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ABSTRACT
“Privacy” and “utility” are words that frequently appear in
the literature on statistical privacy. But what do these
words really mean? In recent years, many problems with
intuitive notions of privacy and utility have been uncovered.
Thus more formal notions of privacy and utility, which are
amenable to mathematical analysis, are needed. In this pa-
per we present our initial work on an axiomatization of pri-
vacy and utility. In particular, we study how these concepts
are affected by randomized algorithms. Our analysis yields
new insights into the construction of both privacy definitions
and mechanisms that generate data according to such defi-
nitions. In particular, it characterizes a class of relaxations
of differential privacy and shows that desirable outputs of a
differentially private mechanism are best interpreted as cer-
tain graphs rather than query answers or synthetic data.

1. INTRODUCTION
Statistical privacy is the art of designing a privacy mecha-

nism that transforms sensitive data into data that are simul-
taneously useful and non-sensitive. The sensitive data typi-
cally contain private information about individuals (e.g., in-
come, medical history, search queries) or organizations (e.g.,
intranet network traces, customer records) and are usually
collected by businesses (e.g., Netflix, AOL) or government
agencies (e.g., U.S. Census Bureau).

Non-sensitive data produced by privacy mechanisms are
highly desirable because they can be made available to the
public without restrictions on access. Researchers will bene-
fit from previously unavailable data – they could, for exam-
ple, study socio-economic and business trends, develop new
models, and design and evaluate new algorithms using such
data.

All of this potential success hinges on two poorly-defined
words: privacy and utility. What does it mean for a privacy
mechanism to output a dataset that is non-sensitive? What
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does it mean for a privacy mechanism to output a dataset
that has high utility (i.e. is useful)? The literature is full of
definitions of what privacy is and is not; it is also full of ways
of assigning a numerical score to the utility of a dataset (for
recent surveys, see [10, 21]).

However, current privacy definitions and utility measures
are typically constructed on the basis of intuition, but in-
tuition alone can lead us astray. Some spectacular privacy
breaches (such as demonstrations involving AOL [3] and GIC
[39] data) have occurred when such intuition was not fol-
lowed by a thorough analysis. In other cases, subtle implicit
assumptions created weaknesses that could be exploited to
breach privacy [25, 40, 22, 26]. Similarly, the choice of a
privacy mechanism based on some intuitively plausible mea-
sures of utility can result in a dataset that is not as useful
as it could be [31, 23]. For example, Ghosh et al. [23] have
shown that if utility is measured by expected loss (in the
Bayesian sense) then it is possible that a “suboptimal” pri-
vacy mechanism followed by a lossy postprocessing step can
mimic an “optimal” privacy mechanism, thus casting doubts
on the appropriateness of expected loss.

Clearly, a unified theory of privacy and utility is needed
to guide the development of privacy definitions, utility mea-
sures, and privacy mechanisms. We believe that the path
to such a theory relies on an axiomatization of privacy and
utility. That is, we must examine axioms for what privacy
and utility should mean and then study the consequences of
those axioms. When new sensitive data need to be released,
a data publisher can pick and choose whatever axioms are
appropriate for the application at hand. The data publisher
can then select an appropriate privacy mechanism for gen-
erating non-sensitive data that are safe for release.

The benefit of this approach is that a small set of ax-
ioms can be thoroughly studied but a large, disjointed set
of privacy definitions and utility measures cannot. Intu-
itions would be formally justified (or discredited) by axioms,
which would then serve as explanations for why some intu-
ition should or should not be followed. Therefore with an
axiomatic approach we can reduce the possibility of privacy
breaches and useless datasets caused by faulty intuition.

In this paper we present some of our work on such a the-
ory. In fact, our axioms lead to several concrete results.
The first main result answers questions about how differ-
ential privacy [14] can be relaxed. Differential privacy is
a formal (and very stringent) privacy definition that uses
a set of predicates to restrict the output probabilities of a
privacy mechanism. Relaxations of differential privacy are
studied as a way of improving the utility of data that are



output from privacy mechanisms (e.g., [15, 32, 29]). These
relaxations frequently change the predicates that differen-
tial privacy uses. In this paper we characterize the class of
predicates that can be used (instead of just presenting one
or two relaxed definitions). The result is Definition 2.1.3.
Thus we shift the question from “how can differential pri-
vacy be relaxed” to “how can we design privacy mechanisms
to take advantage of these relaxations”.

Our second main contribution deals with utility. For dif-
ferential privacy, we answer the question of what does a
desirable privacy mechanism look like. We show that the
outputs of such a mechanism do not necessarily correspond
to query answers or even data that have the same format
as the original sensitive data. Instead, the outputs can be
viewed as a certain collection of trees which can be inter-
preted as likelihood functions. We then relate this to the
famous likelihood principle of statistics [9]. We also discuss
what desirable utility measures should look like and prove
that a privacy mechanism called the Geometric Mechanism
[23] satisfies one such utility measure which is coincidentally
used in the study of Markov chains.

Our results hinge on three axioms that deal with the ef-
fects of randomized algorithms on privacy and utility. Infor-
mally, the first axiom states that post-processing the output
of a privacy mechanism should not decrease privacy (for ex-
ample, subsampling nonsensitive data should yield nonsen-
sitive data); the second axiom states that a random choice
from a set of privacy mechanisms is at least as good as the
weakest of those mechanisms. These two axioms enforce
a certain internal consistency for privacy definitions. The
third axiom states that utility is an intrinsic property of a
dataset so that postprocessing cannot increase the amount
of information it contains (for example, applying a non-
invertible transformation should strictly decrease utility).
We also comment on when these axioms may or may not
be appropriate.

The rest of this paper is organized as follows. Our main
results on privacy are discussed in Section 2. We present
our privacy axioms in Section 2.1, where we also give an
overview of our technical results about the consequences of
those axioms. We give necessary conditions for a generaliza-
tion of differential privacy to satisfy these axioms in Section
2.2 and we give sufficient conditions in Section 2.3. Utility
is discussed in Section 3. We present a utility axiom in Sec-
tion 3.1. We give examples of appropriate and inappropriate
measures of utility in Section 3.2. We then characterize some
optimal differentially private mechanisms in Section 3.3.

2. REASONING ABOUT PRIVACY
In this section, we present our results on some privacy

axioms and their consequences. First we present some ba-
sic definitions, including abstract differential privacy (Defi-
nition 2.0.3) which is an abstract version of differential pri-
vacy. In Section 2.1 we present two privacy axioms and give
an overview of our main technical results that lead to a con-
crete generalization (and relaxation) of differential privacy
known as generic differential privacy (Definition 2.1.3). In
Section 2.2 we present our technical results that use our pri-
vacy axioms to characterize abstract differential privacy in
terms of necessary conditions. In Section 2.3 we present a
proof of sufficient conditions. These results lead from ab-
stract differential privacy to generic differential privacy.

In order to study how randomized algorithms affect pri-

vacy and utility, we need to formalize what we mean by
a “randomized algorithm”. Here we are more interested in
the probabilistic aspects than in the computational aspects.
To avoid unnecessary distinctions between distributions that
are discrete, finite, or a mixture of the two, we will use the
language of measure theory [36] in the way it is commonly
used in the statistics literature [38].

Definition 2.0.1. (Randomized Algorithm). Given an
input space I with associated σ-algebra SI and probability
measure µ, and an output space O with a σ-algebra SO, a
randomized algorithm A is a measurable function from I to O
such that the induced conditional probability PA(O | I) (for
O ∈ SO and I ∈ SI) is a regular conditional probability1.

For readers who are unacquainted with measure theory, it is
generally safe (i.e. barring extremely pathological cases) to
interpret Definition 2.0.1 as saying that a randomized algo-
rithm is a conditional probability distribution that specifies
the probability of an output o ∈ O given an input i ∈ I.
Note that a randomized algorithm may be completely de-
terministic.

It is important to note that each input i ∈ I corresponds
to a possible dataset and not to a tuple in a dataset. An
output o ∈ O could be anything – a set of query answers,
synthetic data, or some other object. Thus all of the ran-
domized algorithms we consider here take a dataset as an in-
put and they output some object o ∈ O. In particular, they
capture all possible processes that create sanitized data.

Composition of two randomized algorithms A1 and A2

is denoted by A1 ◦A2 and is defined as the application of
A2 followed by A1 (assuming the output space of A2 is
the same as the input space of A1). The resulting condi-
tional distribution P (Z|x) is then

R
PA1(Z|y)PA2(dy|x) (orR

PA1(Z|y)PA2(y|x) dy for those unfamiliar with measure
theory; for discrete random variables replace the integral
with a sum).

In this paper we are considering the scenario where a data
publisher possesses sensitive information about individuals.
The data publisher would like to release some version of this
data without violating the privacy of those individuals. An
attacker (or a class of attackers) will try to infer the sensi-
tive information from the released data. The data publisher
first selects a privacy definition that would defend against
a certain class of attackers. Then the data publisher selects
a special randomized algorithm known as a privacy mecha-
nism, denoted by M, which satisfies the privacy definition.
Finally, the data publisher applies the privacy mechanism
M to the sensitive data, and releases the output of M. We
will refer to the output of M as sanitized data to emphasize
the fact that it should be safe to release to the public. Note
that we will use the symbol M to refer to any randomized
algorithm that is a privacy mechanism and A to refer to a
randomized algorithm in general.

The privacy axioms that we will discuss in Section 2.1
are not tied to any specific privacy definition. However, we
will use those axioms to add insight to the definition known
as differential privacy; in particular, they will show how we
can generalize and relax its stringent conditions. Thus we
discuss differential privacy next.

Definition 2.0.2. (Differential Privacy [14]). Let I be a
set of database instances and ε > 0. A randomized algorithm
1i.e. P (O|i) is a probability measure for each fixed i ∈ I and
is a measurable function of i for each fixed O ∈ SO



M with output space O satisfies ε-differential privacy if for
all measurable O ⊆ O and for all pairs (i1, i2) of database
instances that differ only in the insertion or deletion of one
individual’s information, PM(O | i1) ≤ eεPM(O | i2).

