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ABSTRACT as medical diagnosis, gaming, etc. One of the most widely used

The advent of machine learning (ML) and deep learning applica-
tions has led to the development of a multitude of hardware ac-
celerators and architectural optimization techniques for parallel
architectures. This is due in part to the regularity and parallelism
exhibited by the ML workloads, especially convolutional neural net-
works (CNNs). However, CPUs continue to be one of the dominant
compute fabric in data-centers today, thereby also being widely
deployed for inference tasks. As CNNs grow larger, the inherent
limitations of a CPU-based system become apparent, specifically in
terms of main memory data movement. In this paper, we present
CASH, a compiler-assisted hardware solution that eliminates redun-
dant data-movement to and from the main memory and, therefore,
reduces main memory bandwidth and energy consumption. Our
experimental evaluations on a set of four different state-of-the-art
CNN workloads indicate that CASH provides, on average, ~40%
and ~18% reductions in main memory bandwidth and energy con-
sumption, respectively.

CCS CONCEPTS

« Computer systems organization — Neural networks; Mul-
ticore architectures; « Software and its engineering — Run-
time environments.

ACM Reference Format:

Anup Sarma, Huaipan Jiang, Ashutosh Pattnaik, Jagadish Kotra, Mahmut
Taylan Kandemir, and Chita R. Das. 2019. CASH: Compiler Assisted Hard-
ware Design for Improving DRAM Energy Efficiency in CNN Inference. In
Proceedings of the International Symposium on Memory Systems (MEMSYS
’19), September 30-October 3, 2019, Washington, DC, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3357526.3357536

1 INTRODUCTION

In recent years, there has been tremendous growth in the adop-
tion of machine learning (ML) algorithms in applications used on
wearables to warehouse scale-computing for diverse areas such
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ML models in practice today are based on convolution neural net-
works (CNNs). CNNs are frequently employed to find solutions
to grid-based problems and, in general, provide higher accuracy
compared to traditional rule-based algorithms. Over the years, as
more problems are being solved using CNNs, these ML models,
also known as deep neural networks (DNNs), have increased in
complexity (higher number of layers) and contain many different
types of layers [21, 23, 29, 41, 42].

Such large-scale adoption of DNNs has generated a plethora
of research work, resulting in improved performance and energy
efficiency. Notably, a series of hardware accelerators have been
proposed to directly meet the reuse and data flow characteristics of
such networks [4, 7, 13, 26]. Also, due to the high compute and data
movement demands,processing-in-memory solutions [8, 27, 40]
have been proposed as well. However, deep learning models have
been rapidly evolving over the years, and apart from CONV/FC
layers, also consist of non-GEMM amenable layers, such as data-
compaction, dilated convolution or deformable convolution. State
of the art accelerators were designed mostly keeping compute in-
tensive CONV/FC layers in mind, however, evolving nature of these
workloads requires frequent synchronization of accelerators with
host CPU for non-GEMM tasks, thereby incurring significant data
movement cost. On the other hand, modern processors are also
being equipped with wide vector extension modules and scatter-
gather operations that make them compelling for data parallel
tasks, given the high NRE cost & deployment time associated with
standalone accelerator.

Prior works, focusing on general-purpose processors, have dealt
with exploring the compute and communication characteristics of
DNNs on large-scale compute nodes during the training phase [10,
11, 24, 28, 45]. While GPUs are preferred for training and batched ex-
ecution of inference, however, under real-time latency constraints,
CPUs are currently the choice of compute fabric at large scale data-
centers [20, 35].As the number of cloud and datacenter services that
run inferences on CPUs have increased tremendously [9, 15, 19],
it is imperative that the energy efficiency of inference execution on
CPUs be improved further. Therefore, in this paper, we focus on
improving the energy efficiency of CNN inference execution on
CPU-based systems.

Figure 1 shows a generic layout of a CNN [29]. These networks
are modeled in a layer-wise fashion and follow a producer-consumer
paradigm, where the first layer receives the input, and the sub-
sequent layers consume the data produced from their preceding
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Figure 1: Layer wise execution model of a CNN [29].

layer(s). In this work, we refer to the data generated from the in-
termediate layers as “transient data”. ! The transient data is only
needed during its consume phase and is no longer required once
it is consumed. However, under current execution paradigm, this
transient data is read and written-back to the main memory unnec-
essarily, thereby increasing both memory bandwidth and energy
consumption. Therefore, it is imperative that any unnecessary data
movement due to transient data be eliminated to further improve
the energy efficiency of CPU-based inference execution. Our goal in
this paper is three-fold: (1) to find the live range of the transient data
that lead to unnecessary memory accesses; (2) to propose a simple
hardware mechanism to discard unnecessary memory transactions
generated by the transient data;

and (3) to propose an optimized compiler algorithm to identify the
required buffer size that can be effectively reused across all layers dur-
ing execution. To this end, we propose CASH, a Compiler-ASsisted
Hardware design that performs a liveness analysis on the applica-
tion code to identify the live ranges of the transient data structures
and instruments them in the application binary. A simple hardware
filtering mechanism is implemented at the memory controller that
keeps track of the transient data liveness information provided by
the updated application binary. Whenever a memory transaction
belonging to the transient data arrives at the memory controller, the
filtering mechanism detects it and conditionally discards it, elimi-
nating any unnecessary data movement to/from the main memory.
Furthermore, it also provides a compiler optimization that finds the
smallest buffer size that is needed by the CNN and allocates only a
single buffer that is reused across all the layers of the network.

