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Abstract—One of the important challenges in statistical privacy is the design of algorithms that maximize a utility measure
subject to restrictions imposed by privacy considerations. In this paper we examine large classes of privacy definitions and utility
measures. We identify their geometric characteristics and some common properties of optimal privacy-preserving algorithms.

1 INTRODUCTION

Improvements in data collection technology have
been accompanied by demonstrations of the impor-
tance of data-driven approaches to making business,
policy, and social decisions. The need to use and
share large data sets has also raised privacy concerns.
Statistical privacy is a multi-disciplinary field that
studies how to reveal useful information contained
in these data sets while preventing inference about
sensitive information (such as the record of a specific
individual or a business secret).

As the study of “information” progresses, evolving
ideas about privacy lead to new privacy definitions
(i.e., restrictions on the behavior of data-processing
algorithms to guarantee limits on adversarial infer-
ence) and new ways of measuring the quality of the
outputs of privacy-preserving algorithms (i.e. utility).

As a consequence, the central optimization problem
— designing algorithms that maximize utility subject to
privacy constraints — keeps changing. Because of this
changing landscape, it is important to identify opti-
mization principles that remain invariant as privacy
definitions and utility metrics change.

Even basic properties of optimal solutions can dif-
fer. For example, under some combinations of pri-
vacy definition/utility measure, if one is interested
in a query answer then optimal privacy preserving
algorithms should have as many possible output val-
ues as there are query answers. For other privacy
definition/utility measure combinations, the optimal
privacy-preserving algorithm must have strictly more
possible outputs (contrary to a common intuition that
the outputs should be in one-to-one correspondence
with query answers).

Recent research about desirable properties of pri-
vacy definitions and utility measures has identified
generic mathematical classes they can belong to. In
this paper we discuss the geometry of these classes of
privacy definitions and utility measures, and identify
geometric properties possessed by the corresponding
optimal privacy-preserving algorithms.

The goal of this paper is to present a new perspec-
tive on the central optimization problem in statistical
privacy. We hope its main role is that of raising (rather

than answering) additional interesting questions.

In Section 2, we introduce terminology and nota-
tion, including a convenient matrix view of random-
ized algorithms. In Section 3, we discuss conic privacy
definitions — a large class of privacy definitions that
subsumes many, but not all existing definitions. In
Section 4, we show that for reasonable information-
preserving utility measures, one can always find an
optimal conic privacy-preserving algorithm with lin-
early independent conditional probability vectors (in
particular, this implies the existence of optimal al-
gorithms whose range and domain have the same
size); this is not necessarily true for non-conic privacy
definitions. In Section 5 we discuss geometric inter-
pretations of a class of utility measures called branch-
ing measures and in Section 6 we discuss interactions
between the geometries of privacy and utility.

2 NOTATION AND TERMINOLOGY

Let I = {D;,Ds,...} be a countable collection of
possible input datasets. Let RLHA be the set of vectors
of dimension |I| with no negative components. Let T
be the vector in RLHA whose components are all 1.

A sanitizing algorithm O is a deterministic or ran-
domized algorithm whose domain is I and whose
range is countable.

For convenience, we represent a sanitizing algo-
rithm 901 as a matrix where the columns are indexed
by I, rows are indexed by the countable set range(91),
and whose entries are P(M(D) = w):

D, D5y
w1 P(E)JT(Dl) = wl) P(W(Dg) = wl)
w2 P(W(Dl) = wg) P(m(Dg) = CUQ)
P(D1) =ws) PO(D2) = ws)

We use the notation P(M(-) = w) to refer to the vector

(POM(Dy) = w), P(M(D2) = w),...), which is the

row of the matrix form of 9t that is indexed by w.
We define the following operators:

Operator 2.1 (AoMN). When the domain of an (possibly
randomized) algorithm A contains the range of M, then
M = AoM is their composition: M’ (D) = A(DN(D)).



Operator 2.2 (M G, Ma). When Mty and My have the
same domain and p € [0,1], then M = My &, My is the
algorithm that runs 9, with probability p and My with
probability 1 — p and reveals which algorithm was run.

Operator 2.3 (pMy +(1 — p) My). When Oy and My
have the same domain and p € [0,1], then M =
p My +(1 — p) My is the algorithm that runs My with
probability p and My with probability 1 — p.

A privacy definition Briv is a set of sanitizing algo-
rithms with input domain I. Intuitively, it is the set of
algorithms trusted to process the sensitive input data
without leaking too much sensitive information.

A utility measure pp is a function that assigns a real
number to sanitizing algorithms whose input domain
is L.

