
DualMiner: A Dual-Pruning Algorithm for Itemsets with
Constraints

Cristian Bucila, Johannes Gehrke and
Daniel Kifer

Dept. of Computer Science
Cornell University

{cristi,johannes,dkifer}@cs.cornell.edu

Walker White
∗

Department of Mathematics
University of Dallas

wmwhite@udallas.edu

ABSTRACT
Constraint-based mining of itemsets for questions such as
“find all frequent itemsets where the total price is at least
$50” has received much attention recently. Two classes of
constraints, monotone and antimonotone, have been iden-
tified as very useful. There are algorithms that efficiently
take advantage of either one of these two classes, but no
previous algorithms can efficiently handle both types of con-
straints simultaneously. In this paper, we present the first
algorithm (called DualMiner) that uses both monotone and
antimonotone constraints to prune its search space. We
complement a theoretical analysis and proof of correctness
of DualMiner with an experimental study that shows the
efficacy of DualMiner compared to previous work.

1. INTRODUCTION
Mining frequent itemsets in the presence of constraints

is an important data mining problem [5, 9, 10, 11, 12].
(We assume that the reader is familiar with the terminol-
ogy from the association rules literature [2].) The problem
can be stated abstractly as follows. Let M be a finite set
of items from some domain (for example, products in a gro-
cery store). All the items have a common set of descriptive
attributes (i.e., the name, brand, or price of the item). In
the remainder of this paper, we will assume without loss of
generality that each item has the same single descriptive at-
tribute, and for convenience we will associate an item with
its attribute value. A predicate over a set of items is a con-
dition that the set has to satisfy. Thus by “a predicate over
a set of items X,” we always mean a predicate over the as-
sociated set of attribute values of the items in X. (In the
remainder of this paper, we will use the terms predicate and
constraint interchangeably.) We can now define the prob-
lem of constrained-based market basket analysis as follows:

∗Research conducted at Cornell University with the Intelli-
gent Information Systems Institute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

Given a set of predicates P1, P2, . . . , Pn, find all sets in the
powerset of M that satisfy P1 ∧ P2 ∧ · · · ∧ Pn .

Important classes of constraints, most notably monotone
and antimonotone, have been introduced by Ng et al. [10,
9, 5, 11, 12] and there exist algorithms that are designed to
take advantage of each class of constraints. However, the
main deficiency in such algorithms is that they efficiently
handle only one class of constraints. More recently, Raedt
and Kramer [13] have generalized these algorithms to al-
low several types of constraints, but their generalization can
handle only one type of constraint at a time. We present a
new algorithm, DualMiner, which can simultaneously take
advantage of both monotone and antimonotone predicates to
efficiently mine constraint-based itemsets.

Previous work has shown that the search space of all item-
sets forms a lattice. Actually, the search space of all itemsets
forms a special type of lattice, namely an algebra, and we
use algebras to succinctly represent the output in much the
same way that maximal frequent itemsets can be used to
succinctly represent the set of all frequent itemsets [4]. This
representation adds to the efficiency of DualMiner and nat-
urally leads to the following cost metrics as comparisons be-
tween different algorithms: number of nodes (in the search
space) examined, number of evaluations of the antimono-
tone predicate and number of evaluations of the monotone
predicate.

Not all predicates have the same cost structure. For ex-
ample, given an itemset X, the predicate min(X) ≥ c can
be calculated in constant time if the size of the set X is
bounded (which is generally true) regardless of the number
of transactions in the database. However, the cost of count-
ing the support of an itemset X may depend on the current
node being examined. For example, when using bitmaps
as in the MAFIA algorithm [6], the cost also depends on
the number of transactions in the database. As we shall
see, different cost structures require different strategies for
traversal through the search space; by design, DualMiner is
traversal strategy agnostic, and thus can accommodate the
traversal strategy that is best for the dataset at hand.

Preliminaries
Let us first formally introduce monotone and antimonotone
constraints. We begin by introducing the most popular an-
timonotone constraint, support. Consider a database that
consists of a collection of nonempty subsets of M called
transactions. For a database D and a subset X ⊆ M , we
define the function support(X) to be the number of trans-

{B}

{}
Frequent

{A}

{B,C}{A,C}{A,B}

{A,B,C}

{C} {D}

{C,D}{B,D}{A,D}

{A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}

Not frequent

Figure 1: Frequent Itemsets for M = {A, B, C, D}

actions in D which contain the set X (the “support” of X).1

Note that we can choose the predicate support(X) ≥ c (for
some constant c), and thus make the problem of frequent
itemset mining a special case of the problem of constrained-
based market analysis.

We can now introduce the notion of an antimonotone
predicate such as support(X) ≥ c.

Definition 1. Given a set M , a predicate P defined over
the powerset of M is antimonotone if

∀S, J : (J ⊆ S ⊆M ∧ P (S))⇒ P (J)

That is, if P holds for S then it holds for any subset of S.

The advantage of an antimonotone predicate P is that if
a set X does not satisfy P , then no superset of X can satisfy
P . Whenever we find such a set X, we can prune away a
substantial part of the search space. This pruning can result
in substantial improvements in performance. This technique
is effective because, for any small set A, there is a significant
probability that any given larger set is actually a superset
of A. This is a consequence of the fact that the search space
forms a lattice and hence the larger sets are the simply the
unions of the smaller sets.

For example, consider the itemset lattice illustrated in
Figure 1 (with the set of items M = {A, B, C, D}). The
typical frequent itemset algorithm looks at one level of the
lattice at a time, starting from the empty itemset at the
top. In this example, we discover that the itemset {D} is
not frequent. Therefore, when we move on to successive
levels of the lattice, we do not have to look at any supersets
of {D}. Since half of the lattice is composed of supersets of
{D}, this is a dramatic reduction of the search space.

The collection of all itemsets does not just form a lattice;
it also forms a Boolean algebra (which we will call an alge-
bra). Like a lattice, an algebra has union and intersection,
but it also has complementation. In the algebra of item-
sets, the complement of a set is the result of subtracting
it from the set of all items. For example, in the algebra
illustrated in Figure 1, the complement of {D} is the set

{D} = {A, B, C}. In any algebra, complementation intro-
duces a notion of duality. Every property or operation has
a dual, and given any algorithm, we can construct a new
algorithm by replacing everything with its dual. Figure 1
illustrates this duality. Suppose we wanted to find the item-
sets of our algebra that are not frequent. We can again use

1We will drop the dependency on D from all our definitions.

a levelwise algorithm, this time starting from the maximal
itemset ∅ = {A, B, C, D} at the bottom. As we move up
levels in our algebra by removing elements from our item-
sets, we can eliminate all subsets of a frequent itemset. For
example, the itemset {A, B, C} is frequent so we can remove
half of the algebra from our search space just by inspecting
this one node. Hence we see that infrequent is the dual of
frequent, that subset is the dual of superset, and that the
dual of any set is its complement.

