Detecting Arbitrary Oriented Text in the Wild
with a Visual Attention Model
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ABSTRACT

Text embedded in images provides important semantic in-
formation about a scene and its content. Detecting text in
an unconstrained environment is a challenging task because
of the many fonts, sizes, backgrounds, and alignments of the
characters. We present a novel attention model for detecting
arbitrary oriented and curved scene text. Inspired by the at-
tention mechanisms in the human visual system, our model
utilizes a spatial glimpse network to processes the attended
area and deploys a recurrent neural network that aggregates
the information over time to determine the attention move-
ment. Combining this with an off-the-shelf region proposal
method, the model achieves the state-of-the-art performance
on the highly cited ICDAR2013 dataset, and the MSRA-
TD500 dataset which contains arbitrary oriented text.
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1. INTRODUCTION

Text in natural scenes usually provides important seman-
tic information about the scene and its content. A system
that reads text in the wild will enable numerous multimedia
applications such as improving automatic object recognition
and image categorization [34], multimedia document index-
ing and retrieval, and assisting the visually impaired.

Although there have been numerous work on reading text
in the wild [26, 27, 18, 11], the problem remains unsolved
because of the insufficient accuracy in real-world applica-
tions. Especially, localizing text in natural scenes is ex-
tremely difficult because of the unconstrained fonts, sizes,
backgrounds, inconsistent illumination, and occlusions. In
addition, text in the wild is mostly captured with different
orientations, perspective distortion and curved shapes. Most
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existing works on text detection have focused on horizontal
or near-horizontal text. While a few works target localiz-
ing text with arbitrary orientations, perspectives, and skews
[30, 6], these approaches still rely on hand-crafted features
or rules for grouping oriented or skewed text.

Inspired by the presence of attention mechanisms in the
visual system [20, 8] where humans recognize objects by
moving attention to the next relevant parts of the object,
we designed our text detection model to imitate this atten-
tion mechanism. Our attention-based model processes the
scene text character by character in a sequential manner.
Fig. 1 shows an example of how our model processes scene
text. Specifically, our model is build up on a recurrent neural
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Figure 1: The architecture of the proposed attention model for
text localization with an example of scene text detection.
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network (RNN) in combination with a convolutional neural
network (CNN) [14]. At each step of the RNN, a CNN is
deployed on a small area (the attended area) to perform lo-
cal feature extraction. The extracted feature is input to the
RNN, which aggregates the information over time, to deter-
mine the attended area for the next character. The model
will stop when the last character of the word is encountered.
Thus, the model follows the character sequence and localizes
the word. Because of the attention mechanism, our model
is able to localize arbitrarily oriented and skewed text.

For evaluation, our model was trained on a synthetically
generated text in the wild dataset with ground truth lo-
cations of each character. We then conducted the experi-
ments on two most cited datasets: the ICDAR2013 and the
MSRA-TD500. We show that our model is capable of lo-
calizing arbitrarily oriented and skewed text without heuris-



tically designed features and rules for grouping characters.
Comparing with other baseline methods, our model achieves
the state-of-the-art results. For oriented and skewed text,
our method generates more accurate polygons as bounding
boxes, some of them are even better than human labels.

2. RELATED WORK

2.1 Scene Text Detection

There are at least two major approaches in text localiza-
tion. The first is sliding window based methods [7, 26, 27,
11] which slide a classifier over the entire image. The sec-
ond is connected components methods, which group pixels
into character regions using local properties such as color,
gradient, intensity, stroke-width, etc. Pixels are group by al-
gorithms such as Stroke Width Transform [9, 30], Extremal
Regions [17, 18, 15], and Gradient Vector Flow [19]. The
latter approaches have recently become more popular be-
cause they are usually more efficient and relatively insensi-
tive to scale and orientation. However, most existing work
has been focused on detecting horizontal or near-horizontal
text. A few papers have considered detecting text with arbi-
trary orientations, perspectives, and skews [30, 6] based on
hand-crafted features or rules for grouping oriented text.

