
Understanding Energy Efficiency in IoT App Executions

Shulin Zhao∗, Prasanna Venkatesh Rengasamy∗, Haibo Zhang∗, Sandeepa Bhuyan∗,
Nachiappan Chidambaram Nachiappan§, Anand Sivasubramaniam∗, Mahmut T. Kandemir∗, Chita R. Das∗

Dept. of Computer Science & Engineering, The Pennsylvania State University
Email: ∗{suz53, pur128, haibo, sxb392, anand, mtk2, das}@cse.psu.edu §nachi@alumni.psu.edu

Abstract—Billions of Internet-of-Things (IoT) devices such
as sensors, actuators, computing units, etc., are connected to
form IoT platforms. However, it is observed that such hardware
platforms today spend a significant proportion of their energy
in communication between the CPU and the sensors (which
are controlled by micro-controller unit (MCU)). Motivated
by this observation, two simple, yet effective, optimizations
are proposed to minimize the energy consumption. The first
optimization, called Batching, interrupts the CPU after collect-
ing multiple sensor data points at the MCU (instead of only
1), and thus, minimizes the interrupt overheads. The second
optimization, called Computation Offloading to MCU (COM),
offloads app-specific computations to the MCU to minimize
data transfer overheads, and makes use of the relatively low
energy footprint, and low-compute capabilities of the MCU in
place of the CPU in the hub. However, questions such as why
these two schemes are needed, where the energy benefit comes
from, which IoT apps are suitable for these optimizations, etc.,
remain unclear.

To better understand the Batching and COM approaches
towards energy efficiency in IoT app executions, we charac-
terize ten representative workloads on a Raspberry Pi and
ESP8266 MCU platform, and evaluate the energy savings using
these two optimizations and illustrate that for light-weight
workloads (where COM is applicable), Batching and COM
reduce the energy consumption by 52% and 85%, respectively
when compared to the baseline. And for heavy-weight apps
(where COM is not possible due to limited capacity of MCU),
by offloading the light-weight apps and batching for the heavy-
weight, Batching + COM (BCOM) benefits 10% energy savings
compared to the baseline.

Keywords-Internet of Things (IoT), Energy Efficiency, Batch-
ing, Offloading, Micro-controller Unit (MCU)

I. INTRODUCTION

The number of active connected consumer electronics
devices has already exceeded the total human population
today [1], and is expected to grow to ≈ 75 billion by the
year 2025 [2]. These devices collectively form the Internet-
of-Things (IoT) space, and perform a wide range of sensing
such as understanding some user-level behavior (e.g., the
number of steps walked, weather prediction, earthquake
detection, emergency warning, etc.), and communicate the
sensed data to a network based end user interface (e.g.,
an app in a mobile phone, cloud host, etc.). To extract
high-level user behavior, the IoT devices employ low-
level sensor events, and perform domain-specific (or user-
level behavior/event-specific) computations on them. These
devices are projected to grow at a rate beyond 8 billion

0%
20%
40%
60%
80%
100%

Baseline Idle

En
er
gy
  

Co
ns
um

pt
io
n  

No
rm
.  t
o  
Ba
se
lin
e

9.5x

Figure 1: Energy consumption of an idle IoT hub; and when
10 apps are running as baseline.
devices every year, and they have become the main source
of user interactions. Therefore, it is imperative for system
architects to understand these devices/systems better, and
answer the following key questions: 1. how efficient are these
devices/systems?; 2. where are the main sources of ineffi-
ciencies in current setups?; and if there are inefficiencies, 3.
what is the best way to address such inefficiencies? Previous
efforts [3]–[18] have optimized energy consumption from an
architecture or application perspective. However, the reasons
of the energy inefficiencies at the full-stack system level
remain unclear. In this paper, we address the aforementioned
three questions by using commercially available off-the-shelf
IoT platforms as a baseline for modeling, characterizing and
identifying simple system level solutions in the IoT space.

A typical IoT platform today consists of the following
components: (i) a set of sensors such as accelerometers,
light sensors, etc., (ii) high-performance CPU cores, (iii)
an auxiliary Micro-Controller Unit (MCU) to read the raw
sensor values, and (iv) network interfaces to communicate
the user-level events to end users. With the exception of
the sensors, all other components are put together to form
a generic commodity IoT platform (also referred to as IoT
hub) such as the NXP SABRE board [19], Raspberry Pi
[20], Intel Joule [21], Intel Edison [22] boards, etc. These
IoT hubs provide a multitude of IO ports (e.g., GPIO, USB,
SPI, I2C, etc.) and interfaces for low-level sensors.

To study how much effect an IoT app/workload has on
the energy consumption of the IoT hub, we use a particular
IoT hub (Raspberry Pi and ESP8266 MCU) and show the
energy consumption (in Figure 1) when: (a) the IoT hub is
idle with CPU cores, and MCU are in sleep mode; and (b)
the baseline energy consumption average of 10 IoT different
apps from various domains such as Smart Home, Health
Care, Smart City, etc., as normalized to the idle hub. As
can be observed from Figure 1, when running these sensor-
driven IoT apps (e.g., step-counter app uses accelerometer



sensor values as inputs), 9.5× more energy is consumed than
when the hub is idle. This indicates a chronic inefficiency,
when the workload is executing and so, there is a clear
motivation for optimizing these inefficiencies in workload
execution for saving potentially 9.5× energy consumption.

To understand the reasons behind this inefficiency, we first
analyze the energy consumption of 4 sub-tasks namely: (i)
the low-level sensor data reading at the MCU, (ii) the MCU
interrupting the CPU, (iii) the data transfer overhead from
the MCU to the CPU, and (iv) the subsequent high-level user
behavior computation. We observe that data transfer between
the CPU and the MCU occurs frequently at each interrupt,
and the CPU wastes considerable energy in handling per-
sensor interrupts from the MCU. To optimize for this data
transfer cost bottleneck, a recent work – BEAM [4] has pro-
posed to reuse the same low-level sensor data (that is once
made available at the CPU), to be read by multiple concur-
rently executing apps. Doing so can potentially amortize for
the sensor data read and the subsequent data transfer costs
for all the shared sensors across concurrently executing apps.
This scheme does not benefit single application executions
(as there are no other applications to share the sensor reads
with). Consequently, we tested its effectiveness using 14 IoT
execution scenarios consisting of two to four concurrently
executing applications (with up to 4 overlapping sensors
for BEAM optimizations) on a Raspberry Pi and ESP8266
MCU hub. The results collected from real hardware show
that BEAM provides 29% energy saving on average, still
leaving a potential 71% room for further optimizations.

In this paper, we make the following key contributions:
Identifying the bottlenecks through applications charac-
terization: We first perform a fine-grained characterization
of a diverse set of 10 IoT apps involving 10 different
sensors to analyze the power and energy footprint of the
four sub-tasks described above. From this analysis, we find
that, application execution spends most of its energy on
transferring the sensor data from the MCU to the CPU
(81%), and the interrupt handling and subsequent user-level
computation at the CPU (≈ 15%). To optimize these two
aspects, we study two key optimizations at the system level.
Identifying the bottlenecks through applications charac-
terization: We first perform a fine-grained characterization
of a diverse set of 10 IoT apps involving 10 different
sensors to analyze the power and energy footprint of the
four sub-tasks described above. From this analysis, we find
that, application execution spends most of its energy on
transferring the sensor data from the MCU to the CPU
(81%), and the interrupt handling and subsequent user-level
computation at the CPU (≈ 15%). To optimize these two
aspects, we study two key optimizations at the system level.
Reducing data transfer energy using Batching: We
characterize the data transfer cost for various workloads and
show that the physical medium for data transfer is actually
efficient and does not consume much energy. However, the

CPU stalling for all the sensor data required for performing
the user level computation to be sent back from the MCU
expends the most energy. Motivated by this observation,
Batching makes the MCU to store intermediate sensor data
reads in its (limited capacity) buffers and batches all the
interrupts (1000s of them for one user level computation
instance) to one interrupt for every user-level computation.
This has a direct consequence of relieving the CPU from
waiting for the intermediate sensed data, and gets all the
required data in one shot. By doing so, the CPU can now
transition to sleep mode and hence save 2.6× energy.
Reducing the CPU computation energy: To further close
the gap, we explore whether the user-level computations
are ”offload-able” to the low-power MCU and completely
get the CPU to sleep for the whole computation – and
transition to active mode only when necessary. By doing
so, we only need to transfer the high-level user behavior
that gets computed as a result of sensor data reads at the
MCU to the CPU. This offload helps the CPU sleep much
longer – while the computation is done by a much more
power-efficient MCU, translating to a system wide energy
benefits. We classify those apps that fit this Computation
Offload to MCU (COM) paradigm (no loss in performance)
as light-weight and in such apps, we see a boost in energy
savings of an average of 6.7× compared with baseline.

In heavy-weight scenarios where the app-specific compute
requirements are not fit into the MCU’s capabilities, we still
observe a 10% energy saving from Batching and COM.

Although we do not claim the novelty, these two opti-
mizations briefly described above form the core of energy
efficiency optimizations in IoT platforms. When employing
them both (when applicable), we end up reducing the energy
consumption from the Baseline case by 68%.