In the previous example, we took advantage of the fact
that the predicate support(X) ≤ c for infrequent itemsets is
monotone.

Definition 2. Given a set M , a predicate Q defined over
the powerset of M is monotone if

∀S, J : (S ⊆ J ⊆M ∧ Q(S))⇒ Q(J)

That is, if Q holds for S then it holds for any superset of S.

While it may seem unnatural to search for infrequent item-
sets, monotone predicates do appear naturally when we add
constraints to frequent itemset analysis. For example, the
constraint max(X) > b is monotone. Other constraints,
while not monotone themselves, have monotone approxima-
tions that are useful in pruning the search space. Pei and
Han [11] have suggested several monotone approximations
for the constraints avg(X) ≤ a and avg(X) ≥ b; however,
there are no known effective antimonotone approximations
for these constraints.

The fact that many constraints are monotone or have
monotone approximations motivates the need for an algo-
rithm to find all sets that satisfy a conjunction of antimono-
tone and monotone predicates. Clearly, the conjunction of
antimonotone predicates is antimonotone and the conjunc-
tion of monotone predicates is monotone. So our algorithm
need only consider a predicate of the form P (X) ∧ Q(X),
where P (X) is antimonotone (a conjunction of antimono-
tone predicates) and Q(X) is monotone (a conjunction of
monotone predicates).

While a similar problem has been considered by Raedt
and Kramer [13], their algorithm performs a levelwise search
with respect to the antimonotone predicate, followed by a
levelwise search on the output with respect to the mono-
tone predicate. If the monotone predicate is highly selective,
this approach unnecessarily evaluates a large portion of the
search space. Furthermore, the output of the first pass need
not have a nice algebraic structure, and may be difficult to
traverse. To the best of our knowledge, our algorithm is the
first to use the structures of both P and Q simultaneously
to avoid unnecessary evaluations of these potentially costly
predicates. Thus our cost metrics are the number of sets
X ∈ 2M for which we evaluate P and also the number of
sets for which we evaluate Q.

Summary of our contributions:
• We introduce the algorithm DualMiner, an algorithm

that can prune using both monotone and antimonotone
constraints (Sections 2 and 3). This is the very first
algorithm in the literature that can prune using both
monotone and anti-monotone constraints.

• We give several non-trivial optimizations to the basic
algorithm (Section 4).

• We analyze the complexity of our algorithm and com-
pare it to other algorithms from the literature
(Section 5).

• In a thorough experimental study, we show that DualMiner
significantly outperforms previous work
(Section 6).

2. OVERVIEW OF THE ALGORITHM

2.1 Subalgebras
One of the advantages of the MAFIA algorithm is that it

only searches for maximal frequent itemsets [6]. Not only
does this permit several optimizations in the algorithm, it
provides a very concise representation of the output. For ex-
ample, in Figure 1, the maximal frequent itemset {A, B, C}
uniquely defines the collection of all frequent itemsets in this
algebra.

Because our algorithm considers the conjunction of a an-
timonotone predicate with a monotone predicate, the item-
sets in the output of the algorithm are no longer closed
under subset. For example, let the prices associated with
A, B, C, D be 1, 2, 3, 4, respectively, and suppose we apply
the predicate max(X.price) < 4 ∧ min(X.price) ≤ 2 to the
algebra in Figure 1; while {A, B, C} satisfies this predicate,
the subset {A} does not. Therefore, it is not enough to
search for only maximal itemsets (or, similarly, for minimal
itemsets).

However, there is a suitable analogue of a maximal fre-
quent itemset for this case. Our search space is the powerset
of M , which we will refer to as 2M . This space is an algebra
with maximal (top) element M , minimal (bottom) element
∅, the binary operations ∩ and ∪, and the complementation
operator . Given any collection of elements Γ ⊆ 2M that is
closed under ∩ and ∪, we can define an algebra for Γ using
the following definitions.

1. T =
⋃

X∈Γ

X is the top element of Γ.

2. B =
⋂

X∈Γ

X is the bottom element of Γ.

3. For any A ∈ Γ, A = T \A.

Given this fact, we define the notion of a subalgebra appro-
priately.

Definition 3. A subalgebra of 2M is any collection of sets
Γ ⊆ 2M closed under ∩ and ∪.

Due to the structures of P and Q, the collection of all sets
X ∈ 2M for which P (X) ∧Q(X) is true can be represented
as a collection of subalgebras, which in turn can each be
compactly represented as a pair (T, B) where T is the top
of the subalgebra and B is the bottom. Clearly if both
P (T) and Q(B) are true then any superset X of B which
is also is a subset of T satisfies P (X) ∧ Q(X). We will
refer to this collection of subalgebras as good subalgebras to
distinguish them from subalgebras whose members do not
necessarily satisfy P and Q. A maximal good subalgebra is
a good subalgebra that is not contained in any other good
subalgebra.

Since our subalgebras are defined by the top and bottom,
our algorithm will simultaneously work from both ends of

Satisfies Q

Satisfies P and Q

Satisfies P

{A} {C}

{C,D}{B,D}{B,C}{A,C}{A,B}

{A,B,C} {A,B,D} {A,C,D} {B,C,D}

{A,B,C,D}

{B}

{}

{A,D}

{D}

Figure 2: Simultaneously Pruning with P and Q

the algebra 2M . We can do this fairly efficiently, because the
combinatorial explosion of the algebra occurs in the middle
and not at the ends. Furthermore, while the sets on one
end may be quite large, we can easily code them by the
elements of M that they are missing instead of the elements
that they contain. This will not affect our ability to evaluate
most constraints. If we know both the average and size of M ,
then computing the average and size of A is no more difficult
than computing the average and size of its complement A;
this fact is true of most statistical functions.

Our algorithm is levelwise; at each level we will prune
the algebra with P on one end, and with Q on the other
end. As an example, consider the algebra illustrated in Fig-
ure 2. At the first level, we see that {B} does not satisfy
P , and hence we remove all supersets of {B}. Furthermore,

we see that {A} = {B, C, D} does not satisfy Q and so we

remove all subsets of {A}. We are left with the subalgebra
({A}, {A, C, D}). We can then repeat the algorithm on this
subalgebra, but this is unnecessary. Since Q is monotone
and {A} satisfies Q, we know every element of this subal-
gebra satisfies Q. Similarly, since {A, C, D} satisfies P , all
elements of this subalgebra satisfy P . So we can determine
that ({A}, {A, C, D}) is the only maximal good subalgebra
without evaluating any of the interior nodes.

