
Attacks on Privacy and deFinetti’s Theorem

Daniel Kifer
Penn State University

ABSTRACT
In this paper we present a method for reasoning about pri-
vacy using the concepts of exchangeability and deFinetti’s
theorem. We illustrate the usefulness of this technique by
using it to attack a popular data sanitization scheme known
as Anatomy. We stress that Anatomy is not the only saniti-
zation scheme that is vulnerable to this attack. In fact, any
scheme that uses the random worlds model, i.i.d. model, or
tuple-independent model needs to be re-evaluated.

The difference between the attack presented here and oth-
ers that have been proposed in the past is that we do not
need extensive background knowledge. An attacker only
needs to know the nonsensitive attributes of one individual
in the data, and can carry out this attack just by building a
machine learning model over the sanitized data. The reason
this attack is successful is that it exploits a subtle flaw in
the way prior work computed the probability of disclosure
of a sensitive attribute. We demonstrate this theoretically,
empirically, and with intuitive examples. We also discuss
how this generalizes to many other privacy schemes.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous—Privacy

General Terms
Security

1. INTRODUCTION
Many organizations are in possession of data sets that

they would like to release to the public. In many cases, such
data sets also contain sensitive information which should not
be revealed. Examples include GIC, which collected health
insurance data for Massachusetts state employees [46]; AOL,
which collected search log data from its users [6]; and Netflix,
which collected movie ratings from its customers [39].

While the release of such data can benefit both the public
and the organizations themselves (through a better under-
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standing of medical data, better information retrieval tech-
nology, and better collaborative filtering algorithms), there
is a fear that sensitive information about individuals in the
data will be revealed. This fear is well-founded, since in-
adequate data sanitization allowed the identification of the
medical records of the governor of Massachusetts in the GIC
data [46]; it allowed the identification (and subsequent in-
terview) of an AOL user by reporters from the New York
Times [6]; and it allowed for the potential identification of
Netflix subscribers based on posts in blogs and newsgroups
[40].

With such motivation, many schemes for publishing san-
itized data have been proposed. Informally, we say that a
data set has been sanitized if it is impossible or very diffi-
cult for an attacker to infer sensitive information from the
data. Difficulty could either result from a high average-case
computational complexity [18] or from the amount of extra
information an attacker needs to collect in order to breach
privacy [35, 36, 10]. Thus it is clear that when designing
a method for sanitizing data, one should also reason about
attacks available to an attacker.

While many proposed sanitization schemes rely solely on
the perceived complexity of their data transformations, there
has been a growing body of work that investigates strategies
an attacker may use to breach privacy. These include linking
attacks [46, 21], exploitation of properties of the sanitization
algorithm [48, 20], use of background knowledge [35, 36, 10,
23, 5] and reasoning about how an attacker’s prior belief
changes into a posterior belief [19, 37, 35, 42].

In this paper we present an attack using data mining tech-
niques that are based on a deep statistical theorem known
as deFinetti’s representation theorem [45]. Using this repre-
sentation theorem, we show potential vulnerabilities in san-
itization schemes that are based on random worlds [35, 36,
10] and schemes that assume the attacker believes the data
are generated i.i.d. from a distribution P (that is known
to the attacker) [19] and schemes that assume the attacker
believes that each tuple ti is placed in the database inde-
pendently of other tuples with probability pi (also known to
the attacker) [37, 42]. As a proof of concept, we will show
how to exploit this vulnerability in a privacy scheme known
as Anatomy [49] and we will present experimental results
supporting our claim. We stress, however, that Anatomy is
not the only scheme with this vulnerability. We chose to
illustrate our attack on Anatomy because Anatomy is easy
to explain, because it requires an attack algorithm that we
consider to be interesting, and because there is insufficient
space to present an attack for every vulnerable sanitization
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scheme that has been proposed. The main idea of the at-
tack is to build a Bayesian network, such as a Naive Bayes
classifier, with a twist: instead of predicting the sensitive
attribute of a new individual, we predict the sensitive at-
tribute of an individual that was part of the training set
(i.e. the sanitized data).

The outline of this paper is as follows. In Section 2 we
introduce our notation. In Section 3 we explain the i.i.d.
model, the random worlds model, and the tuple independent
model for reasoning about privacy; we discuss their draw-
backs, and we define and advocate the use of exchangeability
(which is the focus of deFinetti’s Representation Theorem)
for reasoning about privacy. In Section 4, we will discuss
partition-based sanitization schemes, of which Anatomy is
an example. In Section 5 we will discuss how to attack
partition-based schemes and present a specific algorithm for
attacking Anatomy (note that because of differences in san-
itization schemes, the general attack methodology is the
same, but the specific algorithms are different). In Section
6, we show the experimental results from our attack. In Sec-
tion 7 we will discuss related work and point out a few more
sanitization schemes that we believe are vulnerable, and we
will present conclusions in Section 8.

2. NOTATION
We begin with some notation. Let D be a database rela-

tion with an attribute S that is considered to be sensitive1

and attributes R1, . . . , Rn which are considered to be non-
sensitive. For example, S may be the disease of an individual
while R1 might be the height. We will abuse notation and
let S and R1, . . . , Rn also denote the corresponding domains
of the attributes. Let D be an instance of relation D with k
tuples and let A be a sanitization algorithm (possibly ran-
domized) which converts D into A(D), a sanitized data set.
In privacy preserving data publishing, the goal is to choose
a sanitization algorithm A such that A(D) is safe to release
(i.e. releasing A(D) will not violate the privacy of individ-
uals whose tuples are in D).

We define privacy generically in terms of changes of belief
in order to explain the broad applicability of a data mining
attack based on exchangeability and deFinetti’s theorem.

Definition 1 (Privacy). Let δ be a measure of dis-
tance between probability distributions, let b be a real num-
ber, and let PT (x.S) be the prior beliefs of attacker T about
the sensitive attribute of x. A sanitization scheme A main-
tains the privacy of x against T if δ(PT (x.S), PT (x.S| A(D)))
< b.

For the case of Anatomy and related work [35, 36, 10, 49],
we will specialize this definition to model an attacker in an
initial state of ignorance (with a uniform prior):

Definition 2 (Privacy). For each si ∈ S, let bi be
some number between 0 and 1. An sanitization scheme A
maintains privacy if an attacker cannot use A(D) infer that
P (x.S = s1) > bi for some sensitive value si and some
individual x whose tuple appears in D.

There are two things to note about Definitions 1 and 2: we
did not specify how an attacker performs inference and we

1The restriction to one sensitive attribute is made purely for
ease of explanation.

did not require the attacker to guess the true sensitive value
x.S of some individual x.

Clearly we should not allow any arbitrary inference system
(such as a crystal ball) because many such systems lack cred-
ibility. The acceptability of an inference system should be
judged by the privacy community as a whole. The random
worlds model, the i.i.d. model, and the tuple-independent
model (all to be discussed in Section 3) have been considered
to be reasonable and so should not be abandoned. However,
they do not sufficiently protect privacy and so should be sup-
plemented with additional reasoning systems (such as those
presented in this paper).

Also, an attacker does not have to correctly guess the true
value x.S in order to cause harm to x. For instance, sup-
pose the attacker decides that x.S =AIDS with probability
0.9. Even if x is perfectly healthy, the disclosure of such
a statement can be harmful to x if the attacker is able to
convince a sizable set of people that the inference proce-
dure was reasonable. Thus random worlds, the i.i.d. model,
and tuple-independent model should not be discarded since
on the surface they seem reasonable. However, as we will
show in this paper, a more sophisticated attacker can make
a better inference.