II. BACKGROUND AND MOTIVATION

In this section, we first provide an overview of a typical
IoT system and show how sensors connect to an IoT hub.
Then, we analyze a popular IoT app, step-counter, to explain
the hardware - software interactions in an IoT setup.

A. IoT Hub

An IoT hub is the main control unit that processes various
signals received from one or more sensors. An IoT Hub (e.g.,
Raspberry Pi [20], Intel Edison [22], Intel Joule [21]), as
illustrated in Figure 2a, includes cores, System Agent (also
called North Bridge), DRAM, I/O controller, interfaces such
as Ethernet, USB, HDMI, Camera, Peripheral I/O (PIO, e.g.,
I2C, UART, SPI) on the Main board, and an external MCU
board connected through the PIO bus interface. Note that,
PIO buses are also built-in the MCU board.

How do the sensors connect to an IoT hub? There
are two ways of connecting sensors to an IoT Hub, either
directly to the PIO buses on the Main board, or to the PIO
buses on the MCU board.



(a) A typical IoT hub with
MCU.

(b) Step-counter app code. (c) Timeline of the Sensor.Read() with MCU.
Figure 2: Overview of an application running on an IoT hub.

Connecting Sensors to the Main board: When plugged in,
the sensor-specific Linux driver on the Main board probes
and initiates the polling function for it. A polling function
typically uses the CPU to poll an I/O device and waits (as
a blocking call) until the device responds back. Note that
the Main board has an independent Programmable Interrupt
Controller [23] which can receive interrupts. However, most
sensors such as accelerometer, sound, motion, etc., are
unsophisticated and hence do not have any logic/support for
the interrupt mode [24]–[30]. Thus, the CPU needs to block
and wait until the device responds back.
Connecting Sensors to the MCU board: For allowing the
CPU to carry on with useful work and not get blocked by
sensor-polling activities, sensors are connected to the PIO
buses on the MCU board, instead of the Main board, as
shown in Figure 2a. After the MCU collects readings from
the sensors attached to the MCU board, 1 it sends interrupts
to the Main board through the I/O controller and puts the
sensor values on the PIO bus; 2 CPU receives the interrupts
sent from the MCU board; 3 CPU handles the interrupts by
loading the sensor values from the PIO bus; and 4 CPU
stores the sensor values in the DRAM on the Main board.
This process is expected to be quite efficient, as all the
sensors can communicate with the MCU board in polling
mode while the CPU is from the blocking calls. As a result,
the CPU now only receives an interrupt when the MCU
finishes reading a sensor value.

B. An Example IoT App Execution: Step-Counter

We pick a representative simple application, step-counter,
to illustrate how the software and hardware interact in an
IoT hub. As the name suggests, step-counter app is used to
count a person’s steps during a given period of time using
an accelerometer sensing at a predefined sampling rate. It
is widely used in SmartHome [31] and HealthCare [32]
areas. At a high level, the app code is shown in Figure 2b.
The body of the main loop in this app performs 3 actions:
collecting data samples from a sensor, buffering the samples
in memory and sleeping for 1ms (as the sampling rate is
predefined to 1kHz for this app). This loop repeats for N
iterations determined by the application developer. After the
loop execution, a step detection algorithm [33] is triggered
to take the set of N samples as its input to compute the

number of steps detected.
On the hardware side, the four events work one after

another, as depicted in Figure 2a. To further understand the
chronological executions of these four events, we show the
timeline of the Sensor.Read() in Figure 2c:
1 Sensor Data Collection in MCU: As shown in Figure
2c, a step-counter application has to perform three tasks to
simply read a sensor data sample – C Checking Sensor, R

Reading Sensor Register, and D Data Formatting.
Task I: Checking Sensor Availability. When the MCU starts
to read a new sensor value, the first task is to check the sen-
sor’s availability. This process includes several checks, e.g.,
verifying the ready bit of the sensor, checking if the current
sensor is working under multiple condition thresholds, and
validating the electronic conditions. Some of these checks
may result in an error, leading the MCU to stop reading and
throw an error message. If no error occurs in this step, then
the MCU proceeds to the next step - reading the sensor.
Task II: Reading Sensor Data Register. To read the sensor
value, the MCU sends a read command to its own I/O
controller built in the MCU board, along with some added
information, e.g., sensorID, address of sensor register, etc.
The I/O controller identifies the corresponding sensor, and
then polls the raw value from the sensor’s data register, and
finally forwards it back to the MCU.
Task III: Transform Raw-Data To Information. The collected
raw data from the I/O controller is decoded by the sensor-
specific driver running on the MCU to output meaningful
values. For example, the accelerometer sensor [24] outputs
the raw voltage value (e.g. 1235 mV ) which is formatted to
the correct acceleration value (e.g. 1235× 10−4 m/s2).
2 MCU Interrupts CPU: After the previous three tasks
are completed on the MCU board, the MCU puts the new
sensor value on the PIO bus and interrupts the CPU to notify
it that a new sensor value is ready to be picked up.
3 Interrupt Processing on CPU: As shown in Figure 2c,
after the CPU receives the interrupt from the MCU board, it
handles this interrupt in two parts: Interrupt Processing and
Data Transfer. The Interrupt Processing part includes check-
ing the priority of this interrupt, acknowledging that this
interrupt comes from the MCU board, and context switching.
Then, the Data Transfer part picks up the sensor value
from the PIO bus and stores it in a DRAM buffer on the



0
2000
4000
6000
8000

10000

SC M2X SC+M2X:	
  
Baseline

SC+M2X:	
  
BEAM

En
er
gy
	
  (m

J)
Data	
  Collection Interrupt
Data	
  Transfer App-­‐specific	
  Computation	
  on	
  CPU

Figure 3: Energy breakdown of (1) Step-Counter (SC); (2)
AT&T-M2X (M2X); (3) Baseline: SC + M2X; and (4)
BEAM applied on top of (3).
Main board. Then, whenever an app calls the Sensor.Read()
function, the sensor value already stored in this memory
buffer is copied to the user buffer allocated by the app.
4 Compute on CPU based on the sensor readings: After
the above four routines are repeated for N samples, as shown
in Figure 2b (for loop), all N sensor readings are populated
in the Buffer. The step-counter app subsequently invokes
the step-detection algorithm [33] to report the number of
steps detected from these N sensor samples.
The above four events – sensor data collection, MCU raising
an interrupt, data transfer, app-specific computation, form
the crux of any IoT app. In the next section, we examine the
inefficiencies by analyzing 4 common execution scenarios.

C. Inefficiencies: Interrupts and Data Movement

As stated in Section I, the energy consumption when
running an app on the IoT hub is 9.5×more than idle (Figure
1). In this section, we investigate the reasons for such energy
inefficiency observed in state-of-the-art IoT platforms.

In Figure 3, we examine four common execution scenarios
(executed on real hardware, methodology and specifications
shown in Section III and Table II). In two of these scenarios,
only one app (SC or M2X) executes on the IoT platform,
and in the other two both the apps execute concurrently
(one with no optimizations, viz., Baseline platform and the
other with BEAM [4] optimization enabled. Due to their
varying computational and sensing loads, these scenarios
have varying effects on their energy consumption as shown
on the y-axis. For example, SC and M2X apps consume
1902 mJ and 9071 mJ of the energy when running inde-
pendently. When running concurrently (SC+M2X), the total
energy consumption is 10973 mJ . With BEAM optimiza-
tions applied, energy-saving improves by only 9%. BEAM
amortizes for the sensor reading, interrupt, data transfer costs
by reading and transferring the sensor data just once when
multiple concurrent applications at the CPU requires data
from common sensors. We emphasize that BEAM works
only when two or more apps are sharing sensor readings.
If there is only one app running on the IoT hub, or if there
are two or more apps running concurrently without sharing
any sensor readings, BEAM would not bring any benefits.
We evaluate these scenarios in more detail in Section IV.

SC and M2X apps share one common sensor – the ac-
celerometer. Note, M2X reads four more sensors (barometer,

77%

13%

10%
Energy  Consumption  on  CPU
Energy  Consumption  on  MCU
Energy  Consumption  for  Data  Transfer

Figure 4: Energy breakdown for data transfers in baseline
design. 90% energy is consumed by CPU and MCU waiting
for the data transfer, while only 10% is consumed by the
physical data transfer. Thus the software design for the data
transfer routine is inefficient.

temperature, air quality, light sensors) that are not needed by
the SC app. This implies that BEAM can potentially save on
the data transfer cost for only one out of five sensors readings
during the execution of M2X if SC has already read the
accelerometer’s sensor data (or vice-versa when M2X has
read the data first and SC needs it afterwards).

In Figure 3, we further break down the energy consump-
tion into the four routines mentioned in Section II. In all
these four scenarios, irrespective of how compute/sensing
intensive the scenario is, the app executions expend 70−80%
of energy in data transfers, 10−12% in interrupts, and < 5%
in data collection and app-specific computation.
Summary: The above study emphasizes that an app execu-
tion needs to optimize data transfers and reduce the CPU
interrupt costs to translate into maximum energy savings.

III. METHODOLOGY

In this section, we study two simple, yet efficient tech-
niques proposed to address the above inefficiencies existing
in current designs that make processing the sensor data
expensive. The first scheme, called Batching, accumulates
N sensor data points at the MCU before sending them to
the CPU, thereby reducing the number of interrupts. The
second scheme, called Computational Offloading to MCU
(COM), offloads the computation from the CPU, thereby
allowing the CPU to go to sleep mode when idle. Finally,
we combine both the techniques (Batching + COM, BCOM)
to optimize the energy efficiency further.