2.2 Visual Attention

Attention mechanisms in human visual system has been
proposed and studied in neuroscience [25, 20, 8]. Inspired
by the mechanisms, various visual attention-based computer
vision models have been proposed on tasks such as object
recognition [1, 16, 2], object tracking [4], and image caption-
ing [29]. In particular, our work extends the work of [16]
and [2]. Mnih et al. [16] proposed a recurrent attention
model for single object recognition which successfully learns
the attention sequences on the MNIST dateset. Ba et al. [2]
extends the recurrent attention model to recognize multi-
digit on the SVHN dataset. The model is designed to rec-
ognize one big object (house number) with multiple compo-
nents (multiple digits). The attention strategies are learnt
based on a Cartesian coordinate that is centered at the mid-
dle of the input image. A hyper-parameter ratio that is used
to convert unit width in the coordinate system to the num-
ber of pixels, however, limits the scalability of these models.

Different from these models, our model is relatively in-
sensitive to the scale of text and the size of the image. In
addition, instead of using reinforcement learning, our model
is trained on synthetic text in the wild images, where ground
truth locations are used for learning attention movement.

3. ATTENTION MODEL FOR TEXT LOCAL-

IZATION

We approach the text localization task as a sequential
process of attention pursuit. As in Fig. 1, at each step, a
spatial glimpse network observes a limited area. It extracts
the local information of the attended character area with
different sizes and resolutions. Since the scene environment
is partially observed by the spatial glimpse network, a re-
current neural network is deployed on top to aggregate the
information over time. The integrated feature of the RNN
is used by a locator network to determine where the model
should attend to at the next step.

3.1 Model Components

Spatial Glimpse Network.

When a human recognize objects, the focus of our atten-
tion is within a small area. Meanwhile, we also maintain
a blurry sense of the surrounding environment [25]. The
spatial glimpse network is designed to imitate this visual at-
tention mechanism. It is composed of two parts: a spatial
glimpse layer [16] and a multi-column CNN.

Given an input image and a focusing coordinate (z, y), the
spatial glimpse layer crops d image patches centered at (x, y)
with multiple size and resolutions. The first image patch is
w X w with the original resolution. This patch is considered
as the focusing area where the model “sees” the most clearly.
Each successive image patch is cropped twice the size of its
previous image patch size then re-scaled to w x w. Thus the
model catches the surrounding environments of the focusing
area. Fig. 2 shows an example of the input and the output
of a glimpse layer with d = 3 and w = 32.
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Figure 2: Input and output of a spatial glimpse layer with d = 3
and w = 32 and the details of the glimpse network.
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The d glimpse patches are then input to a d-column convo-
lutional neural network for feature extraction. Each column
is a deep CNN and these CNNs do not share parameters.
The output feature vectors from these d columns are con-
catenated as one feature vector which we refer to as the
glimpse feature g. Details of the glimpse network and the
structures of the CNNs are shown in Fig. 2.

Recurrent Neural Network.

In a cognitive visual attention mechanism, our brain ag-
gregates aggravates the previously captured information over
time to comprehend the whole picture of the environment [20,
8]. The integrated information helps us to determine the
next location to move our attention to. Our attention model
for text localization is designed to process words character
by character, i.e. in a sequential manner. The location of
the next character is determined by the sequence of charac-
ters that appears before. We use an RNN to aggregate the
information extracted by the spatial glimpse network. At
each step, the glimpse feature is input to the RNN. Mean-
while, the previous hidden state of the RNN is also the input
to the current step. In our model, we use a simple RNN:

he = ReLUWin - g¢ + Whn - he—1 + by) (1)

where h; and h;—1 is the hidden state of the RNN at step
t and t — 1 respectively, g: is the glimpse feature extracted
by the spatial glimpse network at step ¢, Wy, is the weight-
ing matrix from input to hidden, W}, is the weighting ma-
trix from hidden to hidden. We use the rectified linear unit
(ReLU) as the activation function for the RNN.



Locator Network.

The hidden state of the RNN h; is used to predict where
to deploy the spatial glimpse network for the ¢ 4+ 1 step.
A locator network takes h; as input and predicts where to
attend to by outputing the movement offset (Az:,Aye). It
consists of a fully connected layer that projects the hidden
state h; to a 2-dimensional vector, a tanh activation layer
that rescales the numbers to [-1, 1] and a scaling layer that
multiplies the vector by the maximal step length s;.

(Aze, Aye) = sy tanh(W; - hy + by) (2)
and the next location is computed by:

(Te41, ye+1) = (B0, Yy) + (Ame, Ayy) (3)

Ideally, a well-trained model will move the attention to
the location of the successive characters in the text.

