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ABSTRACT
Differential privacy is a powerful tool for providing privacy-
preserving noisy query answers over statistical databases.
It guarantees that the distribution of noisy query answers
changes very little with the addition or deletion of any tu-
ple. It is frequently accompanied by popularized claims that
it provides privacy without any assumptions about the data
and that it protects against attackers who know all but one
record. In this paper we critically analyze the privacy pro-
tections offered by differential privacy.

First, we use a no-free-lunch theorem, which defines non-
privacy as a game, to argue that it is not possible to provide
privacy and utility without making assumptions about how
the data are generated. Then we explain where assump-
tions are needed. We argue that privacy of an individual is
preserved when it is possible to limit the inference of an at-
tacker about the participation of the individual in the data
generating process. This is different from limiting the in-
ference about the presence of a tuple (for example, Bob’s
participation in a social network may cause edges to form
between pairs of his friends, so that it affects more than just
the tuple labeled as “Bob”). The definition of evidence of
participation, in turn, depends on how the data are gener-
ated – this is how assumptions enter the picture. We explain
these ideas using examples from social network research as
well as tabular data for which deterministic statistics have
been previously released. In both cases the notion of par-
ticipation varies, the use of differential privacy can lead to
privacy breaches, and differential privacy does not always
adequately limit inference about participation.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Statistical Databases; K.4.1
[Computers and Society]: Privacy

General Terms
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Data privacy is an expanding sub-field of data manage-

ment whose goal is to answer queries over sensitive datasets
without compromising the privacy of the individuals whose
records are contained in these databases.

One recent breakthrough in this field is a privacy defini-
tion called differential privacy [10, 8]. Query answering al-
gorithms that satisfy differential privacy must produce noisy
query answers such that the distribution of query answers
changes very little with the addition, deletion, or modifica-
tion of any tuple. Recent work has shown that the resulting
query answers can enable very accurate privacy-preserving
statistical analyses of sensitive datasets [25, 13, 5, 18]. There
are two flavors of differential privacy, which we call un-
bounded and bounded. The formal definitions are:

Definition 1.1. (Unbounded Differential Privacy [8]). A
randomized algorithm A satisfies unbounded ε-differential
privacy if P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S) for any set
S and any pairs of databases D1, D2 where D1 can be ob-
tained from D2 by either adding or removing one tuple.

Definition 1.2. (Bounded Differential Privacy [10]). A
randomized algorithm A satisfies bounded ε-differential pri-
vacy if P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S) for any set S
and any pairs of databases D1, D2 where D1 can be obtained
from D2 by changing the value of exactly one tuple.

Bounded differential privacy derives its name from the
fact that all of the datasets D1, D2 have a fixed size n, while
unbounded differential privacy has no such restriction.

Additional popularized claims have been made about the
privacy guarantees of differential privacy. These include:

• It makes no assumptions about how data are generated.

• It protects an individual’s information (even) if an at-
tacker knows about all other individuals in the data.

• It is robust to arbitrary background knowledge.

These are loose, though popular, interpretations of formal
guarantees provided by differential privacy. In this paper,
we critically analyze the guarantees of differential privacy.

We start with a no-free-lunch theorem, which defines non-
privacy as a game, and which states that it is impossible
to provide privacy and utility without making assumptions
about the data. This is a reformulation, simplification, and
re-interpretation of an impossibility result of Dwork and
Naor [8, 11] (by removing dependence on cryptographic tech-
niques and related complications, the result is accessible to



a wider audience). This shows that assumptions about the
data are needed for differential privacy to avoid this game-
theoretic notion of non-privacy. For comparison, we present
a variation of differential privacy which does guarantees pri-
vacy without assumptions but which provides very little util-
ity.

Then we argue that a major criterion for a privacy defi-
nition is the following: can it hide the evidence of an indi-
vidual’s participation in the data generating process? That
is, can it limit the ability of an attacker to infer that an
individual has participated? The notion of evidence of par-
ticipation depends on how the data are generated and is
different from the presence or absence of a tuple - for exam-
ple, Bob’s participation in a social network can cause links
to form between pairs of Bob’s friends and so the participa-
tion affects more than just the tuple marked “Bob”. Formal-
izing the notion of participation is extremely difficult, but
as with non-privacy, it is easier to identify cases where ev-
idence of participation is not protected from inference. We
do this with social networks (Section 3) and tabular data for
which deterministic statistics have been previously released
(Section 4). In each case, the notion of participation is dif-
ferent: in social networks, an individual can influence other
people’s data; for tabular data, the released query answers
already provide some evidence of participation. We believe
that under any reasonable formalization of evidence of par-
ticipation, such evidence can be encapsulated by exactly one
tuple only when all tuples are independent (but not neces-
sarily generated from the same distribution). We believe
this independence assumption is a good rule of thumb when
considering the applicability of differential privacy.

Relying on the principle that the privacy of an individ-
ual is preserved whenever we can prevent inference about
the individual’s participation, we see that the main guar-
antee of differential privacy (i.e. the distribution of noisy
query answers changes very little with the addition, dele-
tion, or modification of a tuple) does not always guarantee
privacy since deletion of a tuple is not the same as removal
of evidence of participation. Since evidence of participa-
tion requires additional assumptions about the data (as we
demonstrate in detail in Sections 3 and 4), this addresses the
first popularized claim – that differential privacy requires no
assumptions about the data.

The second popularized claim is better interpreted as stat-
ing that differential privacy limits (up to a multiplicative
factor) the probabilistic inference of an attacker who knows
all but one record in a dataset. This claim implicitly as-
sumes that the more an attacker knows, the greater the pri-
vacy risks. We show that this latter assumption is flawed by
(1) creating variations of differential privacy where the cor-
responding attackers have more knowledge yet less noise is
added to query answers and (2) showing that this leaks more
private information to attackers with less prior knowledge.
Thus when choosing privacy definitions based on resistance
to certain classes of attackers, the right choice of attackers
is crucial for meaningful privacy guarantees, but the right
choice is by no means obvious. We argue that the attackers
to consider are those from whom it is possible to hide (i.e.,
limit inference about) the participation of an individual in
the data generating process. This is different from limiting
inference about the presence or absence of a tuple t in a
dataset, especially when other tuples are correlated with t;
those other tuples may provide evidence about the partici-

pation of t and this evidence must be hidden as well. With
this interpretation, we should not simply assume that an at-
tacker already has this evidence since more knowledgeable
attackers are not always the biggest threats.

The third claim, that differential privacy is robust to arbi-
trary background knowledge, has been formalized and stud-
ied by [19]. More accurately, differential privacy is robust
when certain subsets of the tuples are known by an attacker.
However, many reasonable types of background knowledge
can cause privacy breaches when combined with differential
privacy (in other words, differential privacy composes well
with itself [14] but not necessarily with other privacy defini-
tions or data release mechanisms). Such background knowl-
edge includes previously released exact query answers. We
demonstrate a privacy breach using this background knowl-
edge in Section 4 and we propose solutions that account for
those previously released query answers.