A. Batching

As discovered in Section II-C, data transfer routine con-
sumes the most energy. This motivates us to further ask
these questions: What causes this energy inefficiency in data
transfer? Hardware design or software design? To answer
these questions, during data transfer in the step-counter app,
we again breakdown the energy of CPU and MCU, shown
in Figure 4. One can observe that only 10% energy is
consumed when the physical data transfers; 90% energy
is consumed by CPU (77%) and MCU (13%) due to the
software stack design. Because the energy consumption on
CPU is dominant, we further study the power states of CPU
to better understand the software stack inefficiencies.

In CPU cores, there are two main power states: active
mode and sleep mode. Each of these power states has



(a) Power states of MCU and CPU in Baseline. (b) Power states of MCU and CPU in Batching.

Figure 5: Power states changes over-time in (a) Baseline and (b) Batching for Step-Counter. In Baseline, the CPU is in
active mode all the time; in Batching, the CPU can sleep for a long period.

different power consumption. The power consumption in
sleep mode is 3.3× less than the active mode (1.5 Watts
vs. 5 Watts). To take advantage of the power efficiency of
the sleep mode, it is the ”default” power state of a CPU as
long as there is no active jobs waiting. However, waking up
a CPU from sleep mode to active mode is costly – it needs
around 1.6 ms for the CPU to transition between these two
modes [34], [35], and the transition power is as high as
2.5 Watts on average, this translates to 2.5Watts × 1.6ms
= 4 mJoules energy overhead. Therefore, only if a CPU is
able to sleep for longer than 1.14 ms (= 4mJoules

5Watts−1.5Watt ),
it can actually provide energy savings. Otherwise, going to
the sleep mode causes more energy consumption.

For example, the step-counter app needs 1000 samples
in 1 second to calculate a precise value for detecting steps.
After an MCU collects one sample from the accelerometer
per 1ms, the MCU interrupts the CPU to transfer this data.
As shown in Figure 5a, reading an accelerometer sensor
consumes 1W×0.3ms = 0.3mJ energy. After that, the MCU
interrupts the CPU to transfer this sensor read (12 bytes).
Then, the interrupt handler loads these 12 bytes data from
the I/O controller and stores them in memory, consuming
around 0.1ms. After these steps are repeated for 1000 times,
finally the CPU processes the app-specific computation,
and reports the number of steps detected in these 1000
sensor readings. Note that, in this scenario, due to frequent
interrupts, the CPU is in the active mode all the time.

From the application’s perspective, it is acceptable to
batch 1000 samples in memory, as long as the output is
computed in 1 second, (QoS or Quality of Service). Thus, a
batching scheme is proposed, as shown in Figure 5b. This
scheme takes advantage of the unused memory capacity on
the MCU board and batches as much sensor data as possible
without interrupting the CPU. During that time, the CPU is
allowed to sleep for a longer time than baseline. By batching
1000 accelerometer sensor readings in the MCU board, the
CPU is allowed to sleep during the 999.3 ms sensing time.
After the MCU has collected all 1000 sensor samplings, it
interrupts the CPU and transfers all data in bulk.

To better explain why Batching brings benefits, we break-
down the energy consumption of the step-counter app in the
Baseline and Batching schemes, as shown in Figure 7, and
provide the two key observations.
1. The CPU has better opportunity to sleep for longer. As

0
20
40
60
80
100
120

0
10
20
30
40

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Avg.

M
IP
S

M
em
or
y  
Us
ag
e

(K
B)

Heap  usage  (bytes) Stack  usage  (bytes) MIPS

Figure 6: Memory usage and number of instruction executed.

6% 6%
16%

3%
77%

27%

1%
1%

0%
20%
40%
60%
80%
100%

Baseline Batching
%
  E
ne
rg
y  

Co
ns
um

pt
io
n

Data  Collection Interrupt
Data  Transfer App-­specific  Computing

Figure 7: Energy breakdown of the Step-Counter in Baseline
and Batching. Note that, in Batching, 1000 sensing samples
are transferred in a bulk. Due to Batching, CPU can sleep
for 93% of the time, translating to 63% energy savings.

shown in the first bar, the interrupt routine consumes 16%
energy, and the app-specific computing routine consumes
77% energy in the Baseline design. By batching 1000
samples, the CPU can go into the sleep mode, where the
power consumption is only 1.5 Watts. Taking advantage of
the lower power consumption in the sleep mode, the energy
consumption of the data transfer routine is reduced to 65%
translating to ≈ 50% saving in total energy, as shown in the
second bar of Figure 7.
2. The number of interrupts from the MCU to the CPU
is reduced. As shown in Figure 5b, the number of interrupts
from the MCU to the CPU is reduced from 1000 to only
1 in the step-counter app, consequently reducing the CPU
interrupt handling energy. The Batching scheme reduces
79.68% interrupt energy, translating to a 13% reduction in
total energy consumption, as shown in Figure 7.
Discussion: In the Batching scheme, both the interrupt and
data transfer energy consumption are reduced. Further, as
we will show in Section IV, reducing interrupts by Batching
achieves 52% energy savings on an average, compared to the
Baseline. However, this scheme does not completely mitigate
the energy consumption incurred by the data transfer routine
(which contributes 81% energy consumption to the total
energy). The reason behind this can be explained as follows:
even with the Batching scheme, the CPU is still active for



(1) transferring sensor data from the MCU board to the Main
board (100ms) and (2) processing app-specific computations
(2.21ms). The data transfer routine exists only because apps
take advantage of relatively large compute capabilities of the
CPU and memory to process the app-specific computation.
The MCU also is equipped with compute capabilities, albeit
lesser than the compute and memory capabilities of the CPU.
If the whole app computation fits in the MCU’s compute
capabilities without any QoS violations, all of the data
transfer cost and interrupt cost can be avoided. To explore
whether such offload to MCU is possible or not, we next
systematically characterize the capabilities and drawbacks
of moving the app executions to the MCU in Section III-B.

B. Computation Offloading to MCU (COM)

A Computation Offloading to MCU (COM) scheme is
proposed to address the data transfer cost by letting the
computation take place entirely on the MCU. To achieve
that, we examine the following design issues.

1) What are the requirements of IoT workloads?
2) If computation could be offloaded to MCU, how is the

performance affected?
3) How can computation be offloaded to MCU?
4) How much can we benefit by offloading to the MCU?
We next address these four design issues one by one.
1) What are the requirements of IoT workloads?: To

answer this question, we characterize the memory and CPU
requirements of 10 popular IoT workloads (described in
Table II) in Figure 6. In one running instance of each
workload, we dump the heap and stack traces to discover
the memory usage shown in the left y axis, and million
instructions per second (MIPS) rates to illustrate the required
CPU efforts, as shown in right y axis. The average memory
usage in these ten workloads is 26.2 KB, including 25.8
kB of heap usage and 0.4 KB of stack usage. The average
MIPS executed for these workloads is 47.45. Of these
apps, earthquake requires the minimum memory usage (16.8
KB) and JPEG incurs the most memory usage (36.3 KB).
On the compute side, Heartrate requires heavy compute
demand (108.80 MIPS) and Step-counter requires very little
computation throughput (3.94 MIPS).
Takeaway: The main CPU core in the IoT hub can poten-
tially execute at the rate of 24, 000 MIPS. Out of these,
the maximum MIPS required by any IoT app is only 0.5%
(108 MIPS for earthquake app). This further encourages us
to move towards the low-compute capacity, more energy-
efficient MCU for all the computations.

2) If offloaded, how would the performance be affected?:
Note that, after offloading, the MCU takes over the app-
specific computations and only sends the end-to-end output
results (e.g., the number of steps detected) to the CPU. The
CPU is freed from handling the interrupts and processing
app-specific computations, and either goes to sleep mode

100 100
48

192
2.21

21.7

0

100

200

300

400

Baseline Offloading

Ti
m
e  
(m
s)

Data  Collection Interrupt
Data  transfer App-­specific  Computing

Figure 8: Timing breakdown for step-counter app in Baseline
and COM schemes.

when idle, or processes much heavier tasks such as interact-
ing with users through User Interfaces (UI), or training an
AI model based on sensing history [36].

Since the MCU is slower than the CPU, we next ex-
plore the following question: Does offloading speed up or
slow down apps executions? To better understand how the
performance is affected after offloading, let us again study
the timing breakdown in the step-counter app, as shown in
Figure 8, for the four routines: data collection, interrupt,
data transfer, and app-specific computation. Note that, after
offloading, the step-counter app only has two routines,
namely, data collection and app-specific computation; both
interrupt routine and data transfer routine are eliminated.
Therefore, there is a trade-off:

1) On MCU: App-specific computing takes more time,
because MCU is slower than CPU.

2) On CPU: Both interrupt and data transfer routines
timing overheads are introduced.

Summary: We can conclude that if slowdown from MCU
is less than the overhead caused by interrupts and data
transfer, then the COM scheme could achieve better per-
formance than the Baseline; otherwise, the COM scheme
is worse. Consider the step-counter example again: the
computing routine in COM consumes 21.7 ms, while in
Baseline consumes only 2.21ms. However, because both the
interrupt (48 ms) and data transfer (192 ms) overheads are
eliminated, COM still has better performance than baseline:
(21.7− 2.21) < (48 + 192).