We will refer to I as the input space and O as the output
space. Our first step is to introduce the notion of a privacy
relation R, which is an irreflexive binary relation ⊆ I× I. R
generalizes the notion of neighboring databases in that we
will require PM(O | i1) ≤ eεPM(O | i2) only for (i1, i2) ∈ R.
We will also replace the condition PM(O | i1) ≤ eεPM(O | i2)
with conditions of the form

qi1,i2(PM(O | i1), PM(O | i2)) = T

where {qi1,i2}(i1,i2)∈R is an arbitrary set of predicates, which
we call the privacy predicates. Having multiple predicates al-
lows us to customize the privacy definition based on the sen-
sitivity of each possible dataset i ∈ I; a region of datasets in I
containing little private information could use less stringent
predicates. In contrast, the traditional versions of differen-
tial privacy assume that all possible database instances have
the same privacy requirements. This leads to the following
privacy definition:

Definition 2.0.3. (Abstract Differential Privacy). Sup-
pose we have an input space I, output space O, a binary
irreflexive relation R ⊆ I× I, and a binary predicate qi1,i2 :
[0, 1] × [0, 1] → {T, F} for each (i1, i2) ∈ R. A random-
ized algorithm M satisfies abstract differential privacy for
{qi1,i2}(i1,i2)∈R if for all measurable O ⊆ O and for all
(i1, i2) ∈ R we must have qi1,i2(PM(O|i1), PM(O|i2)) = T .

This abstraction serves two purposes. First, it allows us
to take an approach similar to [30] where we can avoid as-
signing inessential semantic information to the input or out-
put spaces. For example, the arity of the schemas for the
instances in I and the number of tuples containing an in-
dividual’s information are irrelevant except for their effect
on the topology of the privacy relation R when viewed as a
directed graph.

The second purpose of this abstraction is to study the es-
sential properties of the privacy predicates qi1,i2 . One gen-
eralization already exists: the condition that PM(O | i1) ≤
eεPM(O | i2) + δ, for some small δ [15, 32]. What other
predicates can be used, what do they look like, and what are
their properties? These questions are answered in Sections
2.2 and 2.3 which characterize the class of such predicates.
The privacy axioms which form the foundation for these re-
sults are discussed next in Section 2.1, which also contains
an informal overview of our main results.

2.1 Privacy Axioms
What makes a good privacy definition and how should

the data publisher choose one? We feel that this question
must be addressed axiomatically. In general, a data pub-
lisher would select the axioms that are appropriate to the
application at hand. The two axioms we present here are
designed to enforce a certain internal consistency for pri-
vacy definitions. Our first axiom, Axiom 2.1.1 deals with
the effects of postprocessing the sanitized data (this axiom
has been observed to hold in differential privacy [14, 24, 2,
41], but we do not tie it to any specific privacy definition).

Axiom 2.1.1. (Transformation Invariance). Suppose we
have a privacy definition, a privacy mechanism M that sat-
isfies this definition, and a randomized algorithm A whose
input space is the output space of M and whose random-
ness is independent of both the data and the randomness in
M. Then M′ ≡ A◦M must also be a privacy mechanism
satisfying that privacy definition.

Essentially this axiom says that postprocessing sanitized
data maintains privacy as long as the postprocessing algo-
rithm does not use the sensitive information directly (i.e.
sensitive information is only used indirectly via the sanitized
data).

Note that this axiom is very strong in some ways – it
places no computational restrictions on A and so encrypting
a database (for example, with DES) would not qualify as a
privacy mechanism. If a data publisher feels that this axiom
is too strong for the application at hand, it can be replaced
with some form of invariance with respect to a subset of ran-
domized algorithms. On the other hand, a strengthening of
the axiom can discuss an attacker’s prior knowledge about
the data.This may allow a formalization of k-anonymity [37,
39], `-diversity [28], and related definitions, but such varia-
tions of the axiom are outside of the scope of this paper.

We shall also make use of the following axiom.

Axiom 2.1.2. (Privacy Axiom of Choice) Given a privacy
definition, let M1 and M2 be privacy mechanisms that sat-
isfy the privacy definition. For any p ∈ [0, 1], let Mp be
a randomized algorithm that on input i outputs M1(i) with
probability p (independent of the data and the randomness
in M1 and M2) and M2(i) with probability 1− p. Then Mp

is a privacy mechanism that satisfies the privacy definition.

This axiom allows us to randomly pick a privacy mecha-
nism, as long as our decision is not influenced by the data.
We believe that this is a fundamental axiom that should be
required for any application of statistical privacy.

We next present an overview of our main results and
show how they lead to a generic version of differential pri-
vacy that satisfies our axioms (Definition 2.1.3). Consider
again the definition of abstract differential privacy (Defini-
tion 2.0.3). Fix a pair of datasets that are neighbors ac-
cording to the privacy relation, (i1, i2) ∈ R and consider the
corresponding privacy predicate qi1,i2 . Recall that a privacy
mechanism M for this definition must satisfy the condition
qi1,i2(PM(O | i1), PM(O | i2)) = T for all measurable O.
Our main technical results (Theorem 2.2.5 and 2.3.1 from
Sections 2.2 and 2.3) that follow from these axioms state
that qi1,i2 cannot be arbitrary, and in fact can be charac-
terized by an upper bound function Mi1,i2 [0, 1]→ [0, 1] and
a lower bound function mi1,i2 [0, 1] → [0, 1] in the follow-
ing way. Mi1,i2(a) > b > mi1,i2(a) implies qi1,i2(a, b) = T
while b > Mi1,i2(a) or b < mi1,i2(a) implies qi1,i2(a, b) = F .
Furthermore, Mi1,i2 is concave, Mi1,i2(1) = 1, it is con-
tinuous everywhere except possibly at 0, and mi1,i1(a) =
1 −Mi1,i2(1 − a). Note that we did not specify what hap-
pens at the boundary b = mi1,i2(a) or b = Mi1,i2(a) – our
results can be strengthened to characterize this boundary as
well, but only at the cost of making our presentation much
more complicated (thus we have decided only to present this
simplified case).

On the other hand, any such Mi1,i2 and mi1,i2 can be
used to define a predicate qi1,i2 such that qi1,i2(a, b) = T ⇔



Mi1,i2(a) ≥ b ≥ mi1,i2(a) and the use of these predicates in
abstract differential privacy satisfies Axioms 2.2.5 and 2.3.1.

Thus we have both necessary and sufficient conditions.
Note that these are intuitively pleasing results and now they
can be justified as the consequences of the two axioms pre-
sented here and without any further use of intuition.

By the properties of Mi1,i2 and mi1,i2 , Mi1,i2(a) ≥ b ≥
mi1,i2(a) is true if and only if Mi1,i2(a) ≥ b and Mi1,i2(1−
a) ≥ 1 − b and so we can use this observation to define
generic differential privacy:

Definition 2.1.3. (Generic Differential Privacy) Let I be
an input space, O an output space, and R ⊆ I× I a bi-
nary irreflexive relation. For each (i1, i2) ∈ R let Mi1,i2 :
[0, 1]→ [0, 1] be concave function, continuous on (0, 1], with
Mi1,i2(1) = 1. A randomized algorithm M satisfies generic
differential privacy if for all measurable O ⊆ O and for all
(i1, i2) ∈ R we have Mi1,i2(PM(O|i1)) ≥ PM(O|i2)) and
Mi1,i2(PM(Oc|i1)) ≥ PM(Oc|i2)), where Oc is the comple-
ment of O.

For differential privacy, the function Mi1,i2(a, b) is the
same for all i1 and i2 and is equal to min(eεa, 1−e−ε(1−a)).
For (ε, δ)-indistinguishability [15, 32], the functionMi1,i2(a, b)
is the same for all i1 and i2 and is equal to min{1, eεa +
δ, 1− e−ε(1− a− d)}, where δ is very small.

It is very important to note that Definition 2.1.3 covers
a wide range of privacy definitions from the very stringent
(e.g. differential privacy) to very lax definitions (which we
will discuss next). This allows the strength of the definition
to be tailored to the application at hand (we do not believe
in a one-size-fits-all philosophy). Thus this is a true gen-
eralization/relaxation as we are only requiring the internal
consistency enforced by Axioms 2.1.1 and 2.1.2.

One particularly lax definition results when Mi1,i2 ≡ 1.
This choice of Mi1,i2 allows the “identity” mechanism, which
simply outputs its inputs. Is this reasonable? For some ap-
plications, it is – for example, if there exists a nondisclosure
agreement or if the data simply are not sensitive. Thus a
proper class of relaxations should include this special case.
Another interesting example is the “subsampling” mecha-
nism which outputs a random subset of the input data (this
can happen with various choices of Mi1,i2). Again, in some
applications this is acceptable - for example, subsampling is
commonly used by statistical agencies [5, 10].

It turns out that for Generic Differential Privacy (Defi-
nition 2.1.3) there is a semantic interpretation to the pri-
vacy guarantees that is similar to the semantic interpre-
tations given by Dwork et al. [16] and Ganta et al. [22]
and to γ-amplification [20]. Suppose M is a privacy mech-
anism with output space O. Consider two database in-
stances i1 and i2 such that (i1, i2) ∈ R. For example, i1
and i2 may differ only on the tuples corresponding to one
individual. Suppose i1 is the true data. An attacker may
have a prior belief in the probability of i1 and i2. We ex-

press this as the log-odds log(Pattacker(i2)
Pattacker(i1)

). If M(i1) out-

puts some o ∈ O then the attacker’s log odds will become

log(Pattacker(i2 | o)
Pattacker(i1 | o)

). Denote the difference between them as

∆ = log(Pattacker(i2 | o)
Pattacker(i1 | o)

) − log(Pattacker(i2)
Pattacker(i1)

). The probabil-

ity that ∆ takes a value x is then the probability that any
bad o ∈ O is produced which changes the log-odds by x.
This random variable ∆ has the following behavior:

Proposition 2.1.4. Let i1 be the true data and let M
be a privacy mechanism for generic differential privacy.2

If Pattacker(i1) > 0 and Pattacker(i2) > 0 then for ε >
0 we have P (∆ ≥ ε | i1) ≤ a′ where a′ = sup{a > 0 :

log
Mi1,i2 (a)

a
≥ ε}. Similarly, P (∆ ≤ −ε | i1) ≤ a′′ where

a′′ = sup{a > 0 : log
mi1,i2 (a)

a
≤ −ε} (with the convention

that sup ∅ = 0). In both cases the probability depends only
on the randomness in M.