The goal of this paper is to clear up misconceptions about
differential privacy and to provide guidelines for determin-
ing its applicability. In particular our contributions are that
we (1) simplify a result of Dwork and Naor [8, 11] in order
to show how privacy relies on assumptions about data gen-
eration, (2) propose a participation-based guideline – “does
deleting an individual’s tuple erase all evidence of that in-
dividual’s participation in the data-generating process?” –
for determining whether differential privacy is suitable for a
given application, (3) demonstrate that differential privacy
does not meet this guideline when applied to arbitrary social
networks and show how this can result in a privacy breach,
(4) demonstrate that differential privacy does not meet this
guideline when applied to tabular data when an attacker
has aggregate-level background knowledge (and show a po-
tential privacy breach), and (5) propose a modification of
differential privacy that avoids privacy breaches for tabular
data with aggregate-level background knowledge.

The outline of this paper is as follows. We discuss the no-
free-lunch theorem and the game-theoretic definition of non-
privacy in Section 2, where we also show that more knowl-
edgeable attackers do not necessarily present the greatest
risks to privacy. We specialize this discussion to social net-
works in Section 3, where experiments with several popular
social network models show that differential privacy does
not adequately limit inference about the participation of an
edge in the network. We then consider tabular data, with a
side release of global statistics, in Section 4. The notion of
participation is very different here because some evidence of
participation is already provided by the released statistics.
We propose a generalization differential privacy to take into
account those statistics to limit further privacy breaches,
and algorithms that satisfy our generalizations.

2. ANALYSIS OF ATTACKERS

2.1 The No-Free-Lunch Theorem
In this section we argue that it is not possible to guarantee

privacy and utility without making assumptions about the
data-generating mechanism.

2.1.1 Utility
To capture the notion of utility, we define a lower bound

on utility called the discriminant. It measures whether there
exists any query that can be answered reasonably accurately.



Definition 2.1. (Discriminant ω). Given an integer k >
1, a privacy-infusing query processor A, and some constant
c, we say that the discriminant ω(k,A) ≥ c if there exist
k possible database instances D1, . . . , Dk and disjoint sets
S1, . . . , Sk such that P (A(Di) ∈ Si) ≥ c for i = 1, . . . , k
(the randomness only depends on A).

We illustrate this definition with an example. Suppose we
are asking a query about how many cancer patients are in the
data. If the privacy-infusing query processor A can answer
this query with reasonable accuracy, then the discriminant
ω(k,A) is close to 1. To see this, we set k = 3 (for example)
and D1 to be any database with 0 cancer patients, D2 to be
any database with 10, 000 cancer patients and D3 to be any
database with 20, 000 cancer patients. Suppose A works as
follows: if there are 0 cancer patients, it outputs some num-
ber in the range [0, 1000] with probability 0.95; if there are
10, 000 cancer patients, it outputs some number in the range
[9000, 11000] with probability 0.95; if there are 20, 000 can-
cer patients it outputs a number in the range [19000, ∞]
with probability 0.95. Then we set S1 = [0, 1000] (in Defi-
nition 2.1), S2 = [9000, 11000] and S3 = [19000, ∞]. Since
P (A(Di) ∈ Si) ≥ 0.95 and the Si are pairwise disjoint we
must have ω(k,A) ≥ 0.95.

From this example we see that if ω(k,A) is close to one,
then we may get a reasonably useful answer to some query
(or we may not, this is only a lower bound). On the other
hand, if ω(k,A) is close to 1/k (which can happen when the
output of A is uniformly distributed and does not depend on
the data), then we cannot get useful answers to any query.

Since the goal of modern privacy definitions is to answer
queries relatively accurately, they all allow the use of al-
gorithms with discriminants close to 1. For example, the
discriminant of proposed k-anonymity algorithms [31] is 1.

Proposed differentially private algorithms also have dis-
criminants close to or equal to 1. For example, the Laplace
Mechanism [8] is an algorithm satisfying differential privacy
that answers a count query by adding noise from the Laplace
distribution with density function ε

2
e−|x|ε.

Proposition 2.1. The discriminant ω(k,A) of the Laplace
Mechanism for unbounded differential privacy is 1 for any
k. For bounded differential privacy, the discriminant of the
Laplace Mechanism becomes arbitrarily close to 1 as the data
size increases.

Proof. Fix k and δ > 0 and let X be a random variable
with density function ε

2
e−|x|ε. Choose n large enough so

that P (X > 2n/3k) < δ. For i = 1, . . . , k let Di be a
database with in/k cancer patients and define Si = [in/k−
n/3k, in/k + n/3k] (an interval centered around in/k with
width 2n/3k). Note that all the Si are disjoint. We will
use the Laplace Mechanism A to answer the query “how
many cancer patients are there”. By construction, for any
r, P (A(Di) ∈ Si) > 1 − δ. Thus ω(k,A) ≥ 1 − δ. Since δ
is arbitrary, we get ω(k,A) = 1 for unbounded differential
privacy. The result for bounded differential privacy follows
since we can make δ arbitrarily small by making n large.

2.1.2 Non-privacy
Motivated by Dwork and Naor’s proof [8, 11] on the im-

possibility of Dalenius’ vision of statistical privacy [6], we
define a game between an attacker and a data curator. Let
D be a database schema and let q be a sensitive query, with

k possible outputs, such that q(D) is considered sensitive for
any database instance D. For example, q(D) may return the
first record in D. Let P be a data-generating mechanism.
The game proceeds as follows.

Definition 2.2. (Non-Privacy Game). The data cura-
tor obtains a database instance D from the data-generating
mechanism P. The data curator provides the attacker with
the output A(D) of a privacy-infusing query processor A.
The attacker then guesses the value of q(D). If the guess is
correct, the attacker wins and non-privacy is achieved.

The following no-free-lunch theorem states that if there
are no restrictions on the data-generating mechanism and if
the privacy-infusing query processor A has sufficient utility
(discriminant close to 1) then there exists a data-generating
mechanism P such that the attacker’s guess, without access
to A(D), is correct with probability 1/k (k is the number
of possible outputs of the query).1 However, with access to
A(D), the attacker wins with probability close to 1.

Theorem 2.1 (No Free Lunch). Let q be a sensitive
query with k possible outcomes. Let A be a privacy-infusing
query processor with discriminant ω(k,A) > 1− ε (for some
ε > 0). Then there exists a probability distribution P over
database instances D such that q(D) is uniformly distributed
but the attacker wins with probability at least 1−ε when given
A(D).

Proof. Choose database instances D1, . . . , Dk such that
∀i, q(Di) = i. Choose sets S1, . . . , Sk as in Definition 2.1
(discriminant) so that ω(k,A) ≥ mini P (A(Di) ∈ Si) >
1−ε, with the probability depending only on the randomness
in A. Let P be the uniform distribution over D1, . . . , Dk.
The attacker’s strategy is to guess q(D) = i ifA(D) ∈ Si and
to guess randomly if A(D) is not in any of the Si. Clearly
the attacker wins with probability at least 1− ε.

This theorem can be viewed as a weaker reformulation
and significant simplification of Dwork and Naor’s result [8,
11]: we eliminated the use of auxiliary side information, in-
troduced a more natural notion of utility, and gave a shorter
and transparent proof. It is now clear why assumptions are
needed: without restrictions on P, we cannot guarantee that
the privacy-infusing query processor A avoids non-privacy.

