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Abstract—In statistical privacy, privacy definitions are con-
tracts that guide the behavior of algorithms that take in sensitive
data and produce sanitized data. Historically, data privacy
breaches have been the result of fundamental misunderstandings
about what a particular privacy definition guarantees.

Privacy definitions are often analyzed using a hit-or-miss
approach: a specific attack strategy is evaluated to determine if a
specific type of information can be inferred. If the attack works,
the privacy definition is known to be too weak. If it doesn’t work,
little information is gained. Furthermore, these strategies will not
identify cases where a privacy definition protects unnecessary
pieces of information.

A systematic analysis of privacy definitions is a long-standing
open problem. In this paper, we present initial steps towards
a solution. Using privacy axioms, we identify two mathematical
objects that are associated with privacy definitions – the con-
sistent closure and the row cone (which is constructed from the
consistent closure). The row cone is a geometric object which
neatly encapsulates Bayesian guarantees provided by a privacy
definition.

We apply these ideas to the study of randomized response
to show that it provides unnecessarily strong protections on the
parity of a dataset.

I. INTRODUCTION

Data collection and analysis help drive innovation in busi-
ness and science. In many cases, it is beneficial to share the
data (e.g., to crowd-source the analysis [1], to enable collabo-
rations, etc.). The data often contain sensitive information and
so the straightforward sharing of data is not possible. Instead,
the original data are passed to a sanitizing algorithm which
then outputs sanitized data. If the sanitizing algorithm is well-
designed, it should be safe to release the sanitized data.

The design of a sanitizing algorithm is governed by a pri-
vacy definition which acts like a mathematical contract – if the
behavior of the algorithm satisfies its prespecified constraints,
then certain types of sensitive inference are blocked. As is the
case with legal contracts, privacy definitions are often subtle
and their implications can be difficult to understand. In fact,
highly publicized privacy breaches (e.g., [2], [3], [4]) have
resulted from fundamental misunderstandings about what can
be guaranteed by a particular class of sanitizing algorithms.

Thus it is important to be able to systematically analyze
privacy definitions. However, developing a framework for
such an analysis is an open problem. Current analyses of
privacy definitions are based on a hit-or-miss methodology:
they evaluate the ability of a specific attack strategy to uncover
specific types of sensitive information [5], [6], [7], [8].

We do note that tremendous insight can be obtained from
such a methodology. For example, Dinur and Nissim [6]
considered privacy definitions that allow algorithms to provide
approximate answers (i.e. with at most o(

√
n) perturbation1)

to polynomially many linear queries. They showed that linear
programming can be used to approximately reconstruct the
original data with o(n) error in terms of Hamming distance.
Their subsequent analyses were influential in the development
of a state-of-the-art privacy definition called differential pri-
vacy [9].

However, the hit-or-miss methodology also has serious
drawbacks. If a specific attack fails, little information is gained
(i.e. it does not preclude the possibility that a modified attack
would succeed). This methodology would also fail to identify
non-sensitive pieces of information that are unnecessarily
protected by a privacy definition; removing such protections
would increase the utility of sanitized data.

In this paper, we introduce a new methodology that can
serve as a foundation for a systematic analysis of privacy
definitions. In order to explain this methodology, we present
a concrete instantiation called the row cone analysis; the row
cone analysis transforms the study of privacy definitions into
the study of linear inequalities. We apply the row cone analysis
to randomized response [10] to show that its privacy properties
result from strong protections of the parity of a dataset.

A. Outline

After introducing notation in Section II, we present the
row-cone analysis in Section III. The row cone analysis uses
two mathematical structures – the consistent closure (Section
III-A) and row cone (Section III-C) of a privacy definition
– that can be generalized to create other types of analyses
(these generalizations are discussed in Sections III-B and
III-D, respectively). We use the row cone analysis to study
randomized response in Section IV. Finally, we discuss other
uses of the methodology, such as principled methods for
relaxing privacy definitions, in Section V.

II. NOTATION

Let I = {D1, D2, . . . , DN} be a the input domain: a finite
collection possible datasets. A sanitizing algorithm M is a
deterministic or randomized algorithm whose domain contains
I. We view sanitizing algorithms as conditional probability

1n is the number of records in the data.



distributions: PM(ω | D) def
= P (M(D) = ω). For convenience,

we also represent a sanitizing algorithm M as a matrix where
the columns are indexed by I, rows are indexed by the count-
able set range(M), and whose entries are P (M(D) = ω), as
shown below.