Note that if our query requires itemsets to be frequent, the
larger sets that we test with Q will probably not be actual
frequent itemsets. However, for any single element x, the
sets not containing x comprise half of the algebra. There-
fore, there is some advantage to applying our constraints to
very large sets, even though they may not satisfy P .

2.2 Example Run-through
Suppose the database consists of the following two trans-

actions: ABCD and E. The prices of A and B are both
26, the prices of C and D are both 1 and the price of E is
100. Furthermore, let P be the predicate support ≥ 1 and
let Q be the predicate total price > 50. Figure 3 shows the
evaluation tree of DualMiner. Each node τ in the tree has
a state that can be represented as an ordered triple of the
form (X, Y, Z). We shall refer to the set X as IN(τ), Y as
CHILD(τ) and Z as OUT(τ). When it is unambiguous, we
shall just refer to IN, CHILD, and OUT. Initially we are at
the root node α with state (∅, ABCDE, ∅). Since every ele-
ment is frequent, we cannot prune with P . We also cannot
prune with Q since no single element is required to be in
a set in order for its total price to exceed 50 (had Q been

δ :

ε :

γ :

α :

β :

(∅, ABCDE, ∅)

(∅, ABCD, E)

(A, BCD, E)

(AB, CD, E)

. . .(ABC, D, E)

. . .(ABCD, ∅, E)
(E, ∅, ABCD)

(E, D, ABC)

(E, CD, AB)

(E, BCD, A)

(E, ABCD, ∅)

Figure 3: Evaluation Tree

total price > 99 then clearly a set must contain E or it will
not satisfy Q). Thus we have a choice. We choose an ele-
ment, such as E, from CHILD(α) and explore what happens
when a set contains this element. This leads to the creation
of node β with state (E, ABCD, ∅). Since no itemset con-
tains both E and A (i.e. EA does not satisfy P), we can
remove A from consideration and move it from CHILD(β) to
OUT(β). Now β has state (E, BCD, A). The same is done
with B, C and D and β ends up in state (E, ∅, ABCD). We
can interpret this to mean that every set that contains E
and does not contain any of the items A, B, C, D satisfies P
and Q. So the first algebra that we found is the singleton
(E, E).

After examining sets that contain E (in node β) we go
to node γ to explore sets that do not contain E. For this
reason γ has the initial state (∅, ABCD, E). We cannot
prune using P , but now we see that a set not containing
E has no hope of satisfying Q unless it contains A. Thus
the state of γ changes to (A, BCD, E). Another iteration
of pruning show that any superset of A not containing E
does not satisfy Q unless it also contains B. The state of γ
becomes (AB, CD, E). (Note that IN(γ) = {A, B} satisfies
both P and Q and none of γ’s ancestors have this property.
This means that AB is the minimal set of a subalgebra). At
this point we cannot prune with any of our predicates (and
so γ has reached its final state). Once again we have to
make a choice. A choice on C leads to the node δ with state
(ABC, D, E) (here we examine what happens when a set
contains A, B and C but not E). We cannot do any pruning
at node δ, so we make another choice and arrive at the node ε
with state (ABCD, ∅, E). We knew that AB satisfied Q and
now we know ABCD satisfies P (otherwise D would have
been moved to OUT(δ)). From the monotone property of Q
and antimonotone property of P we know that (AB, ABCD)
is an algebra that satisfies P and Q (all supersets of AB that
are subsets of ABCD satisfy both P and Q). In addition to
this, knowing that ABCD satisfies P means that we do not
have to examine the right children of nodes δ and ε. It is
clear that those nodes would only examine sets that belong
to the algebra (AB, ABCD). Thus the algorithm completes
with the output (E, E) and (AB, ABCD). The sequence
{ε, δ, γ} is called a complete left chain due to its appearance
in 3 (this idea will be formalized in Section 4). In the next
two sections, we will refer back to this example and Figure 3
for illustrative purposes. Unless otherwise mentioned, when

we refer to the states of β and γ we are referring to their
final states.

3. DUALMINER
The basic algorithm dynamically builds a binary tree T.

Each node τ ∈ T corresponds to a subalgebra of 2M , which
we refer to as SUBALG(τ). Note that these are not nec-
essarily “good” subalgebras. Each subalgebra is associated
with the following objects.

1. τnew in ⊆ 2M is one of the two (implicit) labels as-
sociated with the edge coming in to τ . If τ is the
root, then τnew in is defined to be ∅. Otherwise, if σ
is the parent of τ , then τnew in is generated from σ
and represents items that should be included in every
element of SUBALG(τ) but are not necessarily con-
tained in every element of SUBALG(σ). In our exam-
ple, γnew in = {A, B}, δnew in = {C}.

2. τnew out ⊆ 2M is the other label associated with the
edge coming in to τ . If τ is the root, then τnew out

is defined to be ∅. Otherwise, if σ is the parent of
τ , then τnew out is generated from σ and represents
items that should not be included in any element of
SUBALG(τ) but which are included in some element
of SUBALG(σ). In our example, γnew out = {E},
δnew out = ∅.

3. IN(τ) is the minimal set of this subalgebra. Every
element in SUBALG(τ) is a superset of IN(τ). IN(τ)
is thus defined as:

IN(τ) =
⋃
ρ�τ

ρnew in

Here � is the standard ancestral relation; ρ � τ if
ρ is either τ or an ancestor of τ . In our example,
IN δ = {A, B, C}

4. OUT(τ) is the complement of the maximal set of this
subalgebra. Every element in SUBALG(τ) is a subset

of OUT(τ). As with IN(τ),

OUT(τ) =
⋃
ρ�τ

ρnew out

In our example, OUT(δ) = {E}. We will maintain the
invariant that IN(τ) ∩OUT(τ) = ∅.

5. CHILD(τ) is a macro for IN(τ) ∪OUT(τ) and so is the
set of items representing the atoms of SUBALG(τ).
That is, every nontrivial element of SUBALG(τ) is a
union of some sets of the form IN(τ)∪{x} (where x ∈
CHILD(τ)). In our example, CHILD(γ) = {C, D}.

Collectively, we refer to these objects as the state of τ .
As we dynamically build our tree, we classify nodes as

either determined or undetermined and the classification of
each node will change during the course of the algorithm. By
default, every node starts out as undetermined. If a node
is undetermined, then the state of τ may change. Because
the state may change, we define the sth-iteration of a node
τ to be the sth state assigned to it during the algorithm.
For convenience, we refer to this as τs; hence the sth version
of IN(τ) is IN(τs). If we simply write τ , then we mean the
most recent iteration of τ in our algorithm. Note that we

do not consider τs to be a parent of τs+1. Thus the node
γ has three iterations and IN(γ1) = {A} (because we start
counting at 0).