2.1.3 No-Free-Lunch and Differential Privacy
We now explain how the no-free-lunch theorem relates to

differential privacy and evidence of participation and how an
assumption that P generates records independently can pre-
vent an attacker from winning against a differentially private
algorithm. Suppose Bob’s sensitive attribute R can take one
of the values 1, . . . , k. Consider a P which generates data
where Bob’s record always appears and when Bob’s sensitive
attribute R = j then there are j × 10, 000 cancer patients
in the data. An attacker can ask “how many cancer pa-
tients are there?” and to satisfy 0.1-differential privacy, the
query processor A can add Laplace(10) noise to the true an-
swer (with variance 200). The attacker then can divide the
noisy answer by 10, 000, round to the nearest integer j, and,
with high probability, this will be the correct value of Bob’s
sensitive attribute R (since 200 << 10, 000). In this case,

1The theorem easily extends to probabilities other than 1/k.



the number of cancer patients provide evidence about Bob’s
participation.

This example relies on a correlation between Bob’s sensi-
tive attribute and the other records in the database to pro-
vide evidence of participation. In this particular case, such
a correlation seems artificial and so we are likely to assume
that there is no such dependence between records, so that
the number of cancer patients can no longer provide evi-
dence about Bob. If we assume that P generates records in-
dependently (and if the assumption is correct), the attacker
would not be able to guess Bob’s sensitive attribute from the
number of cancer patients. Thus under the assumption of
independence of records, differential privacy would be safe
from this attack. In Sections 3 and 4 we will see examples
of correlations which are not artificial and for which the use
of differential privacy can lead to privacy breaches.

Before concluding this section, note that there do exist
privacy definitions which make no assumptions about the
data. One example is:

Definition 2.3. (Free-Lunch Privacy). A randomized al-
gorithm A satisfies ε-free-lunch privacy if for any pair of
database instances D1, D2 (not just those differing in one
tuple) and for any set S, P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S).

It is not hard to see that the discriminant ω(k,A) of any
algorithm A satisfying ε-free-lunch privacy is bounded by

eε

k−1+eε
. Notice that this is bounded away from 1 whether

we restrict the size of the database or not. In contrast, virtu-
ally all noise-infusing privacy definitions (such as bounded
differential privacy, randomized response [32], etc.) have
discriminants that become arbitrarily close to 1 as the data
size increases. Thus with free-lunch privacy, we would have
difficulty distinguishing between small and large databases
(let alone finer details such as answers to range queries).
This lack of utility is also clear from its definition; this is
the price we must pay for making no assumptions about the
data-generating mechanism.

2.2 Knowledge vs. Privacy Risk
Before discussing privacy breaches in social networks and

tabular data (with pre-released exact query answers) in Sec-
tions 3 and 4, we present in this section a general guideline
for determining whether a privacy definition is suitable for
a given application. This guideline is based on “hiding ev-
idence of participation” of an individual from an attacker.
In many cases this guideline calls for limiting the inferences
made by attackers that are less knowledgeable than those
considered by differential privacy (i.e. attackers who know
about all but one tuple in a database). Somewhat coun-
terintuitively, this can actually decrease the probability of
disclosing sensitive information. Thus we first show that
privacy definitions that limit the inference of more knowl-
edgeable attackers can sometimes leak more sensitive in-
formation than privacy definitions that protect against less
knowledgeable attackers. Then we present our “evidence of
participation” guideline.

Let us start with two more forms of differential privacy –
attribute and bit differential privacy.

Definition 2.4. (Attribute Differential Privacy). An al-
gorithm A satisfies ε-attribute differential privacy if for ev-
ery pair D1, D2 of databases such that D2 is obtained by
changing one attribute value of one tuple in D1, we must
have P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S) (for any set S).

Definition 2.5. (Bit Differential Privacy). An algorithm
A satisfies ε-attribute differential privacy if for every pair
D1, D2 of databases such that D2 is obtained by changing
one bit of one attribute value of one tuple in D1, we must
have P (A(D1) ∈ S) ≤ eεP (A(D2) ∈ S) (for any set S).

Attribute differential privacy corresponds to an attacker
who has full information about the database except for one
attribute of one record. Bit differential privacy corresponds
to an attacker who knows everything except one bit in the
database encoding. Both definitions limit the attacker’s
inference about the remainder of the data. Clearly the
attacker for bit-differential privacy knows more than the
attacker for attribute-differential privacy who knows more
than the corresponding attacker for bounded-differential pri-
vacy (Definition 1.2) who only knows all records but one.

It is easy to see that an algorithmA that satisfies bounded-
differential privacy also satisfies attribute-differential pri-
vacy and an algorithm that satisfies attribute-differential
privacy also satisfies bit-differential privacy. In these cases,
an algorithm that protects against (i.e. limits the inference
of) a less knowledgeable attacker also protects against the
more knowledgeable attacker. However, we now show that
an algorithm that limits the inference of a more knowledge-
able attacker can leak private information to a less knowl-
edgeable attacker.

Consider the following table with 1 tuple (Bob) and two

2-bit attributes R1 and R2:
R1 R2

Bob 00 10

There are 16 possible databases instances with 1 tuple.
Bounded-differential privacy allows an algorithm A1 to out-
put Bob’s tuple with probability eε

15+eε
and any other tuple

with probability 1
15+eε

. Attribute-differential privacy allows
an algorithm A2 to output Bob’s record with probability

e2ε

9+6eε+e2ε
(each of the 6 records where only one attribute

differs from Bob can be output with probability eε

9+6eε+e2ε
,

and each of the 9 remaining records can be output with
probability 1

9+6eε+e2ε
). The allowable distribution for bit-

differential privacy is more complicated, but Bob’s record

can be output with probability e4ε

e4ε+4e3ε+6e2ε+4eε+1
. Figure

1 plots the different probabilities of outputting Bob’s record
as ε ranges from 0 to 1. We clearly see that bit-differential
privacy, with which we associate the most knowledgeable
attacker, outputs Bob’s record with the highest probabil-
ity, followed by attribute-differential privacy and followed
by bounded-differential privacy (which we associate with the
least knowledgeable attacker).

The intuition about why bit-differential privacy leaked the
most amount of private information is that, since the at-
tacker already knows so much about Bob’s record, there is
little need to output a record drastically different from it.
There is very little left for the attacker to learn and so we can
concentrate most of the randomness on this area of the at-
tacker’s uncertainty, which would be the set of records that
differ from Bob’s by 1 bit. Another example is an attacker
who knows everything: we can release the entire database
without the attacker learning anything new.

We can extend these ideas to correlated data. Consider
the following example:

Example 2.1. Bob or one of his 9 immediate family mem-
bers may have contracted a highly contagious disease, in
which case the entire family would have been infected. An
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Figure 1: Probability (y-axis) of outputting Bob’s
record as ε (x-axis) varies for bit-differential pri-
vacy (top line), attribute-differential privacy (mid-
dle line), bounded-differential privacy (bottom line)

attacker who knows all 9 family members have this disease
already has strong evidence that Bob is infected. A weaker
attacker who knows nothing about the family’s health can ask
the query “how many in Bob’s family have this disease?”.
The true answer is almost certainly going to be either 0 or
10. Suppose Laplace(1/ε) noise is added to the true answer
and that the resulting differentially private query answer was
12. The answer 12 is e10ε times more likely when the true
answer is 10 (and hence Bob is sick) than when the true
answer is 0 (and Bob is healthy). Thus data correlation
and a differentially private answer produced a result where a
weaker attacker’s probability estimate (of Bob being sick) can
change by a (large) factor of e10ε. In contrast, differential
privacy guarantees that the stronger attacker (who already
knows 9 family members are sick) can change his probability
estimate by a factor of at most eε.