D1 D2 . . .

ω1 P (M(D1) = ω1) P (M(D2) = ω1) . . .
ω2 P (M(D1) = ω2) P (M(D2) = ω2) . . .
ω3 P (M(D1) = ω3) P (M(D2) = ω3) . . .
...

...
...

...


We use the notation P (M(·) = ω) to refer to the vector
〈P (M(D1) = ω), P (M(D2) = ω), . . . 〉, which is the row
of the matrix representation of M that is indexed by ω.

A privacy definition Priv is just a set of sanitizing al-
gorithms with the same input domain I. For example, ε-
differential privacy [9] is the set of algorithms that satisfy
certain constraints on their probabilistic behavior, while ran-
domized response [10] is just a set containing one algorithm.

III. THE ROW CONE ANALYSIS

In this section we present the row cone analysis while
discussing how it can be generalized to other types of sys-
tematic analyses of privacy definitions. To analyze a privacy
definition Priv, the main idea is to identify implicit privacy
assumptions (Section III-A), specify the type of information
about M ∈ Priv that should be used for inference, identify
how this information is constrained by Priv, and interpret
those constraints in terms of statistical inference (Section
III-C). We explain in more detail below.

A. The Consistent Closure

We would like to think of a privacy definition Priv as
a complete specification of algorithms we should trust to
produce sanitized data from sensitive datasets. However, in
many cases, these specifications are incomplete.

For example, the principle of k-anonymity [2] defines a
“k-anonymous table format” and states that we should trust
algorithms that produce output tables in this format. Let M∗
be one such algorithm, let A be an algorithm that builds a
statistical model from k-anonymous tables, and let A◦M∗ be
the composite algorithm that first runs M∗ on the sensitive
data and then runs A on the output of M∗. If we accept the
principle of k-anonymity, then we should trust M∗. Should
we also trust A◦M∗? Intuitively yes, because if an output
table ω produced by M∗ is safe to release, then building a
model using only the table ω should be safe too. However,
k-anonymity does not tell us that we should trust A◦M∗.

The logical conclusion is that we should start with a
(possibly incomplete) privacy definition Priv and use rules
of the form “if you trust algorithm Ma then you should also
trust algorithm Mb” to expand Priv until it encompasses all
algorithms we should trust.

We can interpret two privacy axioms from [11] as “if-then”
rules to suit our purposes:

Axiom 3.1 (Post-processing [11]): Let Priv be a privacy
definition. Let M ∈ Priv and let A be any algorithm whose
domain contains the range of M (and whose randomness is
independent of the randomness in M). Then A◦M should
belong to Priv.

Axiom 3.2 (Convexity [11]): Let Priv be a privacy defini-
tion. Let M1 ∈ Priv and M2 ∈ Priv. Define pM1 +(1 −
p)M2 to be the algorithm that runs M1 with probability p and
M2 with probability 1 − p. Then pM1 +(1 − p)M2 should
belong to Priv.

We can then define the consistent closure of Priv as:
Definition 3.3 (Consistent Closure): The consistent closure

of Priv, denoted by closure(Priv), is the smallest set of
algorithms that contains Priv and is consistent with Axioms
3.1 and 3.2.
The following theorem shows that the consistent closure is
indeed obtained by adding algorithms using the if-then rules
from the axioms.

Theorem 3.4: Given a privacy definition Priv, its consistent
closure closure(Priv) can be obtained from the following
process:

1) Define Priv(1) to be the set of all (deterministic and
randomized algorithms) of the form A◦M, where M ∈
Priv, range(M) ⊆ domain(A), and the random bits of
A and M are independent of each other.

2) Define Priv(2) to be the set of all algorithms of the form
p1 M1 +p2 M2 + · · ·+ pn Mn for all positive integers n,
finite sequences M1, . . . ,Mn ∈ Priv(1), and probability
vectors ~p = 〈p1, . . . , pn〉.

3) Set closure(Priv) = Priv(2).
The proof can be found in [12]. We derive the consistent
closure for randomized response in Section IV

B. Implications of closure(Priv)

The significance of closure(Priv) is that this is the complete
set of algorithms we should trust if we decide to trust Priv
(and accept Axioms 3.1 and 3.2). In this section we briefly
discuss generalizations and computational issues.

