application domains.
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