To our knowledge, this is the first work that considers reducing
the memory traffic generated by CNN inferences in a CPU-based
system by discarding any memory requests belonging to transient
data at the memory controller. This paper makes the following
major contributions:

e It proposes CASH, a Compiler ASsisted Hardware scheme
that provides a hardware mechanism and compiler optimization
method to reduce unnecessary data movement and reduce memory
bandwidth and energy consumption.

o The first method proposes a memory controller based data re-
gion tracking mechanism and uses the liveness information passed
from the application binary to filter out unnecessary memory trans-
actions. The second method proposes a compiler optimization that
allows for the creation & management of a single buffer space that
is re-used throughout the course of a CNN execution.

o It comprehensively evaluates CASH using 4 state-of-the-art
CNN . The proposed optimizations provide, on an average, band-
width reduction of ~40% and main memory energy savings of ~18%.

1We use the terms “transient” and “intermediate” interchangeably.
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Figure 2: Different types of layer operations in a CNN

2 BACKGROUND AND MOTIVATION
2.1 Background on CNN computation

Convolutional neural networks usually comprise of multiple repeat-
ing instances of the following layers: convolution (CONV), pooling
(POOL), activation (ACT — for example, ReLU), fully connected
(FC), and global average pooling layer, as shown in Figure 2 (a)-(d).
In a CONV layer, multiple filter kernels are applied to the input
feature maps to generate output feature maps. The filter weights
are typically learned offline during the training phase. POOL layer
aggregates the features across a window of neighboring pixels of
the output feature map. FC layers are usually present at the end of
CNNs and acts as the classifier. In addition to the above well-known
layers, recent state-of-the-art networks have introduced additional
types of layers in CNNs for higher accuracy. The most important
is the layer-wise concatenation (CONCAT), as shown in Figure 2
(e). It is used to propagate features from an earlier stage of the
network to a later stage [23]. The concatenation is performed by
placing together multiple feature maps from the previous layers
into one contiguous memory region to be used as an input feature
map for the subsequent layer. Another similar approach to propa-
gate feature information is point-wise merger (MERGE), as shown
in Figure 2 (f). It is used in identity mapping or shortcut connections
in residual networks[21]. Unlike the CONV layer, these layers have
less computational requirements, but leads to data re-use patterns
which are not sequential in nature.
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Figure 3: Different network topologies for CNN.

As shown in Figure 3, CNNs can be interpreted as a directed
acyclic graph G = (V.E), where V = {V1,V5,V3,..V,,} is the set of ver-
tices representing each layer, and E C {V x V} is the set of edges
representing different operations (CONV, POOL, etc.) involved in
a CNN application. Figure 3 depicts various CNN topologies that
are in use today such as a linear, identity, and shortcut connection
mappings (used in ResNet), inception modules (used in GoogLeNet)
and denseblocks (used in DenseNet).
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(a) Baseline hardware execution model.

(b) Layerwise transient data in GoogLeNet.
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Figure 4: Hardware execution model and transient data involved in networks

2.2 Motivation

As discussed in the previous section, CNN models are stacked layers
of operations whose inputs and output(s) are represented as con-
tinuous blocks of data in main memory. As a result, when the core
starts processing an input data layer to generate the subsequent
output layer (@), it incurs “cold-write” misses (@) that propagate all
the way down to the main memory (®) (referred to as write-allocate
reads). Similarly, when an output layer is generated, the previous
layer’s dirty data is “written back” (®) to the main memory upon
a memory de-allocation, or as a part of regular dirty cache line
replacement (@) [22]. This particular behaviour of the hardware is
shown in Figure 4a. We observe that this issue of write allocation
reads and write-back is significant in CNNs and can be exploited
to reduce off-chip bandwidth and main memory energy savings.
We motivate the transient data movement issue via an example by
analyzing the data generation characteristics of 4 state-of-the-art
CNN . Figure 4b shows the amount of intermediate data generated
by different layers during the course of execution of GooglLeNet.
This data can be as high as 3000KBs for a given layer. Recall that
the data generated by C1 is consumed by P1 (Section 2.1). However,
considering the baseline CPU architecture and memory hierarchy,
all the intermediate data for C1 (3000KB) need to be fetched from
main memory due to cold misses. This is unnecessary as the mal-
loced data is garbage in the beginning and are computed at runtime.
Similarly, after the data is computed, it is eventually written back to
the main memory during cache eviction. This is also unnecessary,
as once the computed data is consumed by the next layer, it is no
longer needed and does not need to be written back to main mem-
ory. This behavior is repeated from a layer to any future layer (not
just the successive ones) and across most CNNs. Figure 4c shows
the total transient data and total weight data for 4 different CNNs.
We observe that the intermediate data can be a significant fraction
of the total weights, which are to be read from main memory, rang-
ing from ~10% in ResNet-34 to ~100% in GooglLeNet. In general,
a layer with transient data size X and weight size W would incur
(W+2X) bytes of data to be fetched from main memory. Our scheme
would require fetching only W bytes, resulting in date movement
savings of [100/(1 + (W /2X))]%. Therefore, as seen in Figure 4c,
on an average, X is ~21MB and W is ~54MB, leading to a memory
bandwidth savings of 43.6%.

3 CASH DESIGN

The development of CASH involves design and integration of two
distinct aspects: First is the addition of a hardware mechanism
to track memory data regions with compiler identified liveness

information. Second is a compiler optimization approach, which
can reduce the cost of hardware unit by identifying and managing

a minimum data region which is required for network execution.
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Figure 5: Overview of our proposed scheme.