The proof is in Appendix D. Intuitively, we can interpret
this proposition as follows. Suppose an attacker knows ev-
erything in the database except for Bob’s information and
suppose Bob has cancer. Proposition 2.1.4 probabilistically
bounds the increase and decrease in attacker’s belief between
the alternatives “Bob has cancer” vs. “Bob has flu” (or any
other disease). Note that the definitions of the quantities a′

and a′′ in Proposition 2.1.4 make sense because our proof

shows that log
Mi1,i2 (a)

a
≥ 0 and is nonincreasing in a while

log
mi1,i2 (a)

a
≤ 0 and is a nondecreasing function. Again,

this is simply a consequence of our axioms.

2.2 Characterizing Abstract Differential Pri-
vacy (necessary conditions)

In this section we characterize the class of privacy predi-
cates qi1,i2 that make Definition 2.0.3 (abstract differential
privacy) satisfy Axioms 2.1.1 and 2.1.2.

Fix i1 and i2 ∈ I such that (i1, i2) ∈ R. This allows us
to drop the notational dependency of the privacy predicate
qi1,i2 on i1 and i2 so that we can simply refer to it as q.
Recall that if M is a privacy mechanism for abstract differ-
ential privacy (Definition 2.0.3), O ⊆ O, a ≡ PM(O|i1),
and b ≡ PM(O|i2) then we must have q(a, b) = T and
q(1 − a, 1 − b) = T . The following assumption will help
us simplify our subsequent discussion.

Assumption 2.2.1. Without loss of generality, we will as-
sume that q(a, b) = T ⇔ q(1 − a, 1 − b) = T (since we can
always replace q(a, b) with q(a, b) ∧ q(1 − a, 1 − b) without
changing the privacy definition).

Again, we stress that this assumption changes the pred-
icate without changing the privacy definition. Our results
will thus characterize what q(a, b) ∧ q(1 − a, 1 − b) should
look like for a given predicate q to be usable in Definition
2.0.3. The following two results are useful because they will
allow us to convert the predicate q into real-valued functions.

Proposition 2.2.2. Suppose there exists a mechanism M
that satisfies abstract differential privacy for q. Axiom 2.1.1
implies:

• q(a, a) = T for all a ∈ [0, 1].

• If q(a, b) = T and a ≥ 1/2 then q(a, b′) = T for all b′

between b and (1−b)a
1−a .

• If q(a, b) = T and a ≤ 1/2 then q(a, b′) = T for all b′

between b and 1− b(1−a)
a

.

2To make this well-defined, we must assume that PM(· |i1)
and PM(· |i2) have Radon-Nykodin derivatives [36] with re-
spect to the same base measure. For finite and countable
output spaces, this condition is vacuous.



Proof. First note that the existence of a privacy mecha-
nism M implies that q(1, 1) = T (and therefore q(0, 0) = T )
since by Axiom 2.1.1, A1 ◦M must satisfy privacy when-
ever A1 returns the same value o with probability 1 for
any input. Now consider A2 which, on input o outputs
o1 with probability c and o2 with probability 1 − c. Then
PA2 ◦A1 ◦M(o1 | i) = c for any input i. Since A2 ◦A1 ◦M
must satisfy abstract differential privacy (by Axiom 2.1.1),
we must have q(c, c) = T for c ∈ [0, 1].

Now create an output space with two points: o1 and o2.
Define M be a randomized algorithm that (1) on input i1
outputs o1 with probability a and o2 with probability 1− a;
and (2) on input i2 outputs o1 with probability b and o2
with probability 1 − b. Clearly M is a privacy mechanism
for q.

Consider the class of randomized algorithms Ac,d indexed
by c, d ∈ [0, 1] such that (1) on input o1, A outputs o1 with
probability c and o2 with probability 1− c; and (2) on input
o2, A outputs o1 with probability d and o2 with probability
1− d.

For the case where a ≤ 1/2, set d = (1−c)a/(1−a). Then
as c increases continuously from 0 to 1, d decreases continu-
ously from a/(1−a) to 0. At the same time PAc,d ◦M(o1 | i1) =
a while PAc,d ◦M(o1 | i2) ranges continuously from (1 −
b)a/(1 − a) to b. Axiom 2.1.1 then implies that Ac,d ◦M
satisfies abstract differential privacy and so q(a, b′) = T for
all b′ between b and (1− b)a/(1− a).

For the case where a ≥ 1/2, we apply our previous result
to 1 − a and 1 − b. Thus q(1 − a, 1 − b′) = T for all 1 − b′
between 1− b and b(1− a)/a (and thus all b′ between b and
1 − b(1 − a)/a). Axiom 2.1.1 then implies that Ac,d ◦M
satisfies abstract differential privacy and so q(a, b′) = q(1−
(1− a), 1− (1− b′)) = T for all b′ between b and 1− b(1−
a)/a.

The significance of Proposition 2.2.2 is that it allows us to
show that for each a, the set of b values that make q(a, b) = T
is actually an interval. We prove this in Proposition 2.2.3.

Proposition 2.2.3. If there exists a mechanism M sat-
isfying abstract differential privacy for q then Axiom 2.1.1
implies that there exist functions Mq and mq such that for
all a ∈ [0, 1], q(a, b) = T when mq(a) < b < Mq(a) and
q(a, b) = F whenever b < mq(a) or b > Mq(a).

Proof. By Proposition 2.2.2, for each a there is a b value
such that q(a, b) = T . Now, note that if a ≤ 1/2 and b ≤ a
then (1−b)a/(1−a) ≥ a and if b ≥ a then (1−b)a/(1−a) ≤ a.

Similarly, if a ≥ 1/2 and b ≤ a then 1 − b(1−a)
a
≥ a and if

b ≥ a then 1− b(1−a)
a
≤ a.

Fix an a ∈ [0, 1]. For each b, Proposition 2.2.2 gives an in-
terval [low(b), high(b)] which contains both b and a such that
q(a, b′) = T whenever b′ ∈ [low(b), high(b)]. Thus for all b
where q(a, b) = T , the corresponding intervals overlap. ThusS
b: q(a,b)=T

[low(b), high(b)] is an interval such that q(a, b) =

T if and only if b belongs to this interval. The proof is com-
pleted by defining mq(a) = inf

S
b: q(a,b)=T

[low(b), high(b)]

and Mq(a) = sup
S

b: q(a,b)=T

[low(b), high(b)].

Thus when the input pair (i1, i2) is in our privacy relationR,
then given PM(o|i1) there is an interval of allowable values
for PM(o|i2). However, the endpoints of the interval may

or may not be allowable values. Keeping track of which
endpoints are allowable and which are not will greatly com-
plicate the presentation of our ideas, and so we introduce
the following proposition which will help simplify things.

Proposition 2.2.4. Let M be a privacy mechanism sat-
isfying abstract differential privacy for q and Axiom 2.1.1.
Let Mq and mq be the functions associated with q by Propo-
sition 2.2.3. Let q∗ be a predicate such that q∗(a, b) = T if
b = Mq(a) or b = mq(a) and let q∗(a, b) = q(a, b) otherwise.
Then M is a privacy mechanism for q∗ and Mq∗ = Mq and
mq∗ = mq

Proof. The fact that M is a privacy mechanism for q∗

follows directly from the definition of abstract differential
privacy. The rest of the statements follow from the conti-
nuity of the low(b) and high(b) functions introduced in the
proof of Proposition 2.2.3.

Thus when studying the properties of mq and Mq only, we
can assume without loss of generality that q(a, b) = T if and
only if mq ≤ b ≤ Mq(a). The addition of Axiom 2.1.2 now
ensures that the Mq and mq functions have nice properties.

Theorem 2.2.5. For abstract differential privacy (with in-
put space I, output space O, privacy relation R and set of
privacy predicates {qi1,i2}(i1,i2)∈R), if there exists a privacy
mechanism M for the privacy predicates {qi1,i2}(i1,i2)∈R then

(i) Axiom 2.1.1 implies that for each (i1, i2) ∈ R there
exist functions Mi1,i2 and mi1,i2 such that for any O ⊆
O:

Mi1,i2(a) > b > mi1,i2(a) ⇒ qi1,i2(a, b) = T

b > Mi1,i2(a) or b < mi1,i2(a) ⇒ qi1,i2(a, b) = F

where a = PM(O | i1) and b = PM(O | i2).

(ii) Axiom 2.1.1 implies

1 ≥Mi1,i2(a) ≥ a ≥ mi1,i2(a) ≥ 0

(iii) Axiom 2.1.1 implies

Mi1,i2(a) ≥ mi1,i2(a) = 1−Mi1,i2(1− a)

(iv) Axioms 2.1.1 and 2.1.2 imply Mi1,i2 is concave and
mi1,i2 is convex.

(v) Axiom 2.1.1 implies Mi1,i2 is nondecreasing and is
strictly increasing at any point a where Mi1,i2(a) < 1.
mi1,i2 is nonincreasing and is strictly decreasing at any
point a where Mi1,i2(a) > 0.

(vi) Axioms 2.1.1 and 2.1.2 imply Mi1,i2 is continuous ex-
cept possibly at a = 0 and mi1,i2 is continuous except
possibly at a = 1.

Proof. Fix two points i1, i2 ∈ I from the input space of
M such that (i1, i2) ∈ R. To simplify notation we will refer
to Mi1,i2 and mi1,i2 as M and m, respectively. Item (i) is
just Proposition 2.2.3. Item (ii) follows easily from the fact
that q(a, a) = T (Proposition 2.2.2). To prove Item (iii),
then using Assumption 2.2.1 and Proposition 2.2.4, we have
m(a) ≤ b ≤ M(a) ⇔ q(a, b) = T ⇔ q(1 − a, 1 − b) = T ⇔
m(1− a) ≤ 1− b ≤M(1− a) so that M(a) is the maximum
allowable value of b if and only if m(1− a) is the minimum
allowable value of 1− b. Item (iii) now follows.



To prove item (iv), consider a1 6= a2. Again we invoke
Proposition 2.2.4: let M1 be the privacy mechanism such
that PM1(o1 | i1) = a1, PM1(o2 | i1) = 1−a1, PM1(o1 | i2) =
M(a1) and PM1(o2 | i2) = 1 − M(a1). Similarly, let M2

be the privacy mechanism such that PM2(o1 | i1) = a2,
PM2(o2 | i1) = 1−a2, PM2(o1 | i2) = M(a2) and PM2(o2 | i2) =
1 −M(a2). It is easy to see that M1 and M2 are privacy
mechanisms for q. Now choose a c ∈ [0, 1] and define Mc to
be the mechanism that runs M1 with probability c and M2

with probability 1−c. Axiom 2.1.2 implies that Mc is a pri-
vacy mechanism for q. Now, PMc(o1 | i1) = ca1 + (1− c)a2

and PMc(o1 | i2) = cM(a1) + (1 − c)M(a2). Proposition
2.2.3 and the fact that Mc is a privacy mechanism for q
then implies M(ca1 + (1 − c)a2) ≥ cM(a1) + (1 − c)M(a2)
and so M is concave. The convexity of m then follows from
Item (iii).