1) Computation and design guidelines: for a given privacy
definition Priv, it may not always be possible to derive
closure(Priv). This means it is difficult to describe the set of
algorithms we should trust. Such complexity is to be expected
when working with sets of algorithms, but it does introduce
a design guideline for privacy definitions: they should be
defined so that closure(Priv) can be determined. For example,
differential privacy [9] and Pufferfish [13] are two privacy
definitions for which Priv = closure(Priv).

2) Other generalizations: In some applications, the data
curator may trust additional sanitizing algorithms as well (for
example, an algorithm whose probabilistic behavior is close to
some M ∈ closure(Priv) based on some distance measure).
In those cases it is up to the data curator to propose additional
privacy axioms to formalize extra assumptions about which
algorithms can be trusted. The definition of consistent closure
can then be extended in the obvious way to account for those
axioms.



C. The Row Cone

The consistent closure of a privacy definition is the complete
set of algorithms we should trust. To identify what a privacy
definition protects, we need to extract semantic guarantees
from its consistent closure. Recent results [13] suggest that
semantic guarantees are more meaningful (and less confusing)
when they are expressed in terms of inferences an attacker can
make.

To identify restrictions on inference, the next step is to de-
rive the row cone, a mathematical object which turns questions
about privacy definitions into questions about geometry and
linear inequalities.

The row cone is based on the likelihood principle in
statistics. That is, if the data sanitizer M processes sensitive
data D and outputs ω, the attacker’s inference should be
based on P (M(·) = ω) (i.e. the vector of probabilities
〈P (M(D1) = ω), P (M(D2) = ω), . . . 〉 of generating ω)
rather than some other property of M and ω. The set of all such
vectors, intuitively, is the set of possible pieces of information
that a privacy definition could reveal about the true dataset.
Noting that rescaling such vectors by a positive constant
does not affect inferences made with maximum likelihood or
Bayesian methods, we define rowcone(Priv) as follows:

Definition 3.5 (Row Cone): Let I = {D1, D2, . . . } be the
set of possible input datasets and let Priv be a privacy
definition. The row cone of Priv, denoted by rowcone(Priv),
is defined as the set of vectors:

{cP (M(·) = ω) : M ∈ closure(Priv), ω ∈ range(M), c ≥ 0}

Note that rowcone(Priv) is constructed from closure(Priv)
and that closure(Priv) is a convex set (due to Axiom 3.2).
Therefore rowcone(Priv) is a convex set too; it can be
visualized as in Figure 1.

A1P [M(D1) = ω] + A2P [M(D2) = ω] + · · · ≥ 0

B
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Fig. 1. An example of a row cone (shaded) and its defining linear inequalities.

In order to extract semantic guarantees, we need to find out
what is common to all of the vectors in rowcone(Priv). This
is where the geometry of rowcone(Priv) is particularly useful.

The closure of a convex set is equivalent to the intersection
of halfplanes containing the set. Since halfplanes are defined

by linear inequalities, and since rowcone(Priv) is actually a
convex cone, it can be described using linear (in)equalities of
the form:2

A1P (M(D1) = ω) +A2P (M(D2) = ω) + . . . ≥ 0 or
A1P (M(D1) = ω) +A2P (M(D2) = ω) + . . . = 0 or
A1P (M(D1) = ω) +A2P (M(D2) = ω) + . . . > 0

that must hold for each M ∈ closure(Priv) and each ω ∈
range(M).

To extract semantic guarantees, the key insight is that each
of these (in)equalities can be interpreted as statements about
prior and posterior distributions. We can view each coefficient
Aij as a possible value for a prior probability P (data = Dij )
or a value proportional to a prior probability. We can define
S+ to be the collection of all databases Di for which Ai (i.e.
the coefficient of P (M(Di) = ω)) is positive. Similarly, S−
can be defined as the collection of datasets associated with
negative coefficients. With these interpretations (and some
simple algebraic manipulations), an inequality of the form
A1P (M(D1) = ω) + A2P (M(D2) = ω) + · · · ≥ 0 can be
turned into statements such as:

α ≥ P (data ∈ S+ | M(data) = ω)

P (data ∈ S− | M(data) = ω)
(1)

α′ ≥ P (data ∈ S+ | M(data) = ω)

P (data ∈ S− | M(data) = ω)

/P (data ∈ S+)

P (data ∈ S−)
(2)

Equation 1 means that if an attacker uses a certain class of
prior distributions then after seeing the sanitized data, the
probability of some set S+ is no more than α times the
probability of some set S−. Equation 2 means that if an
attacker uses a certain class of priors, then the relative odds
of S+ vs. S− can increase by at most α′ after seeing the
sanitized data. Of particular importance are the sets S+ and
S− of possible input datasets, whose relative probabilities are
constrained by the privacy definition. In an ideal world they
would correspond to something we are trying to protect; for
example, S+ could be the set of potential databases in which
Bob has cancer and S− could be the set of potential databases
in which Bob is healthy. If a privacy definition is not properly
designed, S+ and S− could correspond to concepts that may
not need protection for certain applications (for example, S+

could be the set of databases with even parity and S− could
be the set of databases with odd parity).