In this section, we outline the high level view of our proposed
mechanism. Figure 5 shows the various steps involved. In order to
efficiently eliminate the unnecessary data movements involving
the intermediate data structures, we first need to identify such in-
termediate data structures (@). To this end, our scheme adopts a
compiler-assisted “liveness analysis” on the application code. While
liveness analysis is used for traditional register allocation and dead
code elimination [34], we use it in the context of liveness of tran-
sient data, by adopting an approach similar to the work of Guyer et
al. [16]. The liveness information collected from step @) needs to be
passed on to the hardware to make it aware of the liveness scope
(®). To keep track of the liveness information in the hardware, we
augment the memory controllers with a register file, referred to as
Transient Data Detect Table (TDDT). Furthermore, we propose a
new ISA instruction that is capable of passing the liveness informa-
tion along with the transient data structure sizes to the memory
controller and populate the TDDT entry. This instruction is inserted
into the application binary by the compiler for each transient data
structure after the liveness analysis. For efficient elimination of
unnecessary memory transactions ((©), we incorporate a simple
hardware filtering mechanism at the memory controller. At run-
time, when the memory controller receives a memory transaction,
the hardware unit checks if it belongs to any of the intermediate
data structures. It discards any requests belonging to the transient
data from being sent to the main memory and only sends necessary
memory transactions to be issued to the main memory. Due to scal-
ability limitations of per layer hardware tracking, in the second part
of compiler optimization ((’), we refine our approach to identify
and reuse only a single buffer throughout network execution. We
discuss the various intricacies involved in the buffer management



MEMSYS ’19, September 30-October 3, 2019, Washington, DC, USA

of various types of CNNs and provide an efficient algorithm to
handle such scenarios. Next, we describe in detail the individual
steps 1 through 5 of our proposed scheme.

3.1 Hardware mechanism to track data regions
with compiler liveness analysis

3.1.1 Compiler Liveness Analysis: Liveness analysis of data
variables is a well-known technique [16]. We perform a static live-
ness analysis of a program’s data structures to determine their live
ranges in the application code. Let us consider the example shown
in Figure 6. It shows the liveness of the various data structures? of
a sample NN graph and its corresponding representative high-level
code during different instances of its execution. At time t2, the
computation of Layer1 has just finished, which in turn is going
to be used to generate Layer2. Therefore, the live set consists of
L1. At time t3, the computation to generate L2 has finished, and
therefore, the live set consists only of L2 as L1 has been moved
to the dead set. Similarly, We can use the same principle to anno-
tate any arbitrarily complex NN graph to find the liveness and use
specifically designed instructions to pass the liveness information
to the memory controllers, as discussed below.

t0

Input layer(read only) LO = read_input();

tl Liveset {NULL} Deadset {NULL}
L1 = (void*) malloc(sizeof(L1));
// Start CONV1
CONV1(LO, CONV1_filter, L1);
Liveset {L1} Deadset {NULL} ¢ —riter )
L2= (void*) malloc(sizeof(L2));
// Start POOL1
POOL1(L1, Pooll_param, L2);

t2

t3 Liveset {L2} Deadset {L1}

L3= (void*) malloc(sizeof(L3));
// Start CONV2

CONV2(L2, CONV2_filter, L3);
Liveset {L3} Deadset {L1,L2}

Output layer

t4

Figure 6: Layer wise liveness of a sample NN graph.

3.1.2 TDDT Register File at the Memory Controller: Once
the intermediate data structures have been identified by the compiler-
assisted liveness analysis, our scheme requires the associated hard-
ware support to track the liveness information. For this, we propose
adding an SRAM-based register file at the memory controller (re-
ferred to as Transient Data Detection Table or TDDT for short),
which is in a sense a programmable register file that is exposed
to the core via ISA. We also add the corresponding ISA extension
needed to populate this register file with necessary data values
(discussed next). These register files are used to store the physical
address range and status of the intermediate data structure. TDDT
consists of a 32-bit physical address field, a 30-bit intermediate
data size field, and the read and write-back status bits. Based on
the values populated in these registers and address of the memory
transactions reaching the memory controller, it is decided whether
to forward the request to the main memory, or simply return it (in
the case of reads due to write allocate), or discard it (in the event of
write-back while layer/data-structure lifetime has come to an end).

ZFor simplicity, we club all the transient data structures present in a layer together
and find the liveness of a layer as a whole.
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Note that, by allowing the register file at the memory controller to
be directly programmed by an ISA instruction, it becomes a part of
the process execution context. Therefore, the register file needs to
be replicated and made exclusive for each CPU core.

New Instruction: Trans_Detect (VA, Size, RD, WB)

. Buffer | ReaD |WrBack
Op-Code R I >a 8 Ijzabe| [Disable

(8-bit) (32-bit) | 30ty | (a-bit) | (2-bit)
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Figure 7: ISA extension and system interaction.

3.1.3 ISA Extension: In order to populate the TDDT entry fields
at the memory controller, we propose an ISA extension. The ISA
instruction is used to annotate the intermediate data structure with
its base address and size based on the liveness analysis and compiler-
passed information, which gets allocated before its actual usage.
The instruction format is shown in Figure 7. It has an opcode field,
address field, size and two additional bit fields. The bit fields are
used to indicate read_disable or write_disable status of the data
structure, respectively. When the instruction is issued from the
core with its base virtual address, it performs the TLB lookup and
the base physical address of the data structure is passed on to the
memory controller along with its size.

We use the mnemonic Trans_Detect(argl, arg2, arg3, arg4) to
refer to this instruction call. Note that the ISA format shown here
is for illustrative purposes only and will require specific adaptation
for the target platform.

3.1.4 Operating System Support. We adopt a simple range com-
parator logic to determine the status of an incoming address at the
memory controller. However, if the data-structure spans multiple
pages, we cannot guarantee contiguity of the data structure based
on base address only, as the physical page allocation might be dis-
continuous in the main memory. Also, the overhead of maintaining
metadata to handle such cases would be very high. Therefore, we
require support from the operating system to provide a physically
contiguous address space [18] for the malloc() operation for the in-
termediate data structure. With OS support, given the base address
and the size of a data structure, we can easily determine whether
the memory request belongs to one of the tagged data structures.