3. MODES OF REASONING
In this section we discuss three modes of reasoning that

are common in sanitization schemes: the random worlds
model, the i.i.d. model, and the tuple-independent model.
We will point out the inadequacies of these models, explain
deFinetti’s Representation Theorem, and advocate its use
for reasoning about privacy.

3.1 Random Worlds model, IID model, Tuple-
Independent model

The random worlds model [4] is commonly used to rea-
son about attackers who do not have probabilistic opinions
about the data2 but ostensibly are willing to learn [35, 36,
10, 49]. Initially, by appealing to the principle of indiffer-
ence, the attacker believes that all instances of D with k
tuples are equally likely (technically, each assignment of at-
tribute values to an individual is considered equally likely).
Each instance of D corresponds to a possible world and the
attacker does not know which is the real world. Thus to com-
pute P (x.S =AIDS) from the sanitized data A(D), the at-
tacker will examine the instances D′ for which A(D′) equals
A(D) and will compute the fraction of such instances in
which x.S =AIDS. We note that [35] also used a more com-
plicated version of the random worlds model and that it has
the same drawbacks as the i.i.d. model, which we discuss
next. For this reason we omit further discussion of the more
complex version of random worlds.

In the i.i.d. model, the attacker believes that the tuples
were generated identically and independently from a data-
generating distribution P (which is known to the attacker).
This is the model that is used, for example, in gamma ampli-
fication and ρ1−to−ρ2 privacy breaches [19]. The justifica-
tion for this is that somehow the attacker has learned what
P is (we disagree with the plausibility of this claim in Sec-
tion 3.3). Note that in some cases the P that the attacker
believes in does not have to be the “true” distribution. The
common theme of sanitization methods based on the i.i.d.

2Their opinions are expressed in propositional logic.
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Tuple ID Smoker? Lung Cancer?
1 n n
2 n n
...

...
...

98 n n
99 n n
100 n n
101 y y
102 y y
...

...
...

198 y y
199 y y
200 y ?

Table 1: A data set related to smoking

model of reasoning is that it does not matter which specific
P is chosen by the attacker.

The tuple-independent model is commonly used in prob-
abilistic databases [11] and has also been used to evaluate
sanitization schemes related to perfect privacy [37] and αβ
anonymization [42]. Here it is assumed that the attacker
believes each tuple ti has probability pi of appearing in a
database instance and the appearance of tuple ti is inde-
pendent of the appearance of tuple tj for j 6= i. The pi for
each tuple are considered to be known by the attacker. This
model is more general than the i.i.d. model since the tuples
do not have to be identically distributed.

Despite their appealing nature, these 3 reasoning schemes
have a weakness which at first seems counter-intuitive: they
place severe restrictions on an attacker’s ability to learn.
We illustrate this idea with a simple example here (we will
then show how this relates to privacy breaches with a more
detailed example based on the sanitization scheme known as
Anatomy [49] in Section 4).

Consider Table 1. This table has 200 tuples and, aside
from the tuple id, contains two binary attributes: whether
an individual smokes and whether an individual has lung
cancer. Note that all information is present in the table
except for the lung cancer status of tuple 200.

If we use random worlds to reason about tuple 200, we
would start with the belief that every table of 200 tuples
is equally likely. After seeing Table 1, we would conclude
that only two tables are now possible: one where tuple 200
has lung cancer and one where tuple 200 does not have lung
cancer. Furthermore, we would consider both tables to be
equally likely, so we would conclude that tuple 200 has lung
cancer with probability 0.5. This is, in fact, the same prob-
ability we would have given before we had seen Table 1.

Now let us use the i.i.d. model. This requires us to select
p1 = P (smoker ∧ lung cancer), p2 = P (nonsmoker ∧ lung
cancer), p3 = P (smoker ∧ no lung cancer), and p4 =
P (nonsmoker ∧ no lung cancer) before seeing the data.
Since we believe that tuples are generated i.i.d. by the prob-
ability distribution P , we would reason that since we know
tuple 200 is a smoker, the probability that tuple 200 has
lung cancer is p1/(p1 +p3). Note that this is the same prob-
ability we would have given before we had seen Table 1 if
we had known that tuple 200 was a smoker.

For the tuple-independent model we need to select p
(x)
1 =

P (id= x ∧ smoker ∧ lung cancer), p
(x)
2 = P (id= x ∧

nonsmoker ∧ lung cancer ), p
(x)
3 = P (id= x ∧ smoker ∧ no

lung cancer ), and p
(x)
4 = P (id= x ∧ nonsmoker ∧ no lung

cancer). After seeing the data, we would conclude that the

missing value is lung cancer with probability p
(200)
1 /(p

(200)
1 +

p
(200)
3 ) which again is the same probability we would have

given before we had seen Table 1 if we had known that tuple
200 was a smoker.

In all three cases, even though there appears to be a
strong correlation between smoking and lung cancer in the
population from which the table was sampled, neither the
i.i.d. model nor the random worlds model nor the tuple-
independent model accounted for it (without specifying it
exactly in advance). In other words, the table did nothing
to change our beliefs. On the other hand, it seems reason-
able that our estimate of the probability that tuple 200 has
lung cancer should increase after seeing such data because
we should learn about the correlation between attributes.

3.2 Exchangeability and deFinetti’s Theorem
The error in reasoning (for random worlds, the i.i.d. model,

and the tuple-independent model) is very subtle. The error,
it turns out, is that all three models assume that the tu-
ples are independent of each other and that we believe they
are generated by a particular distribution P . In fact, if we
don’t commit to a specific probability distribution P , then
the apparent paradox can be avoided. To better understand
this, we first introduce the concept of exchangeability [45]
and then describe the representation theorem of deFinetti.

Definition 3 (Exchangeability). A sequence X1,
X2, . . . of random variables is exchangeable if every finite
permutation of these random variables has the same distri-
bution.

For example, the flips of a coin are exchangeable: the prob-
ability of seeing HHHTT is the same as the probability of
seeing THTHH, no matter what the bias of the coin is.
Furthermore, every i.i.d. sequence of random variables is
exchangeable. However, exchangeability is more general.

Consider the following scenario. There are two biased
coins; the first coin lands heads with probability 1 and the
second coin lands tails with probability 1. A game show host
then selects one of two coins at random with equal proba-
bility (without telling us which one it is) and proceeds to
generate a sequence of k coin flips. Given a sequence of coin
flips, each permutation of this sequence is equally likely so
the coin flips generated by this procedure are exchangeable.
It is also easy to see that the coin flips are not indepen-
dent: if the result of the first flip is a heads, the result of
the second flip must also be a heads. Thus from the first
coin flip, we learn more about the coin and thus we are able
to better predict the second coin flip. On the other hand, if
we had known which coin was selected, then we would learn
nothing new from the first coin flip. Thus if we had known
the selected coin, then we would have considered the coin
flips to be i.i.d., but since we do not know which coin was
selected, then after every coin flip we learn more about this
coin and this affects our beliefs about future flips. There-
fore we would not consider the coin flips to be i.i.d. (this
is, in fact, what allows us to avoid the situation in Section
3.1 where the attacker would not change his beliefs despite
overwhelming evidence to the contrary).

deFinetti’s Representation Theorem generalizes this sim-
ple example to essentially an arbitrary sequence of exchange-
able random variables.
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Theorem 1 (deFinetti’s Theorem [45]). Let
{Xn}∞n=1 be an exchangeable sequence of random variables
on a Borel space (X ,B). Then there is a unique random
probability measure P over (X ,B) such that conditioned on
P = P , the Xi are distributed i.i.d with distribution P .

deFinetti’s theorem states that an exchangeable sequence of
random variables is mathematically the same as choosing a
data-generating distribution at random and then generating
the data as independent draws from this distribution. In
our example, the set of coins represents the set of data-
generating distributions. The game show host chooses one
of these data-generating distributions (i.e. coins) at random
and creates the data by flipping the selected coin repeatedly.