The sanitizing mechanism design problem is to
(possibly approximately) solve the following opti-

mization problem: argmax i (90).
MePriv

3 CoNic PRIVAcCY DEFINITIONS

In this paper, we are investigating the sanitizing
mechanism design problem over conic privacy def-
initions. This is a class of privacy definitions that
includes differential privacy [1], pufferfish [2], and
essentially all privacy definitions Priv that satisfy
several common-sense properties [3] and always (not
just with high probability) bound information leakage
to an attacker [3].

Definition 3.1 (Privacy Cone). A closed set C' C ]RLHA
is a privacy cone if it contains the vector 1 and is closed
under vector addition and multiplication by scalars > 0.

Definition 3.2 (Conic Privacy Definition). A privacy
definition Priv is conic if there exists a privacy cone C
such that M € Priv if and only if every row of the matrix
form of M belongs to C (ie. PM(-) = w) € C for all
w € range(9M))

An example is differential privacy.

Definition 3.3 (Differential Privacy [1]). 9t belongs to
the set of e-differentially private algorithms if for every w €
range(9N) and pair of datasets D, D’ that differ on the
value of one record, P(M(D) = w) < e P(M(D’) = w).

However, the following variant is not conic.

Definition 3.4 ((e, §)-Differential Privacy [4]). 0t satis-
fies (e, 0)-differential privacy if for every set S C range(t)
and pair of datasets D, D' that differ on the value of one
record, P(MM(D) € S) < e*P(M(D’) € S) + 0.

4 UTILITY AND LINEAR INDEPENDENCE

In this section we study properties of solutions to
the sanitizing mechanism design equation IMM* =

argmax 7 (9t) when Priv is a conic privacy definition.
MePriv
When I is finite, we show that for a large class

of utility measures, we can restrict our attention to
algorithms 91" whose matrix form consists of linearly
independent rows (hence, range(91") < |I]). We then
show that this is not necessarily the case for non-conic
privacy definitions (e.g., (¢, d)-differential privacy).

We consider utility measures that satisfy the axioms
of sufficiency, continuity, and quasi-convexity, which
are defined as follows.

Axiom 4.1. (Sufficiency [5]). pr(91) > (M) when-
ever My = Ao My for some A.

The intuition behind sufficiency is that 91, can
be used to simulate i, (with the help of a post-
processing algorithm A). If 90, is useful for some task,
then 9, can be used instead.

Axiom 4.2. (Continuity [5]). ur should be continuous
with respect to the metric dj, where dj (I, M) equals:

sup > [P (D) = w] — P (D) = ]

Del ™7

Continuity states that small changes to the prob-
abilistic behavior of an algorithm results in small
changes to its utility.

Axiom 4.3. (Quasi-convexity [6]). p(9 @, My) <
max { (M), pr(M2)} for all My, My and p € [0, 1].

The intuition behind quasi-convexity is that if we
prefer 9y over M, then we should also prefer Mty
over M = My @, My, since M sometimes behaves
like M, but otherwise behaves like the less preferred
algorithm 901;.

We now arrive at the main result of this section.

Theorem 4.4. Let I be finite, let Priv be conic, and let
ur satisfy Axioms 4.1, 4.2, and 4.3. Then the problem
argmaxoncypeip 41(M) has a solution I whose matrix
form consists of linearly independent rows.

Proof: This proof is divided into three steps.
Step 1: We first show that if a sanitizing algorithm 90
has finite range then there exists a 91 € Priv whose
matrix representation consists of linearly independent
rows and gy (9N') > pg(IM).

Without loss of generality, we may assume the ma-
trix form of 91 has no rows that are constant multiples
of each other (if it does, we can merge those rows and
the algorithm 9" that corresponds to the resultin
matrix form has (M) = u;(9N) since M = A; o M
for some A; and M’ = A, o M for some Ay).

If the matrix form of 9 has full row rank then we
are done (i.e. M = M). Thus we need to consider
M with linearly dependent rows. Let rq,...,7, be
the rows of the matrix form of 9t. Without loss of
generality, assume the linear dependency is among
the first n + 1 rows (re-ordering rows as necessary):

cir1+ ... +ceprp = Ccp41TL41 + oo+ Cpgk1Tn41,

where (1) the ¢; are all non-negative, (2) ¢; < c2 <
o < Cr, (3) CL+1 < CL+2 <...< Cn+1, and (4) Ccr = 1



(since the r; have no negative components and all the
¢; are non-negative, clearly there are non-zero terms
on both sides of the equation, so we can rescale it so
that ¢, = 1). We construct algorithms A and B such
that 9t = pA + (1 — p) B for some p € [0, 1]. Define

ar = (1 — Ck)Tk, when k < L

a;, = 0

ar = (1+ck)ry, when L <k <(n+1)

ar = 7T, when(n+1)<k<m

b = (14 Gk )Tk, when k < L
Cn+1

by = (1-— Gk )1k, when L <k <n
Cn+41

anrl = 0
b = 71, when(n+1)<k<m

and set P(A(-) = w;) = a; and P(B(:) = w;) = b;
for all i. Note that A never outputs w; and B never
outputs wy1 so their matrix forms have one less row
than 9. Also, by construction, all of the a; and b;
are vectors with no negative components. This, along
with the fact that the sum of the a; is the vector whose
entries are all 1 (and same for b;) means that A and B
are indeed algorithms (all of the necessary conditional
probabilities add up to 1). Since the rows of A and B
are rescalings of the rows of M, we have A, B € Priv.