3.1.5 Control LogicforFiltering Transient Data : As discussed
earlier, we add TDDT in the memory controller to tag the starting
address and the size of each transient layer in the ML inference
application. In addition to the address and the size field, we also
maintain status bits to indicate the status of the data structure,
viz., read_disable or write_disable, which is enabled based on the
arrival of special ISA instruction as discussed earlier. TDDT at the
memory controller is organized as a FIFO queue, and the incoming
ISA request (used to tag the memory regions) is used to populate
TDDT entry fields. Figure 8 shows the operation of the memory
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CPU
t0| | 7/ Read-Disable Li-data from main memory Cache
Trans_Detect(base_addr(L1),size(L1),1,0);

// Start CONV1
t1| | convi(Lo, convi_filter, L1);

t2 // Read-Disable L2-data from main memory
Trans_Detect(base_addr(L2),size(L2),1,0);

// Start POOL1

POOL1(L1, Pooll_param, L2);
Cache
// Write-Back disable L1 data Levels
t3 Trans_Detect(base_addr(L1),size(L1),1,1);

// Read disable L3 data
Trans_Detect(base_addr(L3),size(L3),1,0);

t41 | s/ start convz
CONV2(L2, CONV2_filter, L3);

a) Compiler annotated code

1
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Figure 8: Compiler annotated code and operation of modified memory controller

controller using a representative example. As shown in Figure 8(a),
the compiler identifies and inserts Trans_Detect() instruction calls
in the program code. At instant t0, prior to computation of CONV1,
the base address and size of Layer-1 (L1) data-structure are passed
to the memory controller using the Trans_Detect call with the
read_disable flag bit set and the TDDT entries are filled out (@)
in a FIFO order as maintained by the TDD controller (@). During
the computation phase of CONV1, the read request packets (@)
arrive at the memory controller, and are added to the Transactions
Buffer (@). If the difference between the requesting address and
the base address from the TDDT entry is found to be less than
the corresponding size field of the TDDT entry (referred to as
range-matching) along with read_disable flag, the read request is
considered as "pseudo” by @ after performing a table lookup (@)
and returns a zero valued response packet (@). During the CONV1
computation, the read requests corresponding to the input and
weights pass through the memory controller but read requests for
Layer-1 intermediate data (due to write misses) get filtered out. Un-
til a range-match is found, @ issues request to the TDD-controller
(@) to provide the next TDD entry (scenario-b in Figure 8(b)). If
no range-match is found in all the entries of TDDT, the memory
request is sent to main memory.

Similarly, at instant t2, Layer-2’s (L2) metadata is passed to the
memory controller and it fills up the second entry in TDDT with
the read_disable flag bit set. Thus, during computation of POOL1,
pseudo reads for L2-data are filtered out. At instant t3, the L1-data
becomes a part of the dead set and is identified through the liveness
analysis. Therefore, any write-backs of this data to the main mem-
ory is inconsequential. The compiler, therefore, inserts Trans_detect
instruction for L1 data structure with write_disable (WB) flag bit
set; this updates the WB flag bit of the corresponding TDDT entry.
Thus, any instant t >t3, the WB requests corresponding to L1-data
are discarded by the memory controller logic (@).

What happens if write-back occurs before the WB disable
bit is set at the TDDT entry? We refer to this condition as “over-
flow of transient data”. When an overflow situation is detected, we

simply reset the read_disable flag of the corresponding TDDT entry
(@) and forward the writeback to main memory. This enables us
to guarantee consistency, as any future read to this data structure
will not be filtered out by our controller logic, and will be read
from main memory instead. In the next section, we discuss poten-
tial drawback of a hardware only approach and propose necessary
optimization steps at the compiler-side to overcome the drawback.

4 COMPILER OPTIMIZATION
4.1 Scalability Issues with Per-Layer Tracking

As discussed in the previous section, our proposed hardware mecha-
nism requires tracking each layer’s intermediate data at the memory
controller. However, the state-of-the-art neural networks can well
exceed over 100 layers, and therefore, would require a very large
register file to be implemented at the memory controller. In addi-
tion, they would also add to the overhead of runtime execution, as
each memory transaction will now need to be range-matched with
all the TDDT entries.

Therefore, we propose a compiler approach to address this is-
sue by noting that, it is not necessary to malloc() a new memory
region for each new layer of neural network. Instead, we can reuse
the memory region corresponding to a dead layer towards the
generation of a next layer’s data. Thus, we need to identify the
minimum buffer size that will be required during the course of
the network execution. Algorithm 1 provides the pseudo code to
determine the execution order of the independent layers and infer
the minimum required buffer size for allocating the layers. The al-
gorithm essentially obtains the MinBuf ferSize by computing the
max{Li—1+L;,L;+Li+1} on the network graph. At the end of each
layer’s lookup, the minimum buffer size is updated. This allows
efficient memory usage and reduces the allocated buffers involved in
the inference phase to only “one”. It also outputs Local_BufferSpace
which is described in Section V-E.
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Algorithm 1 Find the global and local minimum buffer size.

Input: A Neural Network G= {L;li €1, 2... n}
Initialization:

BufferSize < Ly.inputsize + Li.outputsize;
Stack.push(Ly)

Local_BufferSize < {BufferSize}
Min_BufferSize « Ly.outputsize

Repeat

L « Stack.pop()

for each successors layer L; of layer L do

if the successor of L; is not a converging layer then
BufferSize « BufferSize + L;.outputsize

Stack.push(L;)
else

if L; is the last predecessor of its successor then

| Stack.push(L;)

end
end
if L; is a converging layer then

| BufferSize < BufferSize + L;j.outputsize

end

end
Min_BufferSize «— max(BufferSize, Min_BufferSize)
if the successor of L is not a converging layer then

| BufferSize < BufferSize — L.outputsize

end

if Layer L is re-sized by pooling layer then
| Update Local_BufferSize

end
Until Stack is empty
Return Min_Buf ferSize, Local_BufferSize;

4’I

a) Empty Buffer b) Allocate L1 ¢) Allocate L2 d) Deallocate L1

Figure 9: A naive buffer space management scheme.