D. Implications of rowcone(Priv)

The row cone turns the study of privacy definitions into
the study of convex geometry and linear inequalities. Thus
many existing mathematical tools can be used to study privacy
definitions. In this section we again discuss computational
issues and further generalizations.

2This is true for finite-dimensional vector spaces. In infinite dimensional
vector spaces, finitely additive measures may be needed. For this reason,
we require that I, the set of possible datasets, be finite since | I | is the
dimensionality of each vector in rowcone(Priv).



1) Computation and design guidelines: for some pri-
vacy definitions Priv, it may not be possible to determine
rowcone(Priv). Note that rowcone(Priv) captures the notion
of Bayesian guarantees (i.e. the restrictions on the relationships
between prior and posterior distributions that must hold when
using an algorithm that satisfies the privacy definition). For
this reason, we believe that intractability of the row cone of a
privacy definition Priv points to possible design flaws in Priv
– how can one justify a privacy definition whose semantics are
obscure? Thus another design principles for privacy definitions
is to ensure that rowcone(Priv) is easily computable. For
example, both differential privacy [9] and Pufferfish [13] have
the property that M ∈ Priv if and only if every row of the
matrix representation of M (as defined in Section II) belongs
to rowcone(Priv). Pufferfish [13], in particular, was designed
with these kinds of Bayesian semantics in mind.

2) Other generalizations: the row cone is intended to
provide privacy semantics for attackers that only use the
likelihood vector P (M(·) = ω) for inference when they see a
sanitized output ω. Other types of semantics are also possible.
For example, one could consider randomized semantics such
as “with probability p1, the attacker’s computed odds of Bob
having cancer vs. Bob being healthy increase by at most α1,
with probability p2, the odds increase by at most α2, etc.”
In those cases, instead of the row cone, one could extract all
probability vectors P (M(·) = ω) (but not rescale them as in
Definition 3.5) or one could extract and interpret some other
mathematical structure from closure(Priv).

IV. APPLICATION TO RANDOMIZED RESPONSE

In this section, we derive the consistent closure and row
cone of randomized response. We then extract previously
unknown semantic guarantees for this privacy definition. For
randomized response, the dataset can be thought of as a bit
string of length k; where each bit j corresponds to the value
of a yes/no question posed to individual j.

Definition 4.1 (Domain of randomized reponse): Let the
input domain I = {D1, . . . , D2k} be the set of all bit
strings of length k. The bit strings are ordered in reverse
lexicographic order. Thus D1 is the string whose bits are all
1 and D2k is the string whose bits are all 0.

Definition 4.2 (Randomized response algorithm): Given a
privacy parameter p > 1/2, let Mrr(p) be the algorithm that,
on input D ∈ I, independently flips each bit of D with
probability 1− p.

Note that randomized response, as a privacy definition, is the
set {Mrr(p)}. To extract semantic guarantees from {Mrr(p)},
we first derive the consistent closure and row cone (Theorem
4.3), and then reinterpret constraints on the row cone as
statements about prior and posterior beliefs (Theorem 4.5).

Theorem 4.3: Given input space I = {D1, . . . , D2k} of bit
strings of length k and a privacy parameter p > 1/2,

• A vector ~x = (x1, . . . , x2k) ∈ rowcone({Mrr(p)}) if and

only if for every bit string s of length k,

2k∑
i=1

pham(s,Di)(p− 1)k−ham(s,Di)xi ≥ 0

where ham(s,Di) is the Hamming distance between s
and Di.

• An algorithm M with matrix representation M (see
Section II) belongs to closure({Mrr(p)}) if and only if
every row of M belongs to rowcone({Mrr(p)}).