It is also easy to verify that M = - -— A+ 25 B
and so by Axiom 4.1 and then Axiom 4.3, we have
() < pp(A @HC}HI B) < max{ur(A), ur(B)}. Since

the range of 91 is finite, we repeatedly apply this
procedure to either A or B until we obtain a matrix
9’ with independent rows such that p;(9) > g (90).
Step 2: If the range of M1 is countably infinite, we use
Axiom 4.2 and to obtain a 9") with finite range and
pr(OM9)) > 4y (9M) — 1/4. We then use Step 1 to obtain
MmU" whose range is at most |I| (because its rows
are linearly independent) and pr(OMUDY > gy (om0,
Standard compactness arguments now imply some
subsequence of the MU converge to a 9’ with
at most |I| rows and (M) > py(9M). Since conic
privacy definitions use closed cones, MM’ € Priv (also,
by step 1, we can then get linearly independent rows).
Step 3: Let 91y, 9M5,... be a sequence of algorithms
with linearly independent rows such that pp(9t;) <
(M) < ... Standard compactness arguments and
continuity of yy imply that a subsequence converges
to a M’ € Priv with at most | 1| rows. Combined with
steps 1 and 2, this fact implies the existence of an
optimal 9" € Priv having linearly independent rows.
U
Now let us consider a non-conic privacy definition
such as (e,0)-differential privacy (where e # 0). Let
I = {0,1} and consider the utility function p;22(9M) =
o VPOR(1) = w)? + P(M(2) = w)2. It is con-
weErange (M
tinuogué a)nd satisfies Axiom 4.3 because the L, norm

is convex. As we will see in Section 5, it also satisfies
Axiom 4.1. It is straightforward to show that for
every algorithm 9t whose matrix form has linearly
independent rows (and hence |range(9?)| < 2), there
exists another 9’ with 3 or more possible outputs and
strictly higher utility.!

Aside from having linearly independent rows, we
can also ensure that the rows of an optimal algorithm
are points on the boundary of the privacy cone (i.e.
the least private among the acceptable choices of
P(OM(-) = w)) rather than, say, points in the interior of
the privacy cone yet at the boundary of the unit hy-
percube caused by the constraint P((D;) = w) < 1.

Theorem 4.5. Let I be finite, let Priv be conic with
privacy cone C, and let g satisfy Axioms 4.1, 4.2, and 4.3.
Then the problem argmaxgy copip #1(9N) has a solution M*
whose matrix form consists of linearly independent rows
where each row comes from the boundary of C.

Proof: Let 9" be an algorithm with rows in C
that maximizes py. For each w € range(9t"), the vector
P(OM*(-) = w) belongs to some finite portion of C' (i.e.
a subset of C containing all vectors with L., norm
less than some constant x,,. Thus, by Carathéodory’s
Theorem, P(9"(-) = w) can be written as a convex
combination ¢1#1 + - -+ + ¢, &, of r < |I| + 1 vectors
from the boundary of C. We can modify 9" so
that instead of outputting w (with probability vector
P(O*(-) = w)), it produces new outputs w), ... w(")
with probability vectors P(I*(:) = w®) = ¢
Performing this modification for all w € range(9")
for which P(9*(-) = w) is in the interior of C' results
in an algorithm 9" whose rows all belong to the
boundary of C' and clearly there exists an A such
that 91" = Ao’ so that py(M') > p(9M*). Now
we apply Theorem 4.4 to obtain from ' a new
algorithm 9t whose rows are linearly independent
vectors. These vectors also belong to the boundary of
C because they are formed by taking scalar multiples
and limits of subsequences of rows of M. O

5 GEOMETRIC VIEW OF UTILITY

In this section we provide a geometric view of a large
class of utility measures. We consider utility mea-
sures that satisfy Axioms 4.1, 4.2, and the following
branching axiom (it turns out that quasi-convexity is
a consequence of these three axioms).