4.2 Managing Buffer Space

In this section, we show that our proposed scheme requires a well
orchestrated buffer management scheme to avoid any buffer over-
flow scenario. We refer back to the execution schedule we consid-
ered previously. As discussed earlier, with the compiler assisted
approach, we need to define one contiguous region of buffer that
needs to be managed throughout the execution of the network.

In a naive buffer management approach, the memory blocks
can be allocated consecutively one after the other. In Figure 9,
memory block for region L1 is allocated starting at the bottom
of the buffer, and the next block corresponding to L2 is assigned
immediately after it. After L2 is generated, block L1 is marked as free
for further use. However, this approach can lead to fragmentation
by creating holes on both sides of the managed buffer as shown
in part Figure 9d). Therefore, despite having enough free space on
the buffer, we may not be able to contiguously allocate space for
L3, if sizeof(L3) > sizeof(L1) and sizeof(L3) > MinBuf ferSize —
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(sizeof(L1)+sizeof(L2)). Note that contiguity of blocks is necessary
from a performance angle.

4.3 Efficient Buffer Management

To eliminate buffer fragmentation, we need to adopt a simple yet
effective way of managing the buffer space. The key observation
which leads to fragmentation in earlier scenario was that holes
were being created on both sides of an allocated memory region.
Therefore, in principle, if we can coalesce the holes in one specific
direction of the buffer, we can eliminate the issue of fragmentation.
To this end, we resort to a "ping-pong strategy” to allocate and
de-allocate buffer space, as illustrated in Figure 10.

a) Empty Buffer b) Allocate L1 ¢) Allocate L2 d) Deallocate L1

Figure 10: A ping-pong allocation strategy.

We show the pseudo code of Buffer Management in Algorithm 2.
In this approach, region for layer L1 is allocated starting at the bot-
tom of the stack. For allocating buffer to L2, which is a child-node of
L1, we allocate it at the opposite end of the designated buffer region.
At the end of generation of L2 data, we set the region belonging
to L1 as free, and therefore, the buffer remains contiguous and free
of any fragmentation. We show that this approach is extendable
to other non-linear network architectures with arbitrary branch
structures, and still achieves contiguity for all the allocated blocks.

4.4 Handling Networks with Branching

() [ e
(1) () (w) — T
) (2) (3) (a)
Comas | |

b) CONCAT Layer c) Buffer View

Work Space

a) MERGE Layer

Figure 11: MERGE and CONCAT Layers in CNN.

State-of-the-art CNNs come with variety of branching topologies
such as residual, dense or inception blocks. The two key underlying
operations which are utilized to converge such branched struc-
tures are via MERGE (element-wise reduction of feature map) or
CONCAT (stacking of feature maps), as shown in Figure 11. Due
to arbitrary depth and branching factor involved in such struc-
tures, we may witness scenarios that need specific adaptation in
the buffer management scheme. Therefore, to keep the approach
generic and straightforward, we define an auxiliary "work-space
buffer", which equals to the maximum of the observed CONCAT
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Algorithm 2 Buffer management for each layer.

Input: A Neural Network G= {L;|i €1, 2... n},
Min_BufferSize, Auxiliary BufferSize
Initialization: Stack.push(Lg) Allocate layer L; at bottom of the buffer
Repeat L « Stack.pop()
Remove layer L from the buffer
for each non-converging successors layer L; of layer L do
if the successor of L; is not a converging layer then

Stack.push(L;)

Allocate layer L; in the buffer at the opposite end of L
else

if L; is the last predecessor of its successor then

| Stack.push(L;)

end

Allocate layer L; in the auxiliary space of the buffer
end

end
if the successors layer L; of layer L is a converging layer then
Switch the logical view of the Buf fer
‘ Stack.push(L;)
end
Until Stack is empty
Return Min_Buf ferSize, Local_BufferSize;
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Figure 12: Memory allocation flow for CONCAT

layer or the MERGE layer size, in addition to the MinBufferSize
derived from a linear notion of the execution graph.

Figure 12 and 13 shows the flow of the memory block assignment
given an execution schedule. The execution schedule shown here
follows a BFS ordering, so that the parent node can always be re-
leased after all the associated edges have been computed. However,
in order to avoid the memory fragmentation issue, in the next run
of BFS, it needs to follow a LIFO ordering with respect to the output
of the previously-executed edges. At instant t4, all the outgoing
edges associated with W (Figure 12) have been executed, and there-
fore W is being released. Also, it is to be observed that, at t3, while
executing the CONCAT operation with respect to W, it is copied to
the auxiliary space while preserving the order (as defined by the
CONCAT operation). For the MERGE layer scenario Figure 13, the
first execution of the edge is an assignment operation, following
which the edges can be executed in an additive fashion (because
we are re-using allocated spaces, it is going to consist of non-zero
values). Therefore, running the MERGE operation (repeated addi-
tion) on such a block would lead to inaccurate output value being
computed. At end of MERGE or CONCAT layers, we switch the
logical view of the buffer in such a way that current auxiliary space
becomes a part of work space for the reminder of the execution
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graph, while carving out equivalent amount of auxiliary space from
previous work-space region.
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Figure 13: Memory allocation flow for MERGE

4.5 Dynamic Buffer Resizing

With the compiler managing the layerwise memory allocation, we
need to maintain only a single entry in TDDT per inference, cor-
responding to a single buffer, and this meets the minimum space
requirement throughout the network. However, an important at-
tribute of CNN is that generated featured map periodically under-
goes the reduction of resolution. As such, the generated interme-
diate feature map size decreases towards the end of the network,
despite the increase in the number of channels. This in turn means
that the required min-buffer size gets smaller in successive phases
of the network. Note that this can potentially lead to pseudo over-
flow scenario, where an un-utilized portion of the buffer can get
cache-evicted at runtime, triggering the WB bit set for the buffer. To
avoid this scenario, we utilize this characteristics of the network to
periodically update the Local_BufferSize in Algorithm 1 and insert
another entry in TDDT, marking the unused buffer space. By doing
so, the pseudo overflow scenario is avoided, and at the same time,
the WB corresponding to unused space can be successfully avoided.