The proof can be found in [12].
We illustrate this theorem with an example of tables with

k = 2 tuples.
Example 4.4: With 2 tuples and one binary attribute, the

domain I = {11, 10, 01, 00}. By Theorem 4.3, an algorithm
M with matrix representation M belongs to the closure of
randomized response (with privacy parameter p) if for every
vector ~x = (x11, x10, x01, x00) that is a row of M , the
following four constraints hold:

p2x00 + (1− p)2x11 ≥ p(1− p)x01 + p(1− p)x10 (3)
(1− p)2x00 + p2x11 ≥ p(1− p)x01 + p(1− p)x10 (4)
p2x01 + (1− p)2x10 ≥ p(1− p)x00 + p(1− p)x11 (5)
(1− p)2x01 + p2x10 ≥ p(1− p)x00 + p(1− p)x11 (6)

We use Example 4.4 to explain the intuition behind the
process of extracting Bayesian semantic guarantees from the
row cone of randomized response, as given by the constraints
in Equations 3, 4, 5, and 6. Let us consider the following two
attackers.

Attacker 1. This attacker has the prior belief that P (data =
11) = p2, P (data = 00) = (1 − p)2 and P (data = 01) =
P (data = 10) = p(1 − p), so that each bit is independent
and equals 1 with probability p (this p is the same as the
privacy parameter p in randomized response). Let us consider
the effect of the constraint in Equation 3 on the attacker’s
inference. This constraint says that for all trusted algorithms
M (i.e. M ∈ closure({Mrr(p)})) and for all ω ∈ range(M),

p2P [M(11) = ω] + (1− p)2P [M(00) = ω]

≥ p(1− p)P [M(01) = ω] + p(1− p)P [M(10) = ω] (7)

Note that the coefficients in the linear constraints have the
same values as the prior probabilities of the possible input
datasets. Substituting those prior beliefs into Equation 7, we
get the constraint that for all ω ∈ range(M):

P (data = 11)P [M(11) = ω] + P (data = 00)P [M(00) = ω]

≥ P (data = 01)P [M(01) = ω] + P (data = 10)P [M(10) = ω]

This, in turn, is equal to the following constraint on the
attacker’s belief about the joint distribution of the input and
output of M:

P [parity(data) = 0 ∧M(data) = ω]

≥ P [parity(data) = 1 ∧M(data) = ω]

Dividing both sides by P (M(data) = ω), where “data” is a
random variable, we see that Equation 3 eventually leads to the
following constraint on the attacker’s posterior distribution:

P [parity(data) = 0 | M(data) = ω]

≥ P [parity(data) = 1 | M(data) = ω]



Thus if an attacker believes that bits in the database are
generated independently with probability p, then after seeing
the sanitized output, the attacker will believe that the true input
is more likely to have even parity. Looking at the attacker’s
prior beliefs, we see that the prior probability of even parity,
p2 + (1 − p)2, is greater than the prior probability of odd
parity, 2p(1 − p). Thus the belief about which parity is most
likely remains unchanged. Equations 4, 5, and 6 lead to similar
guarantees, which are summarized in Theorem 4.5.

Attacker 2. This attacker believes that the first bit is 1
with probability 1/2 and believes the second bit is 1 with
probability p (the bits are independent of each other). In this
case, the attacker’s prior beliefs are that odd parity and even
parity are equally likely. It is easy to see that now the output of
M ∈ closure {Mrr(p)} can make the attacker change his mind
about which parity is more likely (for example, consider what
happens when Mrr(p) outputs 01 or 00). This is true because
the attacker was so unsure about parity that even the slightest
amount of evidence can change his beliefs about which parity
is (slightly) more likely. However, the attacker will not change
his mind about the parity of the second bit, for which he has
greater confidence. This result is a consequence of Theorem
4.5 below, which formally presents the semantic guarantees of
randomized response.

The following theorem generalizes these observations to sets
of bits for which the attacker’s prior is bounded away from
1/2 (i.e. each bit has its own prior probability that is ≤ 1− p
or ≥ p). For those sets, the parity that is a priori more likely is
also a posteriori more likely. It also shows that only algorithms
M ∈ closure({Mrr(p)}) have this property (as a consequence
of the connection between the consistent closure and row cone
of randomized response that was identified in Theorem 4.3).
Thus these semantics completely characterize the protections
offered by randomized response.