To prove item (v), choose a such that M(a) < 1 and define
the mechanism M such that PM(o1 | i1) = a, PM(o2 | i1) =
1−a, PM(o1 | i2) = M(a), and PM(o2 | i2) = 1−M(a) (again
we are invoking Proposition 2.2.4). For 0 < c < 1, define
the randomized algorithm Ac such that PAc(o1 | o1) = 1,
P (o1 | o2) = c and P (o2 | o2) = 1− c. Then by Axiom 2.1.1
Ac ◦M is a privacy mechanism for q. Now, PAc ◦M(o1 | i1) =
a+ c(1− a) > a while M(a+ c(1− a)) ≥ PAc ◦M(o1 | i2) =
M(a) + c(1−M(a)) > M(a). Thus M is strictly increasing
at any point a where M(a) < 1. If M(a) = 1 but a < 1
then PAc ◦M(o1 | i1) = a + c(1 − a) > a and M(a + c(1 −
a)) ≥ PAc ◦M(o1 | i2) = M(a) + c(1 −M(a)) = 1 and so
M(a+ c(1− a)) = 1 and therefore M is nondecreasing. The
corresponding result for m follows from Item (iii).

We now prove Item (vi). Since M is concave (as a re-
sult of Axioms 2.1.1 and 2.1.2), a basic continuity result
from convexity theory [4] states that M is continuous on
the open interval (0, 1) (i.e. the relative interior of its do-
main). Continuity at a = 1 follows from the fact that M is
nondecreasing and so any discontinuity at 1 would be a jump
discontinuity with M(1) > ε + M(a) for some epsilon > 0
and all a < 1. This contradicts the fact that M is concave.
The corresponding result for m follows from Item (iii).

2.3 Characterizing Abstract Differential Pri-
vacy (sufficient conditions)

Here we present the sufficient conditions.

Theorem 2.3.1. Let I be a set and R :⊆ I× I → {T, F}
and irreflexive predicate. Suppose that for each (i1, i2) ∈ R
there exist functions Mi1,i2 and mi1,i2 from [0, 1] to [0, 1]
that have the following properties:

(i) mi1,i2(a) = 1−Mi1,i2(1− a)

(ii) Mi1,i2 is concave (and mi1,i2 is convex).

(iii) Mi1,i2 is continuous on (0, 1] (and mi1,i2 is continuous
on [0, 1)).

(iv) Mi1,i2(0) ≥ 0 and Mi1,i2(1) = 1 (mi1,i2(0) = 0 and
mi1,i2(1) ≤ 1)

let qi1,i2(a, b) = T if and only if mi1,i2(a) ≤ b ≤ Mi1,i2(a).
Then Abstract Differential Privacy (Definition 2.0.3) using
the predicates {qi1,i2}(i1,i2)∈R satisfies Axioms 2.1.1 and
2.1.2.

Proof. Note that Items (ii) and (iv) and the fact that
Mi1,i2 is bounded by 1 ensures that Mi1,i2 is strictly increas-
ing except where it equals 1. Let M, M1, M2 be privacy

mechanisms for {qi1,i2}(i1,i2)∈R with the same input space
I (the existence of such mechanisms is implied by the con-
cavity and nonnegativity of Mi1,i2 , along with Mi1,i2(1) = 1
since then any M whose output is independent of the input
is a privacy mechanism for {qi1,i2}(i1,i2)∈R). Fix two points
i1, i2 ∈ I from the input space of M such that (i1, i2) ∈ R.
To simplify notation we will refer to Mi1,i2 and mi1,i2 as M
and m, respectively.

Implication of Axiom 2.1.1: Transformation In-
variance. Choose a randomized algorithm A (whose input
space is the output space of M) and consider an arbitrary
measurable subset S of the output space of A. Let µ1 be the
probability measure PM(· | i1) and let µ2 be the probabil-
ity measure PM(· | i2). Let hS be the measurable function
PA(S | ·) and note that 0 ≤ hS ≤ 1. Let a = PA◦M(S|i1)
and b = PA◦M(S|i2). Note that a =

R
hS(x) dµ1(x) and

b =
R
hs(x) dµ2(x). Our goal is to prove m(a) ≤ b ≤M(a).

For any measurable subset X of the output space of M, we
will use the notation IX to denote the indicator function
which is 1 on x ∈ X and 0 otherwise.

Step 1 Suppose hS(x) = IX(x) for some measurable sub-
set X of the output space of M. Then a = PA◦M(S|i1) =R
hS(x) dµ1(x) = µ1(X) = PM(X|i1) and similarly b =

Pmech(X|i2) and so since M satisfies abstract differential
privacy, m(a) ≤ b ≤M(a). On the other hand, if hS(x) ≡ 0
then PA◦M(S|i1) = 0 and PA◦M(S|i2) = 0. Item (iv) now
impliesm(PA◦M(S | i1)) ≤ PA◦M(S | i2) ≤M(PA◦M(S | i1)).

Step 2. We will now prove the theorem for the case when

hS(x) is a simple function, that is hS(x) =
nP
j=1

cjIXj (x)

where the Xj are pairwise disjoint measurable subsets of
the output space of M and the cj ∈ [0, 1]. Without loss of
generality, assume cn ≤ · · · ≤ c1 and for notational conve-
nience, define cn+1 = 0. In this case,

a = PA◦M(S|i1) =

Z
hS(x) dµ1(x) =

nX
j=1

cjµ1(Xj)

b = PA◦M(S|i2) =

Z
hS(x) dµ2(x) =

nX
j=1

cjµ2(Xj)

we can rewrite a and b as follows:

a = c1

nX
j=1

cj − cj+1

c1
µ1

 
j[
`=1

X`

!
(1)

b = c1

nX
j=1

cj − cj+1

c1
µ2

 
j[
`=1

X`

!
(2)

and note that the factors
cj−cj+1

c1
are nonnegative, sum up

to 1, and therefore define a convex combination. From Step
1 we have for all j:

m

 
µ1

 
j[
`=1

X`

!!
≤ µ2

  
j[
`=1

X`

!!
≤M

 
µ1

 
j[
`=1

X`

!!



Thus

m(a) = m

 
c1

nX
j=1

cj − cj+1

c1
µ1

 
j[
`=1

X`

!!

≤ c1m

 
nX
j=1

cj − cj+1

c1
µ1

 
j[
`=1

X`

!!
(since m is convex and m(0) = 0)

≤ c1

nX
j=1

cj − cj+1

c1
m

 
µ1

 
j[
`=1

X`

!!
(by convexity of m)

≤ c1

nX
j=1

cj − cj+1

c1
µ2

 
j[
`=1

X`

!
by Step 1

= b (by Equation 2)

M(a) = M

 
c1

nX
j=1

cj − cj+1

c1
µ1

 
j[
`=1

X`

!!

≥ c1M

 
nX
j=1

cj − cj+1

c1
µ1

 
j[
`=1

X`

!!
(since M is concave and M(0) ≥ 0)

≥ c1

nX
j=1

cj − cj+1

c1
M

 
µ1

 
j[
`=1

X`

!!

≥ c1

nX
j=1

cj − cj+1

c1
µ2

 
j[
`=1

X`

!
= b

Step 3. We now prove the theorem for arbitrary mea-
surable hS(x). By Theorem 1.17 in [36], there exists a se-

quence h
(1)
S , h

(2)
S , . . . of simple functions such that for all x,

0 ≤ h
(1)
S (x) ≤ h

(2)
S (x) ≤ · · · ≤ hS(x) and limn→∞ h

(n)
S (x)→

hS(x). By the Lebesgue Monotone Convergence Theorem
[36],

lim
n→∞

Z
h

(n)
S (x) dµ1(x) →

Z
hS(x) dµ1(x) = PA◦M(S|i1)

lim
n→∞

Z
h

(n)
S (x) dµ2(x) →

Z
hS(x) dµ2(x) = PA◦M(S|i2)

From Step 2 we have: m
“R

h
(n)
S (x) dµ1(x)

”
≤
R
h

(n)
S (x) dµ2(x)

≤M
“R

h
(n)
S (x) dµ1(x)

”
The continuity of M (except at 0)

then implies that M
`R
hS(x) dµ1(x)

´
≥
R
hS(x) dµ2(x) ex-

cept possibly in the case when
R
hS(x) dµ1(x) = 0. However,R

hS(x) dµ1(x) = 0 implies that hS(x) ≡ 0 except possibly
on a set X with µ1(X) = 0 (since hS(x) cannot be negative);
this case is covered by Step 1.

Similarly, the continuity of m (except at 1) then implies
that m

`R
hS(x) dµ1(x)

´
≤
R
hS(x) dµ2(x) except possi-

bly in the case when
R
hS(x) dµ1(x) = 1. However, since

hS(x) ≤ 1 then
R
hS(x) dµ1(x) = 1 implies that hS(x) =

IX(x) for some measurable set X and so this case is also
covered by Step 1.

Implication of Axiom 2.1.2: Privacy Axiom of Choice.
Now consider privacy mechanisms M1 and M2 with the
same input space. Choose c ∈ [0, 1] and defined Mc as
the randomized algorithm that on input i it returns M1(i)
with probability c and M2(i) with probability 1 − c (inde-
pendently of the input). Let S be an arbitrary measurable
subset of the union of the output spaces of M1 and M2.
Thus m(PM1(S | i1)) ≤ PM1(S | i2) ≤ M(PM1(S | i1))
and m(PM2(S | i1)) ≤ PM2(S | i2) ≤ M(PM2(S | i1)).
Now, PMp(S | i1) = pPM1(S | i1) + (1− p)PM2(S | i1) and
PMp(S | i2) = pPM1(S | i2) + (1 − p)PM2(S | i2). By the
convexity of m and concavity of M , we have

m(PMp(S | i1)) = m(pPM1(S | i1) + (1− p)PM2(S | i1))

≤ pm(PM1(S | i1)) + (1− p)m(PM2(S | i1))

≤ pPM1(S | i2) + (1− p)PM2(S | i2)

= PMp(S | i2)

M(PMp(S | i1)) ≥ pM(PM1(S | i1)) + (1− p)M(PM2(S | i1))

≥ pPM1(S | i2) + (1− p)PM2(S | i2)

= PMp(S | i2)

3. REASONING ABOUT UTILITY
To really take advantage of privacy definitions (both new

and old), we need to design privacy mechanisms that output
the most useful data possible. For example, any mechanism
whose output is independent of the input satisfies generic
differential privacy. However, this is not a pleasing result
since it seems that we can do “better”. A common approach
for “doing better” is to select a utility measure arbitrarily
or with the justification that it is used in decision-theoretic
statistics.