Other types of correlations are also possible. In Section 3
we show how correlations between edges in a social network
can lead to a privacy breach, and in Section 4 we show that
prior release of deterministic aggregate statistics can cause
tuples to become correlated and that this can also lead to a
privacy breach.

2.2.1 Participation-based guidelines
The key feature of Example 2.1 was that Bob’s tuple had

influence over other tuples in the data. Deleting Bob’s tu-
ple would not remove Bob’s influence on the data and so
the rest of the data provides evidence about Bob and his
health. This evidence comes from Bob’s participation in the
data generating mechanism: Bob’s interaction with family
members (i.e. participation) and the mechanisms govern-
ing infection and growth of pathogens (i.e. other relevant
aspects of data generation).

Thus if privacy guarantees are based on limiting the infer-
ence of a class of attackers, this class must be chosen wisely.
We argue that an important consideration when evaluating
a privacy definition is the following question: how well can
it hide the evidence of participation of an individual from
an attacker who has little prior evidence of this individual’s
participation? When data records are independent, then

deleting one record eliminates all evidence of its participa-
tion. In such as case, differential privacy is appropriate since
it guarantees that differentially private query answers are
barely affected by record deletion. On the other hand, when
records are not assumed to be independent, record deletion
may not hide evidence of participation (in which case dif-
ferential privacy may not be suitable). In general, it is the
data-generating mechanism which determines what proper-
ties of the data provide evidence of participation (as we show
in Sections 3 and 4). Thus the definition of participation and
hence the suitability of various privacy definitions actually
depends on how the data are generated.

It is difficult to create a general definition of “participa-
tion”that applies to all data-generating mechanisms. One of
the difficulties is that if aggregate statistics about the data
have already been released, then those statistics already pro-
vide some evidence of Bob’s participation; protecting the
rest of this evidence seems to entail some concept of degree
of participation. Thus instead of a general definition, we
consider special cases. In Section 3, where we show that
differential privacy does not always hide the participation
of an edge in a social network, we show that the presence
or absence of one edge can have a dramatic effect on the
subsequent growth of a network. In Section 4, where we
discuss prior release of statistics, we show that a number of
other records need to be modified in order to alter evidence
about an individual without an attacker realizing it (thus
providing a notion of plausible deniability).

3. SOCIAL NETWORKS
In this section we investigate how well differential privacy

can hide (limit inference about) the participation of entities
in social networks. There are two natural choices for such
entities: nodes and edges. A standard application of differ-
ential privacy would try to prevent inference about whether
or not a node (or edge) has been subsequently removed from
the data. For nodes, a differentially private algorithm Anode
must satisfy P (Anode(D1) ∈ S) ≤ eεP (Anode(D2) ∈ S) for
all sets S and for all pairs of databases D1 and D2 such
that one can be constructed from the other by removing a
node and all of its incident edges. For edges, a differen-
tially private algorithm Aedge must satisfy P (Aedge(D1) ∈
S) ≤ eεP (Aedge(D2) ∈ S) for all sets S and for all pairs of
databases D1 and D2 such that one can be constructed from
the other by removing an edge.

It is widely believed that differentially private algorithms
Anode that try to limit inference about nodes can only return
query answers that are too noisy for practical applications
[17], and so it is common to sacrifice privacy for more util-
ity by using differentially private algorithms Aedge for edges
[12]. Thus in this section we will examine whether limit-
ing inference about whether an edge has been subsequently
removed is the same as limiting inference about the partici-
pation of that edge in the social network.

It is difficult to formulate a general and formal defini-
tion for what evidence of participation means, but it is very
easy to identify special cases where this evidence is clearly
not protected from inference. One such example is the fol-
lowing. Suppose a social network starts with two distinct
communities that do not interact (they share at most one
edge); one reason is that they may be unaware of each other.
The attacker knows this, and also knows that if there is an
edge between the two communities, then it is between Bob,



a member of Community 1, and someone else in Community
2. Let us define a privacy breach to be the event that the at-
tacker can determine (with high probability) whether or not
Bob had an edge to someone in the second community. We
will let these communities grow, using three different social
network models [22, 21, 24], after which the attacker will
ask the query “how many edges are there between the two
communities”. We now consider (1) how deleting Bob’s edge
from the database affects the query answer and (2) how the
answer would have been affected if Bob’s had not existed.
Deleting Bob’s edge simply changes the answer by 1. Differ-
ential privacy would guarantee that if the true answer were
either X or X − 1, the noisy answer would be the same,
with high probability, in either case. Now let us consider
the effect of the participation of Bob’s edge in the network.
Suppose that Bob’s edge was incident to Charlie (from Com-
munity 2). Because of their friendship, Bob introduces Alice
(from Community 1) to Charlie. Alice then introduces her
friends (from Community 1) to Charlie, and so on. Thus
Bob’s initial edge could have caused many additional edges
to form (and most of them would not even be incident to
Bob). If Bob did not have that initial edge, it is possible
that those additional edges would not have formed and so
the query answer could have been significantly different. To
check how different, we use several popular social network
models [22, 21, 24] to simulate this “what if” scenario.

For each model and parameter setting, we ran the model
starting from a network where there is an edge between Bob
and a member of a different community and also in the case
where no such edge exists. In each case we run the model
1, 000, 000 times to get an accurate estimate of the expected
number of edges between the two communities (with and
without that initial edge) after the network has being grow-
ing for a while. The difference Y , between the expected
number of edges when Bob had a link to another commu-
nity and when he did not, is a measure of the degradation
of the differential privacy guarantees. It is also a measure
of the causal influence of Bob’s edge. A näıve application
of ε-differential privacy would add Laplace(1/ε) noise (with
variance 2/ε2) to the query “how many edges are there be-
tween the two communities”. However, to prevent inference
about the participation of Bob’s edge, at least Laplace(Y/ε)
noise (with variance 2Y 2/ε2) would have to be added (more
noise could be needed, since Y is only the difference in ex-
pectation, and there could be more revealing queries). Fur-
thermore, we would not know Y a priori unless we knew the
model parameters (i.e. made assumptions about how the
data were generated). Otherwise, we would have no guid-
ance on how much noise to add.