This is easily generalized to an infinite number of possible
coins. To each coin we associate a bias, which is a number
between 0 and 1 and represents the particular coin’s prob-
ability of landing heads. Since we don’t know which coin
(and associated bias) is selected, we can place a uniform
distribution over the biases. Thus the game show host se-
lects a bias uniformly at random and then proceeds to flip
the corresponding coin to generate data.

In the general case, we view the generation of data from
an exchangeable sequence of random variables as a two-step
process: first we select the parameters of a probability dis-
tribution (such as the bias of a coin) from a prior probability
over parameters and then, using these parameters, we gen-
erate the data (such as coin flips). Based on the data, we
can use Bayesian reasoning to compute the posterior distri-
bution of the parameters. For example, after seeing many
heads, we consider the coins with high bias to be more likely
to be the true coin that generated the data. Thus each coin
flip gives us more information about the true coin.

We give a concrete example of this using Table 1. We can
treat p1 = P (smoker ∧ lung cancer), p2 = P (nonsmoker ∧
lung cancer), p3 = P (smoker ∧ no lung cancer), and p4 =
P (nonsmoker ∧ no lung cancer) as unknown parameters
with a uniform prior. Thus any choice of (p1, p2, p3, p4) for
which 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 1, 0 ≤ p4 ≤ 1 and
p1 +p1 +p2 +p4 = 1 is equally likely. The probability of ran-
domly selecting a choice of parameters and then generating
Table 1 is:

1

3!

∫
0≤p1≤1,0≤p2≤1
0≤p3≤1,0≤p4≤1
p1+p2+p3+p4=1

p100
1 p0

2p
0
3p

100
4 dp1 dp2 dp3 dp4

+
1

3!

∫
0≤p1≤1,0≤p2≤1
0≤p3≤1,0≤p4≤1
p1+p2+p3+p4=1

p99
1 p

0
2p

1
3p

100
4 dp1 dp2 dp3 dp4

where the first integral corresponds to the probability of
seeing Table 1 with the last tuple having lung cancer and the
second integral corresponds to the probability of seeing the
table with the last tuple not having lung cancer. Evaluating
these integrals results in the probability of the table being:

1

3!

100!100!

203!
+

1

3!

99!100!

203!

with the first term representing the probability of seeing
Table 1 with the last tuple having lung cancer and the second
term corresponding to the probability of seeing the table
with the last tuple not having lung cancer. Thus after we
have seen the table we update our probabilistic estimate that

the last tuple in Table 1 has lung cancer to the following
value:

1
3!

100!100!
203!

1
3!

100!100!
203!

+ 1
3!

99!100!
203!

=
100

101

On the other hand, because of the uniform prior over pa-
rameters, our belief before seeing the table that the last tu-
ple had lung cancer would have been 0.5. Thus, in contrast
to the random worlds, tuple-independent, and i.i.d. models,
exchangeability allowed us to learn about the correlation
between smoking and lung cancer for the population repre-
sented by Table 1.

An interesting aspect of the tuple-independent model is
that it adds a new wrinkle to the analysis. According to
this model, the tuples in a relation instance are not iden-
tically generated but if we were to collect additional rela-
tion instances D1, D2, . . . (where D1 is our current relation
instance) then these instances would be independent and
identically distributed. Thus we can view the sequence of
relation instances D1, D2, . . . to be exchangeable by first
parametrizing the pi (probabilities that tuple i appears) so
that different tuples can share some of the parameters and
then by placing a prior distribution over these parameters.
Thus we would believe that the pi are first chosen (without
being revealed to us) and then are used to generate a rela-
tion instance. By virtue of the pi (and the parameter values)
being unknown to us, the tuples in a relation instance are
suddenly correlated from our point of view, but if we were
told the true pi values then the correlation disappears (this
is the essence of exchangeability!). If, based on some tuples,
we learn that smoking is correlated with lung cancer, we
would believe that our estimate of the pi for other tuples
that are smokers and have lung cancer should increase rela-
tive to our estimate of the pi for tuples that are smokers and
do not have lung cancer. Thus the appearance of some tu-
ples changes our belief about the appearance of other tuples.
While Miklau and Suciu [37] noted that known positive cor-
relations between tuples will affect their analysis of perfect
privacy, they did not consider the fact that correlations may
be induced simply by lack of definite knowledge of the true
values of the pi.

To summarize, what we have described is the Bayesian
approach to inference. In fact, deFinetti’s theorem is the
cornerstone of this approach. It also shows that the pre-
vious approaches to reasoning about privacy were degener-
ate: an attacker only considered one possibility as the true
data generating distribution. Such an attacker could not
change his mind about the bias of the coin even after seeing
1 million consecutive heads or 1 million consecutive tails.
In this sense, attackers considered in prior work were very
obstinate. In contrast, those attackers who use deFinetti’s
theorem are willing to learn about the data generating dis-
tribution. We will illustrate the use of exchangeability and
deFinetti’s theorem for reasoning about privacy (and attack-
ing sanitized data) in Section 5.

3.3 Is Perfect Knowledge the Worst-Case?
Having discussed exchangeability and deFinetti’s theo-

rem, we would like to address another concern about the use
of the i.i.d. model for reasoning about privacy. Much work
assumes that the attacker knows the true data-generating
distribution. This is usually justified in one of two ways:
this distribution can be learned from similar data, or this
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scenario represents the worst-case of what an attacker can
infer about an individual. We disagree with both justifica-
tions for the following reasons.

First, there is no such thing as the “true data-generating
distribution”. It is a Platonic ideal, like the circle, which
is useful for data modeling and thus can act as a model for
an attacker’s beliefs. However, a privacy definition which
relies on an attacker learning the true value of something
that does not exist is hard to justify philosophically. Sec-
ond, learning anything resembling a “true data-generating
distribution” requires a similar dataset. However, what we
learn from two similar datasets will not be exactly the same.
For example, a hospital in Pennsylvania and a hospital in
California may produce similar data, but there will be dif-
ferences due to random variations (the same phenomenon
that makes it unlikely that two sequences of coin flips will
be identical) and sources of bias such as differences in diets
and pollution levels in each state. Thus if an attacker chose
to model the data probabilistically, there would still be un-
certainty about which probabilities to use and this should
be reflected in the attack: an attacker should not act as if
the probabilities are completely certain (as in the case of the
i.i.d. model).