Although intuitively this seems like a valid approach, re-
cent results indicate otherwise. Ghosh et al. [23] have
shown, in the case of differential privacy, that if a user asks
a single count query, believes in a prior distribution over
query answers, and provides a loss function from a suitably
well-behaved class then the following is true. There exists
a privacy mechanism, called the geometric mechanism [23],
such that any optimal mechanism (in the sense of minimiz-
ing expected loss) can be constructed from the geometric
mechanism by a lossy postprocessing step (in general, the
geometric mechanism is not optimal by this utility metric).
This postprocessing step is a deterministic function that is
not one-to-one and thus removes information.

Thus, expected utility seems like a poor choice of utility
metric when choosing a privacy mechanism. In addition,
optimizing a privacy mechanism M for one specific task may
also be a mistake – there could exist a privacy mechanism M′

such that M(i) = A(M′(i)) for some randomized algorithm
A. Thus choosing M′ instead of the highly tuned M would
be preferable because M′ is clearly just as useful for the
original task, but may also be useful for other tasks as well.
In this sense M′ is more general.

We axiomatically formalize this notion of generality in
Section 3.1. We then present several measures of utility
and discuss whether or not they are appropriate for use in
statistical privacy (Section 3.2). Finally, we characterize
what optimal differentially private mechanisms should look
like for finite input and output spaces and then specialize



this result to a utility measure known as the negative of
Dobrushin’s coefficient of ergodicity [11] (Section 3.3).

3.1 The Generality Axiom for Utility
Recall that a privacy mechanism M is a randomized algo-

rithm with input space I and output space O satisfying some
privacy definition. We represent M as a conditional prob-
ability distribution PM(o | i) just as with any randomized
algorithm. For any randomized algorithm A, A◦M denotes
the composition of A and M defined by first running M and
then running A on the output of M.

When the input and output spaces are finite we treat M as
a column stochastic matrix3 {mj,k} whose (j, k) entry mj,k

is equal to P (j|k). Thus the rows correspond to elements
of the output space and columns correspond to elements
of the input space. We will abuse notation and use the
symbol M to refer to the matrix as well. In matrix form,
the composition A◦M is equivalent to AM (interpreted as
matrix multiplication).

Convention 3.1.1. (Matrix form of A) Given a random-
ized algorithm A with finite input and output space, we rep-
resent A as a matrix {mi,j} such that mi,j = PA(i | j).

We will also need to define a partial order on the set of
privacy mechanisms that satisfy a given privacy definition:

Definition 3.1.2. (Generality Partial Order). Let S be
the set of privacy mechanisms that satisfy a particular pri-
vacy definition. If M1 ∈ S and M2 ∈ S then we say that M2

is at least as general as M1, and denote this by M1�G M2,
if there exists a randomized algorithm A such that the con-
ditional probability distribution PM1 is equal to PA◦M2 . We
call this partial order the generality partial order.

Thus if you can probabilistically simulate M1 by postpro-
cessing the output of M2 with some randomized algorithm
A, then M2 is considered at least as general as M1. It would
also appear to be at least as preferable for this reason.

Definition 3.1.3. (Maximally General). Let S be the set
of privacy mechanisms that satisfy a particular privacy def-
inition. A privacy mechanism M ∈ S is maximally general
if for every privacy-mechanism M′ ∈ S such that M�G M′

it is also true that M′�G M.

Give a set S of privacy mechanisms that satisfy a given
privacy definition, the subset SMax of maximally general
mechanisms is clearly desirable, especially if it is non-empty
and has a certain coverage property: for every M ∈ S there
exists a M∗ ∈ SMax such that M�G M∗ (that is, every
privacy mechanism can be realized as the postprocessing of
the output of a maximally general mechanism). In general,
for arbitrary privacy definitions satisfying privacy Axioms
2.1.1 and 2.1.2, SMax will not be guaranteed to have these
nice properties. Of course, we could add an axiom to force
SMax to have these properties, but as of now we are unable
to justify it in terms of privacy alone (since it would be a
privacy axiom). Thus we did not include such an axiom
in Section 2.1. Nevertheless maximal generality is a useful
concept and leads naturally to the following axiom:

3A matrix with nonnegative entries where each column sums
up to 1.

Axiom 3.1.4. (Generality Axiom). A measure µ of the
utility of a privacy mechanism must respect the generality
partial order �G. That is, µ(M) ≥ µ(A◦M) for any ran-
domized algorithm whose input space is the output space of
M.

3.2 Measures of Generality
In this section, using Axiom 3.1.4, we examine some candi-

date measures of utility. For simplicity, we will assume that
the input and output spaces are finite and thus we treat
privacy mechanisms and randomized algorithms as column
stochastic matrices, as discussed in Convention 3.1.1. Note
that we need our utility measures µ to satisfy the following
property: µ(AM) ≤ µ(M) (where M is a privacy mecha-
nism and A is a randomized algorithm).

Example 3.2.1. (Negative Expected Loss). Let L be a
loss matrix where L(j, k) is the loss we incur for outputting
j when k is the true input. If M is a privacy mechanism,
we may want to minimize its expected loss, which is equiva-
lent to maximizing −Trace(LT M). The results of Ghosh et
al. [23] imply that negative expected utility does not satisfy
Axiom 3.1.4.

Example 3.2.2. (Absolute value of Determinant). If M =
{mi,j} is represented as a square column stochastic matrix
(see Convention 3.1.1) then it seems natural to consider the
utility measure µ(M) = |det(M)|. The multiplicative proper-
ties of the determinant show that |det(AM)| = |det(A)| |det(M)| ≤
| det(M)| for a randomized algorithm A that is represented
by a square matrix, since column stochastic matrices have
determinants with absolute value ≤ 1. Geometrically, this
measures the contractive properties of M because M maps
the unit hypercube into another convex polytope whose area
is |det(M)| [36]. This µ satisfies our utility criterion with
the proviso that we are only considering privacy mechanisms
whose output space is the same as the input space. This is a
restrictive assumption since we show in Section 3.3 that for
differential privacy there are many maximally general pri-
vacy mechanisms with much larger output spaces.

Example 3.2.3. For a privacy mechanism M = {mi,j},
define µDob(M) = −minj,k

P
i

min(mi,j ,mi,k). This is the

negative of Dobrushin’s coefficient of ergodicity and is an-
other useful measure of the contractive properties (in the ge-
ometric sense) of a column stochastic matrix [11]. We prove
that µDob(AM) ≤ µDob(M) in Appendix A and we charac-
terize optimal differentially private mechanisms (in terms of
µDob) in Section 3.3.

3.3 Characterizing the Dobrushin Coefficient
of Ergodicity

In this section we characterize “optimal” differentially pri-
vate mechanisms. Our main results are Theorem 3.3.3, which
characterizes what maximally general mechanisms with fi-
nite input and output spaces look like, and Lemma 3.3.8,
which characterizes optimal differentially private mechanisms
(with finite input and output spaces) according to µDob, the
negative Dobrushin coefficient of ergodicity (see Example
3.2.3).

Before presenting the technical parts of these results, we
first informally discuss our results and their consequences.
Recall that according to our view of differential privacy,



there is an input space I and output space O, a symmet-
ric privacy relation R ⊆ I× I, and the constraint that for all
measurableO ⊆ O and (i1, i2) ∈ R we must have PM(O | i1) ≤
eεPM(O | i2) or PM(O | i2) ≤ eεPM(O | i1) .

For each o ∈ O, if we look at all edges in R where ei-
ther of those constraints holds with equality, we would get
a subgraph for this output o (formally, we call this a row
graph; see Definition 3.3.2). Theorem 3.3.3 states that for a
maximally general mechanism M, a necessary and sufficient
condition is that the subgraph for each o contains a span-
ning tree of the privacy relation R. By identifying o with
its subgraph, we see that the natural output space is the set
of spanning trees of R – it is not a set of query answers or
possible datasets.

What is the interpretation of such an output space? Not-
ing that the subgraph represents constraints that hold with
equality and that the subgraph spansR, it is easy to see that
for a given o ∈ O, the associated subgraph uniquely deter-
mines (up to multiplicative constant) the likelihood function
Lo(i) defined as Lo(i) = PM(o|i). In other words, the output
space should be a restricted subset of likelihood functions.
To statisticians this is a pleasing result, since according to
the likelihood principle [9], the likelihood function is all we
need for statistical inference.

On the other hand, this result is less pleasing to end-
users, who use statistical software whose input is data, not
likelihood functions. Thus, in addition to maximally general
mechanisms, we need to develop additional tools to shoe-
horn this output space into a format that can be digested
by off-the-shelf statistical software.

Our second result characterizes optimal mechanisms un-
der the negative Dobrushin coefficient in Lemma 3.3.8. The
essence of the lemma is that there must exist a graph struc-
ture that is common to the subgraphs of all o ∈ O. The
only thing that differs is the pattern of which constraints (
PM(o | i1) ≤ eεPM(o | i2) or PM(o | i1) ≥ e−εPM(o | i2) )
are tight. We note here that the Geometric Mechanism [23]
(also defined in Definition 3.3.1) satisfies the conditions of
the lemma and thus is optimal under the negative Dobrushin
coefficient.

Definition 3.3.1. (Geometric Mechanism [23]4). Let I =
1, . . . , n, let O = 1, . . . , n, and let R = {(1, 2), (2, 3), . . . , (n−
1, n)}. Given ε > 0, the geometric mechanism is a random-
ized algorithm that on input i selects an integer z with prob-
ability proportional to e−ε|i−z|. If z > n then it resets z to
n. If z < 1 it resets z to 1.