Forest Fire Model [22]. The first model we use is the
forest fire model [22]. We modify it slightly to make it
more fair to differential privacy (in the original version, if
there was no edge between two communities, no such edge
would ever form). When using this model, our initial net-
work has 10 nodes (5 per community) with three random
within-community outlinks per node. We grow this network
until it has 50 nodes as follows. When a new node enters
the network, it picks an ambassador node uniformly at ran-
dom. The new node then joins the same community as the
ambassador and forms an edge to the ambassador. The new
node picks a number k from a geometric distribution with
mean p/(1−p) and forms an edge with k of the ambassador’s

outlinks. The new node uses the same process to form an
edge with some of the ambassador’s inlinks. Now the new
node repeats the link generation process with its new neigh-
bors (duplicate edges between nodes are not allowed). Fi-
nally, with probability q (which we set to 0.1) the new node
adds a link to a randomly chosen node (this modification
allows for new edges to form between communities that had
no edges before). We used the parameters investigated by
Leskovec et al. [22] where the parameter for the geomet-
ric distribution for outlinks is 0.37 and for inlinks it is 0.32.
When Bob had no edge to another community, the expected
number of cross-community edges (after the network grew
to a size of 50) is ≈ 119. However, when Bob did initially
have an edge to another community, the expected number of
cross-community edges was ≈ 240. This is a significant dif-
ference, and ε-differential privacy would need an extremely
small ε value to hide the participation of Bob’s initial edge
(thereby adding a large amount of noise); ε should be at
least 240−119 = 121 times smaller than a näıve application
of differential privacy would suggest. In addition, this dif-
ference in number of cross-community edges depends on the
model parameters, and so we cannot set ε reliably unless we
know the parameters of the network-generating distribution.
Even for the particular parameters we chose, considering the
small size of the network (50 nodes), such a value of ε would
add large amounts of noise to any query, thus providing vir-
tually no information about the social network. Thus, in
order to use differential privacy to provide meaningful infor-
mation about social networks, we would have to assume that
the network was not generated by a forest fire model. Al-
ternatively, a näıve application of differential privacy which
did not take into account possible large effects of causality
would let our attacker infer the participation of Bob’s edge.

Copying Model [21]. The second model we use is the
copying model [21]. This model does not grow as fast as
the forest fire model because the out-degree of each node is
bounded. The network again starts with 10 nodes (5 per
community) and set we the out-degree of each node to be 3.
The network grows as follows. When a new node enters the
network, it chooses a prototype node uniformly at random
and joins the same community as the prototype. For each
outlink neighbor of the prototype, the new node links to
that neighbor with probability 1− p and links to a random
node with probability p. We ran two sets of experiments.
In the first set, we fixed the final network size to be 50 and
varied the random link probability p. The results are shown
in Figure 2. In the second set, we fixed the random link
probability p to 0.05 and varied the final network size. The
results are shown in Figure 3.

When the random link probability increases (Figure 2),
the copying model begins to degenerate into a random graph
model where edges are chosen randomly and so the effect
of causality decreases. However, as the network size grows
for a fixed p, so does the difference in the expected value
of cross-community edges (Figure 3). The growth is mod-
est compared to the forest fire model, but makes it difficult
for differential privacy to limit inference about Bob’s initial
edge. The reason is that the effect of causality grows with
time and so the noise parameter ε would depend on the size
of the final network (and other parameters). Again, it is not
possible to set ε reliably unless we know or make assump-
tions about the actual parameters of the data generating
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Figure 2: Causal effects in the Copying Model as
a function of the random link probability.
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Figure 3: Causal effects in the Copying Model as
a function of the final network size
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Figure 4: Causal effects in the MVS Model as a
function of ξ, the friend-introduction probability.
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Figure 5: Causal effects in the MVS Model as a
function of time (nearness to steady state).

distribution. The alternatives are to set ε very small (thus
destroying utility), or to ignore causality (i.e. näıve apply
differential privacy) and possibly reveal the participation of
Bob’s edge.

MVS Model [24]. Our final model is the MVS model [24].
In contrast to the forest fire and copying models, this model
is actually an ergodic Markov chain (whose state space con-
sists of graphs) and has a steady state distribution. Thus
the number of edges does not have a tendency to increase
over time as with the other two models. The original MVS
model is a continuous time process, which we discretize in a
way similar to [24]. In this model, the number of nodes re-
mains constant. At each timestep, with probability η, a link
is added between two random nodes. With probability ξ, a
randomly selected node selects one of its neighbors at ran-
dom and asks for an introduction to one of its neighbors. Fi-
nally k edges are deleted, where k is a random variable drawn
from a Poisson(λ) distribution. Initially both communities
have an equal number of nodes and community membership
does not change. Initially each node has 2 within commu-
nity links. We perform two sets of experiments. In the first

set of experiments, the network has 20 nodes and we vary ξ,
the friend-introduction probability. We compute the num-
ber of cross-community edges after 100 time steps (before
the network has reached a steady state). This is shown in
Figure 4. In the second set of experiments, we set the net-
work size to be 20, we set ξ = 1, and we vary the number of
iterations to let the network achieve its steady state. This
is shown in Figure 5. Note that once the process achieves
steady state, the initial conditions (or, more generally, net-
work configurations in the distant past) are irrelevant and
the evidence that other edges provide about the participa-
tion of Bob’s initial link is automatically destroyed by the
network model itself. However, there can still be evidence
about edges formed in the not-so-distant past.

We see from Figure 4, that depending on network param-
eters, the expected difference in cross-community edges can
be moderately large, but we see that this difference disap-
pears as the network is allowed to reach its steady state (Fig-
ure 5). Thus differential privacy may be a reasonable choice
for limiting inference about the participation of Bob’s edge
in such a scenario. However, applying differential privacy
here still requires the assumption that the data were gener-



ated by such a favorable model (as opposed to a forest fire
model, for example).

4. CONTINGENCY TABLES
In this section we consider privacy-preserving query an-

swering over a table for which some deterministic statistics
have already been released. In addition to motivating this
problem, we show that applications of differential privacy in
this setting can lead to a privacy breach beyond the possible
breach caused by the initial release of those statistics. We
then propose a solution by modifying differential privacy to
take into account such prior deterministic data releases.

The U.S. Census Bureau is one of the largest consumers of
privacy technology. It both collects and disseminates data
about the U.S. population. Privacy is an important issue so
many of the datasets released to the public have been per-
turbed, masked, or otherwise modified to protect the confi-
dentiality of individuals in the data.

In some cases, utility is more important than privacy. One
example is in the release of population counts which are used
for apportionment (allocating seats in the House of Repre-
sentatives to the states). Since this is a highly-charged po-
litical issue with significant consequences, these counts must
be as accurate as possible so that sampling (which can be
broadly interpreted to include noise infusion and compli-
cated statistical data editing) is prohibited. Of particular
significance is the 2002 Supreme Court case Utah v. Evans
(our short discussion here is based on [3]). This case con-
cerned the year 2000 Decennial Census and the way in which
it dealt with missing and inconsistent data. The Census Bu-
reau used statistical imputation to adjust counts for house-
holds for which data were not reported. This adjustment
was enough to add one seat in the House of Representatives
to North Carolina at the expense of Utah. In the Supreme
Court case, the State of Utah unsuccessfully argued that
statistical imputation should have been considered a form
of sampling and therefore disallowed. Even though Utah
lost this case illustrates the contentiousness of even a small
perturbation of the data.

This case illustrates an interesting application for privacy
technology. In some cases utility is so important that some
exact statistics about the data must be released. After this
initial data release, additional queries can be answered, with
degraded accuracy, as long as they do not introduce an addi-
tional privacy breach (note that this is a special case of the
dual privacy problem where the goal is to provide as much
privacy subject to utility constraints [15]). For example:

Example 4.1. Due to overriding utility concerns, a uni-
versity releases the number of male and female employees, a
histogram of employee salaries, and a separate histogram for
each additional attribute in its employees table. An economist
may later seek to determine if salary and gender are in-
dependent of each other at this institution. This question
cannot be answered from the released statistics but could be
answered from the original data by using the chi-squared test
(for example). Thus the university would like to provide a
privacy-preserving estimate of the chi-squared value on the
original data. The release of this approximate chi-squared
value should not lead to additional leakage of privacy (when
combined with the previously released histograms).