3) How to offload?: Usually the CPU and MCU run
different operating systems (OS) and use different ISAs and
different compilers. For example, Raspberry Pi 3B (used
as the main board in this work) has a Quad Core 1.2GHz
Broadcom BCM2837 64bit CPU, runs Raspbian OS [37] as
default, implements an ARM V8 ISA. The ESP8266 MCU
(used as an MCU board in this work) has an L106 32-
bit RISC microprocessor core, runs RTOS as default, and
implements a Xtensa LX ISA [38]. The ESP8266 MCU has
its own compiler ABIs (Espressif).

To offload IoT apps from the Main board to the MCU
board, developers have to port all codes to using the specific
ISA and compiler required by the MCU. For example, the
code for sleeping at the CPU for 1 second is sleep(1), while
on MCU, the same code is delay(1000). After porting, the
binaries need to be built using specific tool-chains deployed



6%
21%

0%
20%
40%
60%
80%
100%

Baseline Batching COM

%
  E
ne
rg
y  

Co
ns
um

pt
io
n

Data  Collection Interrupt
Data  transfer App-­specific  Computing

Figure 9: Energy breakdown of the step-counter app when
using (a) Baseline; (b) Batching scheme; (c) COM scheme.

to the MCU board. After deployment, there usually are
several ways to execute the offloaded image: (1) Binding
all apps to a binary and executing it sequentially [39], and
(2) Sharing time slacks and context switching [40], etc.

4) What are the benefits of offloading to MCU?: By
offloading to the MCU, the CPU is freed to either handle
other heavy tasks, or go into sleep when idle. Here, we
assume that, during processing of IoT workloads on the
MCU, the CPU is in the sleep mode, which consumes only
around 30% power compared to the active mode.

As shown in Figure 9, we again break down the energy
consumption of the step-counter app in the Baseline, the
Batching, and the COM schemes. One can now observe that:
App-specific computing routine consumes more energy:
As discussed above, MCU is slower than CPU (For example,
ESP8266 [38] is around 19× slower than Raspberry Pi
3B [20]). Therefore, the app-specific tasks running on MCU
consumes 21.7 ms, compared to 2.21 ms in Baseline and
Batching scheme as shown in Figure 8. During this time
of the app-specific computing, note that CPU is sleeping
and also consumes energy. Because of this, the app-specific
computing routine in the COM scheme consumes 21%
energy, more than 1% in baseline and Batching scheme.

Overall, when compared to the Baseline, 73% energy is
saved by the COM scheme (63% better than Batching).

IV. EXPERIMENTAL EVALUATION

We use commercially available IoT hardware platforms to
analyze the energy efficiency and performance implications
of the discussed schemes. In this section, we first describe
the hardware platforms, various sensors and workloads used
in this study, and then present our experimental results.

A. The IoT Platform for Our Experiments

Recall that the IoT hub architecture described in Figure 2a
consists of one Main board, one MCU board connected to
the Main board through I/O controller, and a set of sensors
attached to the MCU board which sends data to the Main
board. For the Main board, we used a Raspberry Pi 3B, and
for the MCU board, we used ESP8266 which is connected to
the Raspberry Pi via a miniUSB UART cable. The Raspberry
Pi integrates a Quad Core 1.2GHz Broadcom BCM2837
64bit CPU, 1GB LPDDR2 DRAM at 900 MHz, and several
accelerators. The ESP8266 board consists of a L106 32-bit
RISC microprocessor core based on the Tensilica Xtensa

Table I: Specifications of sensors studied in this work. Only
S10 is MCU-unfriendly, rest are MCU-friendly.

Power (mW) Sampling
Rate(Hz)

No. Sensor Name Input
Bus
type

Read
Time
(ms)

Min.Typical Max.
Output Data
[Type,Size] Max. QoS

S1 Barometer [43] SPI 37.5 2.12 19.47 28.93 Double,8B 157 10
S2 Temperature [44] I2C 18.75 1 13.5 20 Double,8B 120 10

S3 Fingerprint [45] TTL
Serial 850 432 600 900 Signature,512B - -

S4 Accelerometer [24] Analog 0.5 0.63 1.3 1.75 Int*3,12B 1M 1k
S5 Air Quality [46] I2C 0.96 1.2 30 46 Int,4B 400 200
S6 Pulse [47] Analog 0.1 9.9 15 22 Int,4B 1M 1k
S7 Light [25] I2C 0.1 16.8 21 25.2 Double,8B 400k 1k
S8 Sound [26] Analog 0.1 16 40 96 Int, 4B 1M 1k
S9 Distance [48] Analog 0.2 120 150 175 Double,8B 5k 1k

Low-Res. Img [49] TTL
Serial 183.64 30 125 140 RGB,24kB - -

S10 >1k High-Res.
Img [50]

Camera
Serial 500 382 425 700 RGB,619kB - -

Diamond Standard 106Micro running at 80 MHz, 80 KB
user-data RAM, and PIO buses.

B. Measurement and Tracing Tools

Since there are no open-sourced IoT simulation platform
available, we relied on real hardware. Hence, for various
characterizations, we instrumented the Raspbian Linux Ker-
nel in the IoT hub with oprof library [41] to analyze
memory, interrupts, and MIPS characteristics of IoT apps.
For power measurements, we connected the power delivery
socket of the IoT hub to Monsoon Power Monitor [42], and
dumped fine-grain power statistics (every 100 ns).

C. IoT Sensor Specifications

The salient specification of the ten sensors used in this
work are summarized in Table I. Note that, each sensor is
different from others in terms of its sampling rate, timing
parameters, bus type, power consumption, or output data.
The maximum sampling rate of a sensor is limited by various
parameters. Different apps require different sampling rates.
We refer to this application-specific feature as QoS sampling
rate in this work. For example, the QoS sampling rate of
the accelerometer (used by the step-counter app) is 1kHz.
Sensor data are passed on to apps after the sensor’s driver
processes them (as described in Section II). If a sensor’s
driver routines can be handled by an MCU, that sensor is
said to be MCU-friendly; otherwise, it is considered MCU-
unfriendly. For example, a high resolution image sensor (in
Table I) needs substantial compute power and memory size
and thus, it is MCU-unfriendly due to the MCU’s inherent
limited computing and memory capacity. On the other hand,
a low resolution image sensor is MCU-friendly.

D. IoT Workloads

We used 11 popular workloads (10 light-weight apps
that can be offloaded and 1 heavy-weight app used for
studying Batching+COM = BCOM technique’s benefits),
each exercising 1-5 of the above sensors during its execution.
The chosen workloads belong to diverse app domains such



Table II: Salient features of the workloads used in this study. A1 to A10 are light-weight and can be offloaded to MCU
(COM optimization). A11 is heavy-weight, and requires the main board’s CPU for computation.

No. Benchmark Category Sensor Used Sensor Data (KB) # Interrupts User-level Tasks
A1 CoAP Server Building Automation S7, S8 11.72 2000 Constrained Application Protocol
A2 Step counter Health Care S4 11.72 1000 Step-detection Algorithm
A3 arduinoJSON Protocol Library S1, S2 0.16 20 JSON Formatting
A4 M2X Cloud Communication S1, S2, S4, S5, S7 20.47 2220 Cloud Interfacing with AT&T
A5 Blynk Smartphone Interactions S1, S2, S4, S5, S10 36.91 1221 Platform interacting with Smartphones
A6 Dropbox Manager Web Control S8, S9 11.72 2000 File Sync, Upload, etc.
A7 Earthquake Detection Smart City S4 11.72 1000 Earthquake Predicting Algorithm
A8 Heartbeat Irregularity Detection Health Care S6 3.91 1000 ECG Feature-extraction
A9 JPEG Decoder Security S10 23.81 1 Inverse Discrete Cosine Transform (IDCT)

A10 Fingerprint Register Security S3 0.5 1 Fingerprint Enroll, Identify, etc

A11 Speech-To-Text Smart City S8 5.86 1000 Voice-to-text conversion

as HealthCare, Building Automation, IoT Protocol servers,
SmartCity, etc., as described in Table II.

All these workloads need inputs from various sensors,
with 0.16 KB to 37 KB of data moved before executing the
app-specific computation, and they receive between 1 and
2000 interrupts from the MCU to the CPU to get the data
into the CPU buffers. At a high level, the app-specific tasks
performed on the data can be grouped in two categories:
1 IoT Protocol Servers: CoAP Server [51], arduinoJSON
[52], M2X [53], Blynk [54] and Dropbox Manager [55]
workloads use the MCU to read various sensors. The data
are then processed via the workload-specific protocols to get
wrapped into various objects and subsequently transferred to
a smartphone client or the cloud using WiFi, Ethernet, etc.
For example, CoAP [56], and JSON [57] are open standards
for IoT and general object transfers in the web, while
Dropbox [55] and M2X [53] are vendor-specific standards.
2 Stand-alone IoT workloads: Apart from these generic
protocol-based apps, we also use stand-alone apps from three
different domains, with two apps from each domain.
i) Health Care Domain: Step counter [33]: counts the
number of steps walked/run by a user wearing the device.
Heartbeat irregularity detection [58]: analyzes the fluctua-
tions in a person’s heart beat based on the heart rate sensor.
ii) Security Domain: JPEG decoder [59]: performs IDCT al-
gorithm [60] on the raw camera frames. Fingerprint register
[61]: uses the fingerprint sensor to check whether a given
fingerprint matches a set of registered fingerprints.
iii) Smart City Domain [62]: Earth quake detection [63]:
uses accelerometer to sense and detect if there is an earth-
quake. Speech-To-Text [64]: uses sound input on sphinxbase
machine learning models [65] to produce output text.