We also believe that attackers who act as if they know
the true distribution (e.g. by using the i.i.d. model) are
not more dangerous than attackers who do not. The reason
that is the latter kind of attacker would update his or her
data model using information from the sanitized data (the
first kind of attacker will not) and will then use it to make
inferences about the target individual. Thus the beliefs of
the second attacker could change more than the beliefs of
the first attacker. This larger change from prior to posterior
beliefs represents a greater threat to privacy.

Thus we believe that attackers based on exchangeability
are more realistic when reasoning about privacy than are
attackers based on the random worlds, tuple-independent,
and i.i.d. models3. Nevertheless, those models should not be
discarded because an attacker does not have to be rational or
statistically sophisticated to cause harm - an attacker only
needs to be convincing. Thus these models should also be
used in the evaluation of probabilistic privacy breaches.

4. ANATOMY AND PARTITION-BASED
SANITIZATION SCHEMES

In this section we discuss the class of partition-based sani-
tization schemes and we give an overview of Anatomy, which
is a particular instance of such a scheme. We will discuss
how probabilities of attribute disclosure are currently esti-
mated in such schemes and then in Section 5 we will present
an algorithm that predicts probabilities more accurately.

LetD be an instance of a relation with k tuples, a sensitive
attribute S (such as disease), and n nonsensitive attributes
R1, . . . , Rn (such as demographic information). For exam-
ple, Table 2 shows an instance of a relation with 12 tuples
and the sensitive attribute “Disease”.

A partition-based sanitization scheme partitions the tuples
into disjoint groups and publishes certain statistics about
each group. For example in the generalization model, which
is also known as global recoding, used by k-anonymity [46],

3The i.i.d model is really a special case of exchangeabil-
ity where the prior over probability distributions is a point
mass.

Tuple ID Gender Age Zip Code Disease
1 M 25 90210 AIDS
2 F 43 90211 AIDS
3 M 29 90212 Cancer
4 M 41 90213 AIDS
5 F 41 07620 Cancer
6 F 40 33109 Cancer
7 F 40 07620 Flu
8 F 24 33109 None
9 M 48 07620 None
10 F 40 07620 Flu
11 M 48 33109 Flu
12 M 49 33109 None

Table 2: Original Table

Tuple ID Gender Age Zip Code Disease
1 * 25-49 9021* AIDS
2 * 25-49 9021* AIDS
3 * 25-49 9021* Cancer
4 * 25-49 9021* AIDS
5 * 25-49 0762* Cancer
7 * 25-49 0762* Flu
9 * 25-49 0762* None
10 * 25-49 0762* Flu
6 * 25-49 3310* Cancer
8 * 25-49 3310* None
11 * 25-49 3310* Flu
12 * 25-49 3310* None

Table 3: Global Recoding

each group must have at least k tuples and the domain of
each nonsensitive attribute is coarsened. An example of a
4-anonymous table created using generalizations is shown in
Table 3. In this table, the zip code has been coarsened by
replacing the last digit with a ∗, age has been coarsened into
intervals of length 25, and gender has been suppressed.

More flexible versions of generalizations, collectively known
as local recoding, have also been proposed (see, for example,
[32, 22, 2]). In local recoding, the domain of the nonsensi-
tive attributes can be coarsened in a different way for each
group. An example of a table created by local recoding is
shown in Table 4. Note that age is coarsened in different
ways in each group.

The original motivation behind such schemes is that if an
attacker knows the nonsensitive attributes of an individual
in the table, the attacker cannot be certain which tuple be-
longs to that individual. Such an attacker would not be able
to identify the tuple belonging to an individual in Tables 3
and 4 with resolution better than a group of size 4. Note
that this is little consolation to individuals with tuple id’s
1,2,3, and 4. They appear in a group with 3 AIDS patients
and 1 cancer patient. Any individual known to be in this
group is likely to have AIDS, even if the tuple corresponding
to the individual cannot be exactly identified.

Machanavajjhala et al. [35] have shown formally that if
an attacker knows that a target individual corresponds to
tuples 1,2,3 or 4 in Table 3, and if the attacker uses the ran-
dom worlds reasoning model, then the attacker will conclude
that this individual has AIDS with probability 3/4 (essen-
tially because 3 out of 4 of the tuples in this group must
have AIDS). Similarly, if an attacker knows that a target
individual corresponds to tuples 1,2,3, or 4 in Table 4 and
reasons using random worlds, then the attacker will con-
clude that the target individual has AIDS with probability
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Tuple ID Gender Age Zip Code Disease
1 * 25-45 9021* AIDS
2 * 25-45 9021* AIDS
3 * 25-45 9021* Cancer
4 * 25-45 9021* AIDS
5 * 40-50 07620 Cancer
7 * 40-50 07620 Flu
9 * 40-50 07620 None
10 * 40-50 07620 Flu
6 * 20-50 33109 Cancer
8 * 20-50 33109 None
11 * 20-50 33109 Flu
12 * 20-50 33109 None

Table 4: Local Recoding

Tuple ID Gender Age Zip GID
1 M 25 90210 1
3 M 29 90212 1
7 F 40 07620 1
8 F 24 33109 1
2 F 43 90211 2
5 F 41 07620 2
9 M 48 07620 2
10 F 40 07620 2
4 M 41 90213 3
6 F 40 33109 3
11 M 48 33109 3
12 M 49 33109 3

GID Disease
1 AIDS
1 Cancer
1 Flu
1 None
2 AIDS
2 Cancer
2 None
2 Flu
3 AIDS
3 Cancer
3 Flu
3 None

Table 5: Quasi-identifier and Sensitive Tables

3/4. Thus Machanavajjhala et al. proposed a family of pri-
vacy definitions known as `-diversity which, based on the
random worlds model, place restrictions on the frequencies
of various sensitive attributes in each group of the partition
(an alternative restriction on frequencies called t-closeness
[33] has also been proposed, but we are not aware of any
reasoning models associated with it).

Xiao et al. [49] observed that queries over the sanitized
data can be answered with better accuracy if the domains
are not coarsened. Instead they proposed a scheme called
Anatomy which disassociates the sensitive attributes from
the non-sensitive attributes and relies on random worlds rea-
soning for privacy. The output of anatomy consists of two
tables: a quasi-identifier table (Table 5, on the left) and a
sensitive table (Table 5, on the right). The quasi-identifier
table contains the entire nonsensitive attribute information,
in addition to a group id GID (when tuples are partitioned
into groups, a unique GID is assigned to each group). The
sensitive table contains the sensitive values that appear in
a particular group. Collectively, these two tables are known
as the anatomized table. Anatomy is essentially a lossy join
decomposition using the group id. Thus in group 1, it is not
possible to determine whether tuple 1 has AIDS, cancer, flu,
or no disease. Note that in each group, every sensitive value
is different and so the group size is the same as the param-
eter ` in `-diversity. Using the random worlds model, this
means that tuple 1 has AIDS with probability 0.25, can-
cer with probability 0.25, flu with probability 0.25, and no
disease with probability 0.25.

It has been believed by many that, in terms of privacy,
the only difference between Anatomy and approaches based
on generalization is that Anatomy only makes it easier for
an attacker to determine whether an individual is in the ta-
ble or not (since nonsensitive information can frequently be

Tuple ID Smoker? GID
1 y 1
2 y 1
3 n 2
4 n 2
5 y 3
6 n 3
7 y 4
8 y 4
9 n 5
10 n 5
11 y 6
12 n 6

GID Disease
1 Cancer
1 Flu
2 Flu
2 None
3 Cancer
3 None
4 Cancer
4 None
5 Flu
5 None
6 Cancer
6 None

Table 6: Quasi-identifier and Sensitive Tables

used to uniquely identify an individual [46]). Once an at-
tacker knows that an individual is in a particular group, it
was believed that the attacker’s inference from anatomized
tables or generalized tables would be the same (i.e. count
the fraction of tuples with AIDS in the group to determine
probability of AIDS). However, we will show in Section 5
that this extra nonsensitive information can allow an at-
tacker to compute better probabilities.