Our proof shows that many mechanisms can maximize the
negative Dobrushin coefficient, including ones that are not
maximally general. However, we can apply the constructive
process we use in the proof of Theorem 3.3.3 to convert
them to maximally general mechanisms (without increasing
or decreasing the value of the Dobrushin coefficient). This
leads to an interesting philosophical question: should we
require an axiom stronger than Axiom 3.1.4 which requires
that only maximally general mechanisms can maximize a
utility measure? In theory we do not gain anything because
under Axiom 3.1.4, if the mechanism we derived from an
optimization process is not general, we can always make it
more general without affecting the utility score. However,

4Note that this formulation is equivalent to the formulation
presented by Ghosh et al. [23]

on an intuitive level a stronger axiom does make more sense.
For now we leave this issue unresolved.

The technical part of this section begins with the concept
of the row-graphs of a differentially private mechanism M,
which mark the places where the constraints enforced by
differential privacy are true with equality.

Definition 3.3.2. (Row graphs). For a differentially pri-
vate mechanism M with finite output space, the row graphs
of M are a set of graphs, one for each o ∈ O. The graph as-
sociated with output o has I as the set of nodes, and for any
i1, i2 ∈ I, there is an edge (ii, i2) if (i1, i2) ∈ R and either
PM(O | i1) = eεPM(O | i2) or PM(O | i2) = eεPM(O | i1).

The following theorem formally shows that some common
intuition - trying to maximize the number of equality con-
straints in differential privacy - is a consequence of Axiom
3.1.4. The theorem is also instructive in the sense that it
shows that the output space can be much bigger than the
input space (an upper bound on its size is the number of
spanning trees of R when viewed as a graph).

Previous work on differential privacy has focused on mech-
anisms with output spaces that were at most the size of the
input space or were equivalent (according to the �G par-
tial order) to such mechanisms. Many maximally general
mechanisms could have been missed this way. Thus the ex-
istence of parts of this theorem are obvious after the fact,
but surprisingly not a priori. The proof is in Appendix B.

Theorem 3.3.3. For a given ε > 0, finite input space I,
and privacy relation R (it must be symmetric for differen-
tial privacy), let Scon be the set of all differentially private
mechanisms M with finite output spaces and such that each
row graph is a connected graph. Then Scon is precisely the
set of maximally general differentially private mechanisms
with finite output spaces.

Recall that for finite input and output spaces, we treat a
privacy mechanism M as a column stochastic matrix {mi,j}
corresponding to its conditional probabilities (see Conven-
tion 3.1.1). For convenience, we define the following func-
tion:

Ej,k(M) = −
X
i

min(mi,j ,mi,k)

and note that µDob(M) = maxj,k Ej,k(M). We also define
the linear privacy relation

Rn = {(i, i+ 1) : i = 1, . . . , n− 1}

where we have identified any input space I of size n with the
first n positive integers. It is instructive to study the privacy
relations Rn first as our results for general5 R depend on
Rn via reduction.

The following lemmas consider mechanisms M = {mi,j}
represented as 2 × n matrices with privacy relations Rn.
These results will help us in the general case.

Lemma 3.3.4. Let ε > 0 and let M = {mi,j} be a differ-
entially private mechanism that is represented as a 2×n ma-
trix with privacy relation Rn. If M maximizes the function
E1,n in the class of 2 × n mechanisms then either m1,j =
max(e−εm1,j+1, 1 − (1 − mj+1)eε) for j = 1, . . . , n − 1 or
m1,j+1 = max(e−εm1,j , 1− (1−mj)e

ε) for j = 1, . . . , n− 1.

5i.e. any symmetric privacy relation R that is connected
when viewed as a graph.



The proof is in Appendix E

Lemma 3.3.5. Let ε > 0 and let M = {mi,j} be a dif-
ferentially private mechanism that is represented as a 2× n
matrix with privacy relation Rn. M maximizes the function
E1,n in the class of 2 × n mechanisms (and without loss of
generality m1,1 ≤ m1,n) if and only if

• if n is even m1,j = eεm1,j−1 for j = 2, . . . , n/2+1 and
m2,j = e−εm2,j−1 for j = n/2 + 1, . . . , n.

• if n is odd then m1,j = eεm1,j−1 for j = 2, . . . , (n +
1)/2 and m2,j = e−εm2,j−1 for j = (n+ 3)/2, . . . , n.

The proof is included in Appendix C.

Definition 3.3.6. (Distance function dR(i, j)). Given in-
put i, j ∈ I and a symmetric relation R that is connected
when viewed as a graph the function dR(i, j) is the length of
the shortest path from i to j in R.

Lemma 3.3.7. Let I be a finite input space with | I | > 1
and let R be a symmetric, connected relation. Let d be the
diameter of R when viewed as a graph (i.e. distance between
furthest two nodes). If M = {mi,j} is a differentially private
mechanism that maximizes µDob(M) = maxj,k Ej,k(M), then
for any two j, k ∈ I for which µDob(M) = Ej,k(M) we must
have dR(j, k) = d.

Proof. Without loss of generality, assume M has no 0
entries (otherwise an entire row would contain only 0 and
we can safely remove it).

Suppose there exist u1, v1 ∈ I such that µDob(M) = Eu1,v1(M)
and dR(u1, v1) = t < d. We will create a M∗ = {m∗i,j} with
µDob(M

∗) > µDob(M), thus causing a contradiction.
Choose a u2, v2 with dR(u2, v2) = t + 1. We partition I

into groups G1, . . . , Gt+1 based on distance from u2. For
k ≤ t, a node i ∈ Gk if dR(u2, i) = k, and i ∈ Gt+1 if
dR(u2, i) ≥ t + 1. M∗ will be constant within groups: if i1
and i2 are in the same group then PM∗(· | i1) = PM∗(· | i2).

Let i0 = u1, it = v1, and let i0, i1, . . . , it be the nodes on
a shortest path from u1 to v1. For any o ∈ O, and k ≤ t, set

PM∗(o | j) = PM(o | ik) for j ∈ Gk
We now deal with Gt+1. There must exist o1, o2 ∈ O such

that PM(o1 | i0) ≤ PM(o1 | it) and PM(o2 | i0) ≥ PM(o2 | it)
(otherwise the probabilities could not sum to 1). Choose
δ > 0 such that

PM(o1 | it) + δ

PM(o1 | it)
≤ eε and

PM(o2 | it)− δ
PM(o2 | it)

≥ e−ε

Then for j ∈ Gt+1, set PM∗(o1 | j) = PM(o1 | it) + δ,
PM∗(o2 | j) = PM(o2 | it)− δ, and PM∗(o | j) = PM(o | it)
for all other o ∈ O.

Clearly µDob(M
∗) = µDob(M) + δ > µDob(M) and so we

just need to check the differential privacy constraints. For
any input u ∈ I assigned to group Gk, its neighbors are
either in the same group Gk or in a group Gk−1 or Gk+1.
Thus by construction we ensured that the differential privacy
constraints continue to hold.

Lemma 3.3.8. Let I be a finite input space with | I | =
n > 1 and let R be a symmetric, connected relation. Let
d be the diameter of R. If M = {mi,j} is a differentially
private mechanism maximizes µDob if and only if there exist
u, v ∈ I such that dR(u, v) = d and µDob(M) = Eu,v(M)
and some shortest path u = i0, i1, . . . , id = v such that for
all r ∈ O:

• if d is even, then either mr,ij = eεmr,ij−1 for j =

2, . . . , d/2 + 1 or mr,ij = e−εmr,ij−1 for j = d/2 +
1, . . . , d.

• if d is odd then mr,ij = eεmr,ij−1 for j = 2, . . . , (d +

1)/2 and mr,ij = e−εmr,ij−1 for j = (d+ 3)/2, . . . , d.

Proof. For necessary conditions, first note that Lemma
3.3.7 implies dR(u, v) = d is necessary and µDob(M) =
Eu,v(M). Define the randomized algorithm A that outputs
either 1 or 0 such that for any o ∈ O, PA(0 | o) = 1 if
PM(o | u) ≤ PM(o | v) and PA(1 | o) = 1 if PM(o | u) >
PM(o | v). Note that µDob(M) = µDob(A◦M) because for
those o ∈ O that were mapped into 1, PM(o | u) contributes
to Eu,v(M) while PM(o | v) contributes in all other cases. If
we restrict A◦M to the inputs i0, . . . ,d, then we have a 2×n
mechanism that must maximize the function E1,d. Lemma
3.3.5 then implies the necessary conditions. It also implies
sufficient conditions since the application of A would not
change µDob.

4. RELATED WORK
Our efforts at axiomatizing privacy and utility are moti-

vated by corresponding efforts in mathematical philosophy
and probabilistic inductive logic (e.g., [8, 33]) where the goal
is to model the reasoning of a rational agent.

For surveys on statistical privacy, see [10, 21, 1].
The need for a better understanding of privacy definitions

and privacy mechanisms was underscored by the work of
Dinur and Nissim [12] (and later by Dwork et al. [17]) that
showed that some intuitive methods for preserving privacy
actually did not preserve privacy according to essentially
any privacy definition. This work was followed by a line of
research that led to differential privacy [6, 14, 16, 15, 32,
13]. Note that there have been some attempts to weaken
the definition of differential privacy (e.g., [15, 32, 29, 27]) as
its stringent guarantees are not always considered necessary
(especially when data utility can be increased).

What sets differential privacy apart from most privacy
definitions is the strength of its guarantees and the ability
to formally investigate its properties. In particular, Ras-
togi et al. provide a connection between privacy and utility
guarantees [35] as well as a connection to another definition
known as adversarial privacy [34], which was also studied by
Evfimievski et al. [19] in the context of query auditing.

Utility of sanitized data has also been studied. Of par-
ticular relevance are the following. McSherry and Talwar
[30] have presented a general recipe for taking a “quality
function” and turning it into a privacy mechanism for dif-
ferential privacy. Although this recipe does not come with
guarantees, it has been used successfully in other work [7].
Dwork et al. [18] provided a link between utility and compu-
tational complexity for differential privacy. Recent work by
Ghosh et al. [23] has shown that optimizing for commonly
accepted utility metrics (in this case expected utility) is not
always the correct goal since the output of a suboptimal
mechanism (according to the utility metric) may sometimes
be post-processed (in a lossy way) to mimic the output of
an “optimal” mechanism.