We study the Batching and COM schemes on these apps.

E. Experimental Results

We characterized both the compute and memory require-
ments of the first 10 apps (A1 to A10) in Table II.

1) Single-app Scenarios: For each of the 10 IoT work-
loads, we compared three schemes, namely, Baseline, Batch-
ing, and COM, and report the energy consumption results
in Figure 10. All the results presented in this graph are
normalized w.r.t. the Baseline scheme (explained below).

Baseline: Here, the data transfer routine consumes around
81% of energy on average, and the interrupt routine con-
sumes 10% energy on average. These two routines are
the top two most expensive routines across all workloads.
Note that this observation clearly confirms the discussion in
Section II-C. As discussed by prior works [8], [11], [14],
[15], [66], data transfers are among the costliest operations
in such energy-constrained systems. Next, data collection
routine consumes 6% energy on average, because of the
low power consumption of the MCU. The app-specific
computing routine consumes even lesser than that. Across
all the workloads studied, these two routines (app specific
computation and sensor data collection) are consistently the
two least energy consuming routines. For example, in apps
such as step-counter (A2), these routines account for around
9% of the total energy consumed. In most apps, the data col-
lection routine typically consumes more energy than the app-
specific computing routine, because the former relatively
consumes more time to read sensors by MCU than compute
by CPU. However, in a few apps, such as earthquake
detection (A7), the app-specific computing routine includes
analyzing the accelerometer data and confirming whether an
actual earthquake happened by accessing public earthquake
APIs in real-time to verify if tremors were detected by the
sensors. Such tasks are relatively heavier and contribute to
the energy consumption. We next show the benefits obtained
from Batching and COM schemes.

Batching: We observe that, by batching sensor readings in
MCU, the average total energy consumption is reduced by
52%. These savings come primarily from two parts: allowing
CPU to sleep longer: During sensor readings in MCU
(e.g., 1000ms shown in Figure 5b), CPU goes to the sleep
mode, which saves, on an average, 50% data transfer energy,
translating to 43% total energy savings. Number of interrupts
is reduced: The overheads of interrupt handling are reduced
mainly because the number of interrupts is reduced by 95%,
which translates to 2% total energy. Combining these two
savings, the Batching scheme provides about 52% energy
savings, compared with the Baseline.

COM: By offloading computations to the MCU, the app-
specific compute routine consumes on average 9% energy,



0%
20%
40%
60%
80%
100%

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

Ba
se
lin
e

Ba
tc
hi
ng

C
O
M

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Avg.

%
  E
ne
rg
y  
Co
ns
um

pt
io
n

Data  Collection Interrupt Data  transfer App-­specific  Computing

Figure 10: Normalized energy breakdown with three schemes shown across 10 workloads. The lower the better.

3% larger than Baseline, because the MCU is slower than
CPU and during the longer computing time, CPU is in sleep
mode and still consumes energy. However, by offloading
to MCU, the energy consumption of both the interrupt and
data transfer routines are eliminated. These achieved savings
are larger than the overheads introduced by slower MCU
processing. Consequently, on an average, the COM scheme
reduces 85% of the energy consumed by the Baseline.

2) Multiple-apps Scenarios: To compare Batching and
COM against another proposal (BEAM [4]), we focused
on multiple app scenarios, as BEAM only works when
multiple applications share one or more sensors. Among
the ten workloads (A1-A10) discussed above, we study
all 14 combinations of workloads which share sensor(s)
with another. We breakdown the energy consumption of all
combinations as shown on the x-axis of Figure 11. Overall,
one can observe that, BEAM gives around 29% energy
saving on average compared to the Baseline, while COM
provides an average of 70% savings across all workloads.
In BEAM, the A2+A7 (step-counter app and earthquake
app) scenario provides most of the energy savings (48.20%),
because both A2 and A7 use the same accelerometer sensor
with the same sampling rate. Therefore, by sharing the
sensor between them as such, this scenario reduces half of
the energy consumption caused by interrupts and data move-
ments. However, the A5+A7 (Blynk app and earthquake
app) scenario experiences only 8.46% energy saving when
BEAM is used. This is primarily because Blynk collects data
from 5 different sensors and only one sensor (accelerometer)
is shared with the earthquake app. Clearly, with such a
low volume of sensor data getting shared between these
workloads, BEAM cannot save much energy.

3) Heavy-weight app involved scenarios: All 10 work-
loads discussed above are light-weight and can be offloaded
to the MCU. To study scenarios involving heavy-weight
app(s) which cannot be offloaded, we further introduce one
additional app: speech-to-text [64] (A11). This app takes the
audio signals collected by one sound sensor and references
an offline PocketSphinx [67] model to convert the audio to
text. To convert 1 second audio recording, A11 requires 4683
MIPS CPU throughput and a 1.43 GB memory footprint;
therefore, it cannot be offloaded to the MCU. Figure 12(a)
shows the energy breakdown when A11 runs alone on
the CPU for the Baseline and Batching schemes. From

this figure, one can observe that the app-specific routine
dominates the energy consumption (78%) in the Baseline.
On the other hand, via Batching, 5% energy savings are
achieved, much less than 52% in Figure 10. The reason is the
data transfer and interrupt routines only consume 8% energy;
therefore, even though Batching brings 62.5% savings in
these two routines, that only translates to 5% of total energy.

Figure 12(b) focuses now on multiple (including both
heavy-weight and light-weight) apps execution scenarios,
and the energy breakdown when A11 and A6 run con-
currently under the Baseline, BEAM, Batching, and BCOM
schemes. BEAM only provides 2% energy savings, while
Batching gains 7%, shown in the third bar. Note that, with
the BCOM scheme, A6 is offloaded to MCU and A11 runs
on CPU. By doing this, BCOM provides 9% energy savings.

To further show the scenario where more light-weight
apps as well as A11 run concurrently, Figure 12(c) breaks
downs the total energy consumption, when A11, A6 and
A1 run concurrently. In this scenario, BEAM gains only 2%
savings, while Batching achieves around 8%. On the other
hand, when employing the BCOM scheme, both A1 and A6
are offloaded to MCU, and this provides 10% energy saving.
Takeaways: The COM is suitable for light-weight apps;
Batching is suitable for heavy-weight apps; and when both
(light-weight + heavy-weight) run concurrently, these two
schemes are orthogonal and complement one another.

F. Sensitivity Studies
Performance Speedup: To show the performance speedup
by the COM scheme, Figure 13 normalizes the perfor-
mance of ten workloads (A1-A10) w.r.t. that of Baseline.
On average, COM provides 1.88× speedup compared to
Baseline. In fact, 8 out of the 10 workloads tested benefits
from the COM scheme, and only 2 workloads, arduinoJSON
(A3, 0.9× slower) and heartbeat irregularity detection (A8,
0.8× slower) experience slowdown. The reasons for these
slowdowns are: A3 only collects a small amount of sensor
data (0.16 KB), and then processes the JSON formatting,
which involves string-to-double conversion, memory access,
etc. These tasks can be handled by the Main board within
0.45ms, while requiring 7ms on the MCU board; and in the
case of the A8 workload, the extra time needed due to slower
MCU is greater than the latency incurred by interrupts
and data transfer. As a result, COM has slightly worse
performance degradation than Baseline when executing A3



0%
20%
40%
60%
80%
100%

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

Ba
se
lin
e

BE
AM

BC
O
M

A2+A5 A5+A7 A4+A5 A3+A5 A2+A7 A2+A4 A4+A7 A3+A4 A2+A5+A7 A2+A4+A5 A5+A7+A4 A3+A4+A5 A2+A4+A7 A2+A4+A5+A7 Avg.

%
  E
ne
rg
y  
Co
ns
um

pt
io
n

Data  Collection Interrupt Data  Transfer App-­specific  Computing

Figure 11: Normalized energy breakdown with three schemes when multiple apps run concurrently. The lower the better.

0%
25%
50%
75%
100%

Ba
se
lin
e

Ba
tc
hi
ng

Ba
se
lin
e

BE
AM

Ba
tc
hi
ng

BC
O
M

Ba
se
lin
e

BE
AM

Ba
tc
hi
ng

BC
O
M

A11  alone A11+A6 A11+A6+A1

%
  E
ne
rg
y  

Co
ns
um

pt
io
n

Data  Collection Interrupt
Data  Transfer App-­specific  Computation

(a) (b) (c)

Figure 12: Energy breakdown when one heavy-weight app
(speech-to-text, A11) is involved.

0
1
2
3
4
5

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Avg.