5 EVALUATION METHODOLOGY

Simulation Platform: We simulate the baseline architecture
given in Table 1 using the GEM5 simulator [3]. We extensively
modified GEMS5 to implement our proposed scheme. Specifically,
we added a pseudo instruction to the Gem5 model which obtains the
starting physical address from the virtual address (after the transla-
tion lookup) and propagates this information to program the fields
of the Transient Data Detection Table (TDDT) fields at the memory
controller. The starting address here corresponds to the buffer(s)
defined to hold networks layer data. We also add queues to simu-
late TDDT and implemented the necessary logic for intermediate
data handling as described in Section 3. We used the default main
memory energy model in GEM5. Note that, all our experiments are
performed for a batch size of 1 and simulated until completion of
the inference phase. Although batch sizes of greater than 1 are pre-
ferred for higher throughput, in a CPU-based execution, increasing
the batch size may lead to missing QoS deadlines [35, 43, 44].

CNN Benchmarks: We evaluated 4 state-of-the-art CNN architec-
tures for our study: ResNet-18, ResNet-34 [21], GoogLeNet [42],
and DenseNet [23]. ResNet-18 and ResNet-34 have similar layer
structures except that the latter has more layers/depth and also
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Figure 14: CNN benchmark characteristics.

Table 1: Configuration parameters for baseline architecture.

CPU 4XOut-of-Order, 2.5GHz

L1-ID Cache 32kB, 4-way associative with 32B cacheline

L2-Cache 256kB, 8-way associative, Private

L3-Cache 16MB, 16-way associative, Shared

Cache Policy Mostly Inclusive with LRU
DDR3-1600, 64-bit bus width, 12.8GB/s 1KB row buffer, 8 banks/rank,

Main Memory 8 devices/rank, 2 ranks/channel, tfgcp = 13.75ns, tcp, = 13.75ns,
IRp =13.75ns, IR oS = 35ns, IR = 300ns, IREFT = 7.8us

introduces the element-wise addition to establish the residual con-
nectivity at every alternate CONV layer. GooglLeNet introduces
inception module, which involves parallel convolution blocks fol-
lowed by the concatenation of output feature maps. DenseNet in-
troduces a dense-block architecture which consists of a densely
connected architecture with recurring concatenation layers.

Note that the baseline version of these benchmarks is the one
in which every layer data is individually allocated without any
compiler optimization or hardware tracking. However, known tech-
niques of layer fusion and in-place optimization for CONV layer
followed by non-linearity and/or batch norm to reduce intermedi-
ate data size is already part of the baseline. Similarly, our baseline
for DenseNet is already an optimized version, which is otherwise
known to have quadratic memory growth issue due to recursive mal-
loc operations [36]. The parallelization involves processing different
parts of output feature map by different cores simultaneously and
independently. In other words, computation of the network graph
proceeds by executing one edge at a time, but parallelized across
the available cores. For CONV operations, we use direct method
for computation without additional memory overheads [32].

Figure 14 shows the important characteristics of our benchmarks,
namely, intermediate data size, weight size, and their relative ratios.
In general, the layers with the largest intermediate data are located
in the first half of the network, while the weight data grows towards

the end of the network. We also observe that, the total weight of a
network is usually larger than the total intermediate data size.

6 EXPERIMENTAL RESULTS

The evaluation metrics considered here are the volume of read
and write memory transactions, memory bandwidth savings and
the overall savings in DRAM energy consumption. We analyze
these metrics under following two scenarios: First, a Compiler Only
approach in which our proposed compiler specific refinements
(Section 3.1) are applied, but without any support for the proposed
tracking hardware logic on the memory controller. Second, our
proposed CASH approach, which builds on top of the compiler only
optimizations by adding hardware support at the memory controller
for tracking the compiler identified data region (Section 4). Note that
the performance improvement are marginal (within 1% of baseline
performance) because the data movement latencies are already well
hidden by the compute operations in the baseline execution.
Read and Writeback Data: Figure 15 shows the normalized mem-
ory reads and writes for all the CNN benchmarks with respect
to the baseline. The X-axis shows the discrete layer boundaries.
As can be seen, the compiler-only scheme incurs as much reads
as the baseline scheme in the initial few layers, while the CASH
scheme, with the additional hardware tracking has fewer reads.
This is because of the following reason: when the execution begins,
the LLC is initially empty. So, even when the intermediate data from
the execution are written in the LLC (that usually are captured at
the cache level and not percolated to the DRAM), it incurs cold
misses. These cold misses for writing intermediate data at the LLC
in turn causes a read from the DRAM to the corresponding cache
block. This causes the read burst in the DRAM as observed in the
beginning of workload execution.