At each stage, we visit a node that is undetermined and
make it determined. We continue until all the nodes of T

are determined. Our traversal strategy is irrelevant; any
traversal strategy that visits parents before children is ac-
ceptable. This allows our algorithm some flexibility for the
sake of optimizations. Therefore, at the highest level, we
have DUAL MINER, illustrated in Algorithm 1.

Algorithm 1 : DUAL MINER

1: λnew in, λnew out ← ∅
2: R← ∅
3: while There are undetermined nodes do
4: Traverse to the next undetermined node τ .
5: G← EXPAND NODE(τ)
6: R← R∪G
7: Mark τ as determined.
8: end while
9: Answer = R

Let λ be the initial node. IN(λ) = OUT(λ) = ∅. Note
that by our definition of λ, SUBALG(λ) is the algebra 2M .
The algorithm EXPAND NODE(τ) expands the tree T to
break the algebra SUBALG(τ) into smaller, disjoint sub-
algebras that may be more easily searched. This is done
by adding children to τ that specify further subalgebras of
SUBALG(τ). It is important that the children of τ repre-
sent disjoint subalgebras of SUBALG(τ). This is not dif-
ficult because our algorithm ensures that no undetermined
node has any children. All we have to do is chose some
item x ∈ CHILD(τ), and split SUBALG(τ) into those sets
containing x and those sets not containing x. The result is
EXPAND NODE, shown in Algorithm 2.

Algorithm 2 : EXPAND NODE(τ)

Require: τ is an undetermined node.
Returns: G, a good subalgebra or ∅.
1: G← PRUNE(τ)
2: if CHILD(τ) is not empty then
3: Choose some x ∈ CHILD(τ).
4: ρnew in, ηnew out ← {x}
5: ρnew out, ηnew in ← ∅
6: Add ρ and η as children of τ .
7: end if
8: return G

As mentioned above, the pruning strategy in PRUNE uses
both ends of our algebra, evaluating both P and Q to gener-
ate successive states for τ . When we prune with respect to
P , we look at each item x ∈ CHILD(τ). If IN(τ)∪ {x} does
not satisfy P , then the antimonotone property of P implies
that no superset of IN(τ) ∪ {x} satisfies P . This is equiv-
alent to saying that no element of SUBALG(τ) containing
x satisfies P . Therefore, we can put x into τnew out, further
restricting SUBALG(τ). Putting this all together, we get
MONO PRUNE, which is shown in Algorithm 3.

An analogous result holds for pruning with respect to Q.
If we replace everything in the algorithm MONO PRUNE
by its dual notion, we get ANTI PRUNE, the algorithm for
pruning with respect to Q. This is shown in Algorithm 4.

Algorithm 3 : MONO PRUNE(τs)

Require: IN(τs) satisfies P
Returns: τs+1

1: τs+1
new in ← τs

new in

2: τs+1
new out ← τs

new out

3: for all x ∈ CHILD(τs) do
4: if IN(τs) ∪ {x} does not satisfy P then
5: τs+1

new out ← τs+1
new out ∪ {x}

6: CHILD(τs+1)← CHILD(τs+1)− {x}
7: end if
8: end for
9: return τs+1

Algorithm 4 : ANTI PRUNE(τs)

Require: OUT(τs) satisfies Q
Returns: τs+1

1: τs+1
new in ← τs

new in

2: τs+1
new out ← τs

new out

3: for all x ∈ CHILD(τs) do

4: if OUT(τs) ∪ {x} does not satisfy Q then
5: τs+1

new in ← τs+1
new in ∪ {x}

6: CHILD(τs+1)← CHILD(τs+1)− {x}
7: end if
8: end for

Both of these algorithms assume that SUBALG(τ) is an
interesting algebra. It is possible that, as ANTI PRUNE
puts elements into τnew in, IN(τ) no longer satisfies P . In
this case, no element of the subalgebra satisfies P , so we
will not need to do further pruning or to construct children
for this node. The easiest way to signify this is to empty
CHILD(τ) by adding CHILD(τ) to τnew out. We represent
this straightforward action as EMPTY CHILD.

It is clear that these pruning algorithms affect each other.
The output of MONO PRUNE is determined by IN(τ), which
is in turn modified by the algorithm ANTI PRUNE. Simi-
larly, MONO PRUNE modifies OUT(τ), which determines
the output of ANTI PRUNE. Therefore, it makes sense to
interleave these algorithms until we reach a fixed point. The
resulting pruning algorithm PRUNE(τ) is shown in Algo-
rithm 5.

Note that PRUNE is the most extreme pruning strat-
egy. It will not affect the correctness of our algorithm to
do less pruning. We may chose only to do a fixed number
of passes on each of the algorithms MONO PRUNE and
ANTI PRUNE. We may even choose to skip one or both
of them altogether. This allows us some flexibility for opti-
mization, as discussed in Section 4.

The correctness of this algorithm should be somewhat
clear from the accompanying discussion. However, for a
more rigorous proof, we present the following.

Definition 4. The depth of a node τs is an ordered pair
(p, s) where p is the number of nodes (excluding τ) whose
descendants include τ , and s is the most recent iteration of
τ . We define an ordering ≥η on depth as follows: (p1, s1) ≥η

(p2, s2) if p1 > p2 or (p1 = p2) ∧ (s1 ≥ s2).

Theorem 1. An set A satisfies P ∧ Q if and only if A
is an element of a subalgebra returned by PRUNE at some
point in the algorithm.

Algorithm 5 : PRUNE(τ)

Returns: A good subalgebra or ∅.
1: s← 0 (Note, at this point τ = τ0 by definition)
2: repeat
3: if IN(τs) satisfies P then
4: τs+1 ← MONO PRUNE(τs)
5: else
6: τs+1 ← EMPTY CHILD(τs)
7: end if
8: s← s + 1 // Pruning has changed the iteration

9: if OUT(τs) satisfies Q then
10: τs+1 ← ANTI PRUNE(τs)
11: else
12: τs+1 ← EMPTY CHILD(τs)
13: end if
14: s← s + 1 // Pruning has changed the iteration
15: until τs

new in = τs−1
new in and τs

new out = τs−1
new out

16: if IN(τs) satisfies Q and OUT(τs) satisfies P then

17: return (IN(τs), OUT(τs))
18: else
19: return ∅
20: end if

Proof. We will prove the direction assuming that A sat-
isfies P ∧Q; the other direction is clear. Define the predicate
INCLUDEDτ as:

INCLUDEDτ (A) = IN(τ) ⊆ A ⊆ OUT(τ) (1)

Note that INCLUDEDλ0(A) is true (where λ is the root
node of T). Let τs be the node of greatest depth for which

(1) holds. If IN(τs) satisfies Q and OUT(τs) satisfies P then
clearly we are done. Otherwise, after calculating IN(τs)

and OUT(τs) in PRUNE, the algorithm would either call
EMPTY CHILD(τs), go through another pruning iteration,
or add a child to τs in EXPAND NODE.