5. CONCLUSIONS
In this paper we presented three axioms for privacy and

utility and showed how they can guide the development of



privacy definitions, utility measures, and privacy mecha-
nisms. We feel this is just the beginning of a unified theory
of privacy. Additional consequences of the generality ax-
iom of utility need to be explored, especially in the context
of generic differential privacy. We also plan to explore ax-
ioms concerning prior beliefs that an attacker may possess.
Currently many privacy definitions have not been expressed
formally enough to apply an axiomatic approach. We feel
this makes them into privacy goals rather privacy definitions
and additional work is needed to formalize them so that they
can be analyzed under the same mathematical lens as dif-
ferential privacy.
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APPENDIX
A. DOBRUSHIN’S COEFFICIENT OF

ERGODICITY AND MAXIMAL GENER-
ALITY

Here we prove that the negative Dobrushin coefficient of
ergodicity, here defined as µDob(M) = −minj,k

P
i

min(mi,j ,mi,k),

satisfies the relation µDob(AM) ≤ µDob(M).

Proof. Let M be a privacy mechanism with column-
stochastic matrix representation {mi,j}. Let A be a ran-
domized algorithm with column-stochastic matrix represen-
tation {pi,j}, with appropriate dimensions so that the prod-
uct AM makes sense.

Below, we will use the fact that min is concave and
cmin(x1, x2) = min(cx1, cx2) for c ≥ 0 from which it follows
that min(

Pr
i=1 pixi) ≥

Pr
i=1 pi min(xi) when pi ≥ 0 for all

i.X
i

min(mi,j ,mi,k) =
X
i

X
`

p`,i min (mi,j ,mi,k)

=
X
`

X
i

p`,i min (mi,j ,mi,k)

≤
X
`

min

 X
i

mi,jp`,i,
X
i

mi,kp`,i

!
=

X
`

min
`
m′`,j ,m

′
`,k

´
where {m′`,j} is the matrix representation of AM. Thus it

follows that minj,k
P
i

min(mi,j ,mi,k) ≤ minj,k
P̀

min
`
m′`,j ,m

′
`,k

´
and so µDob(M) ≥ µDob(AM).

B. MAXIMALLY GENERAL
DIFFERENTIALLY PRIVATE MECHA-
NISMS WITH FINITE INPUT SPACES

In this section we characterize the maximally general dif-
ferentially private mechanisms for the case when the input
space is finite. Recall that according to our view of differ-
ential privacy with finite input space, there is a finite in-
put space I (of sensitive data), and output space O, a sym-
metric privacy relation R ⊆ I× I, and the constraint that
for all measurable O ⊆ O and (i1, i2) ∈ R we must have
PM(O | i1) ≤ eεPM(O | i2).

We first need to introduce the concept of the row-graphs
of a differentially private mechanism M, which mark the
places where the constraints enforced by differential privacy
are true with equality.

Definition B.0.9. (Row graphs). For a differentially pri-
vate mechanism M with finite output space, the row graphs
of M are a set of graphs, one for each o ∈ O. The graph
associated with row o has I as the set of nodes, and for any
i1, i2 ∈ I, there is an edge (ii, i2) if (i1, i2) ∈ R and either
PM(O | i1) = eεPM(O | i2) or PM(O | i2) = eεPM(O | i1).

The following theorem formally shows that some common
intuition - trying to maximize the number of equality con-
straints in differential privacy - is a consequence of Axiom
3.1.4. The theorem is also instructive in the sense that it
shows that the output space can be much bigger than the
input space (an upper bound on its size is the number of
spanning trees of R when viewed as a graph).

Previous work on differential privacy has focused on mech-
anisms with output spaces that were at most the size of the
input space or were equivalent (according to the �G par-
tial order) to such mechanisms. Many maximally general
mechanisms could have been missed this way. Thus the ex-
istence of parts of this theorem are obvious after the fact,
but surprisingly not a priori.

Theorem B.0.10. For a given ε > 0, finite input space
I, and privacy relation R (it must be symmetric for differ-
ential privacy), let S be the set of all differentially private
mechanisms. Let Scon be the subset of S consisting of all
mechanisms M with finite output spaces and such that each
row graph is connected. Then Scon is precisely the set of
maximally general differentially private mechanisms with fi-
nite output spaces.

Proof. When viewed as a column stochastic matrix, no
maximally general mechanism can have an entry equal to
1 (the constraints for differential privacy would then imply
that an entire row consists of entries equal to 1, meaning
that the output of such a mechanism is constant). Such a
mechanism is clearly not in Scon (the row containing all 1
entries is not connected).

We first show that mechanisms with finite output spaces
excluded from Scon cannot be maximally general. Let M
be a mechanism and let o be an output such that the cor-
responding row graph is not connected. This row can be
decomposed into two disjoint components C1 and C2 such
that there are no edges between them. Let

ρ1 = max{eδ : ∃s ∈ C1, t ∈ C2, P (o|s) = eδP (o|t)} (3)

ρ2 = max{eδ : ∃s ∈ C1, t ∈ C2, P (o|t) = eδP (o|s)} (4)



and note that 0 < ρ1 < eε and 0 < ρ2 < eε (if either ρ1 or
ρ2 were 0 then the whole row of M would consist entirely of
0’s and all constraints would be tight). Define

a =
(eε/ρ2)− 1

(eε/ρ1)(eε/ρ2)− 1

b =
(eε/ρ1)− 1

(eε/ρ1)(eε/ρ2)− 1

We form a new output space O′ = O \{o} ] {o1, o2} (where
] denotes disjoint union) by splitting o into two outputs o1
and o2 and define mechanism M′ with output space O′ such
that

PM′(o
′ | s) =

8>>>>><>>>>>:

PM(o|s)× aeε/ρ1 if o′ = o1 ∧ s ∈ C1

PM(o|s)× a if o′ = o1 ∧ s ∈ C2

PM(o|s)× b if o′ = o2 ∧ s ∈ C1

PM(o|s)× beε/ρ2 if o′ = o2 ∧ s ∈ C2

PM(o′ | s) if o′ ∈ O∩O′

Note that all of these are proper probabilities since a, b,
aeε/ρ1, beε/ρ2 are nonnegative and less than 1 since eε > ρ1

and eε > ρ2. Clearly we also must have for each fixed s,P
o′∈O PM′(o

′ | s) = 1.

Let A be a randomized algorithm such that A(o′) = o′ if
o′ ∈ O∩O′ and A(o′) = o if o′ ∈ {o1, o2}. We claim that:

• M�G M′. Proof: clearly M = A◦M′.

• M′ satisfies differential privacy: if s, t ∈ C1 then clearly
PM′ (oi|s)
PM′ (oi|t)

= PM(o|s)
PM(o|t) for i = 1, 2 (and similarly for

s, t ∈ C2). If s ∈ C1 and t ∈ C2 then since the row
corresponding to o cannot have 0 entries:

PM′(o1|s)
PM′(o1|t)

= PM(o|s)/PM(o|t)× eε/ρ1 ≤ eε (5)

Since PM(o|s)/PM(o|t) ≤ ρ1. We reach a similar con-
clusion for s ∈ C2 and t ∈ C1. The results for o2 are
similar.

• The row graph of o with respect to M is a proper sub-
graph of the row graphs of o1 and o2 with respect to M′:
since there is no edge between C1 and C2 in the row
graph of o with respect to M, then the previous argu-
ment shows that any edge present in the row graph for
o is also present in the row graphs for o1 and o2. Also
note that in Equation 5, equality is achieved for the s
and t that achieve the maximum in Equation 3. Thus
the row graph for o1 has an additional edge. Similarly,
the row graph for o2 has an additional edge.

• The randomized algorithm A defined above is not re-
versible so M′ is strictly more general than M (the
proof is obvious).

Repeating this procedure finitely many times (the num-
ber is at most the number of spanning trees in the privacy
relationR when viewed as a graph), we get a privacy mecha-
nism that belongs to Scon. Thus there can be no maximally
general differentially private mechanism with finite output
space that does not belong to Scon.

To show that every M ∈ Scon is maximally general, first
note that if any two rows of M are proportional to each other
(which can only happen if the corresponding row graphs are
the same), we can form a mechanism M2 which is the same
as M except that those two rows are replaced by one row

containing their sum. It is easy to see that M�G M′ and
M′�G M. Thus for this part of the proof it is enough to
assume that now two rows of M are proportional to each
other and no two row graphs are the same.

Now , suppose there exists a privacy mechanism M′ with
output space O′ and a randomized algorithm A such that
PA◦M′ = PM for some M ∈ Scon with output space O. For
any o ∈ O, define A−(o) ≡ {o′ ∈ O : PA(o | o′) > 0}
(it is a poor man’s inverse). It is easy to see that every

measurable O′ ⊆ A−(o), and any (i1, i2) ∈ R, PM(o|i1)
PM(o|i2)

=
PM′ (O

′|i1)

PM′ (O
′|i2)

whenever the denominator of the right hand side

is nonzero (in which case the numerator must also be positive
by the differential privacy requirements). This is because
the tightness constraints in the row graph for o determine
(up to a constant factor) all the probabilities PM(o | ·) and
no positive combination of nontight constraints can yield a
tight constraint for differential privacy. This implies that the
conditional probability PM′(O

′ | A−(o), i) is independent of
the input i.

Since no other row in M has the same row graph as o
(without loss of generality) and all other row graphs are con-
nected and therefore each represent a maximal set of tight
constraints in differential privacy, we see that PA(o | o′) = 1
for all o′ ∈ A−(o). This implies that PM(o | i) = PM′(A−(o) | i)
for any i ∈ I.

Thus we can define a randomized algorithm A2 that for
any o ∈ O andO′ ⊆ A−(o), we have PA2(O′ | o) = PM′(O

′ | A−(o), i)
(for any i ∈ I since this quantity does not depend on i). Us-
ing the fact that PM(o | i) = PM′(A−(o) | i) for any i ∈ I, it
is each to check that PM′ = PA2 ◦M and so M′�G M. Thus
we have shown that every M ∈ Scon is maximally general.

C. CHARACTERIZING DOBRUSHIN’S CO-
EFFICIENT

Here we restate and prove Lemma 3.3.5.

Lemma C.0.11. Let ε > 0 and let M = {mi,j} be a dif-
ferentially private mechanism that is represented as a 2× n
matrix with privacy relation Rn. M maximizes the function
E1,n in the class of 2 × n mechanisms (and without loss of
generality m1,1 ≤ m1,n) if and only if

• if n is even m1,j = eεm1,j−1 for j = 2, . . . , n/2 + 1 and
m2,j = e−εm2,j−1 for j = n/2 + 1, . . . , n.