CASH: Compiler Assisted Hardware Design for Improving DRAM Energy Efficiency in CNN Inference

1 1 -
2 e ——compileronly
5 ©0.8 ~~==| 5 808 == casH
@ E , g e
= 206 4 = 206
< 2 P T >
£ =] ’ £ [=}
€ 04 L’ = £04
2 %0_2 e _ -~~~ —Compileronly | = %0.2
° o -- CASH o
135 7 9 11 13 15 17 19 21 23 135 7 911131517 192123
Read data from main memory Writeback data to main memory
(a) ResNet-18.
1 1 -
c —_ c ——compiler only
g g 0.8 = - E g 0.8 CASH
S Sos = = Cos
© 4 ©
o ’ o
E E04 ’ EEo04
(=] -~ ——compiler only| ©
2802 |\____.- £ 12 &2
° --= CASH °
0 0
1 4 7 101316 19 22 25 28 31 34 37 40 1 4 7 10131619 22 2528 31 34 37 40
Read data from main memory Writeback data to main memory
(b) ResNet-34.
1 1
% 08 e 08 ——compiler only
=l R @ 0. -
g E T E CASH
= So0s 1= 206
o .-
Ego4 =" §§0.4
5 _-<
b4 % 0.2 _ ~=="""=—compiler only S % 0.2
S 5 - -- CASH S f
0
1 7 131925313743495561677379 1 7 13192531374349556167 7379
Read data from main memory Writeback data to main memory
(c) GoogLeNet.
o1 o 1 -
= = ——compiler only
- ©0.8 - 008 | __
O£ £ CASH
NGos S 006
< 2 < 2
£ 204 ~--- £S04
Egl - ol = g0
© @02 [ “——compileronly] S © 0.2
Z3 -~ - - cAsH % ]
° 0 ° 0
HETN~NOMOOANOATNOM HEIN~NOMNMOONWDATNNOM
HNTNDONMNDO M N O SNTHONODO MM
aaadasa (SR R R ]
Read data from main memory Writeback data to main memory
(d) DenseNet.

Figure 15: Read and Writeback main memory transactions
Normalized to the Baseline execution

However, towards the end of execution, the two curves exhibit
similar patterns. This is due to the fact that reading also incurs
mandatory reads for the weight data (which is unavoidable). And,
the difference between the two curves determines the ratio of
weight data vs intermediate transient data for the particular CNN
benchmark. We note that the difference in read data is less for
ResNet-34 as compared to ResNet-18, although both have similar
network structures. This can be attributed to the depth of the net-
work architecture, as the network depth increases, weights start
to dominate more and more over the intermediate data. Similarly,
mandatory write-backs are incurred for both baseline and the em-
ployed schemes for the stack variables; however, in the baseline sce-
nario, write-backs are also incurred for the intermediate transient
data which is significantly greater than the total stack variables
used for program management. Note that the write-backs start
only after a certain point in program execution — once the LLC is
completely filled and starts evicting cache lines.

Impact on DRAM Bandwidth: Figure 16a shows the savings in
DRAM bandwidth after the application of proposed techniques to
the set of benchmarks. Savings in DRAM bandwidth is governed by
volume of memory transactions and computation flops, of which
Densenet has the best performing ratio. We also find that the DRAM
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bandwidth follows the same order as DRAM energy savings, as
explained in following subsection.
Impact on DRAM Energy: Figure 17 shows, for all our CNN
benchmarks, the breakdown of the main memory energy usage
for each DRAM function. We find that the self-refresh energy is
nearly unchanged for all the benchmarks, but there is a signif-
icant difference between read, write, activation and pre-charge
energy. As our proposed scheme does not affect the performance
of the CNN inference, the DRAM self-refresh energy remains sim-
ilar. The reduction in other DRAM functions leads to an energy
savings of 13.5%, 7.8%, 29.7% and 33.8% for ResNet-18, ResNet-34,
GooglLeNet and DenseNet, respectively. On an average, the total
DRAM energy usage is reduced by 18% for all the evaluated CNN
benchmarks. We also observe that both DenseNet and GooglLeNet
achieve higher savings compared to Resnet-18 and ResNet-34.
This is because DRAM energy is mainly dominated by self-refresh
energy. Therefore, CNNs which have lesser compute requirement
and have higher transient data to weight ratio will benefit the most
from our proposed mechanism in terms of main memory energy
consumption. As can be seen in Figure 14, both GooglLeNet and
DenseNet have high transient data to weight ratio. Furthermore,
in GooglLeNet, due to the presence of 1x1 helper layers within the
inception module, it allows for dimensionality reduction in the 3x3
and 5x5 CONV layers, thereby reducing the required number of
computations. Similarly, DenseNet has a 1x1 reduction layer prior
to every 3x3 CONV layers to help keep its computations low. On the
other hand, ResNet-18 and Resnet-34 are mostly made up of 3x3
CONYV layers without dimensionality-reducing layers and have low
transient data to weight ratio. These reasons them to have lower
energy-efficiency gains when employing our proposed schemes.
Figure 16b shows the normalized main memory energy con-
sumption for the benchmarks. Figure 16¢ shows the breakdown
of the energy savings obtained by CASH arising from compiler
technique and hardware mechanism, separately. We observe that
within CASH, savings due to compiler increases as the network
depth increases. This is because, with increased depth, reuse op-
portunities of an allocated buffer increases, accounting for higher
efficacy of compiler technique.
Impact on Non-Volatile Memory: In recent years, non-volatile
memories (NVM), specifically PCM have been proposed to replace
DRAMs [30], due to their higher density and lack of refresh energy
overheads. However, they suffer from the issue of cell wear-out
due to writes and high write energy. Our proposed scheme reduces
average number of read and write transactions by 34% and 72.5%,
respectively (averaged from Figure 15). Therefore, we believe that
NVM-based systems will greatly benefit from our proposed mech-
anism in terms of their lifetime as a direct result of the reduced
number of writes [14].
Discussion on the CNN overflow issue: Our experimental ob-
servation reveals that the transient data in the evaluated set of
workloads did not overflow out of the cache hierarchy. Note that,
our workload consists of state-of-the-art CNNs which consist of
a variety of network topologies. We argue that, the transient data
are frequently reused before its lifetime gets over, and with the
LRU replacement policy in place, the transient data gets retained in
the cache subsystem. In general, an intermediate layer with tensor
dimension {c, h, w} and weight dimension of {m, c, k, k, s} causes
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mxk/s xk/s = O(m * k?) reuses of each input tensor point, leading
to high data reuse and cache retention.