Pe
rfo
rm
an
ce
  

Sp
ee
du
p  

Figure 13: Performance speedup normalized to baseline.

and A8. However, COM provides averaged 2.14× speedups
for other apps, compared to the Baseline.
Future work: Note that this work does not consider any ar-
chitectural changes. Software-based optimizations (Batching
and COM) studied in this paper work well for light-weight
workloads, however, they fail to achieve large savings in
heavy-weight workloads, that are too compute and memory
intensive for the MCUs to handle. The energy consumption
of data transfer is high, mainly because there is no DMA or
shared-memory hardware support and both CPU and MCU
have to be involved during the transfers. As our future work,
we plan to explore hardware optimizations to address the
energy inefficiencies in heavy-weight workloads.

V. RELATED WORK

We summarize the related works into three areas:
Energy Optimizations in Embedded Systems: Various
optimizations in the embedded domain have proposed in-
dividual component specific optimizations [4], [66], [68]–
[83]. For example, [68] optimizes IO energy by exploiting
data bus under-utilization; [69] optimizes the peak power
for CPUs; [70] identifies time slack between DRAM and
CPU computations to save energy. All these techniques
concentrate only on a few distinct components in the IoT
hub such as CPU side, sensing side, etc., and as we show in
this paper, the entire pipeline from sensing to computations
requires optimizations to save energy.
Data Transfer Optimizations in High-end Heterogeneous
Systems: Data movement optimizations have been well

studied in high-end heterogeneous systems [84]–[100]. [101]
designs a set of APIs to offload a data intensive task to a SSD
processor. [102] proposes a data encoding technique based
on online data clustering to save energy. [103] proposes
spatial in-memory big data analytic system to offer efficient
in-memory spatial queries and analytic. Our work targets
low power systems with light-weight computations that can
be offloaded to a small MCU itself, and help the CPU to
aggressively transition to the sleep mode and save energy.
Computational Offloading: Computational offloading have
been well studied in GPU/mobile/IoT systems [104]–[111].
[112] presents cross-architecture computation offloading
framework for native apps. [113] reduces energy for sensing
a GPS location on mobile phones by offloading GPS pro-
cessing to the cloud. All these techniques do not address how
to partition compute to CPU and MCU. COM leverages the
compute resources at MCU to effectively reduce the CPU
energy consumption and save the overall execution energy
in both single and concurrent app execution scenarios.

VI. CONCLUSIONS

Energy efficiency is the most important parameter for
IoT platforms, which have and will dominate the digital
transformation landscape in foreseeable future. Two sources
of energy inefficiencies in a typical IoT system are the
frequent CPU interrupts and data transfers between the MCU
and CPU. To address these inefficiencies, two simple, yet
effective techniques, Batching and COM, are studied in this
work. Batching only interrupts the CPU after collecting N
sensor data points at the MCU to minimize the interrupt
overhead; and COM offloads the app-specific computations
to the MCU to minimize the data transfer overhead. Our
experimental results on a prototype design show that for
light-weight workloads, Batching provides on an average
52% energy saving, and COM provides 85% for single-app
scenarios. Working together, BCOM provides 10% and 70%
energy savings for multiple-apps scenarios, with and without
heavy-weight apps involved, respectively.

ACKNOWLEDGMENT

This work has been supported in part by NSF grants
1439021, 1629915, 1526750, 1629129, 1763681, 1317560,
1822923, 1626251 and 1439057, and a DARPA/SRC JUMP
grant. We thank J. Sampson, A. Pattnaik, P. Thinakaran, J.
Gunasekaran and A. Sarma for their feedback on this paper.



REFERENCES

[1] Liam Tung, “IoT Devices will Outnumber the
World’s Population this Year for the First Time.”
”https://zd.net/2OOqLGj”, 2018.

[2] Statista, “IoT Connected Devices Installed Base Worldwide
from 2015 to 2025 (in Billions).” ”https://bit.ly/2dRtPP0”,
2018.

[3] X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou, “E-
Android: A New Energy Profiling Tool for Smartphones,”
in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), 2017, pp. 492–502.

[4] C. Shen, R. P. Singh, A. Phanishayee, A. Kansal, and
R. Mahajan, “Beam: Ending Monolithic Applications for
Connected Devices,” in 2016 USENIX Annual Technical
Conference (USENIX ATC 16), 2016, pp. 143–157.

[5] S. Pan, C. Ruiz, J. Han, A. Bannis, P. Tague, H. Y. Noh,
and P. Zhang, “UniverSense: IoT Device Pairing Through
Heterogeneous Sensing Signals,” ser. HotMobile, 2018, pp.
55–60.

[6] N. Klingensmith and S. Banerjee, “Hermes: A Real Time
Hypervisor for Mobile and IoT Systems,” ser. HotMobile,
2018, pp. 101–106.

[7] Z. Tian, K. Wright, and X. Zhou, “Lighting Up the Internet
of Things with DarkVLC,” ser. HotMobile, 2016, pp. 33–38.

[8] J. Li, A. Liu, G. Shen, L. Li, C. Sun, and F. Zhao, “Retro-
VLC: Enabling Battery-free Duplex Visible Light Commu-
nication for Mobile and IoT Applications,” ser. HotMobile,
2015, pp. 21–26.

[9] S. Luo, C. Zhuo, and H. Gan, “Noise-aware DVFS Transi-
tion Sequence Optimization for Battery-powered IoT De-
vices,” ser. Proceedings of the Design and Automation
Conference (DAC), 2018, pp. 27:1–27:6.

[10] M. S. Golanbari and M. B. Tahoori, “Runtime Adjustment
of IoT System-on-chips for Minimum Energy Operation,”
ser. Proceedings of the Design and Automation Conference
(DAC), 2018, pp. 145:1–145:6.

[11] S. Sen, “Invited - Context-aware Energy-efficient Communi-
cation for IoT Sensor Nodes,” ser. Proceedings of the Design
and Automation Conference (DAC), 2016, pp. 67:1–67:6.

[12] M. Sanduleanu and I. A. M. Elfadel, “Invited - Ultra Low
Power Integrated Transceivers for Near-field IoT,” ser. Pro-
ceedings of the Design and Automation Conference (DAC),
2016, pp. 143:1–143:6.

[13] S. Gangopadhyay, S. B. Nasir, and A. Raychowdhury, “Inte-
grated Power Management in IoT Devices Under Wide Dy-
namic Ranges of Operation,” ser. Proceedings of the Design
and Automation Conference (DAC), 2015, pp. 149:1–149:6.

[14] X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni,
“PassiveVLC: Enabling Practical Visible Light Backscatter
Communication for Battery-free IoT Applications,” ser. Mo-
biCom, 2017, pp. 180–192.

[15] Y. Li, Z. Chi, X. Liu, and T. Zhu, “Chiron: Concurrent High
Throughput Communication for IoT Devices,” ser. MobiSys,
2018, pp. 204–216.

[16] J. Hester and J. Sorber, “Flicker: Rapid Prototyping for the
Batteryless Internet-of-Things,” ser. SenSys ’17, 2017, pp.
19:1–19:13.

[17] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori,
“Bespoke Processors for Applications with Ultra-low Area
and Power Constraints,” ser. Proceedings of the International
Symposium on Computer Architecture (ISCA), 2017, pp.
41–54.

[18] Y. Chen, S. Lu, C. Fu, D. Blaauw, R. Dreslinski, Jr.,
T. Mudge, and H.-S. Kim, “A Programmable Galois Field
Processor for the Internet of Things,” ser. Proceedings of the
International Symposium on Computer Architecture (ISCA),
2017, pp. 55–68.

[19] NXP, “MCIMX7SABRE: SABRE Board for Smart De-
vices Based on the i.MX 7Dual Applications Processors.”
”https://bit.ly/2STZ3sn”, 2018.

[20] Raspberry Pi, “Rasperry Pi 3 Model B,”
”https://bit.ly/1WTq1N4”, 2018.

[21] Intel, “Intel Joule Module Expansion Board Hardware
Guide.” ”https://intel.ly/2LNWyoS”, 2018.

[22] Intel, “Intel Edison Compute Module Hardware Guide.”
”https://intel.ly/2uTPkJr”, 2018.

[23] Raspberry Pi, “BCM2835 Interrupt Controller ,”
”https://bit.ly/2IlEQes”, 2018.

[24] Sparkfun, “ADXL335, A Small, Low Power, 3-Axis Ac-
celerometer.” ”https://bit.ly/23Qjc4j”, 2018.

[25] ROHM Electronic Components, “Digital 16bit Serial Output
Type Ambient Light Sensor IC,” ”https://bit.ly/2LQIRW6”,
2018.

[26] Li, Jiankai, “Grove Sound Sensor,” ”https://bit.ly/2A6jgHA”,
2018.

[27] M. Mikusz, S. Houben, N. Davies, K. Moessner, and
M. Langheinrich, “Raising awareness of IoT sensor deploy-
ments,” in Living in the Internet of Things: Cybersecurity of
the IoT - 2018, 2018, pp. 1–8.

[28] R. Piedrahita, Y. Xiang, N. Masson, J. Ortega, A. Collier,
Y. Jiang, K. Li, R. P. Dick, Q. Lv, M. Hannigan, and
L. Shang, “The Next Generation of Low-cost Personal Air
Quality Sensors for Quantitative Exposure Monitoring,” At-
mospheric Measurement Techniques, pp. 3325–3336, 2014.