• if n is odd then m1,j = eεm1,j−1 for j = 2, . . . , (n+1)/2
and m2,j = e−εm2,j−1 for j = (n+ 3)/2, . . . , n.

Proof. First we prove necessary conditions. Note that
Lemma 3.3.4 holds. For a mechanism M = {mi,j} that is
represented as a 2 × n matrix, m1,j = max(e−εm1,j+1, 1 −
(1−mj+1)eε) implies that m1,j+1 = min(eεm1,j , 1−e−ε(1−
m1,j)). Furthermore simple calculations show that eεm1,j ≤
1−e−ε(1−m1,j) if and only if m1,j ≤ 1

1+eε
and this is true if

and only if m1,j+1 ≤ eε

1+eε
. Combined with the results from

Lemma 3.3.4, we have

m1,j = eεm1,j−1 iff m1,j ≤
eε

1 + eε
(6)

m2,j = e−εm2,j−1 iff m2,j ≤
1

1 + eε
(7)



Now suppose there is no index ` such that 1
1+eε

< m1,` ≤
eε

1+ε
. Then m1,n ≤ 1/(1 + eε) or m1,1 > eε/(1 + eε). If

m1,n ≤ 1/(1 + eε) then we must have m1,1e
ε(n−1) = m1,n

and

E1,n(M) = −m1,1 −m2,n

= −m1,1 − (1−m1,1e
ε(n−1))

and this is an increasing function of m1,1 so we should in-
crease m1,1 until m1,n = eε/(1 + eε), which is the largest

value m1,n can take for which the relation m1,1e
ε(n−1) =

m1,n still holds (thus we arrive at a contradiction). A sim-
ilar argument holds for the case where m1,1 > eε/(1 + eε).
Since m1,n ≥ m1,1, these arguments have shown something
even more important: no matter what, we must have m1,n ≥
eε/(1 + eε) (we will use this soon).

Thus there is an index ` such that 1
1+eε

< m1,` ≤ eε

1+ε
which then implies m1,j = eεm1,j−1 for j = 2, . . . , ` and
m2,j = e−εm2,j−1 for j = `+1, . . . , n. Thusm1,1 = e−ε(`−1)m1,`

and m2,n = (1−m1,`)e
−ε(n−`) and therefore

E1,n(M) = −e−ε(`−1)m1,` − (1−m1,`)e
−ε(n−`) (8)

We have two parameters to optimize – the constrained value
of m1,` and the integer `.

First, suppose n is even. Then ` − 1 6= n − `. Equation
8 is a linear function of m1,` and (for fixed `) is maximized

when m1,` is at the appropriate endpoint 1
1+eε

or eε

1+ε
. If the

best value is 1/(1+eε) then m1,`+1 = eε/(1+eε) (remember

`+1 exists since we have shown that m1,n ≥ eε

1+eε
), and thus

we could not have chosen the index ` since ` + 1 satisfies
the conditions we placed when choosing an index. Thus
m1,` = eε

1+eε
. Equation 8 then becomes:

E1,n(M) = −e−ε(`−1) eε

1 + eε
− 1

1 + eε
e−ε(n−`)

= −e−ε(`−2) 1

1 + eε
− 1

1 + eε
e−ε(n−`) (9)

This is clearly a concave function of ` and it is easy to see
(by setting derivatives to 0) that it is maximized when ` −
2 = n − ` so ` = n/2 + 1. Note that we must also have
m2,` = 1

1−eε . Applying Equations 6 and 7, we have the case
for even n.

Now suppose n is odd. If `−1 6= n− ` (i.e. ` 6= (n+ 1)/2)
then a similar argument leads to Equation 9 and m1,` =
eε/(1 + eε). We would like to set ` = n/2 + 1 however,
` must be an integer, and so using the fact that Equation
9 is concave, ` must be one of the nearest integers, either
(n + 1)/2 or (n + 3)/2. Since we supposed ` 6= (n + 1)/2,
we must use ` = (n + 3)/2. From Equation 9, we have

E1,n = −[e−ε(n−1)/2 + e−ε(n−3)/2]/(1 + eε) = −e−ε(n−1)/2.
Now, in the other case where ` − 1 = n − ` (i.e. ` =

(n + 1)/2), Equation 8 simplifies to −e−ε(n−1)/2 and m1,`

can be any number in ( 1
1+eε

, eε

1+eε
]. So whether ` = (n+1)/2

or ` = (n+ 3)/2, Equations 6 and 7 then imply the Lemma
for odd n.

For sufficient conditions, it is clear that for even n, the
mechanism is determined uniquely. For odd n, there are
many choices but all yield the same value.

D. SEMANTIC INTERPRETATION OF GENERIC
DIFFERENTIAL PRIVACY

Here we restate and prove Proposition 2.1.4
Suppose i1 is the true data. An attacker may have a prior

belief in the probability of i1 and i2. We express this as

the log-odds log(Pattacker(i2)
Pattacker(i1)

). If M(i1) outputs some o ∈ O
then the attacker’s log odds will become log(Pattacker(i2 | o)

Pattacker(i1 | o)
).

Denote the difference between them as ∆ = log(Pattacker(i2 | o)
Pattacker(i1 | o)

)−
log(Pattacker(i2)

Pattacker(i1)
). The probability that ∆ takes a value x is

then the probability that any bad o ∈ O is produced which
changes the log-odds by x. This random variable ∆ has the
following behavior:

Proposition D.0.12. Let i1 be the true data and let M
be a privacy mechanism for generic differential privacy.6

If Pattacker(i1) > 0 and Pattacker(i2) > 0 then for ε >
0 we have P (∆ ≥ ε | i1) ≤ a′ where a′ = sup{a > 0 :

log
Mi1,i2 (a)

a
≥ ε}. Similarly, P (∆ ≤ −ε | i1) ≤ a′′ where

a′′ = sup{a > 0 : log
mi1,i2 (a)

a
≤ −ε} (with the convention

that sup ∅ = 0). In both cases the probability depends only
on the randomness in M.

Proof. We first need to show that log
Mi1,i2 (a)

a
≥ 0 and

is nonincreasing for a ∈ (0, 1] while log
mi1,i2 (a′)

a′ ≤ 0 and
is a nondecreasing function of a ∈ (0, 1]. Theorem 2.2.5,
Item (ii) shows that the first function is nonnegative and
the second is nonpositive. Since Mi1,i2 is nonnegative and

concave, then for c ∈ (0, 1) we have
Mi1,i2 (ca)

ca
≥ cMi1,i2 (a)

ca
+

(1−c)Mi1,i2 (0)

ca
≥ Mi1,i2 (a)

a
. Similarly, by definition, mi1,i2 is

convex and mi1,i2(0) = 0. Thus for c ∈ (0, 1),
mi1,i2 (ca)

ca
≤

c
mi1,i2 (a)

ca
+ (1 − c)

mi1,i2 (0)

ca
=

mi1,i2 (a)

a
. The rest follows

from the monotonicity of log.
Now, using Bayes’ Theorem, we get

∆ = log
Pattacker(i2)PM(o | i2)

Pattacker(i1)PM(o | i1)
− log

Pattacker(i2)

Pattacker(i1)

= log
PM(o | i2)

PM(o | i1)

Consider the set Obad = {o ∈ O | PM(o | i2)
PM(o | i1)

≥ eε}. Clearly
Mi1,i2 (PM(Obad | i1))

PM(Obad | i1)
≥ PM(Obad | i2)

PM(Obad | i1)
≥ eε and since

Mi1,i2 (a)

a

is nonincreasing, P (∆ ≥ ε | i1) ≤ P (Obad | i1) ≤ a′. A
similar argument yields the corresponding result for P (∆ ≤
−ε | i1).

E. RESULTS FOR 2×N MECHANISMS
In this section we restate and prove Lemma 3.3.4.

Lemma E.0.13. Let ε > 0 and let M = {mi,j} be a differ-
entially private mechanism that is represented as a 2×n ma-
trix with privacy relation Rn. If M maximizes the function
E1,n in the class of 2 × n mechanisms then either m1,j =
max(e−εm1,j+1, 1 − (1 − mj+1)eε) for j = 1, . . . , n − 1 or
m1,j+1 = max(e−εm1,j , 1− (1−mj)e

ε) for j = 1, . . . , n− 1.

Proof. Without loss of generality, assume m1,1 ≤ m1,n

and note that m2,1 ≥ m2,n because each column must sum
to 1 (and we only have two rows). It is easy to see that
neither row can contain a 0 for M that maximize E1,n.
6To make this well-defined, we must assume that PM(· |i1)
and PM(· |i2) have Radon-Nykodin derivatives [36] with re-
spect to the same base measure. For finite and countable
output spaces, this condition is vacuous.



Notice that for a given value of m1,j+1, the quantity
max(e−εm1,j+1, 1− (1−mj+1)eε) is the smallest value that
m1,j can take while still satisfying the differential privacy
conditions: eεm1,j+1 ≥ m1,j ≥ e−εm1,j+1 and e−εm2,j+1 ≤
m2,j ≤ eεm2,j+1.

So, by way of contradiction, suppose that M = {mi,j}
maximizes E1,n but violates the condition that
m1,` = max(e−εm1,`+1, 1− (1−m`+1)eε) for some `. Since
M is differentially private, we must have
m1,` > max(e−εm1,`+1, 1− (1−m`+1)eε).

Choose the smallest ` for which this is true. We construct
a mechanism M∗ = {m∗i,j} with E1,n(M∗) > E1,n(M) as
follows. Inductively set

m∗1,j = m1,j for `+ 1 ≤ j ≤ n
m∗1,j = max(e−εm∗1,j+1, 1− (1−m∗j+1)eε) for 1 ≤ j ≤ `
m∗2,j = 1−m∗1,j for 1 ≤ j ≤ n

It is easy to check that M∗ satisfies differential privacy.
Furthermore, given the value of m∗i,j+1 (for j = 1, . . . , `),
m∗1,j is as small as possible. Combined with the fact that
m∗1,` < m1,` (by construction), we must have m∗1,j < m1,j

for j ≤ ` and m∗1,j = m1,j for j > `.
Since we only have two rows (so m1,n = 1−m2,n), and by

assumption m1,1 ≤ m1,n (see first statement of the proof),
E1,n(M) = −(m1,1 + 1 −m1,n) and E1,n(M∗) = −(m∗1,1 +
1 − m∗1,n). Using the preceding facts, we get E1,n(M) <
E1,n(M∗) contradicting the maximality of E1,n(M).
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