5. VULNERABILITIES OF ANATOMY
In this section we begin with an example that illustrates a

vulnerability in Anatomy. We will then formally show how
to exploit this vulnerability in Section 5.1 and then we will
discuss vulnerabilities in other partition-based sanitization
schemes in Section 5.2.

Consider Table 6. It shows the quasi-identifier table and
the sensitive table from an anatomized version of an (un-
known) original data set that came from a (fictitious) hos-
pital. The nonsensitive attribute records whether or not an
individual smokes and the sensitive attribute is the individ-
ual’s disease. Note that each group has size 2. If an attacker
wanted to estimate the probability that tuple 12 in group
6, a non-smoker has cancer, then the random worlds model
suggests this probability is 0.5 because exactly half of the
diseases in group 6 are cancer.

However, an attacker who is willing to learn may make
the observation that whenever a smoker is in a group, then
cancer is one of the diseases that appear in the group (this
occurs in groups 1,3,4, and 6). On the other hand, groups
composed entirely of nonsmokers do not contain cancer (this
is true of groups 2 and 5). Thus an attacker may reason that
the appearance pattern of smoking and cancer in this table
is evidence of a correlation between smoking and cancer in
the hospital’s population. Therefore, even though tuple 12
(a non-smoker) appears in a group where one individual has
cancer and the other is healthy, the probability that tuple
12 does have cancer should be less that 0.5. This is be-
cause tuple 11, a smoker in the same group, is more likely
to have cancer according to the correlation exhibited by this
table. In fact, we computed the probability of tuple 12 hav-
ing cancer and tuple 11 being healthy to be approximately
0.16 (details omitted due to lack of space), which is signifi-
cantly lower than the random worlds estimate.

Thus we see that the random worlds approach does not al-
low for learning about correlations between the sensitive and
nonsensitive attributes because it does not allow for learning
about one group from another group. On the other hand,
common sense tells us that there is a leakage of information
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between groups: the correlation structure in the rest of the
table provides us with information about group 6.

5.1 An Attack Algorithm
We will use the phrase deFinetti Attack to refer to the

general class of attacks that build a statistical model and
place a prior distribution over its parameters. In this sec-
tion, we will present a particular instance of a deFinetti
attack, including an algorithm. This attack will correspond
to an attacker with no prior knowledge but with an ability
to learn.

The main idea is to model the correlations between sen-
sitive and nonsensitive attributes using a Bayesian network.
Exchangeability and deFinetti’s representation theorem will
be invoked by placing a prior distribution over the param-
eters of this network (see Section 3.2). We will choose a
uniform so that we simulate an attacker who is in a state
of ignorance but is willing to learn. The attack algorithm is
presented in Algorithms 1 and 2. Throughout this section
we assume that the attribute values are all discrete. Now
we discuss the derivation.

The Bayesian network we will discuss here and experi-
mentally evaluate in Section 6 is known as Naive Bayes. We
chose it for two reasons. First, it is easy to explain. Sec-
ond, it sometimes performs remarkably well in other ma-
chine learning tasks especially when the amount of data is
limited (the data sanitization performed by Anatomy essen-
tially decreases the effective data size because of the lossy
join decomposition). A common justification for this phe-
nomenon is that the errors made by Naive Bayes can be
attributed to its bias (i.e. the assumptions it makes) and
variance (the accuracy with which it can estimate parameter
values using limited data). More complex Bayesian networks
can decrease bias by adding more parameters and hence will
increase variance. For limited amounts of data it is believed
that the decrease in variance for Naive Bayes outweighs its
increase in bias and results in smaller errors [15].

For a tuple t with nonsensitive attributes R1, . . . , Rn and
sensitive attribute S, Naive Bayes models the probabilities
as:

P (t.R1 = r1, . . . , t.Rn = rn, t.S = s)

= P (t.S = s)
n∏
i=1

P (t.Ri = ri | t.S = s) (1)

which means that it considers the nonsensitive attributes to
be conditionally independent of each other given the value
of the sensitive attribute. The parameters of this model
are P (t.S = s) for all s in the domain of S, and P (t.Ri =
ri | t.S = s) for all i, for all ri in the domain of Ri and for
all s in the domain of S.

To employ exchangeability and deFinetti’s theorem, we
put a prior over the parameters. To model an attacker who
is in a state of ignorance but is willing to learn, we make this
prior a uniform prior. Thus, for example P (t.S) is equally
likely to be any probability distribution over the sensitive
attribute S, and for each i and s, P (t.Ri|t.S = s) is equally
likely to be any (conditional) probability distribution over
the values of the attribute Ri given s. After seeing the data,
some of these distributions will be more likely than others.

Now, let t be the tuple corresponding to a target indi-
vidual whose nonsensitive attribute values are known to us:
t.R1 = r1, . . . , t.Rn = rn. Let T be the output of Anatomy

Algorithm 1 Attack

Require: target tuple t
Require: sensitive value s
1: Use Knuth shuffle to select a permutation π that assigns

sensitive values in a group to tuples in that group.
2: for i = 1 to num outer iterations do
3: Resample Naive Bayes parameters using the distribu-

tions in Equations 4 and 5
4: π ← SamplePermutation(π)
5: results[i] = π
6: end for
7: counter ← 0
8: for i = num outer iterations

2
to num outer iterations do

9: π′ ←results[i]
10: if π′ assigns value s to t.S then
11: counter ← counter +1
12: end if
13: end for
14: return counter

num outer iterations/2
as estimate of P (t.S = s | T )

Algorithm 2 SamplePermutation

Require: π = current permutation
1: for each group id gid do
2: for i = 1 to num inner iterations do
3: Use Knuth shuffle to select a permutation π′(gid)

for sensitive values in group gid.
4: f ← f(π(gid)) (using Equation 7)
5: f ′ ← f(π′(gid) (using Equation 7)
6: p = min{1, f ′/f}
7: With probability p, π(gid)← π′(gid)
8: end for
9: (Optional: Resample Naive Bayes parameters from

distributions in Equations 4 and 5 using the updated
permutation)

10: end for
11: return π

on the original data (which contains t). Let t1, . . . , tk−1 de-

note the rest of the tuples and let ti.Rj = α
(i)
j be their

corresponding nonsensitive attribute values (this informa-

tion is provided by the quasi-identifier table). Let T s
′

be
the quasi-identifier and sensitive tables obtained from T by
removing tuple t from the quasi-identifier table and by re-
moving the sensitive value s′ from the group containing t in

the sensitive table. Informally, T s
′

represents the rest of the
sanitized data after t.S has been assigned value s′. We will

use πs
′

to represent any permutation which, for each group

of T s
′
, assigns the sensitive values present in that group to

tuples in that group (we will need to perform a summation

over all such permutation). Let πs
′
i represent the sensitive

value that is assigned to tuple ti by permutation πs
′
.