If the algorithm called EMPTY CHILD(τs) is called then

either IN(τs) fails to satisfy P or OUT(τs) fails to satisfy Q.
In the first case, since P is monotone, ¬P is antimonotone
and this implies that A fails to satisfy P , a contradiction.
The second case is similar because of symmetry.

If we go through another pruning iteration, then we get
τs+1 from either MONO PRUNE or ANTI PRUNE. In ei-
ther case, it is clear that INCLUDEDτs+1(A) holds, which
contradicts the maximality of the depth of τs.

If we add a child to τs then let x ∈ CHILD(τ) be the
item defining the two children of τ in EXPAND NODE. By
symmetry, assume without loss of generality that x ∈ A,
and let ρ be the child of τ such that x ∈ ρnew in. Then
INCLUDEDρ0(A) holds, which is also contradiction.

4. OPTIMIZATIONS
The algorithm outlined above is in its most primitive form

in order to make it easy to follow. There are several places
in which it can be optimized. The most obvious optimiza-
tion is to remove calls to MONO PRUNE or ANTI PRUNE
that we know will not actually do any pruning. For ex-
ample, if τs

new in is empty and σ is the parent of τ , then
IN(τs) = IN(σ). Therefore, there is nothing to be gained
calling MONO PRUNE on τs when τs

new in is empty. A sim-
ilar result holds for ANTI PRUNE when τs

new out is empty.

Similarly, in the non-degenerate case, we run the same
pruning algorithm on τs+2 that we run on τs. Hence there
is no point pruning τs+2 with MONO PRUNE if τs+2

new in =
τs
new in. Part of this rationale is captured by the repeat-

until loop in PRUNE. However, this loop continues until
both τnew in and τnew out achieve a fixed point.

A more subtle optimization is an analogue of the HUT
strategy from the MAFIA algorithm [6]. In a standard
depth-first traversal (of a frequent itemset algorithm), we
know that if every element of the leftmost branch satisfies
P , then everything to the right must also satisfy P (i.e. ev-
erything to the right is a subset of a set in the leftmost
branch). To generalize that concept, we introduce the fol-
lowing definition.

Definition 5. A complete left chain is a sequence of nodes
{τk}k≤n such that the following all hold.

1. CHILD(τ0) = ∅

2. τk+1 is the parent of τk for all k < n.

3. (τk)new out = ∅ for all k < n.

Looking at Figure 3, we see that {ε, δ, γ} forms a complete
left chain. If we replace (τk)new out with (τk)new in in the
previous definition, we get a complete right chain.

The antimonotone property of P and monotone property
of Q imply the following.

Proposition 2. If {τk}k≤n is a complete left chain, ev-
ery element of SUBALG(τn) satisfies P . Furthermore, if
IN(τn) satisfies Q, then every element of SUBALG(τn) sat-
isfies P ∧Q. A similar result holds when {τk}k≤n is a com-
plete right chain.

This means that once we find a node τ such that
CHILD(τ) = ∅ and τnew out = ∅, we need only find the least
σ � τ such that

1. There is a complete left chain from τ to σ.

2. IN(σ) satisfies Q.

These two properties imply that all of SUBALG(σ) satisfy
P ∧Q. In this case, we should consider every descendant of
σ to be determined, and choose the sibling of σ to be our
next node in our traversal strategy.

We are interested in complete left chains from τ to σ even
if IN(σ) does not satisfy Q. We still know that every ele-
ment of SUBALG(σ) satisfies P . Hence we no longer need
to evaluate MONO PRUNE for nodes in SUBALG(σ) even
though we have to traverse them. A similar argument holds
for Q if IN(σ) satisfies Q.

Because we value complete right chains as much as com-
plete left chains in our algorithm, it may be advantageous
to take a “steady state” approach to our traversal strategy.
In this approach, if we are visiting the left child of a node
(i.e. a child τ such that τ0

new out = ∅), we should continue
choosing the left child as we descend the tree. Similarly, if
we are visiting the right child of a node, we should continue
choosing the right child as we descend the tree.

The traversal strategy also depends on the cost structure
of P . For example, suppose P is a support constraint and
support counting is done using bitmaps, as in the MAFIA
algorithm. If we continue to visit left children (starting from

a node σ), then the total cost of evaluating P on IN(τ) (for
each node τ that we expand) is almost the same as the cost

of evaluating P on OUT(σ). Therefore, there is no point in

checking if OUT(σ) satisfies P , since we will find this out
during our traversal of left children at almost the same cost.
However, if P is a constraint of the form min(X) > c then
evaluating P takes constant time and so we can evaluate P
on OUT(σ) in the hope that this will result in fewer nodes
being expanded.

Other MAFIA optimizations [6], such as keeping a partial
list of maximal frequent itemsets (or minimal sets that sat-
isfy Q) may also be used to reduce the number of predicate
evaluations.

5. COMPLEXITY
We can consider the antimonotone predicate P and mono-

tone predicate Q to be oracles whose answers satisfy the an-
timonotone (resp. monotone) constraints. Thus we identify
the predicate P with the oracle that evaluates P on a set
of items (and similarly for Q). The underlying dataset D
and set of all items I are assumed to be arbitrary but fixed
and so need not be mentioned explicitly. Given these pre-
liminaries, we can define the following sets (Ω will be used
to denote an oracle/predicate which is either monotone or
antimonotone):

Theory of Ω : Th(Ω) = {S | Ω(S)}
Border of P : B(P) = {S | ∀T ⊂ S : P (T)

∧ ∀W ⊃ S : ¬P (W)}
Border of Q : B(Q) = {S | ∀T ⊃ S : Q(T)

∧ ∀W ⊂ S : ¬Q(W)}
Positive Border of Ω : B+(Ω) = B(Ω) ∩ Th(Ω)

Negative Border of Ω : B-(Ω) = B(Ω) ∩ Th(¬Ω)

Note that B-(Ω) is equivalent to B(Ω)− B+(Ω) and is used
for pruning while B+(Ω) is used to verify that a set of items
satisfy Ω. This observation leads to the following proposi-
tion by Gunopulos et al. [7]:

Proposition 3. Given a monotone or antimonotone pred-
icate Ω, computing Th(Ω) requires at least |B(Ω)| calls to the
oracle Ω.