3.2 Training
The training criterion is to minimize the Euclidian dis-
tance between the predicted location and ground truth lo-
cation of each character in the word. The parameters of
the glimpse network, the recurrent network, and the locator
network are tuned by the loss function:

1 R N

Losst = 3 [(z: — &)+ (ye — yt)ﬂ vte (1,1 (4)
where (z+,y:) is the predicted location at step t and (Z¢, §¢)

is the ground truth center of the t*™ character. For a word of
length [, there will be I — 1 backpropagation through time.

Curriculum Learning.

Since the predicted location at step ¢ depends on all the
previous moving strategies, the error will accumulate over
steps. It will be meaningless if a prediction is made based
on a wrong glimpse of a no-text area (i.e. the previous pre-
dicted attention area is far from the ground truth location).
To solve this problem, we adapted the curriculum learning
strategy [5] that we start with easy examples: The model
starts training with data samples of sequence length 2. The
sequence length increases as the average loss drops to a ac-
ceptable range (averaged Euclidian loss less than 9.00, i.e. 3
pixels away from ground truth). During the attention mov-
ing process, we will stop moving forward and start back-
propagation when the current predicted center is far from
the ground truth (i.e. larger than 3 pixels).

Two models.

Our attention model requires an initial location of a char-
acter in the text. However, there is no guarantee that the
region proposal methods can always capture the first char-
acter of a word. To make our model robust, we enrich the
training sequences to not only start from the very first char-
acter of a word, but also start from each character in the
word. In addition, we trained two models that learn to lo-
calize text from left to right and right to left respectively.
Given a proposed region, we apply the two models to localize
the left part and the right part simultaneously.

3.3 Synthetic Data Generation

In order to train the attention model, we need a text in
the wild dataset with ground truth locations of each charac-
ter. However, existing datasets that meet the requirement

contain too few images; also the variation of text orienta-
tion is limited. Considering the inaccuracy and the cost of
human labeling, it’s impractical to manually create a large
training dataset that meet the requirement. Thus, we cre-
ate our own synthetically generated text in the wild images
with ground truth locations. The data generation process is
similar to [10]. First, a font is randomly chosen from over
1,400 Google Fonts to generate the foreground text. Then
several rendering effects, such as border/shadow rendering,
rotation, perspective transformation, and Gaussian noise,
are added to the generated images with random parameters.
Based on the glyph metrics of each individual character as
well as the kerning information of the font, we are able to
calculate the exact bounding box and the center location of
each letter. In the last step, we remove the text areas in
ICDAR2013 and MSRA-TD500 training images, and blend
the generated text into these natural scenes images.

All words are randomly selected from a pre-defined dic-
tionary which contains over 90,000 common English words.
Each generated image has a range of 1 to 3 lines of text with
each line contains 1 to 3 words. Fig. 3 shows some examples
of the synthetic text in the wild images.

|

Figure 3: Examples of synthetic text in the wild images with
bounding boxes and character centers.

4. TEXT LOCALIZATION PIPELINE

A full text localization pipeline involves three steps:

Region Proposal. We utilize an off-the-shelf region pro-
posal method, Extremal Regions (ER) [18], to generate can-
didate character regions. The output regions of ER are then
filtered by a CNN text/no-text classifier that we trained us-
ing the same architecture as in [11]. After filtering, we will
have a set of proposed regions.

Localization with Attention Model. For each pro-
posed region, we rescale the image so that the size of the
region fits in w X w. Then the left-to-right and the right-
to-left models are applied to predicted the attended area of
each character in the word. If the center of a predicted at-
tended area by the model is within 3 pixels of a proposed
region’s center, we will remove the proposed region so that
we do not have multiple detections of a same word. After
this step, we will have several text line candidates.

Text line filtering. To remove the false positive text line
candidates, we again use the text/no-text classifier to slide
through the text lines. We will filter out a text line candidate
if less than half of the text line regions are classified as text.

S. EXPERIMENTS

We set the number of cropped image patches d=3, the fo-
cusing area size w=32, and the maximal step length s;=64.
30,000 synthetic images are generated with 90,000 most fre-
quently used English words for training. For optimization,
all model components are tuned with rmsprop [24] with
batches of size 50. The initial learning rate is set to 0.005
and we halved the learning rate every 20 epoches. Our model
is trained and tested on a single NVIDIA Tesla K40 GPU.