Since our goal is to attack target individual t, we are in-
terested in the value of P (t.S = s | T ). First,

P (t.S = s | T ) =

P

(
T s ∧ t.S = s

n∧
i=1

t.Ri = ri

)
∑
s′∈S

P

(
T s′ ∧ t.S = s′

n∧
i=1

t.Ri = ri

) (2)
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Next,

P

(
T s

′
∧ t.S = s′

n∧
i=1

t.Ri = ri

)

=
∑
πs′

P

(
t.S = s′

n∧
i=1

(t.Ri = ri)

k−1∧
j=1

[
tj .S = πs

′
j

n∧
i=1

tj .Ri = α
(j)
i

])

=

∫ ∑
πs′

P (t.S = s′)

n∏
i=1

P (t.Ri = ri|t.S = s′)×

k−1∏
j=1

P (tj .S = πs
′
j )

n∏
i=1

P (tj .Ri = α
(j)
i |tj .S = πs

′
j )dP

(3)

where the summation is over all permutations (which, for

each group of T s
′
, assign the sensitive values present in that

group to tuples in that group) and where dP represents the
uniform distribution over the model parameters.

Thus to compute the probability that the target individual
has value s for the sensitive attribute, we need to substitute
Equation 3 into Equation 2. Unfortunately, this probability
cannot be determined analytically. Furthermore, the inte-
gral in Equation 3 appears to be intractable for the follow-
ing reason: the problem of counting the number of perfect
matchings in a bipartite graph is easily reducible to the com-
putation of the summation inside this integral. Counting the
number of perfect matchings in bipartite graphs is known to
be #P-complete [47].

Despite this difficulty, there is good news. Even though
computing the probabilities in Equation 3 (and therefore
also in Equation 2) may be hard in general, it does not mean
that it is hard for every instance of an anatomized table. The
standard approach4 to solving these kinds of problems is to
use Markov Chain Monte Carlo methods [44]. More specifi-
cally, we will use a Gibbs sampler outer loop (Algorithm 1)
with a Metropolis-Hastings inner loop (Algorithm 2).

The Gibbs sampler outer loop works as follows. We ini-
tially select a permutation π (which, for each group of T ,
assigns the sensitive values present in that group to tuples
in that group) uniformly at random. This can be done using
the Knuth shuffle [28]. Such a permutation assigns sensitive
values to tuples. Temporarily treating this as the “true” as-
signment, we can easily compute the posterior distribution
of the Naive Bayes parameters:

P (t.S) ∼ Dir(1 + ns1 , . . . , 1 + ns|S|) (4)

P (t.Ri | t.S = s) ∼ Dir(nπi,x1,s + 1, . . . , nπi,x|Ri|,s
+ 1) (5)

where |S| is the size of the domain of sensitive attribute S;
|Ri| is the size of the domain of attribute Ri; s1, . . . , s|S| are
the possible values of attribute S; x1, . . . , x|Ri| are the pos-
sible values of attribute Ri; ns is the total number of times
that sensitive value s appears in the sensitive table; nπi,x,s
is the number of tuples whose value for attribute Ri is x
and which are assigned sensitive value s by the permutation

4The EM algorithm [13] is not recommended here because
the resulting distribution is multimodal. Even if EM man-
ages to find a maximum likelihood estimator, it has little
meaning if other local maxima are almost as good.

π; and Dir is the Dirichlet distribution [8] (the notation
X ∼ Dir(. . . ) means that the random variable X is dis-
tributed according to the distribution Dir(. . . )). Note that
Equation 5 represents a separate probability distribution for
each i and s ∈ S.

We sample new Naive Bayes parameters from these distri-
butions. These new Naive Bayes parameters now induce a
probability distribution over permutations. The probability
of a permutation π′ is proportional to:

P (t.S = π′t)

n∏
i=1

P (t.Ri = ri|t.S = π′t)

×
k−1∏
j=1

P (tj .S = π′j)

n∏
i=1

P (tj .Ri = α
(j)
i |tj .S = π′j) (6)

where π′t is the sensitive value that π′ would assign to the
target tuple t and π′j is the sensitive value that π′ would
assign to the tuple tj . Using the Metropolis-Hastings inner
loop (Algorithm 2) we sample a new random permutation
π using this probability distribution. Then we resample the
Naive Bayes parameters according to the distributions in
Equations 4 and 5, sample a new permutation π, resample
the Naive Bayes parameters (based on this π), and so on.
We repeat this procedure until this Markov chain has al-
most converged. Techniques for assessing convergence are
discussed in [44].

Each iteration of this Gibbs sampler outer loop gives us
a new permutation. Supposing there are M iterations, we
have a set π1, . . . , πM of M permutations. We throw away
the first M/2 permutations as these are generated before the
Markov chain has neared convergence (also known as the
burn-in period). Then to compute P (t.S = s|T ) we simply
compute the fraction of the permutations pM/2, . . . , pM that

assign sensitive value s to tuple t 5. Note that using this
procedure it is possible to simultaneously compute P (t.S =
s|T ) for multiple target tuples by computing the appropriate
fraction of the permutations.

The Gibbs sampler outer loop requires us to sample a per-
mutation according to the current value of the parameters
sampled from the distribution in Equations 4 and 5. This
is done using a Metropolis-Hastings approach. A permuta-
tion π is composed of one permutation for each group. Let
π(gid) be the permutation corresponding to the group with
group id gid. The score associated with π(gid) is defined as:

f(π(gid)) =
∏

{j | tj∈Group gid}

P (tj .S = π(gid)j)

×
n∏
i=1

P (tj .Ri = α
(j)
i | tj .S = π(gid)j) (7)

where π(gid)j is the sensitive value assigned to tuple tj
in Group gid. For each group, we perform many itera-
tions of the following steps (until approximate convergence
of the resulting Markov chain [44]): compute f(π(gid)) for
the current permutation, use the Knuth shuffle to select
a candidate permutation π′(gid) for this group, compute
f(π′(gid)), then replace π(gid) with π′(gid) with probabil-

ity min{1, f(π
′(gid))

f(π(gid))
}. The current permutation at the last

5It is common to throw out data generated by some itera-
tions after the burn-in period. This practice is called thin-
ning and is not required because of the Ergodic theorem.
See also [44], Lemma 12.2.
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iteration is then returned. The entire attack algorithm is
summarized in Algorithms 1 and 2.

5.2 Other partition-based schemes
While we provided full details for an attack on Anatomy,

it is not our intention to claim that Anatomy is bad while
other partition-based schemes are good. Thus in this section
we sketch possibilities for attacking other partition-based
sanitization schemes such as global and local recoding.

For global recoding, the construction of the Naive Bayes
model as described in Section 5.1 will not work mainly be-
cause it has no information that helps to discriminate be-
tween certain attribute values. For example, if we globally
generalize age into the age ranges [0− 5], [6− 10], [11− 15],
[16− 45], [46− 50], and [51− 55], we will not learn how ages
16 and 45 differ in their correlations with the sensitive at-
tributes because the available information is too coarse (we
cannot distinguish between ages 16 and 45 from the sani-
tized data). However, by using semantic similarity between
attribute values, we can overcome this problem. We may
postulate that the effect of age x on the sensitive attribute
(such as disease) is similar to the effect of age x+1. We can
model such similarity by using, for example, flexible bayes
[25] (which augments Naive Bayes with a kernel density es-
timate). The end result is that if we have some groups with
age ranges such as [46− 50] and [51− 55] with higher inci-
dence of heart disease than the rest of the groups, we may
learn that age is correlated with heart disease. Now suppose
there is a group with age range [16 − 45] which contains 3
tuples, one of which has heart disease. Suppose also that
the target individual is in this group and is known to be
45 years old. This new model will essentially allow us to
reason that the other two individuals in the group are prob-
ably younger and therefore less likely to have heart disease
than the target individual. Thus we may be able to predict
probabilities better than the random worlds model.