Differential privacy does not allow for any deterministic
release of statistics, so the initial data release in Example 4.1

falls outside of this framework. However, differential privacy
might later be used to release a perturbed version of the chi-
squared statistic. In cases like these, privacy guarantees may
degrade. We provide a simple demonstration in Section 4.1.

4.1 A Privacy Leak
We now show that when deterministic statistics have been

previously released, applying differential privacy to subse-
quent data releases is not enough to prevent additional pri-
vacy breaches (beyond the possible breaches caused by the
initial release of statistics). The reason is that those statis-
tics could add correlations into the data and into future
queries that otherwise would be unrelated.

Consider a table T with one attribute R that can take
values r1, . . . , rk. Suppose that due to overriding utility
concerns, the following k − 1 queries have been answered
exactly:

SELECT COUNT(*) FROM T WHERE R=r1 OR R=r2
...

SELECT COUNT(*) FROM T WHERE R=rj−1 OR R=rj
...

SELECT COUNT(*) FROM T WHERE R=rk−1 OR R=rk

This does not provide enough information to always re-
construct the original table (there are k unknowns but k−1
linear equations). However, if we knew the answer to “SE-
LECT COUNT(*) FROM T WHERE R=ri”for any ri, then
we would be able to exactly reconstruct the table T . In this
way the tuples are correlated and we are one exact query
answer away from a complete privacy breach (i.e. recon-
struction of the table).

Now, differential privacy would allow us to answer the fol-
lowing k queries by adding independent Laplace(1/ε) noise
(with variance 2/ε2) to each query [8]:

SELECT COUNT(*)+noise FROM T WHERE R=r1
...

SELECT COUNT(*)+noise FROM T WHERE R=rj
...

SELECT COUNT(*)+noise FROM T WHERE R=rk

By themselves, without use of the previously released ex-
act queries, these noisy query answers are innocuous and
have little dependence on the value of Bob’s tuple. In fact,
the only query that would have even a slight dependence on
Bob is the query where ri matched Bob’s attribute value.

However, because of the previous release of exact query
answers, each noisy query now leaks some small amount of
information about every tuple. To see this, note that simple
linear algebra and a noisy answer to “number of people with
R = ri”, with noise variance 2/ε2, allows us to compute a
noisy estimate for “number of people with R = r1” also with
variance 2/ε2. Thus for each of these k noisy queries we can
estimate the number of tuples with R = r1 (with variance
2/ε2). By averaging over all of these estimates, we get a
better estimate for the number of tuples with R = r1 with
variance 2/(kε2), and in fact we can estimate of the number
of tuples with R = ri (for any i) with variance 2/(kε2).

When k is large (for example R is a d-bit attribute with
2d possible values), the variance is small so that the table
T is reconstructed with very high probability, thus causing
a complete privacy breach. This was only possible because



additional noisy queries were answered without taking into
account prior release of information.

Thus the guarantee that the distribution of future noisy
query answers changes very little if one deletes or arbitrar-
ily modifies one tuple is not sufficient to prevent a privacy
breach when exact query answers had been previously re-
leased – those exact answers add correlations between the
noisy answers that otherwise might not exist.

4.2 A Plausible Deniability
The result of Section 4.1 shows that once deterministic

query answers have been released released, Bob (if his in-
formation is in the data) can no longer opt out of the data
or opt to change his tuple arbitrarily – opting out would
have only been meaningful before any query answers were
released – so the differential privacy guarantees for future
query answers would not be as compelling to Bob. Bob can
still try to limit further damage by opting to modify his tu-
ple in a way that maintains consistency with the previously
answered exact queries. If the distributions of future noisy
query answers before and after such modifications are guar-
anteed to be similar, then Bob can limit further damage2 –
this is a form of plausible deniability.

One simple example of this idea is the relationship be-
tween bounded and unbounded differential privacy. Un-
bounded differential privacy (Definition 1.1) guarantees that
the distribution of noisy query answers will change only
slightly if Bob removed his tuple from the data. However,
if the query “how many tuples are in the data” had been
previously answered exactly, then Bob can maintain consis-
tency with this query answer by modifying his tuple arbi-
trarily (but not deleting it) since the number of tuples would
then stay the same. This is the approach taken by bounded
differential privacy (Definition 1.2), which guarantees that
the distribution of future noisy query answers changes only
slightly if Bob arbitrarily alters (but not deletes) his tuple.

In the general case, there may be no modification that
Bob can make to his tuple that would leave the data consis-
tent with previous query answers. For example, if, for every
attribute X, the queries “SELECT X, COUNT(*) GROUP
BY X” were exactly answered, then no modification of Bob’s
tuple alone can leave the data consistent with those query
answers (several tuples must be modified simultaneously).
However, Bob may collaborate with Alice to jointly change
their tuples to maintain consistency. For example, if the
number of males and females in the data were released, Bob
can change the gender attribute of his tuple to female and
Alice can change the gender attribute of her tuple to male
to maintain consistency.

Our extension to differential privacy, which accounts for
previously released exact query answers, follows these ideas
by providing the guarantee that the distribution of future
noisy query answers changes only slightly if a small set of
tuples were modified in any way that is still consistent with
previously answered queries.

4.3 Differential Privacy Subject to Background
Knowledge

In this section we modify differential privacy to account for
previously released exact query answers. In Section 4.4 we

2Under suitable further assumptions, such as initial inde-
pendence of records before the release of query answers (See
Sections 2 and 3).

discuss algorithms for privacy-preserving query answering.
First, we need the following definitions:

Definition 4.1. (Contingency Table, Cell, Cell count).
Given a table T with attributes R1, . . . , Rd, a contingency
table is the (exact) answer to the query:

SELECT R_1, ..., R_d,COUNT(*) FROM T

GROUP BY R_1, ..., R_d

A cell is a specific assignment of values to the attributes
(e.g. R1 = r1, . . . , Rd = rd), and a cell count is the number
of tuples in that cell.

A contingency table is essentially a table of counts (or a
fine-grained histogram).

Definition 4.2. (Move). Given a contingency table T ,
a move m is a process that adds or deletes a tuple from T ,
resulting in a contingency table m(T ). Thus the value of
exactly one cell count changes – it either increases by 1, or
decreases by 1 (as long as the result is nonnegative).

Using this notion of a move, we can define several no-
tions of neighboring tables. These different notions will be
used with the following definition to allow us to instantiate
different versions of differential privacy.

Definition 4.3 (Generic Differential Privacy). A
randomized algorithm A satisfies ε-differential privacy if for
any set S, P (A(Ti)) ≤ eεP (A(Tj)) whenever contingency
tables Ti and Tj are neighbors.

This definition can be specialized into bounded and un-
bounded differential privacy (Definitions 1.2 and 1.1) through
the following choice of neighbors.

• Unbounded Neighbors N1: Contingency tables Ti and
Tj are unbounded neighbors if one can transform Ti to Tj
using only one move. Define the relation N1(Ti, Tj) to be
true if and only if Ti and Tj are unbounded neighbors.

• Bounded Neighbors N2: Contingency tables Ti and Tj
are bounded neighbors if the sum of cells of both tables
are equal (i.e. Ti and Tj have the same number of tuples)
and Ti can be transformed into Tj using exactly 2 moves.
Define the relation N2(Ti, Tj) to be true if and only if Ti
and Tj are neighbors.