In the sequel, quantities such as “|B(Ω)| evaluations of Ω”
will be written as “|B(Ω)|Ω evaluations.” Analogously, to
compute all sets of items that satisfy P and Q (i.e. Th(P)∩
Th(Q) - which we shall refer to as Th(P ∧Q)) we have the
following bounds:

Proposition 4. Computing Th(P ∧ Q) using the oracle
model requires at least |Th(Q)∩B(P)|P + |Th(P)∩B(Q)|Q
oracle calls.

Proof. The search space consists of four regions: Th(P)∩
Th(Q), Th(P) ∩ Th(¬Q), Th(¬P) ∩ Th(Q) and Th(¬P) ∩
Th(¬Q). The first region cannot be described more suc-
cinctly than by the set of tops (Th(Q) ∩ B+(P)) and by
the set of bottoms (Th(P) ∩ B+(Q)) of maximal subalge-
bras. The second and third regions are areas where only
one predicate can be used to prune the search space. Thus
knowing Th(P) ∩ B-(Q) is necessary to prune part of the
second region, while B-(Q) is sufficient to prune all of it

(neither bounds are very tight for reasons discussed later).
Similar statements hold for the third region. Thus we need
at least

|Th(Q) ∩ B+(P)|P + |Th(Q) ∩ B+(P)|Q
+|Th(Q) ∩ B-(P)|P + |Th(P) ∩ B-(Q)|Q
= |Th(Q) ∩B(P)|P + |Th(P) ∩B(Q)|Q

oracle calls.

The presence of the fourth region (Th(¬P) ∩ Th(¬Q))
shows why the bounds are not very tight. This region can
be pruned using B-(P) ∩ Th(¬Q) or B-(Q) ∩ Th(¬P) or by
using various sets from each of those borders. The best
choice relies heavily on the relative costs and cost structures
of P and Q as well as the structure of the areas they prune.
For example, pruning some areas with P may require many
sets from B-(P)∩Th(¬Q) while pruning the same area with
Q may require less sets from B-(Q) ∩ Th(¬P). There may
also be a lot of redundancy due to heavy overlapping of
regions pruned by various sets in B-(P) ∩ Th(¬Q).

For the regions where only one predicate can be used to
prune (such as Th(Q)∩Th(¬P)) we have similar issues. This
region can be pruned by evaluating P on the B+(¬P∧Q) (i.e.
the minimal sets that satisfy Q but not P). This set includes
the necessary Th(Q) ∩ B-(P) (as required by the previous
proposition). However, we can also use the following subset
of B-(P) to prune the same region:

M = {S|S ∈ B-(P) ∧ ∃T ∈ Th(¬P) ∩ Th(Q) ∧ T ⊇ S}

There are situations where either collection has a smaller
cardinality, however M has the added benefit of pruning
some of Th(¬Q) ∩ Th(¬P) as well.

5.1 Existing Algorithms
Running times for algorithms that mine constrained item-

sets tend to be highly correlated with the number of predi-
cate evaluations that are required (since the predicates are
evaluated for each candidate set that is generated). Thus we
use the number of evaluations of P and Q as the cost metric
for analyzing DualMiner and various alternative algorithms.

The Apriori algorithm for computing Th(P) requires ex-
actly |Th(P)∪B−(P)|P oracle queries (since the collection
of non-frequent candidate sets it generates is precisely the
negative border). Similarly, its dual algorithm for calculat-
ing Th(Q) requires exactly |Th(Q)∪B−(Q)|Q oracle queries.

MAFIA, in contrast to Apriori, uses a depth-first traver-
sal strategy. Because of this, MAFIA cannot use a can-
didate generation algorithm as good as Apriori. In fact,
it is possible that MAFIA tests the support of sets out-
side Th(P) ∪ B-(P). For example, given the set of items
{A, B, C, D, E}, if the transaction ABCD is frequent but
CE is not, it is possible that MAFIA test the support of
the transactions A, then AB then ABC, then ABCD and
ABCDE. However ABCDE is not in Th(P), nor is it in
B-(P) since CE is not frequent. If a set S is frequent, or
has a frequent subset of size |S| − 1, then it is possible that
MAFIA will test its support and so MAFIA will use at most
(N +1) Th(P) oracle calls (where N is the number of items).
This is a very loose upper bound since MAFIA looks for
maximal frequent itemsets and has various optimizations
that reduce the number of sets in Th(P) whose support
needs to be checked (such as the HUT strategy which can
avoid testing the exponentially many subsets of a maximal

frequent itemset). Let S be the collection of all sets in Th(P)
for which MAFIA evaluates P . Then MAFIA will evaluate
P for at most N |S| sets outside Th(P). Thus MAFIA uses
heuristics to reduce the size of S. It also has smaller mem-
ory requirements that Apriori (due to its depth-first rather
than breadth-first traversal of the search space) and avoids
Apriori’s expensive candidate generation algorithm. In ad-
dition, there is experimental evidence to show that it is more
efficient than Apriori [6].

Computing Th(P ∧Q) can be done naively by separately
running Apriori or MAFIA (using P), the corresponding
dual algorithm (using Q) and then intersecting the results.
This algorithm, which will be referred to as INTERSECT,
clearly has a worst case bound |Th(P)∪B−(P)|P +|Th(Q)∪
B−(Q)|Q oracle queries (when using Apriori).

Another naive approach, POSTPROCESS, computes
Th(P) and then post-processes the output by evaluating Q
for each element of the output. This can be done using
|Th(P) ∪ B−(P)|P + |Th(P)|Q oracle evaluations. POST-
PROCESS does not leverage the monotone properties of Q,
and so can be improved as in [12]: for each x ∈ Th(P)
that is found, evaluate Q(x) unless we know Q(t) is true for
some t ⊂ x. This algorithm (when using Apriori), which
we will refer to as CONVERTIBLE, evaluates Q on every
set in Th(P) ∩ (Th(¬Q) ∪ B+(Q)) and thus uses |Th(P) ∪
B−(P)|P + |Th(P)∩Th(¬Q)|Q + |Th(P)∩B+(Q)|Q pred-
icate evaluations. Assuming P is more selective than Q
(as is usually true when P contains a support constraint),
the CONVERTIBLE algorithm will tend to dominate both
POSTPROCESS and INTERSECTION. It will also be very
efficient when Q is not very selective since then |Th(¬Q)| is
small.