Local recoding is clearly in between global recoding and
Anatomy in terms of how much information about the non-
sensitive attributes is hidden. Thus we might see one group
with age range [0−10], another with age range [9−12], and
another with age range [11−15]. Because of the overlaps, we
may be able to distinguish slightly between the effects of ages
9 and 10 on the sensitive value even without using fancier
models such as flexible bayes [25]. Again, this can let us pre-
dict probabilities better than the random worlds model. We
believe that algorithms that strive to minimize information
loss metrics for local recoding (such as Mondrian [32] and
space-filling curve techniques [22]) make it possible to com-
pute even better probabilities. Thus we believe that lower
information loss in the nonsensitive attributes does indeed
come at the expense of privacy in the sensitive attributes.

6. EXPERIMENTS
In this section we present experiments demonstrating the

effectiveness of our attack against Anatomy. We imple-
mented the attack code in Python and ran it on a machine
with an Intel dual core 3.16GHz processor with 4GB main
memory. The data used came from the Adult Dataset from
the UCI Machine Learning Repository [3].

First, we removed all tuples with missing values from the
data. This resulted in a data set with 30162 tuples. We re-
tained the attributes workclass, relationship, gender, salary
class (whether it is above or below $50K), and occupation.

We treated occupation as the sensitive attribute, and it had
14 distinct values.

We generated anatomized tables with 2 tuples per group,
3 tuples per group, and 4 tuples per group (since 4 does
not evenly divide 30162, an anatomized table with 4 tuples
per group also has a few groups of size 5). Thus these ta-
bles satisfy `-diversity for ` = 2, 3, 4, respectively. For each
anatomized table, we ran our attack algorithm 20 times,
each time there was a different initial starting point (line 1
of Algorithm 1). This allowed us to monitor convergence of
the algorithm since similar results from each of the 20 runs
despite different starting points was an indication of conver-
gence. We ran the outer loop in Algorithm 1 50,000 times.
In the case of Algorithm 2, we were able to directly sample
permutations for groups of size 2, 3, and 4 (by computing
the exact probability of each permutation). For larger group
sizes we ran the inner loop of Algorithm 2 until there were
100 successful assignments in line 7 (typically this required
over 2,000 iterations of the inner loop).

Attacking anatomized tables with 2 tuples per group took
roughly 7.5 hours per run, attacking anatomized tables with
3 tuples per group took roughly 14 hours per run, and at-
tacking anatomized tables with 4 tuples per group took 2
days per run. For very large group sizes, an asymptotic ap-
proach could also be possible. In any case, we note that the
high computational cost would not be much of a deterrent
to an attacker. First, our code was not especially optimized
for speed and we believe that the number of iterations was a
very conservative choice. Furthermore an attacker has little
time pressure after release of the “sanitized” data (a month
or more of computational time seems reasonable), and the
possibility of algorithmic breakthroughs cannot be ruled out.

To evaluate the success of our attack, we selected 1000
tuples at random and tried to predict their sensitive val-
ues from the anatomized tables. To measure success, we
used three metrics: absolute error (ABS), sum-squared er-
ror (SSQ), and classification accuracy (ACC). Absolute error

is defined as
1000∑
i=1

14∑
j=1

|sij − pij |, where sij is 1 if the true sen-

sitive value of tuple i is the value j and 0 otherwise, and pij
is the predicted probability that tuple i has sensitive value

j. Sum-squared error is defined as
1000∑
i=1

14∑
j=1

|sij − pij |2. For

accuracy, we take the prediction for a tuple to be the sensi-
tive value with highest predicted probability. The accuracy
is then the fraction of times the predicted value equals the
true value.

For each metric we measured its minimum and maximum
values over 20 runs. We also measured the value of the
metric on probabilities generated by pooling the samples
from those 20 runs. As a baseline, we measured the absolute
error, sum-squared error, and accuracy that would result
from the random worlds model applied to Anatomy. Our
results are summarized in Table 7.

First note that for each performance metric and for each
anatomized table (corresponding to groups of size 2, 3, and
4), the minimum and maximum values of each run are clus-
tered close together around the value of the metric evaluated
on the pooled set of runs. This is a good indication of con-
vergence for the attack algorithm.

The absolute (ABS) and sum-squared errors (SSQ) in pre-
dicting probabilities are lower for the deFinetti attack than
for the baseline corresponding to random worlds reasoning.
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Group
Measurement

Performance Metric
Size ABS SSQ ACC

2

Min 532.34 318.32 0.766
Max 532.79 318.66 0.785
Pooled 532.57 318.47 0.770
Baseline 1000.00 500.00 0.500

3

Min 968.03 572.30 0.568
Max 968.70 572.81 0.579
Pooled 968.28 572.53 0.576
Baseline 1333.33 666.67 0.333

4

Min 1243.24 746.17 0.400
Max 1243.89 746.80 0.408
Pooled 1243.63 746.51 0.406
Baseline 1500.00 750.00 0.250

Table 7: Performance of the deFinetti attack

Note that as the group sizes increase, the difference between
the deFinetti attack’s errors and the baseline’s errors de-
creases. This is a natural effect with two causes. First, the
number of choices for the sensitive attribute increases, mak-
ing it harder to determine which is the correct one. Second,
as group sizes increase, the number of groups decrease and
thus there are fewer chances to learn about individuals in
one group from information in the other groups. The dif-
ference in sum-squared error between the deFinetti attack
and the baseline almost disappears when groups have size
4. Since the other metrics still show a marked difference,
this implies that the sum-squared error, which is commonly
used for measuring discrepancies in probabilities, is not a
good choice6.

In terms of accuracy, the deFinetti attack clearly outper-
forms the baseline, with an improvement of 25% for groups
of size 2, 23% for groups of size 3, and 15% for groups of
size 4. Even though the accuracy dips below 50% on groups
of size 4, this does not mean that groups of size 4 are safe.
For roughly 11% of the tuples, the deFinetti attack assigned
a probability of at least 0.8 to a sensitive value. For 67%
of those tuples, that value was correct. This illustrates that
even at larger group sizes, there are likely to be tuples at
risk. It also shows that the Naive Bayes model used by
this instance of the deFinetti attack was overly optimistic
in assigning probabilities (this is a well-known problem for
Naive Bayes in general [43]). Thus, while not perfect, it still
gives much better results than the random worlds reasoning
model that is currently in use.

7. RELATED WORK
There has been a tremendous amount of work on partition-

based privacy schemes. One of the earliest approaches rele-
vant here was the work of Sweeney [46] who combined the
privacy definition k-anonymity with generalizations (global
recoding). Since then there has been work on improving al-
gorithms for finding k-anonymous tables [31, 7] and using
local recoding techniques which create sanitized data with
more information content [2, 32, 22].
k-Anonymity does not provide strong guarantees on pri-

vacy. This was discussed in detail by Machanavajjhala et al.
[35], who provided a different privacy definition, known as
`-diversity that was applicable to partition-based schemes.
They claimed that many algorithms for k-anonymity can be
easily retrofitted to support `-diversity. Ghinita et al. [22]

6By squaring the differences in probabilities, sum-squared
error essentially wipes out useful information

and Xiao et al. [49] also provided custom algorithms for
`-diversity.