[29] B. Xu, D. Kim, D. Li, J. Lee, H. Jiang, and A. O. Tokuta,
“Fortifying barrier-coverage of wireless sensor network with
mobile sensor nodes,” in Wireless Algorithms, Systems, and
Applications, Z. Cai, C. Wang, S. Cheng, H. Wang, and
H. Gao, Eds. Springer International Publishing, 2014, pp.
368–377.



[30] B. Xu, Y. Zhu, D. Kim, D. Li, H. Jiang, and A. O. Tokuta,
“Strengthening Barrier-coverage of Static Sensor Network
with Mobile Sensor Nodes,” Wirel. Netw., pp. 1–10, Jan.
2016.

[31] J. Frst, K. Chen, M. Aljarrah, and P. Bonnet, “Leveraging
Physical Locality to Integrate Smart Appliances in Non-
Residential Buildings with Ultrasound and Bluetooth Low
Energy,” in IoTDI, 2016.

[32] C. Doukas and I. Maglogiannis, “Bringing IoT and Cloud
Computing towards Pervasive Healthcare,” in UbiComp,
2012, pp. 922–926.

[33] Bobra, Neraj, “Embedded Pedometer,”
”https://bit.ly/2LuBgQb”, 2018.

[34] R. Zahir, M. Ewert, and H. Seshadri, “The Medfield Smart-
phone: Intel Architecture in a Handheld Form Factor,” IEEE
Micro, pp. 38–46, 2013.

[35] H. Zhang, P. V. Rengasamy, S. Zhao, N. C. Nachiappan,
A. Sivasubramaniam, M. T. Kandemir, R. Iyer, and C. R.
Das, “Race-to-sleep + Content Caching + Display Caching:
A Recipe for Energy-efficient Video Streaming on Hand-
helds,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), 2017, pp. 517–531.

[36] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher,
“DeepSense: A Unified Deep Learning Framework for Time-
Series Mobile Sensing Data Processing,” in Proceedings of
the 26th International Conference on World Wide Web, 2017,
pp. 351–360.

[37] Raspberry Pi, “Raspbian,” ”https://bit.ly/2zsBPRS”, 2018.

[38] Xtensalx, “Xtensalx Overview Handbook,”
”https://bit.ly/2KCOx4G”, 2018.

[39] expresslogic, “Real-time Operation System,”
”https://bit.ly/2vMh6Yb”, 2018.

[40] ARM, “ARM Cortex-M7,” ”https://rtos.com/”, 2018.

[41] Linux, “Oprofile,” ”https://bit.ly/2Mr2HrB”, 2018.

[42] Monsoon Solutions Inc., “High Voltage Power Monitor.”
”https://bit.ly/2LWkJpj”, 2018.

[43] Bosch Sensortec, “BMP280 Digital Pressure Sensor,”
”https://bit.ly/2NKsOdc”, 2018.

[44] Bosch Sensortec, “BMP180 Digital Pressure Sensor,”
”https://bit.ly/2sj53AK”, 2018.

[45] Adafruit Industries, “Adafruit Optical Fingerprint Sensor,”
”https://bit.ly/2mJwFf5”, 2018.

[46] Sparkfun, “Ultra-Low Power Digital Gas Sensor for Moni-
toring Indoor Air Quality,” ”https://bit.ly/2qQKqKu”, 2018.

[47] Jenkin, Michael and Roumani, Hamzeh, “Pulse Sensor,”
”https://bit.ly/2v9gQlF”, 2018.

[48] Parallax Inc., “PING Ultrasonic Distance Sensor,”
”https://bit.ly/2AdGFH1”, 2018.

[49] Arducam, “ArduCAM Mini Released,”
”https://bit.ly/2M6xCwk”, 2018.

[50] SONY, “Diagonal 7.20 mm Approx. 8.51M-Effective Pixel
Color CMOS Image Sensor,” ”https://bit.ly/2AXnFx0”,
2018.

[51] 1248.io, “MicroCoAP,” ”https://bit.ly/2NN20ZA”, 2018.

[52] Blanchon, Benot, “ArduinoJson,” ”https://bit.ly/2lDet6m”,
2018.

[53] ATT M2X, “Arduino M2X API Client,”
”https://bit.ly/2v94VEm”, 2018.

[54] Blynk Inc., “Blynk,” ”https://bit.ly/2mNkgqw”, 2018.

[55] lucasromeiro, “Dropbox Manager,”
”https://bit.ly/2v7DSJM”, 2018.

[56] CoAP, “Constrained Application Protocol,”
”https://bit.ly/2OPnl6d”, 2018.

[57] JSON, “Introducing JSON,” ”https://bit.ly/2kh3jU4”, 2018.

[58] tutRPi, “Raspberry Pi Heartbeat Sensor,”
”https://bit.ly/2AduvOk”, 2018.

[59] Bodmer, “Arduino JPEGDecoder Library,”
”https://bit.ly/2NKsZoS”, 2018.

[60] wikipedia, “Discrete Cosine Transform ,”
”https://bit.ly/2hOMhLG”, 2018.

[61] D. Shah and V. Haradi, “IoT Based Biometrics Implemen-
tation on Raspberry Pi,” pp. 328 – 336, 2016.

[62] E. Ngai, F. Dressler, V. Leung, and M. Li, “Guest Editorial
Special Section on Internet-of-Things for Smart Cities and
Urban Informatics,” IEEE Transactions on Industrial Infor-
matics, pp. 748–750, 2017.

[63] Intel, “Earthquake Detector in Javascript,”
”https://bit.ly/2AduQ3y”, 2018.

[64] CMUSphinx, “CMU Sphinx common libraries,”
”https://bit.ly/2OQj8z9”, 2018.

[65] CMUSphinx, “Open Source Speech Recongnition Toolkit,”
”https://bit.ly/2KBoJG7”, 2018.

[66] Y. Chen, S. Lu, H. Kim, D. Blaauw, R. G. Dreslinski, and
T. Mudge, “A low power software-defined-radio baseband
processor for the Internet of Things,” in Proceedings of the
International Symposium on High-Performance Computer
Architecture (HPCA), 2016, pp. 40–51.

[67] cmusphinx, “PocketSphinx 5prealpha,”
”https://bit.ly/2mKcUnJ”, 2018.

[68] Y. Song and E. Ipek, “More is Less: Improving the Energy
Efficiency of Data Movement via Opportunistic Use of
Sparse Codes,” in Proceedings of the International Sympo-
sium on Microarchitecture (MICRO), 2015.



[69] H. Cherupalli, H. Duwe, W. Ye, R. Kumar, and J. Sartori,
“Determining Application-specific Peak Power and Energy
Requirements for Ultra-low Power Processors,” Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2017.

[70] H. Cherupalli, R. Kumar, and J. Sartori, “Exploiting Dy-
namic Timing Slack for Energy Efficiency in Ultra-Low-
Power Embedded Systems,” in Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), 2016.

[71] J. Ajay, C. Song, A. S. Rathore, C. Zhou, and W. Xu,
“3DGates: An Instruction-Level Energy Analysis and Op-
timization of 3D Printers,” ser. Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017, pp.
419–433.

[72] V. Adhinarayanan, I. Paul, J. L. Greathouse, W. Huang,
A. Pattnaik, and W. Feng, “Measuring and Modeling On-
chip Interconnect Power on Real Hardware,” in IISWC,
2016, pp. 1–11.

[73] M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I. Kymissis,
and G. Zussman, “Movers and Shakers: Kinetic Energy
Harvesting for the Internet of Things,” ser. SIGMETRICS,
2014, pp. 407–419.

[74] F. Lai, M. Radi, O. Chipara, and W. G. Griswold, “Workload
Shaping Energy Optimizations with Predictable Performance
for Mobile Sensing,” in IoTDI, 2018, pp. 177–188.

[75] B. Campbell, Y. Kuo, and P. Dutta, “From Energy Audits
to Monitoring Megawatt Loads: A Flexible and Deployable
Power Metering System,” in IoTDI, 2018, pp. 189–200.

[76] D. Ma, G. Lan, W. Xu, M. Hassan, and W. Hu, “SEHS:
Simultaneous Energy Harvesting and Sensing Using Piezo-
electric Energy Harvester,” in IoTDI, 2018, pp. 201–212.

[77] F. Renna, J. Doyle, V. Giotsas, and Y. Andreopoulos, “Query
Processing for the Internet-of-Things: Coupling of Device
Energy Consumption and Cloud Infrastructure Billing,” in
IoTDI, 2016, pp. 83–94.

[78] T. Abdelzaher, M. T. A. Amin, A. Bar-Noy, W. Dron,
R. Govindan, R. Hobbs, S. Hu, J. Kim, J. Lee, K. Mar-
cus, S. Yao, and Y. Zhao, “Decision-Driven Execution: A
Distributed Resource Management Paradigm for the Age
of IoT,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), 2017, pp. 1825–
1835.

[79] H. Chen, W. Lou, Z. Wang, and F. Xia, “On Achieving Asyn-
chronous Energy-Efficient Neighbor Discovery for Mobile
Sensor Networks,” IEEE Transactions on Emerging Topics
in Computing, pp. 553–565, 2018.

[80] P. V. Rengasamy, H. Zhang, S. Zhao, N. C. Nachiappan,
A. Sivasubramaniam, M. T. Kandemir, and C. R. Das,
“CritICs Critiquing Criticality in Mobile Apps,” in Proceed-
ings of the International Symposium on Microarchitecture
(MICRO), 2018, pp. 867–880.