Axiom 5.1. (Branching [5]). An information preservation
measure g should satisfy the relation

() = pr (M) + B (PIN() = wn), PIN() = wa))

1. The main idea is that if € # 0 and 9 has two possible
outputs then there exists some output w € range(9) such that
0 < PM(2) = w) < POM(1) = w) and PM(1) = w) <
e*P(M(2) = w) + 6. This vector Z = P(M(-) = w) can then be
broken into two vectors Z and %, with £+ = Z such that replacing
Z in the matrix representation of an algorithm with Z and % will
result in a new algorithm that still satisfies the privacy constraints
but has strictly higher utility.



for some function H, where

o wy and wo are two elements in range(9MN).

o range(M') = {w*} U range(9M) and M behaves
exactly like 9 except that M' outputs w* whenever
M would have output wy or ws.

Kifer and Lin [5] showed that if T is finite then a
utility measure satisfies Axioms 4.1, 4.2, and 5.1 if and
only if it has the form:

() = FPENG) =w) ()
weErange (M)

for some function f where f(Z+7¥) < f(Z)+ f(¥) and

f(cZ) = cf (Z) for all vectors %, € Rgg and all ¢ > 0.

Since this implies that f is convex, quasi-convexity of

ur (Axiom 4.3) follows.

Based on Equation 1, one would like to think of f as
“the amount of information per output” of 9. How-
ever, the f in Equation 1 may be negative and f may
not be minimized by the vector T PN =w)=1
then this output w provides no information about the
input to 2 and so has no utility). This drawback can
be fixed as follows.

Since f is convex over R>0, let ¥ be a subgradient
of f at the vector 1. Define ¢(Z) = f(&) — 7 - .
By definition of subgradient of a convex function,
g(Z) > g(1) for all vectors # € RLHO‘. Note also that
cg(1) = g(c) for all ¢ > 0 (a property g inherits from
f). Combining these last two facts, we get cg(1 1) > g(I)
for all ¢ > 0 and hence g(1) = 0. Furthermore,

@)= Y g(PON() =w)) + 5 PM() = w)

wErange (M)

= 17. 1 +
wErange(N)

g(P(M() = w))

To summarize, if I is finite, a utility measure sat-
isfies Axioms 4.1, 4.2, and 5.1 if and only if it is
equal, up to an additive constant, to the summation
> werange(n) 9(P(M() = w)) for some g such that:

N . I
(i) g is continuous over RLA

(i) ¢(z) > o for all # € R[]
(iii) (1) =
(iv) g(c@) = cg(@ )forallc>0andx€R|H‘

(v) 9(Z+7) < g(Z) + g(7) for all 7,7 € R}

Thus g behaves like a seminorm over R>0, but in

general, its domain cannot be extended to R!!! while
maintaining the seminorm properties.?

Let G = {f : xERLé, g(& )gl}. It is easy to
check that G is a utility envelope, defined as:

2. Any extension must deal with the fact g(—1) = | — 1|g(1) =0
and hence g(Z + 1) < g(#) and g(Z — 1) < g(&) + g(-1) = g(&)
which together imply that g(# + ¢I) = g(Z) for all c. However,
one frequently stipulates conditions such as the probability vector
P(M(-) = w1) = (0.5,0) provides strictly more information about
the inputs than P(M(-) = w1) = (0.6,0.1) = (0.5,0) + 0.1(1, 1)

Definition 5.2 (Utility Envelope). We say a set G C ]R‘ H'

is a utility envelope if it is a closed convex set contammg
a relatively open ball {x € Rlﬂ‘ @2 < 6} (for some
& > 0) and all vectors of the form c1 for ¢ > 0.

From a utility envelope G, one can reconstruct a g
with properties (i), (ii), (iii), (iv), (v) mentioned above
as follows: ¢(Z) = inf {A >0 | /X € G}.

The privacy cone and utility envelope give us ge-
ometric interpretations of privacy and utility, which
we explore next.

6 PRIVACY/UTILITY TRADEOFF GEOMETRY

T2 -axis —
"o

0 ri-axis 1

Fig. 1. Privacy cone (blue) intersecting a scaled utility
envelope (between dotted lines).

A branching utility measure pj assigns a utility
score to each output of M (see Equation 1) and p1(9)
is the sum of those utility scores.

For a branching measure pj, let U be the utility
envelope. For a conic privacy definition Briv let C
be the privacy cone. Based on the results of Theorem
4.5, the process of choosing a mechanism 9t € Priv
that maximizes y; can be thought of as the pro-
cess of selecting constants ci,cs,...,c, (wWhere each
¢; corresponds to the amount of utility provided by
an output w;) and then choosing P(M(-) = w;) as
an |I|-dimensional point in the intersection of the
boundaries of C' and ¢;U (the utility envelope scaled
by ¢;), as shown in Figure 1.
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