5.1 Dataset

We measure the performance of the proposed model on
the ICDAR2013 [13] and the MSRA Text Detection 500
(MSRA-TD500) [30] datasets. ICDAR2013 mainly consists
of horizontal text. The testing set contains 233 images. We
evaluate our result on the ICDAR online evaluation system®.
MSRA-TD500 is a multi-orientation text dataset containing
text in both Chinese and English. The testing set consists
of 200 images. We follow the evaluation protocols as in [30]
and apply DetEval [28] to calculate the Precision, Recall and
F-measure of our detection result.

5.2 Results

We first test our model on the ICDAR2013 dataset, which
is the most cited horizontal text detection dataset. As in
Table 1, the proposed method achieves 88%, 72%, 79% in
Precision, Recall, and F-measure. Compared with the most
recent methods that are only designed for horizontal text,
our model achieve the best precision as the state-of-the-art
method. The recall is a bit lower because we used an off-
the-shelf region proposal method without fine-tuning.

Precision | Recall | F-measure
Neumann and Matas [18] 73 65 69
Shi et al. [22] 83 63 72
Bai et al. [3] 79 68 73
Zamberletti et al. [32] 86 70 7
Tian et al. [23] 85 76 80
Zhang et al. [33] 88 74 80
Our model 88 72 79

Table 1: Localization performances on ICDAR2013(%).

We then experiment on the MSRA-TD500 dataset to val-
idate our model’s capability in localizing arbitrary oriented
and skewed text in the wild. For each detection, our model
outputs a sequence of centers. The final bounding box of
a text line is created to be a polygon which is the union
of all focusing areas in the sequence. Table 2 compares the
results of our model with other baseline methods. The re-

Precision | Recall | F-measure
Chen et al. [7] 5 5 5
Epshtein et al. [9] 25 25 25
Yao et al. [30] 63 63 63
Risnumawan et al. [21] 70 68 69
Yin et al. [31] 81 63 71
Kang et al. [12] 71 62 66
Our model 74 68 71

Table 2: Localization performances on MSRA-TD500(%).

sults show that the proposed method outperforms most of
the other baselines in precision and F-measure. Compared
to [31], our method does not sacrifice the recall to get a
higher precision. With the same highest recall as in [21],
our method achieves a much better precision result.

Besides the quantitative results, we also show the detec-
tion examples of some challenging cases from the MSRA-
TD500 in Fig. 4. The yellow boxes indicate the ground
truth. The red ones and the green ones are generated from
our model, where a green polygon means a hit and a red
polygon indicates a false positive detection. It is important
to note that although our models are trained on synthetic
dataset that only contains English words, the model shows
the ability to localize Chinese characters as well.

 http://rre.cve.uab.es/

(a) Succeed cases of the proposed method

Figure 4: Loalization results on MSRA-TD500 test set.

In Fig. 4a, we show that our proposed model is able to
localize text of arbitrary orientation, perspective distortion,
different scales, and inconsistent illumination. We also show
that our generated polygons are tighter and more accurate
than the ground truth boxes. Fig. 4b shows several failed
cases of the proposed model, most of the failures are due to
the fact that region proposal method, ER, sometimes cannot
capture an entire Chinese character. Thus we would expect
higher precision and recall if better region proposal methods
are used. Fig. 4c shows some cases that our model failed the
test following the evaluation protocol. However, we argue
that in these cases, our method generates more accurate
polygon bounding boxes than the human labeled ground
truth. For example, in the first figure, “WELCOME?” is bro-
ken into pieces, whereas “COME” and “TO EC” is merged
as one box in the ground truth. Our model successfully
detected “WELCOME” as one text region. In the second
figure, our detection for the skewed text “AZONA” is much
more accurate than the human labeled box. Our model’s
detections on the Chinese words in the last figure are more
accurate than the loose boxes provided by the ground truth.
In sum, by showing these detection results, we demonstrate
that our proposed model generates more accurate polygons
as bounding boxes for oriented and skewed text. Some of
them are even better than human labels.

6. CONCLUSIONS

We propose a novel attention model for text detection in
the natural scenes. The visual attention mechanism, imple-
mented with CNNs and RNNs, provides a natural solution
for localizing arbitrary oriented and skewed text. Evalua-
tion results on two benchmark datasets show that our model
generates more accurate bounding boxes for both horizontal
and oriented text. For future work, we are going to explore
our model’s ability in the word recognition task.
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