Clearly, the use of unbounded neighbors N1 in Definition
4.3 results in unbounded differential privacy. The use of
bounded neighbors N2 in Definition 4.3 results in bounded
differential privacy (compare to Definition 1.2) because chang-
ing the value of one tuple from t1 to t2 is equivalent to first
removing that tuple t1 (the first move) and then adding t2
(the second move).

In terms of moves, it is natural to ask why the definition
of bounded neighbors N2 required exactly 2 moves. The
reason is that this is the smallest amount of moves that is
needed to transform Ti into another table that is consistent
with previously released statistics (i.e. the number of tuples
in the table, which is assumed to be known in the case of
bounded differential privacy).

Another way to think about bounded neighbors N2 in the
context of differential privacy is that Ti and Tj are neigh-
bors if and only if they are as similar as possible, subject
to constraints imposed by previously released exact query



answers. Bounded differential privacy then guarantees that
an attacker who knows that the true table is either Ti or Tj
will have great difficulty distinguishing between these two
tables. Note that knowing the true table is either Ti or Tj is
the same as knowing n− 1 tuples in the true database and
being unsure about whether the remaining tuple is t1 or t2.

4.3.1 Neighbors induced by prior statistics.
Now let us generalize this reasoning to a case where ad-

ditional exact query answers have been previously released.

Example 4.2. Let T be a contingency table with attributes
R1, . . . , Rk. Due to overriding utility concerns, the following
query has already been answered exactly:

SELECT GENDER, COUNT(*) FROM T GROUP BY GENDER

Suppose n is the number of individuals in the table T (i.e.
the total cell count), nF is the number of females and nM
is the number of males. The quantities nM , nF , and n =
nF + nM are now known.

Suppose Drew is in this table. Some limited information
about Drew has been disclosed by this query, and now Drew
would like a variant of differential privacy to limit any pos-
sible damage due to future (noisy) query answers. We seek
some form of plausible deniability: the attacker should have
difficulty distinguishing between tables Ti and Tj that both
have nF females and nM males and are otherwise similar
except that Drew’s tuple takes different values in Ti and Tj.

Thus we need a good choice of neighbors of T (the origi-
nal table) which should be difficult to distinguish from each
other. Unbounded neighbors N1, used in the definition of
unbounded differential privacy (see Definitions 1.1 and 4.3),
do not work here; removing or adding a tuple to T changes
the number of males and females – thus it is not clear what
kind of plausible deniability this would provide. Bounded
neighbors N2, used in the definition of bounded differential
privacy (see Definitions 1.1 and 4.3), also do not work; we
cannot arbitrarily modify a single tuple and hope to be con-
sistent with the previously released query answers. However,
we can make limited changes to 1 or 2 tuples to maintain
consistency. For example, we can choose one tuple and mod-
ify the attributes other than gender arbitrarily. We can also
choose 2 tuples, 1 male and 1 female, swap their gender at-
tributes, and modify the rest of their attributes arbitrarily.
Both transformations keep the number of males and females
constant. Thus we can provide some level of plausible denia-
bility by making it difficult for an attacker to detect whether
one of these transformations has been performed.

This example illustrates 3 important points. First, in the
absence of additional correlations (as discussed in Sections
2 and 3), privacy is guaranteed by ensuring that an attacker
has difficulty distinguishing between the original table T and
a set of neighboring tables that are similar to T . Each neigh-
boring table T ′ differs from T by a small set of changes (for
example, by modifying the value of Drew’s tuple and possi-
bly a few others), thus the attacker would have difficulty in
detecting these changes (i.e. the attacker would be uncertain
about the value of Drew’s tuple). Second, each neighboring
table T ′ of T must be consistent with the previously released
exact query answers; the reason is that if T ′ were not con-
sistent, then it would be easy to distinguish between T and
T ′ (since an attacker would know that T ′ could not possibly
be the original table). The third point is that differential

Cell A Cell B Cell C Cell D
Table Ta 4 5 7 3

Cell A Cell B Cell C Cell D
Table Tb 5 4 6 4

Cell A Cell B Cell C Cell D
Table Tc 5 4 7 3

Figure 6: Three Contingency Tables

privacy can be made aware of prior data release simply by
choosing the appropriate notion of neighbors in Definition
4.3 (such modifications have also been suggested by [20]).

Based on this discussion, we can formally define the con-
cept of neighbors induced by exact query answers (Definition
4.4). Plugging this into generic differential privacy (Defini-
tion 4.3), we arrive at the version of differential privacy that
takes into account previously released exact query answers.

Before presenting Definition 4.4, first note that if Ta and
Tb are contingency tables, then the smallest number of moves
needed to transform Ta into Tb is the sum of the absolute dif-
ference in cell counts. For example, in Figure 6, this smallest
number of moves is 4: first +1 for cell A, then +1 for cell D,
then −1 for cell C, and finally −1 for cell B. Note that any
permutation of these moves also transforms Ta into Tb, and
these permutations account for all of the shortest sequence
of moves (i.e. of length 4) for turning Ta into Tb.

Definition 4.4. (Induced Neighbors NQ). Given a set
Q = {Q1, . . . , Qk} of constraints, let TQ be the set of con-
tingency tables satisfying those constraints. Let Ta and Tb
be two contingency tables. Let nab be the smallest number of
moves necessary to transform Ta into Tb and let m1, . . . ,mnab

be one such sequence of moves.3 We say that Ta and Tb are
neighbors induced by Q, denoted as NQ(Ta, Tb) =true, if the
following holds.

• Ta ∈ TQ and Tb ∈ TQ.

• No subset of {m1, . . . ,mnab} can transform Ta into some
Tc ∈ TQ.

We illustrate this notion of induced neighbors NQ (which
can now be plugged into generic differential privacy in Def-
inition 4.3) with the following example. Consider contin-
gency table Ta and Tb from Figure 6. Suppose the con-
straints Q are imposed by our knowledge that the sum of
cells A and B is 9 and the sum of cells C and D is 10. We
can transform Ta into Tb using the following move sequence:
first +1 for cell A, then +1 for cell D, then −1 for cell C,
and finally −1 for cell B. However, using only a subset of
these moves, namely +1 for cell A and −1 for cell B, we can
transform Ta into Tc. Since Ta, Tb and Tc satisfy all of our
constraints, Ta and Tb are not neighbors.

Continuing this example, it is easy to see that Ta and Tc
are neighbors and Tb and Tc are neighbors (even though Ta
and Tb are not). Thus Ta and Tc are as similar as possi-
ble while still satisfying constraints imposed by previously
released exact query answers (and similarly for Tb and Tc).
Thus using this definition of neighbors in generic differential
privacy (Definition 4.3), we would be guaranteeing that an

3Note that all other such sequences of moves are simply
permutations of this sequence.



attacker has difficulty distinguishing between Ta and Tc and
also between Tb and Tc.

4.4 Neighbor-based Algorithms for Differen-
tial Privacy

In this section we adapt two algorithms for (generic) dif-
ferential privacy that use the concept of induced neighbors
NQ (Definition 4.4) to guarantee privacy. We also show
that in general this problem (i.e. accounting for previously
released exact query answers) is computationally hard.