Other privacy definitions for partition-based schemes have
also been provided. These include (c, k)-safety [36], privacy
skyline [10], and t-closeness [33]. The latter definition did
not provide formal privacy guarantees, but `-diversity, (c, k)-
safety, and privacy skyline came with privacy guarantees
that provide bounds on the inference an attacker can make
if the attacker has propositional knowledge about the in-
dividuals in the data and if the attacker uses the random
worlds model (which was introduced by Bacchus et al. [4]).
Thus it is likely that all of these definitions frequently un-
derestimate the risks of disclosure of sensitive information.
A technique called Injector, by Li and Li [34] mines the orig-
inal data for negative association rules that are then used in
the anonymization process. It also uses a variation of ran-
dom worlds for reasoning about privacy and is also likely to
underestimate the risk of disclosure. Du et al. [16] provide
a privacy definition that assumes an attacker reasons using
the maximum entropy principle. Maximum entropy also fre-
quently cannot learn the correlations between attributes. It
is easy to see that in Table 1, the maximum entropy princi-
ple will give the probability of tuple 200 having lung cancer
is 0.5 despite the strong correlation exhibited by the data.
Thus it is likely that this approach can also be attacked by
an attacker using deFinetti’s theorem.

Two very well-known privacy schemes that provide guar-
antees against attackers who use the tuple-independent and
i.i.d. models of reasoning were developed by Miklau et al.
in the context of perfect privacy [37] and by Evfimievski
et al. in the context of γ-amplification and ρ1 − to − ρ2

privacy [19]. We believe that these schemes (and many
others that are based on similar models) are therefore vul-
nerable to the deFinetti attack and a specific attack algo-
rithm is an interesting area of future research. Rastogi et
al. [42] investigate several reasoning models in addition to
the tuple-independent model. They also consider an adver-
sary who knows/believes in arbitrary correlations between
tuples. They show this results in privacy leakage when-
ever a sanitization algorithm provides “meaningful” results.
Correlations induced by exchangeability or some of its ex-
tensions known as partial exchangeability [14] are a subset
of arbitrary correlations and we believe this subset repre-
sents more meaningful and more realistic beliefs about the
relationships between tuples. Furthermore this allows an at-
tacker to learn the correlations instead of having to produce
them up front.

Aggarwal et al. [1] provide an algorithm for limiting the
ability of an attacker to form and reason with association
rules (that have high confidence) from the sanitized data
(this is also a hot topic). Association rules do consider cor-
relations between attributes. Nevertheless, we believe even
these privacy schemes are vulnerable to the deFinetti at-
tack. The reason is that association rules are a crude form
of a probability estimate. Thus several weak association
rules can be combined (for example, using the Naive Bayes
formula in Equation 1) to yield a high probability. For ex-
ample, if we have some evidence in the form of association
rules that “smoking → cancer” and “chewing tobacco →
cancer” then we can deduce that smoking and chewing to-
bacco probably increases the risk of cancer more than either
activity in isolation. We can do this even without a reliable
estimate of the confidence of the rule “smoking ∧ chewing
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tobacco→ cancer. The ability to combine rules in this way
was not considered.

The machine learning community is starting to look learn-
ing problems that are relevant to the privacy literature. For
example, Chen et al. [9] and Xiong et al. [50] investigate
how to learn from aggregate views such as those produced by
the privacy scheme proposed by Kifer et al. [27] (and thus
may possibly be used to attack this scheme). Quadrianto et
al. [41] consider the problem of predicting the class labels
(e.g. the values of a sensitive attribute) of a set of tuples
where the training set is a group of tuples. In each group,
the approximate number of tuples from each class are known
(and similarly for the testing data set). This corresponds
exactly to the problem of learning from an anatomized ta-
ble. However, their approach requires the group sizes of the
partition to be very large (so that the estimators they use
can approximately converge to their true values) and thus
is not applicable here. de Freitas et al. [12] also consider
this learning problem. However, their approach is tuned
for predicting the class attribute (e.g. sensitive attribute)
of tuples not in the data (to maximize generalization per-
formance). Furthermore, their algorithm works well when
there is uncertainty about the number of sensitive values
in each group. When this quantity is known with absolute
certainty (as in our case), their algorithm has difficulty in
learning its parameters.

Although there are quite a few attacks studied in the lit-
erature, their number is dwarfed by the amount of new pri-
vacy definitions and proposed privacy algorithms. Some of
the most notable real-world attacks include the linking at-
tack [46] on data sets that do not contain unique identifiers,
the published attack on AOL data [6], and the proof-of-
concept attack on Netflix data [40, 39]. In addition to these
attacks, there have been some other attacks on proposed
sanitization schemes. Machanavajjhala et al. [35] list some
attacks on k-anonymity. Kargupta et al. [26] and Huang
et al. [24] use spectral techniques to remove additive noise.
Ganta et al. [21] show how to attack multiple independently
released data sets that contain partial overlaps of individu-
als. Wong et al. [48] and Fang et al. [20] consider how to
attack sanitization algorithms that are framed as an opti-
mization problem. We believe they can be combined with
the deFinetti attack to predict even better probabilities. Fi-
nally, there has also been some work on attacks on data sets
where unique id’s have been removed but where an attacker
has background knowledge or access to external data sets.
These include the linking attack by Sweeney [46] for rela-
tional tables, the attacks by Backstrom et al. [5] and Hay
et al. [23] on social networks, the attack by Lakshmanan et
al. [30] on itemsets, and the more sophisticated attack by
Kumar et al. [29] on search logs (which can also be viewed
as itemsets).

8. CONCLUSION
Our goal was to highlight potential weaknesses in many

data sanitization techniques and to demonstrate a specific
exploitation of such a weakness. The reason we were suc-
cessful is because tools for reasoning about privacy are not
sufficiently mature yet. We believe that a fruitful goal for
the privacy community is to develop such tools, as they will
determine whether it is feasible to use partition-based sani-
tization schemes, or whether approaches like differential pri-
vacy [17] should be used instead.

We demonstrated that reasoning methods based on the
random worlds, tuple-independent, and i.i.d. models result
in attackers that, in many cases, will not change their be-
liefs despite overwhelming evidence. Such attackers can be
considered very obstinate. Nevertheless, such attackers can
also be considered as a reasonable first approximation. The
reason is that an attacker does not need to be correct to
cause harm; the attacker only needs to be able to convince
a sizable number of people that the reasoning is correct. For
individuals without statistical training, these three models
of reasoning do appear reasonable. However, those with
statistical training are more likely to be convinced by more
sophisticated reasoning models, such as the ones presented
here. The idea of distinguishing between relatively naive
and sophisticated attackers can be traced back to Muralid-
har and Sarathy [38] who called them “casual snoopers” and
“professional snoopers”, respectively.

Extending these ideas, we believe that a useful area of fu-
ture research is in the development of reasoning strategies
for attackers with various levels of sophistication. The secu-
rity of private information for various sanitization schemes
(including new proposals) should then be evaluated against
each of these models.
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