One more alternative to DualMiner is an enhanced version
of Mellish’s algorithm [13]. This algorithm outputs two sets
S and G (the collection of tops of all maximal subalgebras
and the collection of all bottoms, respectively). While this
representation is very compact, considerable work needs to
be done to output Th(P ∧ Q) from its result. The algo-
rithm takes as input a predicate of the form c1∧ c2∧· · ·∧ cn

where each ci is either a monotone or antimonotone pred-
icate. MELLISH+ computes S and G for c1 (using a top-
down or bottom-up levelwise algorithm similar to Apriori).
The borders are then refined using c2 and a levelwise algo-
rithm that starts at the appropriate border S or G (depend-
ing on the type of the constraint c2). This process is then
repeated for the predicates c3, . . . , cn. This algorithm is very
likely to waste computation because it does not combine all
the monotone predicates into one (more selective) monotone
predicate (through the use of conjunctions) and similarly for
antimonotone predicates. The result is that predicate eval-
uations occur for sets that could have already been pruned.
For this reason the running time is heavily influenced by the
order in which the predicates are presented to the algorithm.
To avoid this, we can merge all the antimonotone predicates
into one (and similarly for the monotone ones) and then
use the antimonotone predicate first (since it is likely to be
more selective). Assuming P has a support constraint (and
is thus probably more selective than Q) it makes sense to
run the bottom-up levelwise algorithm for P first. If top-
down algorithm is then run for Q, the resulting complexity
is similar to CONVERTIBLE. If the bottom-up version is
used for Q then we can get the following upper bounds:
|Th(P)∪B-(P)|P + |Th(P)∩Th(Q)|Q + |Th(P)∩B-(Q)|Q

evaluations.
The main distinction between DualMiner and its com-

petitors is that DualMiner interleaves the pruning of P and
Q. The other algorithms can be logically separated into
two phases (even though they may not be implemented that
way): finding Th(P) and then refining the result to com-
pute Th(P) ∩ Th(Q). This is not very efficient for selective
Q since its pruning power is not used in the first phase.

5.2 DualMiner
As the results for MAFIA indicate, it is possible that

DualMiner (using depth-first traversal) can make an oracle
call for a set outside Th(P)∪B-(P) and Th(Q)∪B-(Q). How-
ever, the same thing can happen for a breadth-first traversal
strategy. The reason for this is that pruning with Q can
eliminate some frequent itemsets from consideration. This
prevents the use of the Apriori candidate generation algo-
rithm: for a given set S, we may not be able to verify (with-
out additional evaluations of P) that all of its subsets of size
|S| − 1 are frequent. Thus using a depth-first or breadth-
first strategy, DualMiner will never make more than (N +
1)|Th(P)|P +(N +1)|Th(Q)|Q + |Th(P)∩Th(¬Q)|Q oracle
calls. The last term in the sum is the result of DualMiner
testing for the bottom of a subalgebra. This is an overly pes-
simistic upper bound since it does not take into account the
savings we get from pruning Th(P) with Q and vice-versa.
Also, optimizations can be used to reduce the number of
evaluations of P and Q. For example, for depth-first strat-
egy, we can use the same optimizations that MAFIA uses
[6].

The output representation with subalgebras is more com-
pact than with just itemsets. However, DualMiner does not
output the most compact representation. This happens be-
cause every time a choice on an item is made, the search
space is split in two halves, and if a subalgebra exists that
covers parts of both halves then that subalgebra would also
be split. It turns out that a subalgebra can be split ar-
bitrarily many times. This fragmentation problem can be
addressed either by trying to merge the resulting subalge-
bras or by using some strategies in choosing the splitting
item to minimize the fragmentation problem (for example if
Q is sum(price) > 100, we may choose an item with large
price - this resulted in an algorithm that will be referred
to as DualMiner+q in the experiments). The second ap-
proach is more promising, even though we cannot eliminate
the problem entirely.

An example that illustrates the fragmentation problem is
the following. Suppose the items are A1, A2, . . . , An, B, C,
with prices 1, 1, . . . , 1, n + 1, n + 1, the transaction database
contains transactions A1A2. . .AnB and A1A2. . .AnC. Let
P be frequency(itemset) ≥ threshold(> 0) and let Q be∑

i∈itemset price(i) > n. The most compact representa-
tion of the solution in this case is (B, A1A2. . .AnB) and
(C, A1A2. . .AnC), which happens if the algorithm first se-
lects B, then C (or first C then B). If the first choices are
made on some Ai’s (as is very likely for DualMiner without
using some clever strategies) then these two subalgebras can
become very fragmented.

6. EXPERIMENTAL RESULTS
While DualMiner interleaves the pruning of P and Q, the

other algorithms (POSTPROCESS, MELLISH+, INTER-
SECTION, CONVERTIBLE) essentially calculate Th(P)

and then refine the result (any algorithm that does this will
be called a “2-phase” algorithm). If Q has little selectivity,
then CONVERTIBLE is expected to be the best algorithm,
since it examines Th(¬Q) (which should be a small set).
However, if Q is selective then it is possible that 2-phase
algorithms waste too much time finding Th(P). Our ex-
periments show that in this case DualMiner beats even a
“super” 2-phase algorithm (where the second phase is com-
puted at no cost). To make this evaluation, we assume that
P is more expensive than Q to evaluate. If P is a sup-
port constraint and Q is a constraint on the sum of prices,
it is reasonable to expect that P is about N times more
expensive to compute than Q (where N is the number of
transactions in the database). We use a more conservative
estimate and say that P is only 100 times as expensive as Q
(P = 100Q). For the first phase of the 2-phase algorithms,
we used a MAFIA implementation since it turns out to be
more efficient than Apriori. We used the IBM data genera-
tor to create the transaction files. Prices were selected using
either uniform or Zipf distributions.

We also compare the evaluations of Q for DualMiner (us-
ing depth-first traversal) and an implementation of CON-
VERTIBLE that uses a MAFIA-style traversal for the first
phase. The predicate Q was of the form sum(price) >
qthreshold (the value of qthreshold is taken from the x-
axis), and P was a support constraint. Here we also show
results for DualMiner+q, an optimization which chooses the
most expensive item to split on.

Figures 4 and 5 show the number of evaluations of Q for
CONVERTIBLE, DualMiner and DualMiner+q vs. the se-
lectivity of Q, using a uniform and a Zipf price distribution,
respectively. The y-axis is the number of evaluations of Q
and the x-axis is the threshold that the sum of prices in an
itemset must exceed. As expected, CONVERTIBLE makes
much less oracle calls when Q is not selective, but DualMiner
does better as the selectivity of Q increases. There is a sharp
spike in the graph for the Zipf distribution. At this point
DualMiner needs more evaluations of Q even though it is
more selective. This could be a characteristic of the distri-
bution and the fact that DualMiner may evaluate Q outside
Th(Q) when it is looking for the bottom of a subalgebra.