The first algorithm is an application of the exponential
mechanism [26]. To use it, we first need to define a distance
function d(Ta, Tb) between two contingency tables. We de-
fine the distance function d(Ta, Tb) as follows. Let TQ be
the set of all contingency tables consistent with previously
released query answers. Create a graph where the tables in
TQ are the nodes, and where there is an edge between tables
Ta and Tb if and only if Ta and Tb are induced neighbors.
Define d(Ta, Tb) to be the length of the shortest path from Ta
to Tb in this graph. The exponential mechanism now works
as follows. If T is the true table, we output a table T ′ with

probability proportional to e−εd(T,T
′). Following the proof

in [26], we can show that this will guarantee 2ε-generic dif-
ferential privacy (Definition 4.3, using NQ as the definition
of neighbors).

The exponential mechanism [26] generally does not lead
to efficient algorithms, even without the complication of in-
duced neighbors NQ. However, we can modify the Laplace
mechanism [8] to suit our purposes. To do this, we first need
the concept of sensitivity.

Definition 4.5 (Sensitivity). Let Q = {Q1, . . . , Qk}
be a set of constraints, let TQ be the set of contingency tables
satisfying those constraints, and let NQ be the associated
induced neighbors relation. The sensitivity SQ(q) of a query
q over TQ is defined as:

SQ(q) = max
NQ(T1,T2)=true

|q(T1)− q(T2)| (1)

The Laplace mechanism adds Laplace(SQ(q)/ε) noise (the

probability density function is f(x) = ε
2SQ(q)

e−εx/SQ(q)) to

the query answer. The proof of correctness is similar to [8].
Thus we need to be able to compute (an upper bound on)
the sensitivity of queries. In some cases (which we describe
below) this leads to efficient algorithms, but in general the
constraints Q imposed by previously released exact query
answers will make the data release problem computationally
intractable, as the following results show. We omit detailed
proofs due to space constraints.

Proposition 4.1. Let Q = {Q1, . . . , Qk} be a set of con-
straints. Let S be a table with 3 attributes and let T be
the associated contingency table. The following two decision
problems are NP-hard in the number of possible attribute
values.

• Checking whether T has at least one neighbor.

• Checking whether two tables Ta, Tb that are consistent
with the constraints in Q are not neighbors.

Proposition 4.2. Given a set Q = {Q1, . . . , Qk} of con-
straints, let TQ be the set of contingency tables satisfying
those constraints. For any count query q, deciding whether
SQ(q) > 0 is NP-hard.
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Figure 7:

The above propositions show that the general problem
of finding an upper bound on the sensitivity of a query
(SQ(q) < d) is at least co-NP-hard, and we suspect that
the problem is Πp

2-complete.
In certain cases, efficient algorithms do exist. For exam-

ple, consider a 2-dimensional table with attributes R1 and
R2, and suppose all the row and columns sums are fixed.
Let the query qall be defined as:
SELECT R_1, R_2, COUNT(*) FROM T GROUP BY R_1, R_2.
The following theorem computes the sensitivity of qall, which
can then be answered using the Laplace mechanism.

Lemma 4.1. Let Q be the row and column sums for a 2-
dimensional r× c table. The sensitivity SQ(qall) is given by
min(2r, 2c).

Proof. (sketch) The key insight is that for a set of moves
corresponding to the shortest path from table T1 to T2, there
can only be exactly 1 tuple added and 1 tuple deleted from
cells in the same row or same column. Suppose the contrary:
i.e., without loss of generality, there is a designated row
where more than 1 tuple is added. Since the row sums are
constant, if m tuples are added in a row, then m tuples must
have been deleted from cells in the same row. Now suppose
we mark every addition to a cell with ‘+’ and a deletion with
‘-’. Also, if ‘+’ and ‘-’ appear in the same row or column,
then draw an edge from the ‘+’ cell to the ‘-’ cell. It is easy
to see that if the row and column sums are fixed, then either
all or a subset of the marked cells are part of a Hamiltonian
cycle alternating in ’+’ and ’-’. If a subset of the marked
cells forms the Hamiltonian cycle then we can remove them
to get a shorter path from T1 to T2 (the cells in the cycle have
row and column sums equal to 0, by construction, so their
removal preserves the row and column sums). Thus after
finitely many such removals we may assume that all of the
cells containing a ’+’ or ’-’ are part of a Hamiltonian cycle
alternating in ’+’ and ’-’. A sequential walk on this loop is a
valid set of alternating tuple addition and deletion moves to
change T1 to T2. This loop enters the designated row for the
first time at cell c1 and exits the designated row for the last
time at cell c2. Cells c1 and c2 must have distinct signs. If
we drop the part of the loop from c1 to c2 and replace it with
an edge from c1 to c2, we get a new valid cycle from T1 to T2.
The new cycle is shorter and thus gives a smaller set of moves
to change T1 to T2; contradicting the fact that the original
set of moves was the smallest set of moves. Therefore, each
row and column has either no marked cells or exactly one
cell marked ’+’ and one cell marked ’-’. Thus the maximum
number of moves between any pair of neighbors is at most
min(2r, 2c).

To show that the sensitivity can achieve min(2r, 2c), we
consider pairs of ` × ` tables that differ in the counts as
shown (for ` = 3, 4, 5) in Figure 7. It is easy to show pairs
of tables for which the smallest set of moves is as described
in Figure 7.



5. RELATED WORK
Differential privacy was developed in a series of papers

[1, 10, 8] following the impossibility results of Dinur and
Nissim [7] that showed that answering many queries with
bounded noise can allow an attacker to reproduce the orig-
inal database almost exactly. Since then, many additional
variations of differential privacy have been proposed [9, 4,
29, 2, 23, 20, 28].

With the success of differentially private algorithms for
tabular data [16, 8, 1, 25, 26, 13, 18, 5], there has been inter-
est in developing differentially private mechanisms for other
domains, such as social networks [12]. For social networks,
examples include [17, 27, 30]. Rastogi et al. [30] proposed
a relaxation of differential privacy for social networks by
proving an equivalence to adversarial privacy (which makes
assumptions about the data), and then adding further con-
straints on the data-generating mechanism. By the no-free-
lunch theorem, the other applications also require assump-
tions about the data to avoid non-privacy.

Dwork and Naor [8, 11] have several results stating that
any privacy definition which provides minimal utility guar-
antees cannot even safeguard the privacy of an individual
whose records are not collected by the data curator (because
there always exists some auxiliary information that can be
combined with query answers to create a threat to privacy).
Thus Dwork proposed the principle that privacy definitions
should only guarantee privacy for individuals in the data.
Kasiviswanathan and Smith [19] formalized the notion of re-
sistance to various attackers including those who know about
all but one record in a table and showed an equivalence to
differential privacy.

6. CONCLUSIONS
In this paper we addressed several popular misconceptions

about differential privacy. We showed that, without further
assumptions about the data, its privacy guarantees can de-
grade when applied to social networks or when deterministic
statistics have been previously released. We proposed a prin-
ciple for evaluating the suitability of a privacy definition to
an application: can it hide evidence of an individual’s par-
ticipation in the data generating process from an attacker?
When tuples are believed to be independent, deleting one tu-
ple is equivalent to hiding evidence of participation, in which
case differential privacy is a suitable definition to use. Pro-
viding privacy for correlated data is an interesting direction
for future work.
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