Theorem 4.5: Let p be a privacy parameter and let I =
{D1, . . . , D2k}. Let M be an algorithm that has a matrix
representation M such that every row of M belongs to the
row cone of randomized response. If the attacker believes that
the bits in the data are independent and bit i is equal to 1 with
probability qi, then M protects the parity of any subset of bits
that have prior probability ≥ p or ≤ 1 − p. That is, for any
subset J ≡ {`1, . . . , `m} of bits of the input data such that
q`j ≥ p ∨ q`j ≤ 1− p for j = 1, . . . ,m, the following holds:
• If P (parity(J) = 0) ≥ P (parity(J) = 1) then
P (parity(J) = 0 | M(data)) ≥ P (parity(J) = 1 | M(data))

• If P (parity(J) = 1) ≥ P (parity(J) = 0) then
P (parity(J) = 1 | M(data)) ≥ P (parity(J) = 0 | M(data))

Furthermore, an algorithm M can only provide these guar-
antees if every row of its matrix representation belongs to
rowcone({Mrr(p)}).
The proof can be found in [12].

V. RELAXING PRIVACY DEFINITIONS

Theorems 4.3 and 4.5 described properties of the set of algo-
rithms we should trust if we are prepared to trust randomized

response – this set of algorithms is completely characterized
by protections of the parity of any subset of the input dataset.
Protecting the parity of individual bits is important, since each
bit corresponds to an individual. However, protecting the parity
of larger subsets of bits is often irrelevant in statistical privacy.

If one is interested in weakening randomized response to
get rid of these unnecessary protections, then the row cone
provides a useful starting point. Geometrically, the row cone
is a set of vectors that is described by linear inequalities. One
approach to weakening a privacy definition is to enlarge the
row cone. Such an enlarged row cone R can become the basis
of a new privacy definition Priv that can be defined as follows:
M ∈ Priv if and only if P (M(·) = ω) ∈ R for all ω ∈
range(M).

One way of enlarging the row cone is to use Fourier-
Motzkin elimination to relax the original linear inequalities.
Applying this technique to randomized response results in
a privacy definition that requires that P (M(D) = ω) ≤
p

1−pP (M(D′) = ω) whenever the Hamming distance between
D and D′ is equal to 1. This is precisely the definition of
log
(

p
1−p

)
-differential privacy [9].

These observations lead us to a moment of wild speculation:
if this framework existed almost half a century ago – around
the time Warner was developing randomized response [10]
– would it have accelerated the development of differential
privacy and related technologies? While this question cannot
be definitively answered, we believe the framework presented
here could aid other discoveries in privacy technology.

VI. ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 1054389.

REFERENCES

[1] Kaggle, http://www.kaggle.com.
[2] L. Sweeney, “k-anonymity: a model for protecting privacy,” Interna-

tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
vol. 10, no. 5, pp. 557–570, 2002.

[3] A. Narayanan and V. Shmatikov, “How to break anonymity
of the netflix prize dataset,” 2006. [Online]. Available: http:
//www.citebase.org/abstract?id=oai:arXiv.org:cs/0610105

[4] M. Barbaro and T. Zeller, “A face is exposed for AOL searcher no.
4417749,” New York Times, August 9 2006.

[5] D. Kifer, “Attacks on privacy and de finetti’s theorem,” in SIGMOD,
2009.

[6] I. Dinur and K. Nissim, “Revealing information while preserving pri-
vacy,” in PODS, 2003.

[7] R. Wong, A. Fu, K. Wang, and J. Pei, “Minimality attack in privacy
preserving data publishing,” in VLDB, 2007.

[8] J. Reiter, “Estimating risks of identification disclosure for microdata,”
Journal of the American Statistical Association, vol. 100, pp. 1103 –
1113, 2005.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis.” in TCC, 2006.

[10] S. L. Warner, “Randomized response: A survey technique for eliminating
evasive answer bias,” Journal of the American Statistical Association,
1965.

[11] D. Kifer and B.-R. Lin, “An axiomatic view of statistical privacy and
utility,” To appear in Journal of Privacy and Confidentiality.

[12] B.-R. Lin and D. Kifer, “A framework for extracting semantic guarantees
from privacy definitions,” http://arxiv.org/abs/1208.5443.

[13] D. Kifer and A. Machanavajjhala, “A rigorous and customizable frame-
work for privacy,” in PODS, 2012.

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0610105
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0610105

	Introduction
	Outline

	Notation
	The Row Cone Analysis
	The Consistent Closure
	Implications of `39`42`"613A``45`47`"603Aclosure(`39`42`"613A``45`47`"603APriv)
	Computation and design guidelines
	Other generalizations

	The Row Cone
	Implications of `39`42`"613A``45`47`"603Arowcone(`39`42`"613A``45`47`"603APriv)
	Computation and design guidelines
	Other generalizations


	Application to Randomized Response
	Relaxing Privacy Definitions
	Acknowledgment
	References