Figures 6 and 7 compare total oracle queries for DualMiner
and the first phase of the 2-phase algorithms (using uniform
and Zipf price distributions, respectively). Here P is 100
times as expensive as Q. The y-axis is the weighted sum

EP +
EQ

100
(where EP is the number of evaluations of P , and

similarly for Q) and the x-axis is the same as before.
Figure 8 compares total oracle queries for DualMiner and

the first phase of the 2-phase algorithms. The y-axis is the
weighted sum EP +EQ (P and Q are weighted equally) and
the x-axis is the same as before.

DualMiner does very well when Q is selective and inexpen-
sive; it is also competitive when Q is just as expensive as P
and is also selective (keeping in mind that all 2-phase algo-
rithms need to do an extra refinement step with Q). When Q
is expensive and not very selective, DualMiner performs too
many evaluations of Q (in this circumstance, CONVERT-
IBLE would be the algorithm of choice, since it does not
waste time pruning with an ineffective Q and only looks at
Th(¬Q), which is a relatively small set).

7. RELATED WORK
Agrawal et al. first introduced the problem of mining fre-

0

10000

20000

30000

40000

50000

60000

70000

80000

10 100 1000 10000 100000

T
ot

al
 n

um
be

r
of

 e
va

lu
at

io
ns

 o
f Q

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, unif dist, support = 0.4%

DualMiner
Convertible

DualMiner+q

Figure 4: Evaluations of Q vs. Selectivity of Q

0

5000

10000

15000

20000

25000

30000

35000

40000

10 100 1000 10000 100000

T
ot

al
 n

um
be

r
of

 e
va

lu
at

io
ns

 o
f Q

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, zipf dist, support = 0.8%

DualMiner
Convertible

DualMiner+q

Figure 5: Evaluations of Q vs. Selectivity of Q

0

10000

20000

30000

40000

50000

60000

70000

80000

10 100 1000 10000 100000

W
ei

gh
te

d
nu

m
be

r
of

 e
va

lu
at

io
ns

 (
P

 +
 Q

/1
00

)

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, unif dist, support = 0.4%

DualMiner
DualMiner+q

Mafia (P only)

Figure 6: Oracle Calls (EP +
EQ

100
) vs Selectivity of Q

quent itemsets [1, 3, 2]. This work was later generalized to
include constraints other than support in [10, 9]. These pa-
pers introduced the concepts of monotone and antimonotone
constraints and introduced methods for using them to prune
the search space. The classes of monotone and antimono-
tone constraints were further generalized by Pei et al. [12]
and also studied by Pei and Han [11]. This problem was

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

10 100 1000 10000 100000

W
ei

gh
te

d
nu

m
be

r
of

 e
va

lu
at

io
ns

 (
P

 +
 Q

/1
00

)

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, zipf dist, support = 0.4%

DualMiner
DualMiner+q

Mafia (P only)

Figure 7: Oracle Calls (EP +
EQ

100
) vs Selectivity of Q

0

10000

20000

30000

40000

50000

60000

70000

10 100 1000 10000 100000

T
ot

al
 n

um
be

r
of

 e
va

lu
at

io
ns

 (
P

 +
 Q

)

Q threshold

ntrans = 10000, avglen = 15, patlen = 10, nitems = 1000, unif dist, support = 0.8%

DualMiner
DualMiner+q

Mafia (only P)

Figure 8: Oracle Calls (EP + EQ) vs Selectivity of Q

also given a theoretical treatment by Gunopulos, Khardon,
Mannila and Toivonen [7]. However, none of previous work
was able to prune using both monotone and antimonotone
constraints simultaneously.

8. CONCLUSIONS AND FUTURE WORK
It is clear from our experiments that taking advantage

of the structures of both monotone and antimonotone predi-
cates yields good results. In the case of constrained frequent
itemsets, the use of a monotone predicate to remove from
consideration what can be considered “uninteresting” item-
sets is beneficial.

The success of DualMiner in exploiting the structures of
two classes of constraints leads to several interesting areas of
future work. Can other similar classes of constraints, such
as convertible constraints [12], be incorporated as well? Can
predicates such as variance(X) ≤ c (which do not seem to
have “nice” structures) also be used efficiently? We are also
interested in what kinds of implications this has for mining
constrained sequential patterns.

Acknowledgments. This work was sponsored by NSF
grants IIS-0121175 and IIS-0084762, by the Cornell Intelli-
gent Information Systems Institute, and by generous gifts
from Microsoft and Intel. We thank the anonymous review-
ers for helpful comments.

9. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large
databases. In P. Buneman and S. Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, Washington,
D.C., May 26-28, 1993, pages 207–216. ACM Press,
1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. I. Verkamo. Fast Discovery of Association Rules. In
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, chapter 12, pages
307–328. AAAI/MIT Press, 1996.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In J. B. Bocca,
M. Jarke, and C. Zaniolo, editors, VLDB’94,
Proceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago de
Chile, Chile, pages 487–499. Morgan Kaufmann, 1994.

[4] R. J. Bayardo. Efficiently mining long patterns from
databases. In Haas and Tiwary [8], pages 85–93.

[5] R. J. Bayardo, R. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense
databases. Data Mining and Knowledge Discovery,
4(2/3):217–240, 2000.

[6] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A
maximal frequent itemset algorithm for transactional
databases. In ICDE 2001. IEEE Computer Society,
2001.

[7] D. Gunopulos, H. Mannila, R. Khardon, and
H. Toivonen. Data mining, hypergraph transversals,
and machine learning. In Proc. PODS 1997, pages
209–216, 1997.

[8] L. M. Haas and A. Tiwary, editors. SIGMOD 1998,
Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle,
Washington, USA. ACM Press, 1998.

[9] R. T. Ng, L. V. S. Lakshmanan, J. Han, and T. Mah.
Exploratory mining via constrained frequent set
queries. In A. Delis, C. Faloutsos, and
S. Ghandeharizadeh, editors, SIGMOD 1999,
Philadephia, Pennsylvania, USA, pages 556–558.
ACM Press, 1999.

[10] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang.
Exploratory mining and pruning optimizations of
constrained association rules. In Haas and Tiwary [8],
pages 13–24.

[11] J. Pei and J. Han. Can we push more constraints into
frequent pattern mining? In ACM SIGKDD
Conference, pages 350–354, 2000.

[12] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining
frequent item sets with convertible constraints. In
ICDE 2001, pages 433–442. IEEE Computer Society,
2001.

[13] L. D. Raedt and S. Kramer. The levelwise version
space algorithm and its application to molecular
fragment finding. In Proceedings of the Seventeenth
International Joint Conference on Artificial
Intelligence (IJCAI 2001), pages 853–862, August
2001.