Area, energy and performance overheads: Recall that our pro-
posed scheme consists of two additional hardware components:
(1) Transient Data Detection Table (TDDT) and (2) Lookup logic.
TDDT is a set of register files that contains the physical address of
the intermediate data along with the size of the data structure and
the read_disable and writeback_disable bits. The lookup table is a 4
input MUX logic, which decides the required action on incoming
memory request. Considering 32 bit physical addresses, a maximum
memory allocation size of 30 bits, and 1 bit for each flag bits, the
required overhead is 64 bits per TDD entry. Using hardware only
per-layer tracking would lead to significant overheads given the
large number of network layers. However, our refined compiler
approach identifies the minimum buffer size, and re-uses it across
layers, which limits the number of TDDT entries and comparisons
at the memory controller to only one per inference (two consid-
ering dynamic re-sizing of buffer size). Therefore, the maximum
size of TDDT is 16 bytes, while the lookup table requires only 2
bytes of storage. Therefore, the overall overhead for area, energy
and performance are negligible.

7 RELATED WORK

CPU optimizations. The issue of unwanted reads and write-backs
of transient data can be resolved using prior techniques such as
Scratch pads [2] are software managed on-chip memory that are

used when the access pattern is known and the programmer explic-
itly mentions the data transfer between scratch pad and main mem-
ory. However, scratch pads have several drawbacks that have lim-
ited their widespread adoption in a high-performance CPU-based
computing systems. First, scratch pad management is completely
handled by the programmer, which limits programming flexibility.
Second, scratch pads are usually in private address space and cannot
take part in coherence. Third, context switching overheads increase
significantly as the scratch pad data has to be a part of the context
as well. Co-operative cache scrubbing [39] mechanism relies on
garbage collector threads to perform variable lifetime analysis. This
works only for managed languages that require a virtual-runtime
system for applications to run. Core-initiated invalidation can also
resolve the issues. Both the above techniques are not suitable for
the context of CNN inference as they take up CPU cycles to perform
their optimizations, which can potentially hamper performance as
the CNN inferences are compute-intensive and QoS bound. Our
proposed mechanisms leverages the layer wise structure of CNNs
and uses liveness analysis and a simple hardware unit to identify
and eliminate any unnecessary reads and write-backs to the main
memory with negligible overheads.

Accelerators, PIMs and FPGAs. There has been a huge body
of work that has been dedicated on developing domain specific
accelerators for CNN based ML tasks such as [4-7, 12, 25, 31, 38].
An important characteristic of any such accelerator is that address
space used to handle intermediate data is entirely local, thereby
eliminating constraints towards maintaining consistency with an
external memory. In other words, the issue of read allocate due
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to write misses and write-back doesn’t exist in the accelerator
context, as long as it is designed with sufficient local memory to
handle the computations. Due to the large volume of data movement
involved in CNN operations, multiple PIM-based architectures have
been proposed as well [8, 27, 40]. While these PIM architectures
implicitly handle the issues arising out of memory consistency
(no cached copies of data), we believe our work can still be useful
under general purpose processors context until such platforms are
deployed in practice. Furthermore, our compiler-only optimizations
can be readily deployed without any hardware changes.

FPGAs have been used for custom CNN engine deployment as
well. In Fused Layer CNN [1], computations are staged such that
intermediate data is consumed as soon as it is generated in order to
avoid costly overflows to the FPGA block RAMs. This essentially
tries to limit the amount of intermediate data to as minimal as pos-
sible, by immediately staging consumption of the generated data.
However, there are serious limitations in terms of performing cross
layer computations in a general purpose platform like CPU, most
notably the high synchronization overheads due to fine-grained
data dependencies. vDNN [37] is a data prefetching mechanism
between CPU and GPU memories in the context of training. Note
that, all the intermediate data structures need to remain persistent
during the training phase of execution; hence, our proposed tech-
niques are not applicable as they rely on transience of data layer
values. For inferences, GPUs are equipped with large register files
and local scratchpad memories, which can hide the intermediate
data from the memory hierarchy. Applicability and extension of
our proposed approach in GPUs is left for future exploration.

Compression and pruning techniques. There is a substantial
body of work focused on the compression and pruning of ML mod-
els to reduce the compute and memory footprints. Prior techniques
such as Deep Compression [17] and WRPN [33] enable weights to
be stored on an on-chip SRAM and also allow for faster reduced
precision computations. Note that our proposed mechanisms are
effective on compressed and pruned ML models as well. As the
footprint of weights reduces, it reduces computations. Therefore,
the impact of reduced memory transactions become more apparent.

8 CONCLUSION

Deep learning applications have grown in significance over the
years. While there have been several proposals on different type of
accelerator designs for efficient execution of CNNs, CPUs remain
as the most widely used compute units for executing inferences.
Therefore, it is imperative to optimize inference execution on CPUs
to allow further energy efficiency scaling. In this paper, we pro-
pose CASH, a compiler assisted hardware technique to eliminate
unnecessary data movement during the course of CNN inference
execution on CPUs. Our experimental evaluations on four state-of-
the-art CNN benchmarks show that by avoiding unwanted memory
transactions, it can reduce average memory bandwidth consump-
tion and total main memory energy usage by ~40% and ~18%,
respectively. Due to the widespread popularity and deployment of
CNNs, our optimizations can have significant impact on the energy
consumption of CPU-based inference devices.
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