[81] P. V. Rengasamy, H. Zhang, N. Nachiappan, S. Zhao,
A. Sivasubramaniam, M. T. Kandemir, and C. R. Das,
“Characterizing Diverse Handheld Apps for Customized
Hardware Acceleration,” in IISWC, 2017, pp. 187–196.

[82] H. Zhang, P. V. Rengasamy, N. C. Nachiappan, S. Zhao,
A. Sivasubramaniam, M. T. Kandemir, and C. R. Das,
“FLOSS: FLOw Sensitive Scheduling on Mobile Platforms,”
in Proceedings of the Design and Automation Conference
(DAC), 2018, pp. 173:1–173:6.

[83] N. C. Nachiappan, H. Zhang, J. Ryoo, N. Soundararajan,
A. Sivasubramaniam, M. T. Kandemir, R. Iyer, and C. R.
Das, “VIP: Virtualizing IP Chains on Handheld Platforms,”
in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2015, pp. 655–667.

[84] S. George, M. J. Liao, H. Jiang, J. B. Kotra, M. T. Kandemir,
J. Sampson, and V. Narayanan, “MDACache: Caching for
Multi-Dimensional-Access Memories,” in Proceedings of
the International Symposium on Microarchitecture (MI-
CRO), 2018, pp. 841–854.

[85] T. Zhang, X. Zhang, F. Liu, H. Leng, Q. Yu, and G. Liang,
“eTrain: Making Wasted Energy Useful by Utilizing Heart-
beats for Mobile Data Transmissions,” in 2015 IEEE 35th In-
ternational Conference on Distributed Computing Systems,
2015, pp. 113–122.

[86] X. Zhang and G. Cao, “Efficient Data Forwarding in Mobile
Social Networks with Diverse Connectivity Characteristics,”
in 2014 IEEE 34th International Conference on Distributed
Computing Systems, 2014, pp. 31–40.

[87] D. C. Schmidt, J. White, and C. D. Gill, “Elastic Infrastruc-
ture to Support Computing Clouds for Large-Scale Cyber-
Physical Systems,” in 2014 IEEE 17th International Sym-
posium on Object/Component/Service-Oriented Real-Time
Distributed Computing, 2014, pp. 56–63.

[88] O. Kayiran, A. Jog, A. Pattnaik, R. Ausavarungnirun,
X. Tang, M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R.
Das, “C-States: Fine-grained GPU Datapath Power Manage-
ment,” in Proceedings of the International Conference on
Parallel Architecture and Compilation Techniques (PACT),
2016, pp. 17–30.

[89] G. Li, J. He, S. Peng, W. Jia, C. Wang, J. Niu, and S. Yu,
“Energy Efficient Data Collection in Large-scale Internet
of Things via Computation Offloading,” IEEE Internet of
Things Journal, 2018.

[90] X. Tang, A. Pattnaik, O. Kayiran, A. Jog, M. T. Kandemir,
and C. Das, “Quantifying Data Locality in Dynamic Paral-
lelism in GPUs,” Proc. ACM Meas. Anal. Comput. Syst., pp.
39:1–39:24, 2018.

[91] S. Qayyum, M. Shahriar, M. Kumar, and S. K. Das, “PCV:
Predicting contact volume for reliable and efficient data
transfers in opportunistic networks,” in 38th Annual IEEE
Conference on Local Computer Networks, 2013, pp. 801–
809.

[92] W. Du, J. C. Liando, H. Zhang, and M. Li, “When Pipelines
Meet Fountain: Fast Data Dissemination in Wireless Sensor
Networks,” ser. SenSys ’15, 2015, pp. 365–378.



[93] H. Huang, S. Guo, W. Liang, and K. Wang, “Online Green
Data Gathering from Geo-Distributed IoT Networks via
LEO Satellites,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[94] J. Misic and V. B. Misic, “Lightweight Data Streaming from
IoT Devices,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[95] T. Chan, Y. Ren, Y. Tseng, and J. Chen, “eHint: An Efficient
Protocol for Uploading Small-Size IoT Data,” in 2017
IEEE Wireless Communications and Networking Conference
(WCNC), 2017, pp. 1–6.

[96] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kan-
demir, and C. R. Das, “Phoenix: A Constraint-Aware Sched-
uler for Heterogeneous Datacenters,” in International Con-
ference on Distributed Computing Systems, 2017, pp. 977–
987.

[97] P. Thinakaran, J. Raj, B. Sharma, M. T. Kandemir, and
C. R. Das, “The Curious Case of Container Orchestration
and Scheduling in GPU-based Datacenters,” in SoCC, 2018,
pp. 524–524.

[98] P. V. Rengasamy, A. Sivasubramaniam, M. T. Kandemir,
and C. R. Das, “Exploiting Staleness for Approximating
Loads on CMPs,” in Proceedings of the International Con-
ference on Parallel Architecture and Compilation Techniques
(PACT), 2015, pp. 343–354.

[99] J. B. Kotra, H. Zhang, A. R. Alameldeen, C. Wilkerson, and
M. T. Kandemir, “CHAMELEON: A Dynamically Recon-
figurable Heterogeneous Memory System,” in Proceedings
of the International Symposium on Microarchitecture (MI-
CRO), 2018, pp. 533–545.

[100] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin,
N. Chatterjee, S. W. Keckler, M. T. Kandemir, and C. R. Das,
“Anatomy of GPU Memory System for Multi-Application
Execution,” in Proceedings of the 2015 International Sym-
posium on Memory Systems, 2015, pp. 223–234.

[101] G. Koo, K. K. Matam, T. I, H. V. K. G. Narra, J. Li, H.-
W. Tseng, S. Swanson, and M. Annavaram, “Summarizer:
Trading Communication with Computing Near Storage,” in
Proceedings of the International Symposium on Microarchi-
tecture (MICRO), 2017.

[102] S. Wang and E. Ipek, “Reducing Data Movement Energy via
Online Data Clustering and Encoding,” Proceedings of the
International Symposium on Microarchitecture (MICRO),
2016.

[103] N. Agrawal, “Simba: Building Data-Centric Applications for
Mobile Devices.” USENIX Association, 2015.

[104] J. Wang, J. Tang, D. Yang, E. Wang, and G. Xue, “Quality-
Aware and Fine-Grained Incentive Mechanisms for Mobile
Crowdsensing,” in 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), 2016, pp. 354–
363.

[105] Z. Lv, N. Wang, J. Wu, and M. Qiu, “IoTDeM: An IoT
Big Data-oriented MapReduce Performance Prediction Ex-
tended Model in Multiple Edge Clouds,” J. Parallel Distrib.
Comput., pp. 316–327, 2018.

[106] T. Abdelzaher, N. Ayanian, T. Basar, S. Diggavi, J. Diesner,
D. Ganesan, R. Govindan, S. Jha, T. Lepoint, B. Marlin,
K. Nahrstedt, D. Nicol, R. Rajkumar, S. Russell, S. Seshia,
F. Sha, P. Shenoy, M. Srivastava, G. Sukhatme, A. Swami,
P. Tabuada, D. Towsley, N. Vaidya, and V. Veeravalli, “Will
Distributed Computing Revolutionize Peace? The Emer-
gence of Battlefield IoT,” in 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS),
2018, pp. 1129–1138.

[107] Q. Li, L. Zhao, J. Gao, H. Liang, L. Zhao, and X. Tang,
“SMDP-Based Coordinated Virtual Machine Allocations in
Cloud-Fog Computing Systems,” IEEE Internet of Things
Journal, pp. 1977–1988, 2018.

[108] T. Elgamal, A. Sandur, P. Nguyen, K. Nahrstedt, and
G. Agha, “DROPLET: Distributed Operator Placement for
IoT Applications Spanning Edge and Cloud Resources,”
in 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), 2018, pp. 1–8.

[109] X. Tang, A. Pattnaik, H. Jiang, O. Kayiran, A. Jog, S. Pai,
M. Ibrahim, M. T. Kandemir, and C. R. Das, “Con-
trolled Kernel Launch for Dynamic Parallelism in GPUs,”
in Proceedings of the International Symposium on High-
Performance Computer Architecture (HPCA), 2017, pp.
649–660.

[110] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra,
M. T. Kandemir, O. Mutlu, and C. R. Das, “Schedul-
ing Techniques for GPU Architectures with Processing-in-
memory Capabilities,” in Proceedings of the International
Conference on Parallel Architecture and Compilation Tech-
niques (PACT), 2016, pp. 31–44.

[111] A. Pattnaik, X. Tang, O. Kayiran, A. Jog, A. Mishra, M. T.
Kandemir, A. Sivasubramaniam, and C. R. Das, “Oppor-
tunistic Computing in GPU Architectures,” in Proceedings
of the International Symposium on Computer Architecture
(ISCA), 2019.

[112] G. Lee, H. Park, S. Heo, K. Chang, H. Lee, and H. Kim,
“Architecture-aware Automatic Computation Offload for
Native Applications,” in Proceedings of the International
Symposium on Microarchitecture (MICRO), 2015.

[113] J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. F. Loureiro,
and Q. Wang, “Energy Efficient GPS Sensing with Cloud
Offloading,” in Proceedings of the 10th ACM Conference
on Embedded Network Sensor Systems, ser. SenSys, 2012.


